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ABSTRACT

This paper presents an integrateD sOftware fault injeCTiOn enviRonment (DOCTOR)
which is capable of injecting various types of faults with different options, automatically col-
lecting performance and dependability data, and generating synthetic workloads under which
system dependability is evaulated. A comprehensive graphical user interface is also provided.
A special emphasis is given to the portability of this dependability experiment tool set. The
fault-injection tool supports three types of faults: processor faults, memory faults, and com-
munication faults. It also allows for injecting permanent, transient or intermittent faults. The
proposed design methodology for DOCTOR has been implemented on a distributed real-time
system called HARTS [1], and its capability is demonstrated through numerous experiments.
Dependability measures, such as detection coverage & latency and the associated performance
overhead, are evaluated through extensive experiments. Communication fault injection is used
to evaluate a probabilistic distributed diagnosis algorithm. The results show that the algo-
rithm performs better than its predicted worst case, yet is quite sensitive to various coverage
and inter-processor test parameters.

Index Terms — Fault injection, communication faults, error-detection latency & coverage, syn-
thetic workloads, dependability and performance monitor, validation and evaluation of fault-
tolerance mechanisms, distributed real-time systems, dependable communications, distributed
diagnosis.
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1 Introduction

One of the major problems in developing a dependable system is how to evaluate its depend-
ability. Generally, there are several attributes of dependability, such as reliability, availability,
maintainability, and performance-related measures (performability) [2]. Numerous approaches
have been proposed to validate and evaluate system dependability, including formal proofs,
analytical modeling, and experimental methods.

As computer systems become more complex, evaluation by modeling may become in-
tractable. Dependability evaluation with fault-injection experiments has therefore become a
popular alternative. This approach is aimed at accelerating the occurrence of faults in order to
assess the effectiveness of fault-tolerance mechanisms while executing realistic programs on the
target system.

There have been several methods proposed for hardware fault injection, such as pin-level
fault injection [3, 4, 5], and heavy-ion radiation [6]. However, these methods have become
increasingly more difficult to use, mainly due to the complexity of contemporary computer
architectures and the high-degree of integration of functions into an ever-shrinking VLSI chip.
As a result, simulation approaches [7, 8, 9] and software fault-injection methods have appeared
as viable alternatives to hardware fault injection.

The authors of [10, 11] introduced software fault injection (SFI), in which faults or errors are
inserted into the system memory in order to produce errors or emulate actual errors. However,
the memory fault model can only represent the effects of a limited number of actual faults,
because some errors are hard to simulate by changing memory contents. In [12], fault injection
into CPU components was emulated, and in [13], communication faults were added. A com-
bination of SFI and hardware fault injection is utilized in [14]. In spite of these efforts, the
capability of representing diverse fault types with SFI is still limited. However, SFI has been
recognized as a viable means of dependability evaluation for the following reasons.

o Fault models are changing from the traditional gate-level model to a higher abstract-level
model, and SFI suits this trend well.

e Skl is less expensive than hardware fault injection, because it does not require additional
hardware support.

o [t is much easier to repeat experiments with SFI and collect sufficient amounts of data.

o SFI always succeeds in injecting intended faults, but hardware fault injection suffers
parasitic mutations caused by physical interferences.

o The risk of permanently damaging the target system under test is almost nonexistent.

All previously-implemented SFI methods have a common restriction that they were devel-
oped for specific target systems. That is, portability — an important merit of SFI — has
not been figured into their design. By minimizing its dependence on the underlying hardware
architecture and operating system, a SFI tool which runs on one system can be ported to
another with minimal effort. Fault-injection experiments can then be performed during early
design phases without developing a new fault injector for each target system. This is important,
because changing system design at a later stage is usually very expensive. Another point we



would like to emphasize is the necessity of other support tools for fault-injection experiments.
Two main tools needed for fault-injection experiments are the fault injector itself and a data
collection /analysis tool. In contrast to the fault injector, the latter tends to be built on an ad
hoc basis. Moreover, the dependence of experimental results on the executing workloads has
not been dealt with in a systematic manner. Using only a few application workloads is not
sufficient to assess the effects of a wide range of applications on the underlying fault-tolerance
mechanisms.

In this paper, we design, implement, and evaluate a generic methodology for constructing
and integrating a set of tools needed for software fault-injection experiments. This methodology
does not rely on any particular system, though our main interest lies in distributed real-time
systems. Complete independence of a SFI tool from hardware and system software is impossible
to accomplish, since in many cases the fault-tolerance features under test are implemented at
the hardware or system software level. A realistic way to reduce the porting effort is to utilize
“standard” features available in commonly-used systems, and to separate the system-dependent
parts from the rest.

Our SFI supports three types of faults: memory faults, communication faults, and proces-
sor faults. High-precision controllability over fault injection timing is supported, and a fault’s
temporal behavior may be specified as transient, intermittent, or permanent. A powerful and
flexible monitoring tool is also provided in order to facilitate the collection of both depend-
ability and performance data. A synthetic workload generation tool is provided for ease in
generating workloads of various operational characteristics under which system dependability
may be evaluated.

All the functions mentioned above are controlled through a unified graphic user interface in
an X-window environment. In addition, an automated and user-transparent multi-run facility
allows experiments to be repeated any number of times with no additional user intervention.

The proposed SFI environment, called an integrateD sOftware fault-injeCTiOn enviRonmenti
or DOCTOR for short, is implemented on HARTS [1], and several error detection and recovery
mechanisms are evaluated using these tools. Section 2 presents the fault model of our SFI, as
well as the architecture of DOCTOR. Section 3 gives a brief description of the initial target
system, HARTS, and discusses the underlying implementation issues. Section 4 presents exper-
iments designed to demonstrate the capability and usefulness of DOCTOR. Finally, the paper
concludes with Section 5.

2 Design Methodology

In this section we present our methodology for building the DOCTOR and facilitating its
use in a variety of system architectures.

We first describe a fault model which primarily determines the fault-injection capabilities
and the controllability requirements. We then present the organization of DOCTOR. Finally,
we discuss both portability and flexibility issues.



2.1 Fault Model

Actual hardware or software faults affect various aspects of the system’s hardware or op-
erational behavior, such as memory or register contents, program control flow, clock value,
the condition of communication links, and so on. Ideally, SFI should mimic the consequences
of actual faults without requiring additional hardware. A common weakness of SFIs is their
limited ability to represent the effects of actual faults.

Modifying memory contents is the basic approach used in software fault injection. Faults
are likely to (eventually) contaminate a certain portion of memory, so memory faults must be
able to not only represent RAM errors but also emulate faults occurring in the other parts of the
computer system. Though the memory fault model is quite powerful, there are two important
points that this model cannot handle well. The first is the importance of dormant/latent faults
which may take a long time to manifest themselves, depending on the underlying workload.
Latent faults, however, are considered to have a higher probability of leading to critical system
failures. Some faults, such as faults in the CPU circuitry, result in failures before they affect
the system memory. Second, some faults may not affect memory contents at all, or change
system memory in a very subtle and nondeterministic way. It is very hard to simulate such a
fault behavior with memory fault injections. Communication errors are good examples of this.

A more sophisticated fault model is therefore required to get around these limitations of the
memory fault model. To fully emulate the effects of various faults, a pure software-implemented
fault injector may not be sufficient. However, the increasing complexity of contemporary com-
puter architectures and the advance of VLSI technology are pushing fault models towards a
higher level than the gate/chip level. Fault injection at a system component level will prove to
be more beneficial, because of the increasing difliculty of accurate low-level fault injection and
because of the trend that system-level components are becoming the basic units of replacement
or reconfiguration. Based on this observation, we have decided to support three types of faults:
memory faults, communication faults, and processor faults. Each of these types corresponds to
a major system-level component. The user can also choose any combination of the three types
to create appropriate abnormal conditions within a computer system. For each fault type, one
can specify a number of options as shown in Tables 1, 2 and 3.

One important aspect of our fault model is the refined controllability. Evaluation of a
fault-tolerance mechanism needs a systematic fault-injection plan, and thus, the capability of
injecting a proper fault instance into a proper location at a proper time is essential to the
evaluation experiments. Qur fault model supports three temporal types of faults: transient,
intermittent, and permanent. Various types of probability distributions are also provided to
specify fault inter-arrival times, so that the system can determine when to inject faults. The
user can directly control each experimental parameter using user-defined options; this is very
useful, especially when testing application-level fault-tolerance mechanisms.

A memory fault can be injected as a single bit, two-bit compensating, whole byte, or burst
(of multiple bytes) error. The contents of memory at the selected address are partially or to-
tally set, reset, or toggled. A transient fault is injected only once, and an intermittent fault is
injected repeatedly at the same location. When injecting an intermittent fault, the user can
specify the distribution of the fault recurrence interval. Currently, the exponential distribution,
normal distribution, Weibull distribution and binomial distribution are supported. The user
can specify the necessary constants of each distribution type, and can add other distributions



Memory faults

Fault range Types | Duration Interarrival | Injection

time locations
Single bit Set Transient Exponential | Stack/Heap
Compensating | Reset | Intermittent | Normal Global variables
Single Byte Toggle | Permanent | Binomial User-code
Multi Bytes Weibull OS area
User defined User defined | User defined

Table 1: Memory error options

Communication faults

Fault types Options Duration Interarrival
time

Lose outgoing messages | Faulty-link selection | Transient Exponential
Lose incoming messages | Altered location Intermittent | Normal
Lose all messages Delay control Permanent | Binomial
Alter messages Weibull
Delay messages User defined
User defined

Table 2: Communication error options

as needed. A permanent memory fault is more difficult, since the only way to facilitate true-
permanent memory faults is to use make use of system provided memory protection support.
Considering that memory protection is not supported in some real-time systems, and that the
utilization of memory protection will be highly system-dependent and may require hardware
assistance, we chose a pseudo-permanent memory fault approach. A permanent fault is emu-
lated as an intermittent fault with a very small recurrence interval, but for efficiency reasons
our implementation is different from a direct implementation of intermittent fault injection.

Besides the fault type and the injection timing, the location of memory fault injection is
important. The injection location can either be explicitly specified by the user, or can be
chosen randomly from the entire memory space. It is sometimes desirable for a fault to be
injected in a memory section containing the user program code, the user stack/heap, the user
global variables, or the system software. But it is still difficult to modify the program execution
behavior properly or to emulate erroneous communication-related functions by just injecting

memory faults. We overcome this difliculty by using the other fault types.

Communication failures are specified in a manner similar to memory errors, except with
some additional options. Messages can be lost, altered, or delayed. If the node has multiple
incoming and outgoing links, as in a point-to-point architecture such as HARTS [1], different
fault types can be specified separately for each link. Lost messages are simply not delivered
to the recipient. The user can specify whether outgoing, incoming, or all messages are lost
at the faulty link. Messages can be lost intermittently, with a probability specified by the
user, or alternatively, every message can be lost. Messages may be altered in the same manner



Processor faults

Fault types Duration Interarrival | Injection

time locations
Control flow change Transient Exponential | Random
Register content change | Intermittent | Normal User defined
ALU malfunction Permanent Binomial
Clock malfunction Weibull
User defined User defined

Table 3: Processor error options

as memory locations, i.e., by inserting single bit, two-bit compensating, or burst errors. The
user can specify whether the error is to be injected into the body of the message or into the
header, which contains routing information. The injection can be intermittent or permanent.
For delayed messages, a method must be specified to determine how long each message will be
delayed. The delay time can be either deterministic or can follow an exponential distribution
with a user supplied mean. In addition to this set of predefined communication fault types,the
user can define additional communication fault actions. These user defined faults may be
combinations of the predefined fault types, and may be based on the contents of individual
messages or on the past message history. This variety of communication failures, and the
ability to combine existing and define new fault types, allows the injection of a variety of failure
semantics, including Byzantine failures.

Processor faults reside in data registers, control registers, bus interface units, the ALU, and
so on. Depending on the underlying hardware and system software, accessibility to hardware
components varies widely. For example, it is impossible to directly access certain components
in a data path and a control path by software. (This is also true in the case of hardware fault
injection.) One way to overcome this limitation is to inject an erroneous behavior rather than
a fault itself. However, the exact effect of faults in each component of a processor is highly
architecture-dependent. Instead of using the detailed knowledge of specific CPU architecture
in order to emulate actual faults more directly as was done in [12], we chose to emulate the
consequence of actual faults. Without using any special hardware, we make use of executable
image modification, which changes some existing instructions generated by the compiler or
inserts extra instructions for fault-injection purposes.

The manifestations of processor faults we currently support are the alteration of control
flow, register contents, clock value, and ALU results. For example, the control flow can be
altered by bus line errors, instruction decoding logic errors, errors in a condition code flag,
or control register errors(e.g., program counter). Also supported are three temporal behavior
types: transient, intermittent, and permanent. The injection location combined with timing
parameters determines the time of error occurrence. The decision of an injection location can
be either application-transparent or specified in the user’s source code. Note that the execution
of extra instructions may affect the system performance.



DCM

Experiment DAM
Description

: l FIA
File !
|
| DCM
Graphic User Interface ) |
| I
J’& Host Computer Target system

User network

Figure 1: The organization of DOCTOR

2.2 Organization of DOCTOR

A fault-injection experiment environment consists of several components: the target sys-
tem with fault-tolerance mechanisms which are to be evaluated, a software fault injector, the
workloads to be run on the target system, and a dependability monitoring tool.

We provide a complete set of tools for automated fault-injection experiments, and this tool
set forms a modular software architecture. Our tool set can be used in both a single processor
system and a multiple processor system, but it is mainly intended for use in real-time distributed
systems. Figure 1 shows the organization of DOCTOR. In this architecture, a host computer
works as a console node and several processing nodes are connected with each other and linked
to the host node over a communication network.

One distinct feature of the above organization is the separation of components of the host
computer from those of the target system. DOCTOR organization has some innate advantages.
First, it reduces the run-time interference caused by fault injection. It is important to minimize
interference in order to obtain accurate timing data, such as fault-detection latency. Second,
it makes the run-time control of experiments much easier, because each component can be
controlled separately. Third, it can support a multi-run experiment facility and it reduces the
effort needed for porting to other systems. This will be detailed in the following section.

The core part of DOCTOR is the SFI which supports the fault model described in the
previous section. SFI consists of three modules: the Experiment Generation Module (EGM), the
Experiment Control Module (ECM), and the Fault Injection Agent (FIA). The dependability



monitor collects dependability data during each experiment, and analyzes it on the fly, or off-line
after completing the experiment. The monitor is composed of two modules: Data Collection
Module (DCM), Data Analysis Module (DAM). A Synthetic Workload Generator (SWG) is
provided to generate various synthetic workloads under which fault-tolerance mechanisms are
evaluated. In addition, an integrated Graphic User Interface (GUI) and a fully-automated
multi-run experiment facility are provided to facilitate and automate the design and execution
of fault-injection experiments.

The first role of EGM is to generate code executing different workloads which will be down-
loaded (from the host) to the target system. A workload could be run on a single processing
node or be distributed among a number of nodes. The user can use real programs as workloads,
or can rely on SWG for synthetically-generated workloads. In either case, when the workloads
are compiled and linked, the symbol-table information is extracted to be referenced by ECM,
and library programs are attached to workload executable code in order to synchronize the
start and the stop of workload execution. Special instructions are inserted into workload ex-
ecutable code for injecting processor faults. However, the the attached library modules are
transparent to the users. Only when the fault-tolerance mechanism under test is implemented
within the workload itself does reporting the error detection/correction become the workload’s
responsibility. In this case, the user needs to know the interface functions of DCM.

The second role of EGM is parsing the experiment description file supplied by the user or
generated by GUI automatically. The experiment description file contains the experiment plan
and the information about the fault type and injection timing. EGM generates an experiment
parameter file for each node involved in an experiment. These files are used by ECM to
determine when to start fault injection, what kinds of fault are to be injected, and how many
times the experiment will be run, and so on.

FIA is a separate process which runs on the same nodes as the workloads. It receives control
commands from ECM via a communication network and executes them. It injects faults, and
lets workloads wait/start /stop. It also reports its activities to DCM, such as the injection time,
location, type, etc. A workload is controlled by FIA through shared memory and system calls.
Thus, it is possible to run FIA on a different node if the underlying system architecture allows
it. FIA directly controls the execution of workloads, and FIA is in turn controlled by ECM.
Consequently, ECM can capture the control of entire experiment sequences.

ECM functions as a controller. It supervises all other modules, and sets up an experiment
environment by downloading workload executable code, FIAs, DCMs, and even system software
if needed. FIAs and DCMs pass information to and receive commands from ECM. ECM uses
the experiment parameter files generated by EGM to send proper commands to FIAs. The
symbol-table information can be used to decide memory fault injection locations, and a variety
of random number generators are equipped to support different distribution types. It can deliver
a precise independent timing control service, which means the start of each run is synchronized
and the user can specify each injection start/end time on different nodes. The execution of
workloads is interrupted when the run duration limit is reached.

To evaluate the dependability of fault-tolerance mechanisms, we must measure dependabil-
ity parameters like detection coverage and latency while executing appropriate workloads. A
workload produces demands for the system resources, so the structure and behavior of the
workload may affect the result significantly. In DOCTOR, the user can use a real application



program as a workload, or use a synthetic workload produced by SWG [15]. Because the syn-
thetic workload is parameterized, the user has direct control of the workload characteristics,
and so experiments can be conducted under various workload conditions. SWG compiles a
high-level description of a workload to produce an executable synthetic workload, ready to be
downloaded to a processing node.

One important issue in dependability experiments is the collection of relevant data. In
fault-injection experiments, two types of data are needed for dependability analysis. One is the
history of fault injections, and the other is the error report. A simple way of collecting data
is to give the entire responsibility to FIA and the fault-tolerance mechanisms under test. This
choice is simple but violates a few basic principles of monitoring. The effect of monitoring on
the monitored system should be minimized because the high overhead of monitoring may distort
timing measurements. Monitoring must also be transparent to the monitored system. Another
important point in collecting fault-injection data is the consideration of performance monitoring.
We chose to use a separate process for performance data collection so as to (i) reduce the burden
of data logging on FIA and fault-tolerance mechanisms, and (ii) achieve more flexible and
expandable capabilities that can be incorporated with the capability of performance monitoring.
The problem of separate measurement of performance and dependability is mentioned in [16].

The basic function of DCM is to log the events generated by the monitored object. The
FIA and fault-tolerance mechanisms under test generate such events, and if performance is
monitored along with dependability, the event triggering instructions should be placed in the
operating system kernel. These events are the categorized and time-stamped information about
the activities which we want to monitor. Generation of events is the only overhead to the
monitored object. DCM works continuously during experiments, and its function is fairly
passive. It can be run on the same node with workloads or on a different node. The number of
DCMs required in an experiment depends on the target system architecture and the complexity
of experiments, and is not restricted to any particular architecture or experiment. The collected
data may be stored in a number of files and used later for automatic data analysis.

DAM analyzes the data collected by DCM. For example, it calculates the coverage and
latency of each detection mechanism. Since DAM has a modular structure, other analysis
capabilities can be added easily. DAM has a graphic display function to present analysis
results. A common step before the data analysis is the merging of files generated by DCMs
according to time-stamps. In this preprocessing step, superfluous data are filtered out, and the
global information about the experiment is extracted. The accuracy of analysis and the range
of parameters to be analyzed are determined by the data collection process as well as DAM.

The GUI helps the user design and control fault-injection experiments. It creates the ex-
periment description files, and allows the user to control the execution of experiments at run
time. It also facilitates the use of SWG, and manages the graphic display for DAM. The GUI
provides the user with an integrated and easy to use interface to DOCTOR.

Fach fault-injection experiment with specific workloads is called a run. In a fault-injection
experiment, one of the factors that determine the quality of analysis results will be the number
of runs. Therefore, it is very useful to automate multi-run experiments. In a multi-run facil-
ity, the key problem is the synchronization and re-initialization of several processes, including
workloads. The level of re-initialization required depends on the failure semantics of the target
system. In some cases, it may be necessary to reset the whole system, and in some other cases,



the restart of workloads may be enough. A typical multi-run experiment sequence is given
below.

Step 1: EGM generates executable images of workloads and experiment parameter files.

Step 2: ECM sets up the experiment environment: downloading FIAs and DCMs and work-
loads on the proper nodes.

Step 3: ECM synchronizes all the processes.
Step 4: One run is started and relevant data are collected by DCM.

Step 5: ECM interrupts workloads, and then go to Step 2 or Step 3, depending upon failure
semantics.

Step 6: DAM analyzes collected data.

2.3 Portability and Flexibility

When assessing the portability of software, one should consider the low level services required
for porting. In the SFI case, it can affect the lowest layers of system software. It must sometimes
penetrate the protection boundary of operating systems, and modify communication protocols
of various layers. To accomplish a reasonable degree of portability in this specially complex
situation, we take advantage of software engineering techniques as summarized below.

First, we used modular design and functional independence among modules. Instead of
lumping all into a unified executable image, the software needed for fault-injection experiments
is divided into a set of modules. In a multiprocessor or at least a multi-programming environ-
ment, each module of DOCTOR is a separate process and communicates with others through
typical interprocess communication methods such as shared memory, message passing, or inter-
mediate files. As a result, modules are functionally independent. In other words, each module
can be either disabled or replaced by other programs which perform similar functions with the
required interface. This flexibility allows DOCTOR to be joined with other programs which
have been developed for their own special purposes.

Second, we encapsulated or isolated system-dependent parts. This information hiding leads
to effective modularity. Modules are roughly divided into two groups: highly system-dependent
and less system-dependent. One good example of a highly system-dependent module is the FIA.
In addition to this separation, standard implementation techniques are employed to enhance
portability. As will be described in the next sections, the modules which run on the host are
implemented under the UNIX operating system, and the data exchange with modules on the
target system relies on standard communication protocols such as the TCP/IP socket stream.
Therefore, in most cases modules of the host can be ported to a different system with little
effort.

Third, we chose a high-level fault injection. By abstracting the fault model, one can therefore
choose less system-dependent fault-injection techniques. In fact, the portability of each injection
method is different. For example, memory fault injection may require an access method if virtual
memory is used. Processor fault injection requires the knowledge of the target system compiler.
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Figure 2: The HARTS software development environment.

Communication fault injection may be more complicated, depending on the structure of the
communication protocol stack, and its degree of integration with the operating system.

3 Implementation on HARTS

The first target system of DOCTOR is HARTS [1], a real-time distributed system. Presented
below are the relevant details of HARTS and important implementation issues.

3.1 Description of the Target System

HARTS is comprised of multiprocessor nodes connected by a point-to-point interconnection
network.! Each HARTS node consists of several Application Processors (APs) and a Network
Processor (NP). The APs are used for executing application tasks, and the NP handles most
of communication processing. The NP consists of interfaces to the network as well as the APs,
buffer memory, and a general-purpose microprocessor.

In the current configuration, the nodes of HARTS are VMEbus-based Motorola 68040 sys-
tems. Each HARTS node has 1-3 AP cards, an NP card, and a communication network
interface board. Each AP card is the Ironics IV-3207 [17], a VMEbus-based 68040 card, and

nitially it was a continuously-wrapped hexagonal mesh topology, but now it is not restricted to this topology

only.
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another IV-3207 card serves as an NP. The Ancor VME CIM 250 [18], which composes a fiber
optic interconnection fabric through Ancor CXT 250 switch [19], works as a communication
network interface board. A custom network adapter board, called SPIDER [20], is currently
under development.

Each node of HARTS runs an operating system called HARTOS [21]. HARTOS is primarily
an extension of the functionality of pSOS™™ [22], a commercial real-time executive to work in
a multiprocessor and distributed environment. While pSOS*™ provides system support within
a node, an extended version of the z-kernel [23] operating system coordinates communication
between nodes. The z-kernel provides facilities for implementing communication protocols, such
as a uniform protocol interface and libraries to efficiently manipulate messages and maintain
mappings.

Software for HARTS is developed on Sun workstations. A Sun sparcstation serves as the
main connection to HARTS. HARTS applications and system software are downloaded from
this workstation through the local HARTS Ethernet. The workstation is also connected to the
campus computing facilities by a separate Ethernet connection. Thus, the programs developed
and compiled on other workstations may be downloaded to HARTS, but HARTS executes with
a dedicated local Ethernet. The workstation also serves as the console for the HARTS nodes.
It is connected via a multiplexor (MUX) to the console serial ports on each AP card and an
NP card of each HARTS node. The HARTS software development environment is shown in
Figure 2.

3.2 Implementation Issues

In implementing SFI on HARTS, we use three methods to inject faults concurrently with
the execution of workloads. Simple memory overwrites are used for injecting memory faults, a
special fault injection protocol layer is used for communication faults, and modification of the
workload executable code is used for processor faults. Fault injection is controlled indirectly
by ECM through FIAs. One FIA is downloaded to each AP on which a workload is running.
To support the precise timing control of an experiment, ECM spawns a child process per node,
and synchronizes the execution of these child processes.

For memory fault injection, each child process decides the injection location, the fault type
(range/mask), and the injection timing. When a pre-determined time is reached, the process
sends the corresponding FIA a message, which contains the address and the fault type. The
content of the addressed location is masked by the specified pattern in the fault type using
AND (reset) operation, OR (set) operation, or XOR (toggle) operation. If the fault is the
permanent fault type, FIA refreshes the contents of the address periodically. As a result, no
excessive communication between ECM and FIA is required to inject a permanent memory
fault. HARTS does not have any memory protection,? so FIA can easily overwrite any memory
area.

Another issue in injecting a memory fault is the problem of deciding the location of injection.
HARTS does not use virtual memory, so the symbol-table information can be easily used in an
absolute address form, combined with the OS memory-map information. If the target system

2Like most other real-time systems, HARTS does not employ virtual memory to eliminate the unpredictability
in memory access caused by page faults.
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is furnished with a memory protection facility or virtual memory, one can use either software
techniques like ‘Trojan horse’ in [10], or hardware-dependent techniques like those in [11, 12].

Communication faults are injected by a special communication protocol layer that can be
inserted anywhere in the protocol stack. This fault injection layer accepts timing and fault
type commands from FIA, and uses information from the parameter files generated by the
EGM to initialize the message history structures. It may be placed between any two protocol
layers, but is normally inserted directly below the protocol or user program to be tested. This
approach is similar to that in [13]. The current implementation takes advantage of the features
of the z-kernel operating system, in which our communication protocols are implemented.
All protocols in the z-kernel are implemented using same interface between layers, called the
Uniform Protocol Interface (UPI). As a result of the UPI, the fault-injection layer does not
need to be modified when it is placed between different protocol layers. All protocol specific
information needed by the fault-injection layer, such as the message header and data formats,
is included using separate header files. If more complex fault scenarios are desired, copies
of the communication fault-injection layer may be placed in multiple places in the protocol
graph. The z-kernel also provides additional system libraries, such as an event library that is
used to schedule future events and a map library that is used to maintain bindings between
identifiers, that simplify the implementation of the communication fault injection layer. The
communication fault injection layer operates by intercepting the UPI operations between the
protocol under test and the lower layer protocols. If it detects an operation during which
a fault should be injected, based on commands from the FIA, it performs the appropriate
fault injection operation. All other operations are simply passed through without modification.
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Figure 4: Main window of Graphic User Interface

Outgoing and incoming messages are lost by intercepting the appropriate send and receive
operations, and then discarding the message. Messages are altered by intercepting the send
or receive operation, and then changing the message contents before passing it on to the next
protocol layer. Messages are delayed by stopping the current message and then scheduling a
future message with the same contents, using the z-kernel event library. In order to support
the user-defined fault classes, we allow messages to be stored in a message history using the
z-kernel map library. All references to past messages in the user-defined fault description are
translated into map library operations. In combination with the message header format and
the predefined fault types, this allows complex communication fault scenarios to be specified
by the user.

A permanent processor fault can be emulated by changing program instructions at compile
time. For example, the control flow of a program can be altered by arbitrary jump instructions.
Modifying all instructions using a faulty ALU can emulate an ALU fault, and overwriting the
register contents in the middle of the program execution can emulate a register fault. By
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Figure 5: DAM window

replacing or adding instructions at the assembly language level, the other types of processor
fault can be emulated.

A transient/intermittent type of processor fault requires more than compile-time efforts.
We support this type of fault as follows. When the program execution reaches the specified
instruction, whether or not to inject a fault is determined using one extra instruction inserted
at compile time. If a prespecified fault injection time is reached, a predetermined or randomly
selected fault is injected, such as changing the value of the program counter. In the other case,
the program will follow the normal sequence.

Currently, the hardware-assisted clock synchronization protocol [24] of HARTS is under
development, so we added a software-implemented clock-synchronization capability to ECM.
The clocks of processor nodes are synchronized periodically, once at the beginning of each
experiment, or once every run, or as often as needed.

In the current HARTS version, DCM runs on a dedicated processor and communicates
with FIAs of different APs which are on the same VMEbus backplane. Therefore, if several
HARTS nodes are used, then we need the same number of DCMs as HARTS nodes. Thus,
DCM minimally interferes with the execution of application workloads. One more benefit of
this separation is the isolation of DCM from other APs. Even when workloads must be re-
initialized between runs or some APs must be reset due to failures, DCM can continue its
function without disruption.
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Figure 6: Example of muti-run experiment structure

Communication between DCM and log-event [25] generating processes (e.g., FIA) is done
through the VMEbus on the HARTS node. DCM allocates a distinct buffer area for each
client process. Logged data are stored in the file system mounted on the dedicated processor of
running DCM. Similarly, one file is opened for each client process. Figure 3 depicts the basic
working mechanism of data collection.

GUIis implemented based on X-window Motif [26], and runs as a separate process. Figure 4
shows the main window of GUI, and Figure 5 shows the DAM window.

One critical problem in implementing a multi-run facility is the re-initialization of both
workloads and the fault-injection environment. Figure 6 shows the relationship of processes
to the re-initialization sequence in the case of duplex-match detection experiment (see Section
4.1 for more on this). The first step is to synchronize all the processes involved. This step
is initiated by the ‘ready’ signal from workloads, and concluded when each workload receives
‘ack’ signal from ECM. Then, workloads begin running, and FIAs inject faults as commanded
by ECM. At the same time, DCM collects relevant reports from FIAs and the underlying fault
detection mechanism, and logs them in files for DAM. After a specified time elapses, ECM
sends a ‘stop’ signal to FIAs in order to interrupt the current run. These sequences will be
repeated for multi-run experiments.

4 Experimental Results

In this section, we demonstrate the capability of DOCTOR by evaluating the effectiveness
of error-detection and diagnosis methods with this tool set. All experiments were performed
on HARTS. Since DOCTOR offers an automated multi-run facility, it is easy to run experi-
ments as many times as needed while varying various (including workload-related) parameters.
The first experiment evaluates a duplicate-match error-detection method, while the second ex-
periment evaluates a signature monitoring detection method [27]. The third experiment use
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‘ H Case 1 Case 2 H Case 3 Case 4
matrix dimension 30x50x30 | 30x50x30 40x80x40 40x80x40
sampling frequency 1/50 1/150 1/50 1/150
number of runs 3000 3000 3000 3000
detection coverage 67.73% 32.33% 63.52% 56.85%
latency mean 89.10msec | 118.49msec || 206.79msec | 251.57msec
(variance) (9208) (11501) (69348) (74300)
performance overhead || 36.13% 34.97% 36.20% 35.02%

Table 4: Data analysis summary of memory fault injection experiments

communication faults to evaluate a probabilistic distributed diagnosis algorithm.

4.1 Memory Fault Injection Experiments

The goal of these experiments is to illustrate how the dependability parameters of a fault-
tolerance mechanism can be measured with DOCTOR. Specifically, we measure the distribution
of error-detection latency and the coverage of error detection. We also analyze other interesting
parameters, such as the performance overhead of the error-detection mechanism, the depen-
dence of error-detection latency and coverage on the executing workloads, and the effect of
comparison granularity in the duplicate-match error-detection mechanism. Described below is
the experiment specification.

A software-implemented duplicate-match error detector is run on an AP which is different
from those APs executing real workloads. Two identical workloads are run on two distinct
APs. They are executed independently, and their start and stop are loosely synchronized. The
error detector compares the memory access operation of two identical workloads. Software-
based implementation of this detection mechanism obviously limits its processing capability.
To reduce its intrusiveness, we use the detection mechanism with two options. First, buffers are
utilized instead of simple lock-step comparison. Second, comparison is done only on the sampled
memory write operations. But it is still susceptible to buffer overflow when too many memory
accesses occur in a short period. A program for floating-point matrix multiplication is used as a
workload. It consists of an infinite loop of matrix data initialization and multiplication. Every
write operation on matrix data is done through a function call in which some of data sampled
at a certain frequency are sent to the error detector for comparison. When an overflow occurs
at the error detector, the workloads must wait in the write function call. Memory-type faults
are injected into the memory section allocated for matrix data in the user program stack area.
For simplicity, we chose to inject one byte toggling transient memory faults.

Four cases are tested and measured, and the results are summarized in Table 4. Each
experiment is repeated 3,000 times, and two different size workloads are tested with two different
sampling frequencies, respectively. One observation is that the larger matrix case has a larger
detection latency, even if the same sampling frequency is used. This is because it takes longer
to generate each element to be compared. Increasing the sampling frequency shortens the
detection latency, but it also increases the performance overhead. The analysis results also
indicate that the comparison granularity determined by the sampling frequency directly affects
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error-detection coverage.

Figure 7 shows the distribution of error-detection latency for Case 1. The results of Case 4
are presented in Figure 8.

4.2 Processor Fault Injection Experiments

In these experiments, we use synthetic workloads to observe the workload effects on the
dependability measures. The synthetic workload used here simulates a structure of a typical
real-time system, in which a sensor generates events periodically and the processed events
are delivered to an actuator connected to a different AP. SWG is a useful tool for generating
representative workloads, especially when actual application code is unavailable at an early
stage of system design. A detailed account of the SW specification language can be found
in [15]. Figure 9 shows the conceptual structure of these experiments.

The error-detection mechanism tested in this experiment is a simplified software-implemented
watchdog monitor. It uses the asynchronous disjoint signature monitoring technique for multi-
processor systems as in [28]. In our scheme, explicit signature-send instructions are inserted in
the program, and the signature history of an error-free run is used as a reference structure of
the watchdog monitor. Tasks on different processors transmit their signature to the watchdog
monitor through dedicated signature queues. One signature-send instruction is added to the
end of each program block, and each signature is randomly decided.

To evaluate this error-detection mechanism, transient changes of control flow (transient
faults) are introduced. We make use of SWG to generate synthetic workloads which have blocks
of different sizes. For simplicity, all instructions in a block are floating-point multiplication
statements, and a 5,000-instruction synthetic workload is employed. In this experiment, we
observe the effect of the average block size on error-detection coverage, detection latency, and
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the performance overhead.

Figure 10 shows the dependence of error latency on the block size. The average latency of
each case is obtained through 1,000 runs. The case when two signature sources share a watchdog
monitor is also evaluated. In the watchdog monitor under test, the signature of each block is
not generated based on the content of the block. Therefore, when block size increases, so does
error latency. However, this is not true until the block size goes past a certain point. This
phenomenon is the consequence of the signature queue overflow caused by the high signature
generation rate exceeding the capability of the watchdog monitor, which is measured to be able
to make about 20,000 signature comparisons per second.

The performance overhead is plotted in Figure 11. Obviously, the high density of signature-
send instructions worsens the performance. Figure 12 shows the dependence of error-detection
coverage on the block size. The lack of consideration of block contents when generating signa-
tures leads to the decrease of detection coverage with large blocks.

4.3 Communication Fault Injection Experiments

In this section, we demonstrate the usefulness of software fault injection as a tool for validat-
ing dependability models of distributed protocols. By using the communication fault injection
capabilities of DOCTOR, we are able to collect data on the behavior of a distributed diagnosis
algorithm under a wide range of conditions. This data can then be used both to validate the
predicted performance of the algorithm, and to assist in the selection of various parameters
used during the execution of the algorithm.

One important problem in dependable distributed computing is the diagnosis of the set
of faulty nodes in the system. There have been a number of distributed diagnosis algorithms
proposed to address this issue. A good survey of distributed diagnosis algorithms, and their
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Figure 13: Diagnosis Experiment Topology

place in the broader context of consenus algorithms, is given in [29].

The algorithm we chose to implement and test is the probabilistic distributed diagnosis
algorithm given in [30]. In probabilistic diagnosis algorithms, no bound is placed on the number
of faulty nodes. These algorithms define procedures for using information gathered during
interprocessor tests to identify a set of faulty nodes. The diagnosis can be done using either
local or global information, and the analysis of these algorithms generally includes proving
results about the probability of arriving at a correct diagnosis, given certain assumptions about
the system. The algorithm in [30] is intended for the diagnosis of distributed systems of arbitrary
connectivity, and is based on comparison testing. Each run of the diagnosis algorithm consists
of a number of rounds of testing. For the purposes of the diagnosis algorithm, a test graph,
which is a subgraph of the undirected processor connectivity graph, is selected. Each node runs
an identical test task on each round, and then exchanges the results with its neighbors in the
test graph. The local result is then compared with the results received, and, if the number of
mismatches is greater than some threshold, the node is considered to have failed that round.
This is repeated for some number of rounds. If the number of rounds in which the node failed
is greater than a second threshold, then the node is considered to be faulty.

This algorithm has a number of parameters that alter or determine the effectiveness of
the algorithm. Some of these parameters are selectable by the user, while others, such as the
probability of a processor having failed, are functions of the system and its environment. The
parameters that we look at in these experiments are: the number of rounds of testing (r),
the coverage of interprocessor tests (¢), and the number of failure modes of a test (f). The
coverage of a test is the probability of a faulty processor generating an incorrect result on that
test. The number of failure modes of a test is the number of possible incorrect results that
a faulty processor can generate for that test. Other parameters, which we will fix for these
experiments, are the probability of failure of a processor (p), the total number of processors,
the interconnection topology, and the test graph.

In order to test the distributed diagnosis algorithm using communication fault injection, it
was necessary to construct a user-defined fault type from the basic communication fault types
provided by DOCTOR. The diagnosis algorithm has two probabilistic parameters which we
wanted to be able to alter in our experiments, the probability of failure of a processor, and
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Figure 14: Percent of nodes diagnosed correctly with 1 failure mode, measured

the interprocessor test coverage. As a result, we constructed the following fault scenario. Each
time the experiment is initialized, the fault status of each node is independently chosen, with a
probability of failure, p, equal to a preselected value. On a faulty node, each time a message is
sent by the diagnosis algorithm, the message history is checked to determine whether a previous
message with the same test round number has been sent to another node. If not, then with a
probability equal to the test coverage, the message contents are altered to a randomly selected
value, with a range given by the number of failure modes. If a message from the same round
had been sent, then information from the message history is used to ensure that all messages
from the same round are altered (or not altered) in the same way. This fault scenario allows us
to inject faults that emulate the fault model for which the diagnosis algorithm was designed,
while still maintaining control over the failure and coverage parameters.

In our experiments, we implemented the algorithm and executed it on a nine processor
subset of HARTS. One advantage of performing experiments on HARTS is that it includes
multiple interconnect technologies. In addition to the fiber optic switch, all of the HARTS
processors are connected by a dedicated local Ethernet. Using the Ethernet, we are able to
emulate interconnection topologies that can not be implemented using the switch. In this
experiment we chose to connect the processors in a nine node wrapped square mesh, as shown
in figure 13. We fixed the probability of node failure at 25%. Selecting such a high figure
allows us to test the algorithm under worse than expected conditions. The values of the other
parameters were selected to be: ¢ = 50%, 65%, 80%, and 90%; f = 1, 10, 20; r = [1..20]. We
ran 500 iterations of the diagnosis algorithm with each combination of these parameters, for a
total of 120,000 iterations.
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The results of these experiments are summarized in figures 14 through 17. There are a
number of interesting observations to be drawn from this data. The first thing to notice is that
in almost all cases, the measured diagnostic accuracy of the algorithm exceeded that predicted
by the probabilistic model in [30], in many cases by a significant percentage. This is because the
model makes a number of pessimistic assumptions, and therefore predicts only the worst case
performance of the algorithm. As a result, this distributed diagnosis algorithm may actually
be appropriate for use in more systems than might be expected based only on the probabilistic
model. As we see in Figure 16, using tests with 10 failure modes, even with interprocessor test
coverage as low as 50%, the algorithm achieves nearly 100% correct diagnosis within 7 rounds of
testing. When the test coverage is 95%, only 3 rounds are required to reach 100%. As predicted
by the asymptotic analysis of the algorithm in [30], both the measured and predicted diagnostic
accuracy converge to 100% as the number of tests increase, but the measured accuracy starts
much higher, and converges more quickly than predicted.

One other interesting observation can be made by comparing the graphs in Figures 14 and 15
to those in Figures 16 and 17, respectively. In the cases where f, the number of failure modes,
is 1, we observe that the accuracy of the diagnosis actually improves as the interprocessor test
coverage decreases. This is because, when f=1, the faulty processors will always match when
comparing their results with other faulty processors, and thus will be more likely to diagnose
themselves as correct when the test coverage is high. This effect appears both in the predicted
and observed behavior of the algorithm. When f is increased to 10, this effect disappears.
These results indicate that tests with simple binary (e.g. good/bad) results are not a good
choice when using comparison-based distributed diagnosis algorithms.
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5 Conclusion

In this paper, we have proposed a design methodology for building an integrated flexible
fault-injection environment, and discussed the portability of this tool set. The proposed method-
ology was implemented on a real-time distributed system, HARTS, and extensive experiments
conducted, demonstrating its power and utility.

The initial work on SFI described in [31] has been expanded significantly. We implemented
a wide range of fault type and injection options, and developed an injection control mecha-
nism as well as a data collection mechanism which minimizes the interference with the objects
under test. Addition of synthetic workloads using SWG facilitates experiments for evaluating
the dependency of performance and dependability on the executing workload. An important
contribution of DOCTOR is its consideration of portability issues, an essential requirement to
eliminate/reduce the excessive duplication of effort and cost.

To demonstrate the portability of DOCTOR, we intend to port this tool set to additional
distributed systems. We also plan to measure the fault injection and data collection overhead
added by our tools, and will explore new methods of reducing and controlling this overhead. In
addition, we are currently exploring the issues involved in formalizing both the specification of
fault injection experiments, and the systematic selection of the faults to be injected.
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