Effect of fan-out on the Performance of a
Single-message cancellation scheme

Atul Prakash (Contact Author)
Gwo-baw Wu
Seema Jetli
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109-2122.
Email: aprakash@eecs.umich.edu, gwu@eecs.umich.edu

Phone: +1 313 763-1585

Abstract

For optimistic distributed simulations, in [7], a single-message can-
cellation scheme simulation was suggested. The scheme potentially
requires fewer cancellation messages and does not require maintenance
of output queues, thereby potentially also saving memory. Our perfor-
mance results on a network of Suns indicate that scheme works well in
low-fanout topologies. In large fan-out topologies, however, the scheme
performs poorly; the scheme can actually end up sending more negative
messages than the time warp protocol, many of them to destinations
that would not have received negative messages if output queues were
maintained. In this paper, we explore the issue whether maintaining
a small amount of hint information about likely destinations, in place
of the entire output queue, makes the scheme effective for large-fanout
topologies. We report and analyze performance results on a network of
Suns for time warp and three variations of the single-message cancella-
tion scheme — no output queue, full output queue as in time warp, and
hint information only. Our results indicate that hint information may
be sufficient for good performance in both low-fanout and high-fanout
topologies.

Index Terms: Distributed and parallel simulation, time-warp, discrete-
event simulation, optimistic computations, distributed algorithms.



1 Introduction

Discrete-event simulations are frequently needed in analyzing and predicting
performance of systems. However simulations, generally run sequentially, of-
ten take enormous amount of time. Parallelizing a simulation by partitioning
it among multiple processors can potentially give significant speedups over
sequential simulators and has been a subject of intense study for more than
a decade. In this paper, we analyze performance of several optimistic paral-
lel discrete-event simulation techniqu and attempt to address the question
whether it is possible to reduce overheads in optimistic simulations in terms
of communication, computation, and and memory.

Optimistic distributed simulation methods are based on the Virtual Time
paradigm [4]. Each message between logical processes carries two time-
stamps, a virtual send time and a virtual receive time. To guarantee causal-
ity, each logical process attempts to process messages in the virtual receive
time order. If a logical process receives a straggler, a message with lower
virtual receive time than its virtual time (receive time the message it it last
processed), it rollbacks and re-execute messages in the correct sequence.
The process, during the rollback, may need to send cancellation events to
other processes who may have seen erroneous messages from it.

An issue that affects performance of optimistic algorithms is the way
cancellation events are send. Obviously, somehow sufficient state has to be
maintained so that processes can determine which events to cancel when
a straggler message arrives. In the Time Warp protocol [5], as well as its
variations [9, 11], each process maintains an Output Queue, containing a
copy of all messages that have been sent. Two of the fields in each message
are virtual send time and wvirtual receive time. The virtual receive time is
the virtual time at which the message is supposed to be received by the
destination process. The virtual send time is the virtual time at which
the message was generated and is always less than the virtual receive time.
Upon a rollback to a virtual time ¢, a process goes through its Output
Queue and sends negative messages corresponding to each message that has
a virtual send time larger than {. Positive messages and negative messages
are identical in all fields except for their sign. Each receiver maintains a
queue, called Input Queue, containing received messages, both unprocessed
and processed. If a receiver ever finds both a positive message and its
corresponding negative message queued up, it annihilates both of them. If
the positive message had already been processed, the process rolls back to
the virtual receive time of the message, possibly sending additional negative
messages.

An alternative protocol, SFilter[8], also based on the virtual time paradigm,
uses a single cancellation message to cancel multiple messages to the same
destination. The essential difference from the Time Warp protocol is that



it is the receiving process that determines the messages to cancel. If the
sender rolls back to a virtual time ¢, it sends a single negative message con-
taining ¢ to each potential receiver. Receivers go their Input Queues and
annihilate all messages from the same sender with virtual send time ; . To
allow for potential reordering of messages during processing, both positive
and cancellation messages also contains a monotonically increasing sequence
number. Receivers annihilate positive messages from the same sender with
lower sequence numbers.

Benefits of the SFilter protocol include:

1. Need for fewer negative messages, since only one negative message is
required for each receiver;

2. Need for lower memory, since Qutput Queue is not needed to determine
the contents of negative messages; and

3. Some saving in computation when sending a message because the mes-
sage does not have to copied into an output queue and upon a rollback,
no searching is required in an output queue (since output queue is not
there).

Drawbacks of the SFilter protocol include

1. sending of unnecessary negative messages upon a rollback, since in the
absence of an output queue, a negative message has to be sent to each
potential recepient;

2. a slightly more complicated cancellation mechanism at the recepients
since it is not apriori known how many messages will be cancelled by
a negative message.

An obvious issue is whether the benefits outweigh the drawbacks. The
drawbacks can be expected to become more serious as the number of po-
tential receivers for each process grows, since upon a rollback, the SFilter
protocol would require sending a negative message to every potential receiver
whether it actually got an erroneous message or not. In the worst case, if
nothing is known about the topology, the SFilter protocol would require
sending of a negative message to every process in the system. In the results
given in [8], benefits did seem to outweigh the drawbacks. However, in the
example used, each LP had only small number of potential destinations, so
the drawback did not appear to be serious.

To explore this issue further, in this paper we will look at three vari-
ations of SFilter, with output queue, without output queue, and without
output queue but with some hint information that helps cut down sending



of unnecessary negative messages. We will compare the schemes and our im-
plementation of the time warp protocol on a network of Suns for topologies
with increasing fanouts.

Another scheme for replacing multiple cancellation messages with a sin-
gle negative message is using message bundling [2]. That scheme however
requires Qutput Queues to be maintained since it transmits a count in each
negative message that indicates how many messages it is supposed to cancel.

2 Variations of SFilter Used

Besides the basic version of SFilter that does not use output queues, we
evaluated two other versions:

2.1 SFilter with Output Queue

If a process maintains an Output Queue, unnecessary negative messages
can be eliminated in SFilter, but at the expense of more memory use and
some extra computation when sending a message. The idea is to examine,
upon a rollback, the Qutput Queue to determine which receivers have seen
erroneous messages and send exactly one cancellation message to each of the
receivers. The time-stamp in the cancellation message is the virtual time to
which the process rolled back !

2.2 SFilter with hint information about destinations

In the case, instead of saving all the output messages, a process only saves
some simple information for each of its receivers. The information saved is
the virtual send time of thelatest message a sender sent out to a receiver.
Upon rollback to virtual time ¢, a process examines the hint information
and sends a cancellation message to only those receivers whose latest send
time is > .

Since complete output queue is not maintained in this method, some
unnecessary negative messages could still be sent. However, the method
should overall use fewer cancellation messages than using no information
about receivers at all. An advantage of the method is that it would usually
require less memory than maintaining a complete Qutput Queue.

Tt is also possible to set the time-stamp of a cancellation message sent to a receiver
to be equal to the virtual send time of the first erroneous message sent to that receiver.
This can help slightly with cutting down the time to find corresponding positive messages
at the receiver if the input queue at the receiver is ordered by time.



The hint information does not required to be updated after a GVT com-
putation. However, after a rollback, it may need to be updated. If a process
rollbacks to time r, all time-stamp values in the hint information that are
greater than r are set to r. The effect of this is similar to discarding all
messages with virtual send times larger than r from from the Output Queue
in Time Warp.

3 Performance

We have implemented the time-warp and SFilter programs on a network of
SUNs. Several variations of SFilter have been implemented to be compared
with the time-warp algorithm. The following will describe the expermient
we made and the performace result.

3.1 Testbed

Logical processes are grouped in clusters such that the inter-cluster com-
munication is minimal. Each cluster of logical processes will be allocated
to one processor. There are some clustering algorithms can be found in

[12][3][10][6].

3.2 The Experiment

Standard benchmarks have not yet been formulated for parallel simulations.
We chose to model a ring of processes to measure the relative performance
between Time-Warp and SFilter algorithms. Figure 1 shows a ring of pro-
cesses with two outgoing channels for each process.

In our experiment, 64 processes are simulated. Adjacent processes are
grouped together to form a cluster. The number of processes in a cluster
depends on the number of processors used. For example, 16-process clusters
are formed if 4 processors are used in the simulation. Upon receiving a
message, each process does some internal computation which is simulated
as a for loop for 20,000 times( about 3 ms ). Total simulation time is about
10 minutes for the sequential run.

In our model, there is a source process injecting messages into the ring.
On receiving a message, the process does some internal computation, then
sends a new message to one of the immediate output neighbors through
one outgoing channels. We used a uniform random number generator to
ensure that each output channel was equally likely to be selected. When
a predefined cutoff virtual time is reached for every process, the simula-
tion terminates. At the end, some statistic information for each process is



Source \
1

[eXeXeJe]
w

Ny

Figure 1: 2-fanout ring network. In general, in an m-fanout network, each
process can send messages to the next m processes in the network

displayed for the programmers to check the correctness of the simulation.
Total elapse time is also displayed for each processor. We believe that the
above type of configuration is useful in testing parallel simulations, because
it contains a reasonable amount of inherent parallelism, it is homogeneous
and symmetric, and a good mapping from processes to processors can be
found.

Currently, 32 messages are injected to the ring by the source process.
These 32 messages carry time-stamps 8, 16, 24, ..., and 256. Messages will
be delivered when the time-stamps of the messages are smaller than or equal
to the local virtual clock of the destination. The time of servicing a message
is based on an exponential distribution with rate 0.2. Internal computation
is around 2.8ms for every event simulated. After servicing a message m,
the process will schedule the delivery time of a new message at one of its
neighbors based on its local virtual clock and the service time of m.

We varied the fanout of processes in the ring to see how each algorithm
will perform in each case.

3.3 Parameters Measured

Speedup: The speedup is the time required to run a simulation on a number
of processors compared with the time required to run the same simulation
on a single processor. The result is the curve usually goes up and then drops.

Number of cancellalion messages processed: The higher number of neg-
ative messages to be processed in each process involves higher overhead to
traverse the queue and to cancel erroneous messages sent by other processes.



3 T T L T T T T
I S "W —o—

2_5 - ‘_7-“”.“.‘_‘\\\ “Sf" 4+
To-lloesfroout B
2 o lslsg e
Sl i
=
Q 15 4
[}
o
%2}
1 i
05 i
O | | | | | | |
1 2 3 4 5 6 7 8 9

processors

Figure 2: Speedup vs. number of processors for a 2-fanout ring network

Number of messages cancelled: We can measure the effectiveness of the
cancellation messages by looking at the number of cancellation messages
processed and the number of messages were cancelled.

3.4 Results

In the following graphs, tw stands for time-warp, sf stands for SFilter with
output queue, sfnoout stands for SFilter without output queue, and sflst
stands for SFilter with hint information of send time of last message sent to
each destination.

Figures 2 to 4 show the performance of each algorithm in different
fanout topologies. We stopped further simulation if the speedup curve for
an algorithm went below 1.

The results show the following;:
e SFilter without output queue performed the best in low fanout case,

but performed poorly in medium and high fanout with number of
processor greater than 2.

e Time-warp performed reasonably well and was stable but was usually
outperformed by SFilter algorithms.

e SFilter with output queue performed well in most of the cases.

e SFilter with hint information performed almost as well as the best
scheme in all situations.



3 T T T T T T T
"W —o—
2.5 "Sf' - -
"sfnoout" -8--
"sflst” |
a
>
S
m —
@
a
%2}
O | | | | | | |
1 2 3 4 5 6 7 8 9
processors
Figure 3: Speedup vs. number of processors for a 8-fanout ring network
3 T T T T T T T
"W —o—
25 F "Sf' - -
"sfnoout" -8--
At "sflst” |
a
>
S
m —
@
a
%2}
0 1 1 \‘m 1 1 1 1
1 2 3 4 5 6 7 8 9
processors

Figure 4: Speedup vs. number of processors for a 32-fanout ring network



algorithm || 2 processor | 4 processor | 8 processor
fanout 2 | sf 10228 14027 47134
sfnoout 14680 21870 61008
sflst 6799 14533 37502
tw 16117 19885 66502
fanout 8 | sf 6723 37994 183061
sfnoout 48424 292360 —
sflst 6844 41193 177113
tw 8737 43213 151300
fanout 32 | sf 6625 144668 —
sfnoout 250781 — —
sflst 7003 134940 —
tw 12495 121132 —
Table 1: Cancellation messages processed
algorithm || 2 processor | 4 processor | 8 processor
fanout 2 | sf 13200 17941 69381
sfnoout 11099 14848 52524
sflst 8145 15175 52270
fanout 8 | sf 6949 40782 206675
sfnoout 8054 64176 —
sflst 6772 38683 156427
fanout 32 | sf 6663 148515 —
sfnoout 7115 — —
sflst 6808 111529 —

Table 2: total messages cancelled

To further analyze the results, we also measure the number of cancella-
tion messages processed and number of messages cancelled by cancellation
messages in the system. Table 1 shows the total number of cancellation
messages received and processed in the simulation for each algorithm in dif-
ferent fanout topologies. Table 2 shows the total number of messages that
got cancelled in input event queue in the simulation for each case except for
time-warp, in which the number of messages cancelled will be the same as
the number of cancellation messages processed.

Several facts can be summarized as follows:

o In SFilter with output queue, for every cancellation message, approx-
imately 1 to 1.3 messages get cancelled.

o In SFilter without output queue, the number of cancellation messages
is always higher than the number of messages to be cancelled. The
situation becomes worse when fanout increases.



e In SFilter with hint information, each cancellation message cancels
1 to 1.4 messages for low fanout situations. For medium and high
fanout situation, each cancellation message cancels approximate 0.8
to 1 messages.

The results show that SFilter with output queue and SFilter with hint
information have low overhead in terms of cancellation messages.

4 Conclusion

In the paper, we evaluated three variations of SFilter algorithms and time-
warp on a local network of workstations. SFilter without output queue
eliminates the cost of maintaining and traversing the output queue, but the
benefit only shows up in the low fanout topology which low number of can-
cellation messages is produced for each rollback. In high fanout topology,
SFilter with hint information corrects the problem of the need to send mul-
tiple cancellation messages by keeping the information of send time of last
message sent to each potential output neighbor. SFilter performs as well as
the best scheme in each fanout topology.

In near future, we are planning to look at other simulations, such as
the colliding pucks simulation [1], that have much higher fanouts. We want
to see if for extremely high fanouts, maintaining summary hint information
continues to be sufficient. It is concievable that for very high fanouts, output
queues become necessary and Time Warp and SFilter with Qutput Queues
may outperform other algorithms.

We are also looking to evaluate various strategies on other machine ar-
chitectures such as the KSR which may present different behavior for the
various algorithms discussed in this paper.

References

[1] B. Beckman et al. Distributed simulation and time warp part 1: design
of colliding pucks. In Proc. of the Sociely for Computer Simulation
Western Multiconference on Distribuled Simulation, 1989.

[2] J. Butler and V. Wallentine. Message bundling in time warp. In Sim-
ulation Work and Progress, 1991 Western Simulation Multiconference,
January 1991.

[3] K. Efe. Heuristic models of task assignment scheduling in distributed
systems. Computer, 15(6):50-56, June 1982.

10



[4]

[10]

[11]

[12]

D.R. Jefferson. Virtual time. ACM Trans. on Programming Languages
and Systems, 7(3):404-425, July 1985.

D.R. Jefferson et al. Distributed simulation and the time warp operating
system. ACM Operating System Review, 1987.

V.M. Lo. Heuristic algorithms for task assignment in distributed sys-
tems. IEEE Trans., C37:1384-1397, May 1988.

A. Prakash and R. Subramanian. Conditional knowledge approach to
optimistic distributed simulations. Technical Report CSE-TR-86-91,
Department of EECS, U. of Michigan, Ann Arbor, 1991.

A. Prakash and R. Subramanian. An eflicient optimistic distributed
simulation scheme based on conditional knowledge. In 6th Workshop on
Parallel and Distribued Simulation (PADS 92), Proc. of the 1992 SCS
Western Simulation Multiconference on Parallel and Discrete Fvent
Simulalion, pages 85-94, Newport Beach, California, January 1992.

P. Reiher, S. Bellenot, and D. Jefferson. Temporal decomposition of
simulations under the time warp operating system. In Proc. of the SCS
Multiconference on Advances in Parallel and Distributed Simulation,
pages 47-54, January 1991.

A K. Sarje and G. Sagar. Heuristic model for task allocation in dis-
tributed computer systems. [EFE Proceedings-F, 138(5):313-317, Sept
1991.

L.M. Sokol, D.P. Briscoe, and A.P. Wieland. MTW: A strategy for
scheduling discrete simulation events for concurrent execution. In Proc.
of the SCS Multiconference on Distributed Simulalion, pages 34-42,
July 1988.

H.S. Stone. Multipleprocessor scheduling with the aid of network flow
algorithms. IFEE Trans. Software Eng., SE-3(1):97-106, Jan. 1977.

11



