Optimal Local Register Allocation for a Multiple-Issue Machine

Waleed M. Meleis Edward S. Davidson

Advanced Computer Architecture Lab
Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48109-2122

waleed@fiddler.eecs.umich.edu davidson@eecs.umich.edu

ABSTRACT

This paper presents an algorithm that allocates registers optimally for straight-line code running
on a generic mulli-issue compuler. On such a machine, an oplimal register allocation is one
that minimizes the number of issue slots that the code requires. Oplimal spill selection and
load/store placement are used to minimize the number of additional issue slots needed, given
a schedule for the non-memory reference instructions and a fixed number of available physical
registers. The generic multi-issue machine model closely models the operation of vector and
VLIW processors, and could be extended to model super-scalar processors. The algorithm uses
dynamic programming to search the state space of plausible register allocations; implicit and
explicit state pruning are used to make the problem tractable. The optimal allocation produced
by the algorithm for a substantial example is presented.

1 Introduction

High performance processors are increasingly memory bottlenecked due to increasing proces-
sor issue bandwidth and clock speeds relative to the limited number of ports and access latency
to memory. Reducing memory traffic by improving data reuse at all levels of the memory hier-
archy is therefore essential for improving system performance. Machines that execute more than
one operation per clock are becoming increasingly common, but the problem of reducing their
memory bottleneck through optimal register allocation has not been solved heretofore. In this
work we consider a straight-line code segment before registers have been allocated and before
memory references have been inserted. We present an algorithm that chooses values for spilling
and places load and store instructions in the code segment to use only a specific number of
registers and achieve minimum runtime on a generic multi-issue machine.

Heuristic solutions to local and global register allocation problem for single-issue machines
have been discussed by Chaitin et al [6], [7], Chow et al [4], and Aho et al [1]. Horwitz et al. [8]
first addressed the problem of finding an allocation of index variables to registers that minimizes
the number of load and store spills that are required for a basic block. This approach is extended
in Hsu et al. [9] to handle a wider class of schedules. A single-issue machine is assumed in each
case, so the goal of the algorithm is to minimize the number of loads and stores that are needed.
This paper discusses the extension of the single-issue load/store minimization algorithm for a
multi-issue machine.

On a multi-issue machine, the latency of a memory operation may be hidden by executing
other instructions simultaneously. Therefore the placement, or insertion points, of the loads and
stores in the schedule is as important as the total number required. Consider a straight-line code
segment whose instructions operate on and produce values (or virtual registers): quantities that
are written (defined) once and read (used) one or more times. Input values are considered to
be defined before the start of the code segment and must be loaded before being used. Output
values are defined within the code segment and are considered to be used sometime after the
segment ends. They must be stored after being defined. A value is live at a point in the schedule
if it is defined there or earlier and used at that point or later. A register allocation is a selection,
at every point in the code segment, of values to keep in registers. A legal allocation is one where
each value is in a register when defined or used, and the number of values in registers at each
point never exceeds the number of available registers. A live value that is not in a register at
some point is said to have been spilled. A value spilled at a point in the schedule must be stored
to memory sometime earlier and reloaded into the register file before its next use. Therefore a
value is stored at most once, but may be loaded several times.

In our generic multi-issue model, we assume that a group of instructions can be simulta-
neously issued if they reserve distinct functional units for their execution. The period during
which a group of simultaneously issued instructions are executing is called a slot. For simplicity
of illustration, the model assumes that the instructions in the same slot may be dependent (i.e.
read after write chaining is allowed) and they complete their execution before the next slot

begins. As registers are allocated, spill code is inserted to write values to memory and read
values into registers. The cost of an allocation is the number of slots needed to issue the original
code with its spill code. Given a straight-line code segment without any loads and stores, the
multi-issue local register allocation problem is to find a minimum-cost, legal allocation of values
to registers.

In section 2 we define the multi-issue scheduling problem by describing the generic multi-
issue machine model in terms of its instruction issue restrictions and a model of the register
file. In this section we also define the optimal register allocation subproblem. In section 3
we describe our motivation for pursuing this subject and discuss relevant previous work. In
section 4 we describe our algorithm for optimal register allocation for a multi-issue machine
and present the result of applying this algorithm to sample routines running on the Convex
C2 vector supercomputer. In section 5 we describe our plans for extending this approach to
jointly optimize scheduling and register allocation for multi-issue machines. We then discuss
how the machine model and the algorithm might be generalized to handle multiple-issue scalar
architectures: VLIW and superscalar machines.

2 Problem Definition

The application input to the scheduling problem is a set of instructions, without loads and
stores, each of which accesses single-write, multiple-read quantities, i.e. values. Each instruction
defines (writes) one value and uses (reads) up to two values. A data dependence exists between
two instructions if one defines a value that the other uses. Output and anti dependences do not
exist because register allocation has not yet been performed. Loads and stores, when they are
inserted, each reference a single data value. Loads and stores that are inserted to make room for
other data in the register file are called spill code. Values that are not defined by any instruction
are called input values and are assumed to be defined before the start of the code segment.
Input values must be loaded before being used. Values that are used after the code segment
ends are identified as oulpul values and must be stored after being defined. For convenience,
we define the term “spill code” to include those input loads and output stores. The solution to
the scheduling problem is a minimum cost ordering of the instructions, with loads and stores
inserted, that satisfies the multi-issue machine model and the register file model. We refer to
this ordering of instructions with loads and stores inserted as a final schedule. The cost of a
final schedule is defined in the next subsection.

2.1 Generic Multi-Issue Machine Model

In our generic multi-issue machine model, we assume that a group of instructions can be issed
simultaneously if they reserve distinct functional units for their execution. The period during
which a group of simultaneously issued instructions are executing is called a slot. For simplicity
of illustration, the model assumes that the instructions in the same slot may be dependent
(i.e. read-after-write chaining is allowed) and they complete their execution before the next slot
begins. As registers are allocated, spill code is inserted to write register values to memory and

read memory values into registers. The cost of a final schedule is the number of slots needed to
issue the original code with its spill code.

In the generic model, all instructions execute in one of three functional units: an adder, a
multiplier and a load/store unit (or port). Therefore a slot may contain 1, 2 or 3 instructions.
The instructions in a slot are all assumed to be issued simultaneously and complete their exe-
cution at the end of that slot. In this simple generic model the slots roughly correspond to the
chimes of a vector machine with chaining. A data dependence between instructions does not
preclude their inclusion in the same slot; however a dependent instruction may not be scheduled
in an earlier slot than the instruction on which it depends. Adding more types of instructions or
function units, allowing several function units of each type, increasing their execution times or
latencies, and increasing or restricting issue bandwidth would result in a straightforward exten-
sion of the algorithm, but would clutter this discussion with unnecessary details. This simple
generic model is assumed for simplicity of illustration. It does model the performance of the
Convex C2 vector supercomputer quite well.

2.2 Generic Register File Model

We assume that the final schedule will have access to r registers. Data is written to registers
by loads and by the definitions in (results of) adds and multiplies. Data is read from registers
by stores and by the uses in (sources of) adds and multiplies. There is no limit on the number of
register reads and writes that may take place within a slot. However, because a slot contains at
most 3 instructions, the register file as a whole will be read at most 5 times (2 uses each by an
add and a multiply instruction, and one read access by a store), and written at most 3 times (1
definition each by an add and a multiply instruction, and one write access by a load). If a value
is assigned to a register in a particular slot, that register may not be assigned another value until
the next slot. That is, two values may not share a register within a slot.! As a consequence,
within each slot at most r values can be assigned to registers. Every value that is used, defined,
loaded, or stored in a slot must be assigned to a register during tht slot. Additional values may
also be assigned to registers in that slot up to a total of r.

2.3 Multi-Issue Register Allocation

Given an initial schedule, i.e. an assignment of the non load/store instructions to slots so that
no dependences are violated, the optimal register allocation minimizes the number of additional
slots that need to be added to accommodate the spill code. A slot with no load/stores (as yet)
is called an empty slot. A load/store placed into an empty slot is called a free load/store (and
the slot is no longer empty). Each load/store temporarily placed in that slot thereafter has
a cost of 1 and will subsequently cause an extra slot to be inserted. The inserted slot will be
placed immediately before this slot for a load, and immediately after for a store. Note that extra
slots need not be numbered. The slots of the initial schedule are numbered sequentially starting

! Many machines allow values to share a register within an issue slot. For example, it is often possible to begin
writing to a vector register before an earlier read of that register has completed, i.e. within the same slot. In
section 4.3.3 we discuss extensions to the model that do allow register sharing.

from 0. The following formalization of the allocation problem uses this convention. Although
no more than one load/store can be placed in a slot, it is convenient to allow the algorithm to
do so temporarily. A formal definition of the register allocation problem is as follows:

Inputs

1. An inital schedule for a code segment, i.e. a set of add and multiply instructions that
define and use values, a list of output values, and an assignment of these instructions to a
sequence of slots that does not violate any data dependences.

2. The number of available physical registers.
Boundary Conditions

1. All values are in a register during a slot where they are defined or used.
2. At the start of the initial schedule, before the first slot, no values are in a register.
3. At the start of the initial schedule, only the input values are in memory.

4. At the end of the final schedule, all output values must be in memory.

Constraints

1. During any slot where a value is loaded or stored, the value is said to be present in both
a register and in memory.

2. If a value is present in a register in slot ¢ and is not in a register in slot ¢+ — 1, then that
value must either be defined in slot 7, or loaded from memory in slot ¢« and present in
memory in slot ¢ — 1.

3. If a value is present in memory in slot ¢ and is not in memory in slot ¢ — 1, then that value
must be in a register and stored during slot <.

4. The number of values in registers in each slot must not exceed the number of available
physical registers.

Objective Function Find a minimum cost final schedule, i.e. an insertion of loads and
stores into the initial schedule, that satisfies the boundary conditions and constraints above.
The first memory operation inserted into a slot is free, and each subsequent operation added
causes an extra slot and has a cost of one.

3 Motivation and Previous Research

Owur experience with register allocation and code rescheduling began with the analysis of the
performance of heavily used Fortran routines that make up a large, finite-element simulation
running on a Convex C2. We found that over the entire code, load/store spills inserted to free
registers made up 28% of the total memory traffic, and up to 40% in the case of particular
complex routines in the compiled code. Since the processor bottleneck was clearly the single
port to memory, we concluded that by somehow eliminating these spills performance might
improve by up to 28% over all. We chose a representative routine that contained a large amount
of spill code and used a simple manual technique to arrange the operations so that no spill code
was required. However instead of the expected 40% performance gain, we observed only a 20%
speedup over the compiled code. While our final schedule had optimized the data reuse in the
register file, it had failed to achieve optimal utilization of the functional units. In the process of
reducing memory bandwidth we created new bottlenecks in the processor.

To improve performance further we developed an automatic rescheduling tool to rearrange
the no-spill code in search of schedules that fully utilize at least one functional unit. The tool
did in fact find no-spill schedules that approached this criterion, giving us a total speedup
of 30% over the original compiled code. The remaining gap between this speedup and the
expected 40% speedup results from the occasionally idle memory port, and the limitations of
our processor model. This preliminary rescheduling tool finds reorderings of code that keep
the functional units busy without ever overfilling the register file, if any such reordering exists.
As such, it is inadequate to handle routines where spilling is required. Our initial efforts to
optimally reschedule more complex routines failed for this reason. The class of routines that can
be scheduled optimally without needing to spill values temporarily to memory is quite small, so
we concluded that a general treatment of the scheduling problem must address spilling.

Chaitin et al. described the application of graph coloring to global register allocation in
[6]. Values that are live in the same basic block cannot be assigned to the same register and
are said to interfere with one another. Values are associated with nodes of a graph, and edges
between the nodes indicate value interference. An assignment of k-colors to the nodes such that
no connected nodes are assigned the same color represents a k-coloring of the graph. Such a k-
coloring can represent an assignment of values to k registers without spilling. Deciding whether
a given grph can be k-colored is NP-complete. If k exceeds the number of available registers,
nodes are removed from the graph until a coloring is possible. Algorithms based on Chaitin’s
work use heuristics to determine which nodes to delete and then generate spill code each time
those values are referenced. Deleting the minimum number of nodes from a graph to make it
k-colorable is also NP-complete. Heuristics for register allocation are also described in [4]. While
register coloring can be adapted to perform local allocation, it has traditionally been used in
global allocation across multiple basic blocks.

The spill insertion problem is to insert the minimum amount of spill code into a given initial
schedule. Horwitz et al, and Hsu et al show that the spill insertion problem is NP-complete in
[8] and [9] when multiple-use values (common subexpressions) are present. This is a striking
result because it demonstrates that optimal code generation is difficult even when the instruction
schedule is fixed. They derive pruning rules for optimal spilling and present heuristics. This

work is described further in section 4.1.

4 Preliminary Work

The Convex C2 processor was chosen to be illustrative of the class of single-port computers.
Its limited bandwidth to memory, few vector registers, and simple issue rules make it an ideal
target for attempts to reduce register-memory spill traflic. We used the C2 in our early devel-
opment nefforts as the focus of the research on optimal scheduling algorithms. It is modeled
as a multi-issue machine since multiple vector instructions may be issued in one slot. Although
individual slots may differ somewhat in the number of clock periods they contain, the long vector
operations (up to 128 elements) allow us to approximate run time by counting slots.

On a multi-issue machine, the latency of a memory operation may be hidden by executing
other instructions simultaneously. Therefore the placement, or insertion points, of the loads and
stores in the initial schedule is as important as the total number required. Consider a straight-line
code segment whose instructions operate on and produce values (or virtual registers): quantities
that are written (defined) once and read (used) one or more times. Input values are considered
to be defined before the start of the code segment and must be loaded before being used. Output
values are defined within the code segment and are considered to be used sometime after the
segment ends. They must be stored after being defined. A value is live at a point in the schedule
if it is defined there or earlier, and used at that point or later. A register allocation is a selection,
at every point in the code segment, of values to keep in registers. A legal allocation is one where
each value is in a register when defined or used, and the number of values in registers in each
slot never exceeds the number of available registers. A live value that is not in a register at some
point is said to have been spilled. A value spilled at a point in the schedule must be stored to
memory sometime earlier and reloaded into the register file before its next use. Input values are
defined as spilled as their initial state. Therefore each value is stored at most once, but may be
loaded several times.

Given a straight-line code segment without any loads and stores, the mulli-issue register
allocation problem is to find a legal allocation of values to registers that produces a final schedule
with the fewest slots.

The following sections describe our dynamic programming approach to optimal multi-issue
register allocation. We discuss optimal allocation for single-issue machines in section 4.1, optimal
allocation for multi-issue machines in section 4.2, and the results of applying the allocation
algorithm to sample code in section 4.3.

4.1 Optimal Single-Issue Register Allocation

Our algorithm is an extension of the algorithms described by Horwitz [8] and Hsu [9] for the
minimization of loads and stores in straight-line single-issue code. In their model of a single issue
machine, only the selection of which values to spill and the resulting number of loads and stores
is significant; the actual placement of the loads and stores is irrelevant because all instructions

take the same time to execute regardless of where they are placed in the schedule.

In contrast, multi-issue allocation must optimize spill selection and load/store placement
jointly to minimize the final schedule’s runtime. Both problems have efficient solutions when
each data value is used at most once, but in the general multi-use case they are NP complete. We
begin by summarizing the work done in [8] and [9] to efficiently solve the single-issue load/store
minimization problem using dynamic programming and pruning rules. We then describe our
extension of their algorithm.

The single-issue local register allocation problem is to insert the minimum number of loads
and stores into a given schedule so that the resulting allocation is legal. Here the legality of an
allocation is defined in the same way as for multi-issue allocation above; however the cost of an
allocation is simply the number of loads and stores.

The algorithm in [8] reduces spill selection to a graph traversal problem, where each node of
the graph represents the state of the values at the current point in the schedule. A value’s state
(in our terminology) is either REG (the value is in a register and not in memory), MEM (the
value is in memory but not in a register), BOTH (the value is in a register and in memory), or
DEAD (the value is neither in a register nor in memory). The set of value states at a particular
instruction is called a configuration. A configuration is legal if all values used or defined at that
instruction are in state REG or BOTH, and the number of values in state REG or BOTH does
not exceed the number of registers. The cost of moving from one configuration to the next is
the number of loads and stores that are needed to modify the value states.

Each value that goes from state REG to MEM requires a store. Note that values do not go
directly from state REG to BOTH because when a value needs to be replaced in registers in
instruction ¢, it is assumed to have been stored between instructions ¢ and ¢ — 1. Therefore the
value is in state REG at instruction ¢ — 1, and in state MEM at instruction . Fach value that
goes from state MEM to BOTH requires a load. The only other legal transition among these
three states is from BOTH to MEM which makes the register available for another value, but
does not require any memory access for this value. As in our algorithm only the instructions
(slots) in the initial schedule, not the load/store instructions (extra slots in our algorithm) are
numbered.

The rules described in [8] and [9] are slightly different because the instructions access pseudo-
registers that can be written multiple times. The algorithm constructs all legal configurations
for each instruction and finds a cheapest path from the initial configuration (before the first
instruction) to a final configuration for the last instruction. The required loads and stores are
then implied by the sequence of configurations along this path. The number of configurations
considered by this algorithm grows exponentially with the number of instructions. Horwitz [8]
describes a set of pruning rules that eliminate configurations that cannot lie on a cheapest path
and merges equivalent configurations. Using these rules, optimal local register allocations can

be found.

4.2 Optimal Multi-Issue Register Allocation for an Initial Schedule

For a multi-issue machine, the cost of a transition from one configuration to the next does
not depend on the value states alone. The cost of loading or storing a value also depends on
which slots are empty (not yet used by other memory operations). An extended configuration
that includes information regarding usable empty slots is called a partial solution. The multi-
issue allocation algorithm generates legal partial solutions at the current slot in the schedule
by considering all legal register replacements (value state changes), and updating the partial
solution value states and empty slots information accordingly. The incremental cost of a new
partial solution depends on the number of loads and stores that have just been placed that
required extra slots. Implicit pruning rules are used to reduce the number of partial solutions
that need to be considered at a slot. Explicit pruning rules delete partial solutions that are

__ = Def Def
Begin unresolved — —
store i i
—_ Exclusion
_ —— Store placement %g%m unresolved—— — P Load placement
_ range i range (contains
Uses — no exclusions)
Store resolved\ —_ Load resolved —_
. . = T U
First Exclusion se |

Figure 1: Load/store placement ranges

clearly no better than some other partial solution. The algorithm employs a single forward scan
of the initial schedule with breadth-first expansion and pruning.

4.2.1 Unresolved Loads and Stores

If n values are live in the current slot, then n—r values are excluded from registers in this slot.
This process insures that the allocation remains legal. Later sections discuss how the algorithm
chooses which values to exclude.

Definitions, uses, and exclusions of a value throughout a schedule define a placement range
for each load and store (see Figure 1). A store of a value may be placed anywhere between
the value’s definition and its first exclusion. A load of a value must be placed between the last
exclusion before a use of a value, and that use. In the course of making exclusion decisions for
values in the current slot, we say that a load or a store is unresolved if the lower bound of its
placement range is not yet known. Thus a live value that has been defined and never excluded
has an unresolved store. Similarly, a live value that has not been used since its last exclusion

has an unresolved load.

When a value with an unresolved store is excluded, the store becomes resolved. Similarly,
when a value with an unresolved load is used, the load becomes resolved. As soon as a load or
store becomes resolved, it is placed in the highest empty slot in its placement range. Placing
it in this slot minimizes the number of currently unresolved placement ranges with which the
placed memory operation conflicts. If no empty slots remain in its placement range when a
load/store becomes resolved, then the memory operation is placed in an extra slot, and the cost
of the partial solution is incremented by 1. The extra slots may be placed anywhere in the
placement range with equal (unit) cost; however the most registers are freed for uses outside of
this problem context by placing extra slots for stores immediately after the value definition (top
of the range) and for loads immediately before the value use (bottom of the range). If more
than one range is resolved in the same slot, the load/store with the largest range is resolved
first, followed by those with successively smaller ranges. It can be shown that for a given set of
exclusions this method of resolving placement ranges is optimum (see Appendix).

last-use

excluded

/\
DEAD - REG - « MEM « BOTH

other other other

Figure 2: Transitions between last known states.

4.2.2 Value State Transitions

The value transitions from state to state are similar to those described above for single-
issue spill insertion, except that a value’s “state” now actually refers to its last-known state.
A value moves from DEAD to REG state when defined (see Figure 2). It enters MEM state
whenever it is excluded. The store of the value becomes resolved upon its first exclusion after
being defined. Since the store may be placed anywhere in its range, the value may be present in
memory sometime earlier than the exclusion, but at the time the intervening slots in its range
were being considered by the algorithm, it was not yet known where within its range the value

would actually be stored. Thus the algorithm considers the value to be in REG state (its “last
known” state) after definition until its first exclusion. Similarly, a value is in MEM state when
excluded, and is considered to enter BOTH state only upon its next use. The load of the value
will be placed somewhere in the load’s placement range: between the last exclusion and the use.
Thus the value may be present in a register sometime earlier than the use, but at the time any
of those slots were being considered it was not yet known where within its range the value would
actually be loaded.

A value in REG state has an unresolved store that becomes resolved upon entering MEM
state. A value in MEM state has an unresolved load that becomes resolved upon entering BOTH
state. Input values begin in MEM state. Qutput values have a use after the end of this code
segment and must therefore be in MEM or BOTH state at the end.

last-use

BUL

E=0
excluded use
excluded O
F 0 . L — excluded >\
DEAD ° BUS REG BUL - MEM . BOTH
() ms T
RL
other other other
E++ E++

BUS - begin unresolved store
RS- resolve store

BUL - begin unresolved load
RL - resolve load

Figure 3: Empty-slots (E) calculations.

4.2.3 Empty Slots

The cost of a partial solution is the number of resolved loads and stores that need to be
placed in extra slots. An extra slot is needed when placing a memory operation if all empty
slots in its placement range have already been used for loads and stores of other values. Each
value, v, with an unresolved load/store has an attribute, £ (v), which, upon entering the current
slot, is 1 plus the number of empty slots above the current slot that are within its placement
range. When resolved, a load/store is placed in the highest empty slot in its range. Thus F(v)
is decremented if E(v) > E(v') whenever a load/store of some other value, v’, is resolved. If
E(v) = 0 when a load/store is resolved for value v, an extra slot is created and the partial
solution cost is incremented by 1.

As shown in Figure 3, £/(v) is initialized to 1 when value v is defined, indicating that there

10

is one empty slot in which a store of the value can be placed (the slot in which the define took
place). As each succeeding slot becomes the current slot, £(v) is incremented to indicate that
an additional empty slot is available. If v is excluded from the register file at the current slot,
the unresolved store is resolved and E(v) is reset to 0 to begin an unresolved load. E(v)is again
incremented upon entering each succeeding slot. At the first use following an exclusion, the load
is resolved. No unresolved load/store for v begins at this slot and F(v) is undefined until the
next time (if ever) that the value is excluded from the register file and the next unresolved load
begins.

4.2.4 Implicit Pruning Rules

Horwitz describes a set of pruning rules that effectively reduce the number of configurations
that need to be considered. Using these rules, configurations that are clearly no less costly
than other configurations are deleted. Our algorithm employs pruning rules that apply to the
partial solutions. In both the scalar and multi-issue algorithms, given a configuration, the set
of successor configurations is found by considering, at least implicitly, all sufficient sets of value
exclusions. A sufficient set of exclusions excludes all but r live values from the register file so
that even if all the remaining live values were in registers, they would fit in the r registers.
For example, if there are 14 live values and r = 8, then the number of sufficient sets of value
exclusions is 14 choose 6, assuming all 14 are excludable (i.e. they are neither used nor defined
in the current slot). To reduce this number, we define for each slot a partial ordering > on the
excludable values at that slot. If v; > v,, then at this slot value v, will never be excluded unless
value v; is also excluded. The pruning rules discussed below define this partial ordering so that
the optimality of the resulting register allocation will not be sacrificed.

Several pruning rules used in the multi-issue register allocation algorithm are similar to those
described in [9]. In that work the spill candidates are partitioned into 4 sets, dead values, live
values not written to memory with a single use remaining, live values not written to memory
with more than one use remaining, and live values that have been written to memory. The
function NEXTREAD(x) is defined to return the distance (in number of instructions) from the
current instruction to the one that next uses the current value x. A series of pruning rules are
then described that depend on the set membership and NEXTREAD(x).

We use the following implicit pruning rules to reduce the number of possible sets of exclusions
for the current slot. These rules are called implicit because they eliminate exclusion sets before
they are actually considered by the algorithm. The first three rules follow the 2nd, 3rd and 4th
observations in [9]. The other three rules are new. Note that since we refer only to values which
are written at most once, there is no need to verify that a live value will be read before being
overwritten. (Note that ¢ > y implies that y will not be excluded unless z is also excluded,
and z > y implies that z is a larger numbered value than y. The second relation is used to
arbitrarily pick a value to exclude when no preference exists.)

Rule 1: If values z and y are in MEM state or BOTH state, and NEXTREAD(z) >
NEXTREAD(y) (see Figure 4), then > y. Under the same conditions, if NEXTREAD(z) =
NEXTREAD(y) and & > y, then z > y.

11

value x value y value x value y
def def

ex
ex -

= o = =

- _ X is in MEM - _
ﬁorw EM l:f;ts q - use state, y is in - use
andxhasa - - REG state, anfl —
later reload - _ X has a later. —
deadline. — — reload deadling __

use _ use

use —
use
a b

Figure 4: FExamples of pruning rules 1 and 2.

This rule is an application of Belady’s MIN algorithm [2].

Rule 2: If value z is in MEM state or BOTH state, value y is in REG state, value y has a
single use remaining, and NEXTREAD(z) > NEXTREAD(y) (see Figure 4), then 2 > y. Under
the same conditions, if NEXTREAD(z) = NEXTREAD(y) and z > y, then z > y.

Excluding @ does not require a store whereas y would need to be stored, and y has an earlier
reload deadline (its next use) than z. However, if y has more than one future use, a later
exclusion of y might make it better to exclude y rather than « here.

Rule 3: If both values 2 and y are in REG state, both have a single use remaining,
NEXTREAD(z) > NEXTREAD(y), and = is not defined later than y, then z > y (see Fig-
ure 5). Under the same conditions, if # and y are defined in the same slot, NEXTREAD(z) =
NEXTREAD(y), and @ > y, then z > y.

Storing value z cannot be more expensive than storing value y, and y has an earlier reload
deadline than z.

Rule 4: If value y is in REG state, E(y) = 0, and NEXTREAD(z) > NEXTREAD(y) then
z > y (see Figure 5). Under the same conditions, if NEXTREAD(z) = NEXTREAD(y) and
x >y, then z > y.

If E(y) = 0, a store of y will increase the cost of the partial solution by 1. On the other hand,
storing z, if needed, may or may not require an extra slot, and z has a later reload deadline
than y. That is, the store cost of z is 0 or 1, the store cost of y is 1, and the future reload cost
of z is no greater than the reload cost of y. Therefore excluding y now rather than = cannot
reduce the cost of the resulting allocation.

Rule 5: If an output value is in MEM state or BOTH state, and has no future uses, exclude

12

value x value y value x value y
def def
- def def - I
_ - - _ There are no
_ - _ _ empty slots in
_ - - _ this range.
Both values are - - o / _ -
in REG state, x - use yisin REG _ use
is defined earlief, — State_, it has _ _
and x has a latey — E(y)=0, and _ _
reload deadline — X has a later _ _
reload deadling.
use use use

Figure 5: Examples of pruning rules 3 and 4.

it.
There is no reason for it to be in a register, and excluding it will not cost anything.

Rule 6: If z was in MEM state in the previous slot, z is used in the current slot, and z
must be loaded in the current slot (see Figure 6), then exclude all values y that were in MEM

state in the previous slot, were excluded more recently than z, and are not used in the current
slot.

No y can be reloaded any earlier than the current slot without cost, and since another value,
x, must be reloaded in the current slot, excluding y in the current slot cannot possibly increase
the cost of the allocation.

4.2.5 Explicit Pruning

In addition to the implicit pruning rules, our algorithm uses one explicit pruning rule that
compares two partial solutions, P, and P,, produced by the algorithm at the current slot and
deletes P, if it can determine that P, cannot possibly result in a better final allocation than the
best final allocation obtainable from P;.

Rule 7: If all values v are in the same state in P, and P, F1(v) > FE(v) for all values v
(excluding values in BOTH state for which £(v) is undefined), and the cost of P; is no greater
than the cost of P,, then P, can be pruned.

Whatever exclusions might be used in later slots of P, the same exclusions applied to
P, cannot have higher cost because all currently unresolved loads and stores in P; have larger
placement ranges. Since P» is no less expensive to start with, P, cannot result in a less expensive

13

value x value y

There are no def
empty slots in
this range. def
T ex
ex ex
use

/

Both values
were in MEM
state in the
previous slot,
and x is used
in this slot. use

use

Figure 6: Example of pruning rule 6.

final allocation than the best allocation for P;.

4.3 Optimal Allocation for the Convex C2 Vector Processor
4.3.1 Machine Model

The multi-issue allocation algorithm has been used to improve the performance of a Fortran
code running on a Convex C2 vector supercomputer [5]. The generic multi-issue machine/code
model described above is based on the Convex C2 machine model described in [3]. This C2
model assumes that a set of 1 to 3 vector instructions, referred to as a chime, can be issued to
different vector functional units simultaneously. Chimes are analogous to slots in the generic
machine model. The instructions in a chime are assumed to complete execution in VL plus
some constant number of clocks. The vector length, VL, is assumed to be the same for all
instructions, so all instructions in a slot complete execution simultaneously in the model. The
partition of an ordered list of vector instructions into disjoint chimes is obtained by scanning
the list sequentially from top to bottom and adding instructions to a chime until a functional
unit reservation conflict exists between two instructions in the chime. Then a new chime is
begun, the conflicting instruction is placed there, and the instruction scan continues until the
initial schedule is produced when the last instruction is assigned to a chime. Chaining between
the functional units allows vector instructions with flow dependences to occupy the same chime.
Since the C2 is a register-register architecture, data must be loaded into registers before being
used by an instruction. Scalar instructions that do not reference vector data are ignored by
this model under the assumption that the time to process a scalar instruction is masked by the
much longer execution time of a vector instruction. The C2’s limited bandwidth to memory,
few vector registers, and simple issue rulres make it an ideal target for studying the reduction

14

of register-memory spill traffic.

4.3.2 Allocation Results

Two memory bottlenecked vector routines, Compl and Mulb, were chosen to test the alloca-
tion algorithm. Compl was selected because, as compiled by the Convex Fortran compiler, it is
heavily memory bottlenecked. It is fully vectorized and contains 117 load and store instructions,
70 multiply instructions and 45 add instructions. 78 of the memory operations are required
(needed to load an input value or store an output value), so the remaining 39 represent spill
code. The 117 loads and stores actually increase the number of chimes in the compiled schedule
from 73 to 125. The insertion of loads and stores consumes 52 extra chimes. This routine is
therefore a good candidate for performance improvement via optimum allocation.

The optimum allocation found by our multi-issue allocation algorithm consumes 43 extra
chimes, or 116 chimes altogether, a 7% improvement in predicted performance. The algorithm
took 4 minutes to run on an NCR 3550 system with a 50 Mh?7 Intel 486 processor and 256 MB
of main memory. The optimal allocation for Compl is shown in Figure 7. The instructions
are shown in the chime (slot) they occupied before placing loads and stores. The instructions
reference values that will each be assigned to a physical register. The values that occupy registers
in each chime are shown. Because no more than 8 values are ever in registers, the allocation is
legal.

Mul5 is a completely unrolled, fully vectorized, 5x5 matrix multiplication routine. It contains
234 load and store instructions, 100 add instructions and 125 multiply instructions. 76 of the
memory operations are required, and the remaining 158 in the compiled code are spills. The
234 loads and stores increase the number of chimes in the compiled schedule from 125 to 234.

The optimum allocation algorithm finds an allocation that requires only 66 extra chimes, or
191 chimes altogether, representing an 18% improvement in predicted performance. This run
took 1 minute on the same NCR computer.

4.3.3 Register Sharing

The Convex C2 actually allows a value that is being used for the last time and a value that
is being defined in the same chime to share a register. While the earlier use is reading from the
register, the later define is writing the new value. Such register sharing allows the compiler to
reduce the amount of spilling that is needed by reusing registers within a chime. If the value
definition and the value use take place in the same instruction, same-instruction register sharing
is possible. In Figure 8, values 3 and 6 can share a register because value 3 is not used again.
The C2 register file allows value 3 to be read out of a register as value 6 is being written into
the same register.

If both values used in the first instruction of a two-instruction chime are never used again, it
is possible to reuse two registers, as shown in Figure 9. Same-instruction register sharing occurs
between the first value used and the first value defined. In addition, the second value used can
share a register with the second value defined in the chime. We refer to this sharing of registers

15

Instruction

2) Load 7

3) Load 10
11 <- 10 *
12 <- 11d + 6d
4) Load 13
Load 14
15 <- 14d + 13d
5) Load 16
17 <- 16d + 15d
6) Load 18
19 <- 17d + 18d
20 <- 19 * 10d
7) Load 21
22 <- 19 * 21
23 <- 22d +
Store 9
8) 24 < 21d *
25 <- 24d + 12d
Store 19
9) Load 26
27 <- 19 * 26
28 <- 27d +
Store 28

29 <-
30 <-

26d *
29d +
Store 8

Load 31

32 <-
33 <-

19d * 31
32d +

Store 33
Load 36
34 <-
35 <-

31d *

34d + 30d

Load 41
42 <- 40d
43 <- 8 * 41
23d + 43d
41d *

Load 46

47 <- 45d + 42d

48 <- 8d * 46

Load 28

49 <- 28d + 48d

50 <- 46d *

Store 49

Load 33
51 <- 50d
52 <- 51d *

Load 53

54 <- 33d + 9d
55 <- 54 * 53d
Load 56

57 <- 54 * 56d
58 <- 54 +
Store 55

Store 58

Load 59

60 <- 39 * 59d
61 <- 60d + 57d

Load 62

63 <- 44 * 62d
64 <- 63d + 61d
Store 54
Load 49
Load 65
66 <- 49 * 65d
67 <- 66d + 64d

Val ues in Registers

012

456

6789

9 10 11 12

10 12 13 14 15

10 12 15 16 17

10 12 17 18 19 20

12 19 20 21 22 23

8 23 35 39 40 41 42 43

28 39 44 46 47 48 49 50

33 39 44 47 50 51 52

9 33 39 44 52 53 54 55

39 44 52 54 55 56 57 58

39 44 52 54 57 59 60 61

39 44 52 54 61 62 63 64

39 44 49 52 64 65 66 67

25)

26)

27)

28)

29)

30)

31)

32)

33)

34)

35)

36)

37)

38)

39)

40)

41)

42)

43)

44)

45)

46)

47)

48)

49)

Figure 7:

Load 68
69 <- 68 * 52d
70 <- 49 +
Store 52
Store 67
Store 70
Load 75
68d *
44 +
69 * 71d
39 +

69d * 75

Load 54
Load 79
80 <- 54 * 79d
Store 73
Load 81
82 <- 39 * 81d
83 <- 82d + 80d
Load 84
85 <- 44 * 84d
86 <- 85d + 83d
Load 49
Load 87
88 <- 49 * 87d
89 <- 88d + 86d
Load 90
91 <- 78 * 89d
92 <- 91d + 90d
Store 92
Load 67
Load 93
94 <- 78d * 67d
95 <- 94d + 93d
Load 54
Load 96
97 <- 54 * 96d
Store 78
Store 95

Load 98

99 <- 39 * 98d

100 <- 99d + 97d
Load 101

102 <- 44 * 101d
103 <- 102d + 100d
Load 104

105 <- 49 * 104d
106 <- 105d + 103d
Load 73
107 <-
Load 108

109 <- 107d * 106d
110 <- 109d + 108d
Load 58

Load 92

111 <- 58 * 92
Store 107

Store 111

112 <- 70 * 92
Store 110

Store 112

Load 113

114 <- 54d * 113d
Load 115

116 <- 39 * 115d
117 <- 116d + 114d
Load 118

119 <- 44 * 118d
120 <- 119d + 117d
Load 49

Load 121

122 <- 49 * 121d
123 <- 122d + 120d

Load 76

39

39

39

39

39

39

39

39

39

39

39

39

39

39

39

39

39

39

39

39

39

39

44

44

44

44

44

44

44

44

44

44

44

44

44

44

44

44

44

44

44

44

44

44

44

44

44

58

49

58

49

68

69

69

73

73

54

78

78

49

49

49

49

49

49

49

54

54

54

54

54

58

92

58

76

Load 125
126 <- 124 * 123d
127 <- 126d + 125d

52 67 68 69 70

128 <- 72 * 92
69 71 72 75

129 <- 74 * 92d

130 <- 58 * 95
Store 124
Store 130

Load 70

131 <- 70 * 95
Store 131

132 <- 72 * 95
Store 132

75 76 77

77 78

73 78 79 80

133 <- 74
Store 133

80 81 82 83 Load 110
134 <- 58
Store 134
135 <- 70
Store 135
136 <- 72
Store 136
137 <- 74 * 110d
Store 137
138 <- 58
Store 138

83 84 85 86

78 86 87 88 89

78 89 90 91 92

139 <- 70
Store 139

67 78 93 94
140 <- 72
Store 140
141 <- 74 * 127d
Store 127
Store 141
Load 39
Load 55
Load 142
143 <- 39d * 142d
144 <- 143d + 55d
Load 145
146 <- 44d * 145d
147 <- 146d + 144d
Load 49
Load 148
149 <- 49d * 148d
150 <- 149d + 147d
Load 124
Load 151
152 <- 124d * 150d
153 <- 152d + 151d
Store 153

54 97 98 99 100

54 100 101 102 103

54 103 104 105 106

73 106 107

106 107 108 109 110

58 92 107 110 111 58d *

70d *

58 70 92 110 112

72d *

157 <- 74d *
Store 157

58 92 113 114

92 114 115 116 117

117 118 119 120

92 120 121 122 123

92 123 124

Optimal register allocation for Compl

16

44

44

44

44

44

44

44

a4

44

44

44

44

44

44

44

39

44

49

74

5

@

70

7

N

74

58 9

~

123 124 125 126 127

58 72 9

N

124 127 128

58 72 74 9

N

124 127 129

58 72 74 95 124 127 130

58 70 72 74 95 127 131

58 70 72 74 95 127 132

58 70 72 74 95 127 133

58 70 72 74 110 127 134

58 70 72 74 110 127 135

58 70 72 74 110 127 136
58 70 72 74 110 127 137

58 70 7

N

74 127 138

70 7

N

74 127 139

7.

N

74 127 140

74 127 141

44 55 74 142 143 144

74 144 145 146 147

74 147 148 149 150

124 150 151 152 153

74 153 154

74 153 155

74 153 156

153 157

Chime # Instructions accessingalues Chime # Instructions accessingegisters

1. Load 1 1. Load v1
Load 2 Load v2

2 2.
Mul 3<-1+2 Mul v3 <-vl +v2
Load 4 Load v4

3. Values 3 and 6 can share 3.
Add 5<-3+ 4 a register, since value 3 Add v5<-v3+ v4

/ is not used after this slot.

4. Add 6<-3+5 4. Add v3 <wv3 +V5
Add 7 <-4+6 5. Add v6 <-v4+v3
Store 7 6. Store v6

Figure 8: Same-instruction register sharing

Chime # Instructions accessingalues Chime # Instructions accessingegisters
1 Load 1 1. Load vl
L2 T Load v2
2 2.
Mul 3<-1+2 Mul v3 <-v1 +Vv2
Load 4 Load v4
3. Values 3 and 6 can share 3.
Add 5<-3+ 4 aregister, as can value Add v5<-v3+ v4
_________/ 5and7. N @ -
4. Add 6<-3+5 4, Add v3 <v3 v5
Mul 7 <-4+6 Mul v5 <-v4 +v3
5. Add 8<-4+6 5. Add v5 <-v4 +v3
Store 8 Store v5

Figure 9: Inter-instruction register sharing

17

between values in different instructions as inter-instruction register sharing. In the example,
values 3 and 6 share a register, and values 5 and 7 also share a register. In this way, the number
of registers needed to execute a code segment is reduced.

The comparison made earlier between the multi-issue allocation algorithm’s output and the
Convex Fortran compiler’s output is not entirely fair because our generic machine model does
not allow register sharing. A value that is used in a chime occupies a register for the entire chime.
Therefore, when used to optimize Convex C2 vector code, the allocation algorithm will in some
instances spill values unnecessarily. A modified version of the algorithm allows register sharing,
but may not exploit this capability optimally. A reduction in the number of chimes in the final
schedule is achieved through the use of this heuristic. Compl improved to 40 extra chimes, 113
total, giving nearly a 10% reduction in chimes over the compiled code. Mul5 improved to 45
extra, 170 total, giving a 27% reduction in chimes over the compiled code.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, Massachusetts, 1988.

[2] L. A. Belady. A study of replacement algorithms for a virtual storage computer. IBM
Systems Journal, 5:78-101, 1966.

[3] E. L. Boyd. Hierarchical performance modeling with MACS: A case study of the Convex
C-240. In Proc. 20th Intl Symposium on Compuler Archiltecture, pages 203-212, 1993.

[4] F. C. Chow and J. L. Hennessy. The priority-based approach to register allocation. ACM
Transactions on Programming Languages and Systems, 12:503-536, 1990.

[5] CONVEX Computer Corporation. CONVEX Theory of Operation - C200, volume 081-
005030-000. 1990.

[6] G. J. Chaitin et al. Register allocation via coloring. Computer Languages, 6:47-57, 1981.

[7] G. J. Chaitin et al. Register allocation and spilling via graph coloring. In Proc. ACM
SIGPLAN °86 Symp. Compiler Construction, pages 98-105, New York, 1982.

[8] L. P. Horwitz, R. M. Karp, R. E. Miller, and S. Winograd. Index register allocation. Journal
of the Association of Compuling Machinery, 13:43-61, 1966.

[9] W. Hsu, C. N. Fischer, and J. R. Goodman. On the minimization of loads/stores in local
register allocation. IFEFE Transactions on Software Fngineering, 15:1252-1260, 1989.

18

A Appendix

A.1 Placement Problem Description
Given:

1. 5, a set of placement slots that are numbered from 0 to || — 1.

2. R, a set of placement ranges that are numbered from 0 to |R| — 1. A memory operation
is associated with each range. A memory operation is assigned the same number as its
range.

3. Vr € R, E(r) and L(r) represent the bounds of the placement range of . The placement
range of r is then [E(r), L(r)].

4. The ranges are ordered so Vr,r’ € R, r < v' = L(r) < L(r'), i.e. the ranges are assumed
to be ordered by L(r). ris said to have a higher priority than »' if » < . If L(r) = L(7'),
the order is arbitrary.

Find a function P : R — SU{NONE}, called a placement, such that P is legal and optimal.
P is legal if and only if:

1. Ve, € R, if r # 7',r # NONE, and ' # NONE, then P(r) # P(r’).
No two memory operations are placed in the same slot.

2. Vr e R, if P(r)# NONE, P(r) € [E(r), L(r)].

Memory operations are only placed within their placement range.

The cost of a legal placement P is the number of r € R such that P(r) = NONE. P is
optimal if for any legal placement P’, cost(P') > cost(P). If P(r) = NONE, we say r is
unplaced. Otherwise r is placed. Memory operations that are never placed will be assumed to
occupy extra slots that are added to the schedule.

A.2 Placement Algorithm

The placement algorithm places the memory operations as follows. Fach placement range
is considered in order, and for each the memory operation is placed in the highest slot that is
currently empty. That is, P(r) = s where s is the highest empty slot in 7. If there are no empty
slots in 7, the operation is not placed. That is, P(r) = NONE.

A.3 Proof of Optimality
We prove that the placement produced by this algorithm is optimal by first defining a

standard placement P, and then showing that any legal placement P’ that is different cannot
cost less than P.

19

A.3.1 A Standard Placement

We define a function C: S — RU{EMPTY}. Given a legal placement P, C(s) = EMPTY
if Ar € R such that P(r) = s. Slot s is said to be emply. Otherwise C'(s) = r where P(r) = s.
Since P is legal, this function is well defined. If more than one placement is being discussed, a
subscript will be used to distinguish them (e.g. C'p and Cp/).

Given a legal placement P, the placement of r € R is standard if it satisfies the following
conditions:

1. Condition 1. If P(r) = NONE, then Vs € [E(r), L(r)], C(s) # EMPTY and C(s) < r.
If r is not placed, then its entire placement range contains higher priority
memory operations.

2. Condition 2. If P(r) # NONE, then Vs € [E(r), P(r)), C(s) # EMPTY and C(s) < r.
If r is placed, then all earlier slots in its placement range contain higher priority
memory operations.

A legal placement P is standard if and only if the placement of all » € R is standard.

A.3.2 The placement produced by the algorithm is standard

Consider a placement P produced by the placement algorithm. If P is not standard, there
exists a range r € R whose placement is not standard. Range r must violate one of the four
conditions:

o 1 violates condition 1: If an unplaced r violates condition 1, there must be a slot s’ €
[E(r), L(r)] that is empty or contains a lower priority memory operation r’. If s’ is empty,
then it must have been empty when r was being considered for placement. But this is a
contradiction since the algorithm places r in the highest empty slot within its placement
range, if such a slot exists. If s’ contains a lower priority memory operation ', then 7/
would not yet have been placed when r was under consideration for placement. Therefore
slot s’ must have been empty when r was considered. But this is again a contradiction
since r was assumed to have been placed in the highest empty slot within its placement
range, if it exists. Therefore r cannot violate condition 1.

e 7 violates condition 2: If a placed r violates condition 2, there must be a slot s’ €
[E(r), P(r)) that is empty or contains a lower priority memory operation 7. If s is
empty, then it must have been empty when r was being considered for placement. But
this is a contradiction since r was assumed to have been placed in the highest empty slot
within its placement range. If s’ contains a lower priority memory operation 7', then 7/
would not yet have been placed when r was under consideration for placement. Therefore
slot s’ must have been empty when r was considered. But this is again a contradiction
since r was assumed to have been placed in the highest empty slot within its placement
range. Therefore r cannot violate condition 2.

20

There cannot be such a slot s € 5 that violates one of the conditions, so the placement P
produced by the placement algorithm is standard.

A.3.3 No placement is less expensive than a standard placement

Given a standard placement P, we show that no other placement P’ can cost less than P.
We show this by applying a series of operations to P’ that transform it into P. At each stage,
the intermediate placements are legal and cost no more than P’. Since P’ is finally transformed
into P, P must cost no more than P’.

If placements P and P’ are not exactly the same, there must be a highest slot s such that
Cp(s) # Cpi(s). We consider all the ways the placements can differ:

Placement P Placement P’ Placement P Placement P’

<—slot S—= <—slot S—=

r unplaced

<—slot S—

Figure 10: Slot s is not empty in either placement

o Cp(s) # EMPTY and Cpi(s) # EMPTY: Slot s is not empty in either placement so
dr,r" € R such that P(r) = s, P'(r') = s’ and r # r’. Since P is standard, r < r’. If this
is not the case, P would violate one of the conditions because r would be a lower priority
memory operation within the placement range of 7/ (whether ' is placed or unplaced in
P). There are two cases to consider: r may be placed in P’, or it may not.

— If r is placed in P’, it must be placed below s since the higher slots are assumed to
have the same contents as P (see Figure 10a). Assume P’(r) = s'. Set P'(r) = s and
P'(r") = s'. The first is legal because s € [E(r), L(r)]. The second is legal because
r <71’ = L(r) < L(r'"). The cost of P’ has not changed and the placement of memory
operations above s is unchanged.

— If r is not placed in P’, set P'(r) = s and P'(r') = NONE (see Figure 10b). P’
remains legal because s € [E(r), L(r)] and no more than one range is assigned to slot
s. The cost of P’ has not changed because one previously unplaced memory operation
is now placed, and one previously placed memory operation is now unplaced. The
placement of memory operations above s is unchanged.

21

Therefore, if the memory operations placed at s are different, P’ is transformed so that it
matches P at that slot, without increasing the cost of P’. Furthermore, the placement of
memory operations above s is unchanged.

Placement P Placement P’ Placement P Placement P’
- - - empty
- - - - slot
LSS Oy L ss=o
slot
—_ —_ —_ —_ r unplaced
— <—slotsS—= r — —
a b

Figure 11: Slot s is not empty in placement P, but is empty in placement P’

o Cp(s)# EMPTY and Cp/(s) = EMPTY: Slot s is not empty in placement P so 3r € R
such that P(r) = s. There are two cases to consider: r may be placed in P’, or it may not.

— If r is placed in P’, it must be placed below s since the higher slots are assumed to
have the same contents as P (see Figure 11a). Assume P'(r) = s'. Set P'(r) = s.
This is legal because s € [E(r), L(r)]. This operation does not change the cost of P’
and the placement of memory operations above s is unchanged.

— If r is not placed in P’, P'(r) = NONE (see Figure 11b). Set P’(r) = s. This is
legal because s € [E(r), L(r)], and this operation reduces the cost of P’ by 1. the
placement of memory operations above s is unchanged.

Therefore, if a memory operation is placed at s in P and P’ has an empty slot at s, P’
can be transformed so that it matches P at that slot, without increasing the cost of P’.
Furthermore the placement of memory operations above s is unchanged.

o Cp(s)= EMPTY and Cpi(s) # EMPTY: Slot s is not empty in placement P’ so Ir € R
such that P’(r) = s. There are two cases to consider: 7 may be placed in P, or it may not.

— If r is placed in P, it must be placed below s since the higher slots are assumed to
have the same contents in P’ (see Figure 12a). The empty slot at s is higher than r
and within its placement range which violates condition 2. Since P is assumed to be
standard, this is a contradiction.

— If r is not placed in P, the empty slot at s is within its placement range which
violates condition 1 (see Figure 12b). Since P is assumed to be standard, this is a
contradiction.

22

Placement P Placement P’ Placement P Placement P’

- - empty -
- - slot - -
> O <=—slots— 1 \O<—s|0tsé r

empty — — — —
slot J— J— J— J—
_ _ runplaced __ _

r <—slot $—=>— — —

a b

Figure 12: Slot s is empty in placement P, but is not empty in placement P’

Therefore it is not possible for P to have an empty slot at s if P'(r) = s.

We have shown that regardless of how placements P and P’ differ at slot s, P’ can be
transformed to eliminate the difference, without increasing its cost. These transformations can
be performed for each slot s € 5, so P’ is eventually transformed into P. Since the cost of each
intermediate placement is never more than the cost of P’, the cost of P is not more than the
cost of P'. P is an arbitrary standard placement and P’ is an arbitrary placement, so a standard
placement is never more expensive than any other placement.

Since the placement produced by the placement algorithm is standard, and there are no
placements cheaper than a standard placement, the placement produced by the algorithm is
optimal.

23

