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Abstract

The Fault-Tolerance Latency (FTL) defined as the time required by all sequential steps
taken to recover from an error is important to the design and evaluation of fault-tolerant
computers used in safety-critical real-time control systems. To meet timing constraints or
avoid dynamic failure, the latency of any fault-handling policy — that consists of several
stages like error detection, fault location and recovery — must not be larger than the
Application Required Latency (ARL), which depends upon the controlled process under
consideration and its operating environment.

We evaluate the FTL while considering various fault-tolerance mechanisms and use
the evaluated FTL to check if a fault-handling policy can meet the timing constraint,
FTL < ARL, for a given real-time application. The FTL is dependent on the underlying
fault-handling mechanisms as well as fault behaviors during the application of temporal-
redundancy recovery such as instruction retry or program rollback. We investigate all
possible fault-handling scenarios and represent F'TL with several random and deterministic
variables that model the fault behaviors and/or the capability and performance of fault-
handling mechanisms. We also present a simple example to demonstrate the application
of the evaluated FTL in real-time systems, where an appropriate fault-handling policy is
selected to meet the timing requirement with the minimum degree of spatial redundancy.

Index Terms — Fault-tolerance latency, real-time control systems, fault-tolerant controller
computers, time/space and static/dynamic redundancy, hard deadline, dynamic failure
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1 Introduction

Most real-time control systems have been realized with digital computers due mainly to
the increasing capability and popularity of digital computers and both the high-performance
and stringent-reliability requirements of real-time applications such as aircraft, nuclear re-
actors, and utility monitoring & control. Since failure of the controller computers in such
applications may lead to catastrophe, e.g., loss of human lives or economic disaster, these
computers must be equipped with appropriate fault-tolerance mechanisms which guarantee
the safe operation of the system even in the presence of controller-component failures. A
real-time controller computer may fail because of not responding fast enough or because of
massive H/W or S/W component failures. In other words, a real-time computing system is
required to deliver the expected services in a timely manner even in the presence of com-
ponent failures. Thus, the requirement of a controller’s fault-tolerance must be considered
simultaneously with the timing constraints of the corresponding controlled process.

Fault-tolerance is achieved via temporal and/or spatial redundancy, and hence, its de-
sign methodologies are characterized by the tradeoff between these two types of redundancy.
Most design criteria in non real-time systems deal with optimization of spatial redundancy,
whereas in real-time systems time is so valuable to trade space for time. A fault-tolerance
policy should be selected and implemented to recover completely from faults/failures within
the time limit (deadline) of the underlying controlled process. We define Faull-Tolerance
Latency (FTL) as the total time spent on such sequential fault-handling stages as error de-
tection, fault location, system reconfiguration, and recovery of the contaminated application
program.

Most work on fault-tolerance used simple models for FTL, which was also represented in
[17] as the sum of Mean Time To Detection (MTTD) and Mean Time To Repair (MTTR).
Reliability or dependability models assumed the recovery time to have a certain probability
distribution; if the recovery time follows an exponential (or general) distribution, the tran-
sition from error state to normal state is represented by the mean rate in a Markov model
(or a semi-Markov model). In [12], recovery procedures were represented by instantaneous
probabilities which measure the effectiveness of fault-/error- handling mechanisms while
ignoring the time spent on the recovery procedures due to the stiffness existing between
fault occurrence and recovery. The authors of [6] derived a distribution of system-recovery
times by using a truncated normal distribution and a displaced exponential distribution,
which captures general short periods of normal recovery and special long durations of rare
abnormal recovery. This work was based on the recovery time data collected from various
(experimental) sources.

Note, however, that none of the foregoing approaches have treated the recovery process
as consisting of several sequential stages such as fault detection/isolation, system recon-
figuration, and recovery of contaminated computations; instead, they treated the recovery
process as one event lumping all the sequential stages to (i) derive a simple expression for
the recovery-time distribution to be solved analytically or (i) implement the general models
of error-/failure- handling with simulations.

In [5, 10], the experimental data/statistical methods (i.e., sampling and parameter-



estimation methods) for characterizing the times of fault detection, system reconfiguration,
and computation recovery were discussed based on hardware fault injections in the Fault-
Tolerant Multiple Processor (FTMP). In [1, 13], the recovery times were estimated for
a pooled-spare and N-modular redundant systems. The effects of various fault-tolerance
features on FTL were described there. However, the results were given in a specific appli-
cation context applying spatial redundancy only, and assumed that the time required for
each stage of fault /error recovery is approximated to be in a deterministic range.

In this paper, we propose to evaluate FTL analytically, covering most, if not all, practical
fault-tolerance mechanisms based on the tradeoff between temporal and spatial redundancy.
We first investigate the times required for all individual fault-/error- handling stages. Then,
we tailor these results appropriately to represent all possible fault- /error- handling scenarios
or policies. (A policy/scenario is composed of sequential fault-/error- handling stages.)
Our analysis is based on the assumption that the latencies of fault-handling stages are
stochastic depending upon the random characteristics of fault/error detection (or a random
error latency) and fault behaviors; the active duration of a fault affects significantly the
success /failure of a spatial-redundancy method (i.e., instruction retry or program rollback).
Our results — that focus on a sequence of error-/failure- handling stages — can also be
used in those well-developed reliability or dependability models [2, 4, 7].

In Section 2, general fault-tolerance features are described by classifying fault-tolerance
mechanisms and considering the tradeoff between temporal and spatial redundancy. Section
3 examines the effects on the FTL of individual fault-handling stages from the occurrence
of an error to its recovery, and combines these results to evaluate the FTL of a general
fault-handling policy covering all possible fault-handling stages. In Section 4 we argue for
the importance of FTL information to the design and validation of fault-tolerant controller
computers. We present there an example that selects an appropriate fault-handling policy
based on the FTL information. The paper concludes with some remarks in Section 5.

2 Generic Fault-Tolerance Features

Computer system failures occur due to errors, which are deviations from the program-
specified behaviors. An error is the manifestation of a fault resulting from component
defects, environmental interferences, operator or design mistakes. It is desirable to select
an appropriate policy so as to continue the program-specified functions even in the presence
of faults.

Fault-tolerance is achieved via spatial and/or temporal redundancy, i.e., systematic and
balanced selection of protective redundancy among hardware (additional components), soft-
ware (special programs), and time (repetition of operations). Thus, design methodologies
for fault-tolerant computers are characterized by the tradeoff between spatial and tempo-
ral redundancy. Using these two types of redundancy, a fault-tolerant computer must go
through as many as ten stages in response to the occurrence of an error, including fault lo-
cation, fault confinement, fault masking, retry, rollback, diagnosis, recovery, restart, repair
and reintegration. The design of fault-tolerant computers involves selection of an appropri-



ate failure-handling policy that combines some or all of these stages.

Spatial redundancy is classified into two categories: static and dynamic. Static redun-
dancy, also known as masking redundancy, can mask erroneous results without any delay
as long as a majority of participant modules (processors or other H/W components) are
nonfaulty. However, the associated spatial cost is high, e.g., three (four) modules are re-
quired to mask a non-Byzantine (Byzantine) failure in a TMR (QMR) system. The time
overhead of managing redundant modules — for example, voting and synchronization —
is also considerable for static redundancy. Dynamic redundancy is implemented with two
sequential actions: fault/error detection and recovery of the contaminated computation. In
distributed systems, upon detection of an error it is necessary to locate the faulty module
before replacing it with a nonfaulty spare. Although this approach may be more flexible
and less expensive than static redundancy, its cost may still be high due to the possibility
of hastily eliminating modules with transient faults? and it may also increase the recov-
ery time because of its dependence on time-consuming fault-handling stages such as fault
diagnosis, system reconfiguration, and resumption of execution.

To overcome the above disadvantages, temporal redundancy can be used by simply
repeating or acknowledging machine operations at various levels: micro-operation/single
instruction (retry), program segment (rollback), or the entire program (restart). In fact,
one of these recovery schemes is also needed to resume program execution in case of dy-
namic redundancy. This temporal-redundancy method requires high coverage of fault/error
detection so as to invoke the recovery action quickly. (The same is also required for dynamic
redundancy.) The main advantages of using temporal redundancy are not only its low spa-
tial cost but also its low recovery time for transient faults. However, the time spent for
this method would have been wasted in case of permanent or long-lasting transient faults,
which may increase the probability of dynamic failure.

The relations between the temporal and spatial redundancy required (and the associated
redundancy-management overhead) are shown in Fig. 1 for several fault-tolerance mecha-
nisms. In case of time-critical applications, an appropriate fault-tolerance mechanism can
be found from the top left of Fig. 1, i.e., paying a small amount of temporal redundancy
at the cost of spatial redundancy like N-modular redundancy. When the timing constraint
imposed by the controlled process is not tight, we can save the cost of spatial redundancy
by increasing temporal redundancy (i.e., a larger time for retry, rollback, or restart recov-
ery), which enhances the system’s ability in recovering from more transient faults before
the faulty modules are replaced with spares. Increasing temporal redundancy, however,
increases the possibility of missing task deadlines or dynamic failure.

3 Evaulation of Fault-Tolerance Latency

The recovery process that begins from the occurrence of an error consists of several
stages, some of which depend on each other, and the FTL is defined as the time spent for

?Note that more than 90% of faults are known to be non-permanent; as few as 2% of field failures are
caused by permanent faults [11].
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Figure 1: Tradeoff between temporal and spatial redundancy for various fault-tolerance
mechanisms.

the entire recovery process. Thus, all the stages necessary to handle faults/failures upon
occurrence of an error should be studied and their effects on the FTL must be analyzed.

In a specific application context, the recovery times were estimated in [1, 13] by de-
composing the fault recovery process into stages and analyzing the effects of various fault-
tolerance features on the FTL. We also use a similar approach to the problem of evaluating
the FTL, but for more general fault-tolerance strategies. For completeness, these approaches
are summarized below.

3.1 FTLs of a Pooled-Spares System

In [13], the FTL was estimated for a pooled-spares system implemented in the Dy-
namic Reconfiguration Demonstration System (DRDS) Program.® Phase 1 of the DRDS
Program is reported to have shown potential benefits of the dynamic run-time reconfigu-
ration implied by the pooled-spares approach, such as increased functional availability and
flexibility, higher reliability, and less complexity than classical N-modular redundancy.

This work includes the analysis of FTL and has indicated that the pooled-spares ap-
proach can be used for many contemporary applications. The FTL was estimated for the
demonstration system and the near-future (5-10 years from today) systems under the as-

*The DRDS Program is being developed to prove the feasibility of pooled spares for next generation
weapon systems by Texas Instruments (TI) Incorporated under a contract from the Naval Air Warfare
Center, Indianapolis, IN.



sumption that each fault-handling stage — fault detection/isolation, reconfiguration, and
recovery — requires time within a deterministic range. In other words, (i) an upper bound of
detection/isolation time was determined by using a fail-fast approach with health messages
and the system is assumed to use a combination of continuous Built-In-Test (BIT), periodic
BIT, and application-level detection/isolation methods, (ii) the reconfiguration times were
actually measured on the demonstration system with cold backups for a specific load of size
8K 16-bit words, and (iii) recovery of the application code was performed via application
checkpointing and rollback, and the required time was approximated to be a single check-
point period. The expected reduction of FTL in the next 5-10 years was also estimated by
considering such improvement factors as throughput and memory capacities.

In another paper dealing with the pooled-spares system [1], various fault-tolerance tech-
niques covering both software and hardware issues were addressed by focusing on their
latencies. This work also analyzed the FTL in the pooled-spares system based on the
results of the DRDS Program in [13], and included part of the fault-masking method of
N-modular redundancy. Possible fault detection/isolation, reconfiguration, recovery, and
fault-masking features were considered to examine their effects on the FTL while consid-
ering the CPU speed and the relative rates of fault occurrences in individual components
such as memory, I/0, buses, and processors.

Memory or data-path parity checking, error-correcting memory, checksum, reasonable-
ness checks, health messages, data-type checks, watchdog timer, and periodic BIT were given
as candidate fault detection/isolation mechanisms, while cold, warm, and hot spares were
considered for classifying the system reconfiguration with the estimated data of the down-
load and initialization delays depending upon the program size, bus speed, and CPU speed.
Several characteristics of checkpointing such as consistency, independence, programmer-
transparency, and conversation were introduced with the methods of software re-execution
and rollback, where the time required for this recovery procedure was assumed to be a single
checkpoint period as in [13].

Finally, the examples to select appropriate fault-handling policies to meet the given FTL
requirement were presented for the cases of using cold, warm, and hot spares, illustrating
how the analysis of FTL is applied.

3.2 The FTL of General Fault-Tolerance Mechanisms

Fig. 2 depicts all possible scenarios from an error occurrence to its recovery, cover-
ing static/dynamic redundancy, temporal-redundancy methods, and combinations thereof.
Each path represents one fault-handling scenario which may occur as a result of selecting a
fault-handling policy corresponding to the path and the success/fail result of the selected
method, depending upon the fault behavior when a temporal-redundancy method is applied.
For example, an unsuccessful retry implies another error detection, which may trigger a sec-
ond retry or rollback or restart. As shown in Fig. 2, fault-handing processes are classified
by fault/error detection and recovery mechanisms.

First, we divide the fault-handing process into several stages, and evaluate the time spent
on each individual stage of Fig. 2. When a temporal-redundancy method such as retry or
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Figure 2: All possible failure-handling scenarios.

rollback is used upon detection of an error, we need such stages as fault diagnosis, system re-
configuration, and resumption of execution only after the temporal-redundancy method be-
came unsuccessful in recovering from the fault. Whether the temporal-redundancy method
is successful or not depends upon the policy used and the underlying fault behavior. Thus,
we have to represent the effects of certain stages on the FTL in probabilistic terms.

3.2.1 Fault/Error Detection Process

The time interval between the occurrence of a fault and the detection of an error caused
by the fault is divided into two parts by the time of error occurrence: fault latency for the
time interval from the fault occurrence to the error generation, and error latency for the
time interval from the error generation to the error detection. The distribution of fault
latency was estimated in [16] by using the Gamma and Weibull distributions. Since the
FTL begins with the occurrence of an error, we are mainly interested in the error latency
which depends upon the active duration of a fault and the underlying detection mechanism.
Error detection mechanisms are classified into (i) signal-level detection mechanisms, (ii)
function-level detection mechanisms, and (iii) periodic diagnostics.

Let t.; and F,(t) be the error latency and its cumulative probability distribution, re-
spectively. Several well-known pdf’s, such as Weibull, Gamma, and lognormal distributions,
were examined in [5] to model the error latency. If Atf; is the mean execution time of
an instruction, F,;(At;) ~ 1 for a high-coverage signal-level detection mechanism. For a
function-level detection mechanism, ¢.; depends on the detection mechanism used and the



executing task. The coverage of the function-level detection is generally lower than that
of the signal-level detection (and significantly less than one), and its error latency is thus
larger than the signal-level detection’s. We will therefore use the mean error latency of
the function-level detection which is much larger than the signal-level detection’s for the
examples presented in Section 4. Although the periodic diagnostic whose coverage depends
on both its period and duration is also a popular method to locate faults, only the first
two types of detection mechanisms are considered in our analysis, because the results thus
obtained can be extended to the case of periodic diagnostic.

3.2.2 Fault Masking (Static/Hybrid Redundancy)

This method filters out the effects of faulty modules as long as the number of faulty
modules is not larger than 2% for n-modular redundancy. The method induces the time
overhead of redundancy management such as synchronization and voting/interactive consis-
tency techniques even in the absence of faults, which increases with the degree of redundancy
[9]. Although the time required for this type of recovery is almost zero it induces high spa-
tial costs; when the number of modules available is limited, this method is not as reliable
as the dynamic-redundancy method [13] and must be equipped with separate detection and

recovery mechanisms for ultra-reliable systems [3].

A hazardous environment, like the one resulting from EMI, will affect the entire system
and induce coincident, or common-source, faults in the multiple modules of an n-modular
redundant system. If the number of faulty modules is larger than "2;1 in such a harsh
environment, then the recovery time, which also depends upon the adopted temporal- or
spatial- redundancy method, is no longer negligible. We do not treat such a case because

of the similarity of its recovery process to the case of dynamic redundancy.

3.2.3 Fault Diagnosis

When a function-level detection mechanism is used, upon detection of an error it is
necessary to locate the faulty module* and/or to determine certain fault behaviors. Let 4
and py be the time spent for fault diagnosis and the probability of locating the faulty module
(i.e., diagnostic coverage). Then, there is a tradeoff between ¢, and py, which is usually
difficult to quantify. The accuracy of diagnosis, which increases with the diagnosis time,
affects greatly the results of the subsequent recovery and hence the FTL. Note that the
time, 14, taken for diagnosis is likely to be deterministic, because it is usually programmed
a priori. We assume that t; is sufficiently large to locate faulty modules, that is, py ~ 1.

3.2.4 System Reconfiguration

When a fault is located and identified as a permanent fault, the faulty module must
be isolated from the rest of the system by replacing it with a spare module or switching it

*in distributed systems



off without replacement (thus allowing for graceful degradation). This process is necessary
for both dynamic and hybrid redundancy. Specific hardware like the Configuration Control
Unit (CCU) in FTMP [8], may be dedicated to handling system reconfiguration. This
process (of using cold spares) generally consists of (i) switching power and bus connections,
(ii) running built-in-test (BIT) on the selected spare module, (iii) loading programs and
data, (iv) initializing the software. When warm spares are used, steps (i) and (ii) are not
needed. The time taken for this process is also likely to be deterministic, which depends
upon program size, system throughput, processor speed, and bus bandwidth. Let ¢, be the
time spent for system reconfiguration. We assume that ¢, lies in a deterministic interval,
t,1 <1, <t,9, where t,; and ., are determined by the type of reconfiguration and several
other factors described above. In fact, these values can be determined experimentally as
was done in [1, 13].

3.2.5 Retry

This is the simplest recovery method using temporal redundancy, which repeats the ex-
ecution of a micro-operation or instruction. To be effective, this method requires immediate
error detection, i.e., almost perfect coverage of a signal-level detection mechanism yielding
an error latency smaller than the execution time of a micro-operation or an instruction
(Fu(At;) = 1). The retry period, which is defined as a continuous-time interval or the
number of re-executions, is the maximum allowable time for retry. In other words, a retry
must be terminated when the retry period expires, regardless whether it is successful or not.
Let t,,, t,, and F,(t) be the retry period, the active duration of a fault, and the probability
distribution of the active duration, respectively. The result of a retry depends upon ¢,, and
t,. When the retry is successful, the time it took is certainly smaller than the retry period
and is equal to the fault duration, ¢{,. However, it is equal to the retry period, ¢,,, when
the retry became unsuccessful, and an alternative recovery method will be followed, thus
increasing the FTL.

3.2.6 Rollback with Checkpoints

The inquality ¢.;, > At; is allowed in this method, i.e., F.;(At;) < 1. When an error is
detected by a signal- or function- level detection mechanism, this method rolls back past
the contaminated part of a program following a system reconfiguration in case of dynamic
redundancy. It is invoked as the first step of recovery after an unsuccessful retry. The time
taken for the rollback process is dependent upon the error latency, the inter-checkpoint
interval, the number of checkpoints maintained, and the way checkpoints are selected for
rollback. Let At, and N, be the inter-checkpoint interval and the maximum number of
checkpoints necessary for rollback recovery, respectively. For simplicity we assume that the
inter-checkpoint intervals are simply equidistant. (It is not difficult to extend our method
to the case of non equidistant checkpoints, though the notation will become more complex.)
When the rollback is successful, the time taken to restore the contaminated segment of a
program is larger than the error latency but smaller than the error latency plus one inter-

checkpoint interval; that is, equal to [£2-]Al,, where [z] is the smallest integer larger than




z. If the fault is active during the entire period of rollback or the contaminated part is
larger than the re-executed part of the program, the rollback recovery will fail and the
corresponding “wasted” time is equal to N, At,.

3.2.7 Restart

If too much of the program is contaminated by an error due to a long error latency,
its execution is repeated from the beginning. The time (computation loss) taken for the
restart process depends upon (i) the time to detect an error and (ii) the types of restart
(i.e., hot, warm, and cold restarts) following a system reconfiguration. We use ¢, and F,(?)
to denote the error-detection time measured from the beginning of the program execution
and the probability distribution of error occurrences in a program (determined by the pdf
of fault occurrence), respectively.

3.2.8 Combination of Failure-Handling Stages

As mentioned earlier, all failure-handling scenarios are described by the paths from error
detection to the corresponding recovery in Fig. 2. It is clear that a fault-handling policy
depends on several mutually exclusive events, where one event represents a scenario and its
occurrence depends upon fault behaviors and the policy parameters. The probability of the
occurrence of each event can thus be calculated by using the pdf of fault active duration
(F,) and the policy parameters such as At,, N, or {,,. The FTL of a certain fault-handling
policy is thus obtained by using the probabilities of all possible events/scenarios and the
times spent for those events/scenarios. Note that the time spent for each scenario is obtained
by adding the times spent for all fault-handling stages on the path representing the scenario.
Likewise we can obtain the probability distribution of a fault-handling policy (F}) as:

Fi(0) = Y B(IS)P(S), (3.1)

where 9; indicates the i-th scenario of a fault-handling policy, and P(S;) and n are the
probability of the occurrence of S; and the number of all possible scenarios in the selected
fault-handling policy, respectively. Eq. (3.1) describes Fi(t) as a weighted sum of condi-
tional distribution functions. Fach 5;’s conditional distribution function is computed by
convolving the probability distribution functions of the times spent for all the stages on the
corresponding path or fault-handling policy. The times spent for all possible fault-handling
stages are described as deterministic values or random variables with certain probability
distribution functions. We will investigate each fault-handling stage individually.

Now, we characterize the fault-handling process into four policies according to the types
of error-detection mechanisms and recovery methods combined with temporal and spatial
redundancy; (i) restart after reconfiguration, (ii) rollback, (iii) retry, and (iv) retry then
rollback. These cover all possible dynamic- and/or temporal- redundancy methods. Specif-
ically, we can describe the fault-handling policies as follows. (Note that the number of all
possible scenarios in each fault-handling policy is equal to n.)

10



e Policy 1 (n = 2): S; = successful restart after diagnosis and reconfiguration, S5 =
unsuccessful restart due to incorrect diagnosis then repeat.

e Policy 2 (n = 2): 57 = successful rollback after diagnosis, S, = unsuccessful rollback
then restart after diagnosis and reconfiguration.

e Policy 3 (n = 2): S, = successful retry, 52 = unsuccessful retry then restart after
reconfiguration.

e Policy 4 (n = 3): S; = successful retry, S, = unsuccessful retry and successful rollback,
S3 = unsuccessful retry and unsuccessful rollback then restart after reconfiguration.

While signal-level detection mechanisms can capture the faulty module immediately upon
occurrence of an error and can thus invoke retry in Policies 3 and 4, function-level detection
mechanisms — that cause a nonzero error latency and thus require the diagnosis process to
locate the faulty module — may be used for Policies 1 and 2. The probabilities of scenario
occurrences and the (conditional) distribution functions of the above scenarios are derived
by using the variables defined earlier for individual fault-handling stages.

For simplicity, we do not consider the occurrence of an error/failure due to a second
fault during the recovery from the first fault. If we need to consider the effects of such an
error/failure, we cannot derive a closed-form distribution function of FTL, but can instead
derive the moments of FTL by using recursive equations, which can then be used to derive
the distribution function of FTL numerically.

Policy 1 is a simple form of dynamic redundancy, i.e., to restart the task from the
beginning after identifying and replacing the faulty module with a nonfaulty spare. The
first scenario is a successful restart with correct diagnosis. Thus, the probability of its
occurrence is equal to that of successful diagnosis (p;), and the time (¢;) spent on this
scenario becomes:

=1g+1s+1 + 1,

where t; and ¢, are deterministic variables, and t,; is a random variable with the distribution
function, F,;. i, is also a random variable with a certain conditional distribution function
given that an error had occurred during the execution of a task, i.e., F,(t|an error occurred).
Let t =t —t3 — t,, then:

P(Sl) = Pd,
Fi(t|S1) = Fu(t) = F.(t|an error occurred). (3.2)

Similarly, P(S,) and F(t]|S,) are derived for the second scenario. Since an unsuccessful
restart (of the second scenario) wastes more time than the first scenario by the amount of
the incorrect—diagnosis time plus the (error) latency for a second error detection due to this
incorrect diagnosis, {; is changed to:

tl:tel‘l'td‘l'tel‘l'td‘l'tr‘l'te:2tel+2td+tr+te'

11



Let t = t; — 2t; — t,, then:

P(S2) =1 — Pd;

t
F(t]S,) = F. (5) * F,(t]an error occurred). (3.3)

Policies 2 and 3 use rollback with diagnosis and retry upon error detection, respectively.
Reconfiguration is also called for if the temporal-redundancy approach became unsuccessful.
Since the first scenario of Policy 2 is a successful rollback, the probability of its occurrence
depends on the probability of successful diagnosis (py), the parameters of rollback (Af. and
N.), the error latency (f.;), and the fault active duration (¢,). For a successful rollback,
(i) a faulty module must be identified with correct diagnosis, (ii) {.; must be smaller than
N_At,, which is the maximum allowable time for rollback, and (iii) the fault must disappear
within N.At.. Let p, be the percentage of transient faults, then:

P(S)) = pipaba(NAL)F(N.AL,). (3.4)

The time spent for this case is simply obtained as:

b= ta+ta+ LECJAQ-
Let t = t; — 14, then:
B(1151) = Falt) + B 570, (3.5)
where F), is a cumulative probability mass function for m = LECJ. The probability of the

second scenario being exclusive of the first one is equal to 1 — P(.5):
P(S5) =1—pipaFoa(NAL)F (N AL,). (3.6)
The time spent for this scenario is increased to:
by =tg+ta+ NAL +1g+ 1 + 1o =1+ 2t + NAL + 1, + L.
Let t =t — 2t — N.At, — 1,, then:

Fi(1]52) = Fa(t) * F.(t|lan error occurred). (3.7)

For Policy 3 which does not require fault diagnosis due to the assumed immediate
and correct detection of errors with signal-level detection mechanisms, the probabilities of
scenario occurrences and distribution functions are derived similarly to Policy 2. For a
successful retry, the error must be detected before contaminating the result of executing
the instruction that will be retried (At;) and the fault must become inactive within ¢,,, if
the time spent is ¢,; + t,. Thus,

P(S1) = pFu(ly)Fa(Al),
F(1)S) = Fa(t)* Ey(t). (3.8)



When a retry is unsuccessful, the time spent for this becomes:
tl = tel +trp ‘I’tr + te-

Let t =t —t,, — t,, then:

P(S2) 1_ptFa(trp)Fel(Ati)7
Fi(t]S2) = Ful(t)* F.(t|an error occurred). (3.9)

Policy 4 has three scenarios whose probabilities and distribution functions are obtained
by combining those of Policies 2 and 3. The first scenario is a successful retry, for which
P(5,) and F(t]5;) are equal to those of the first scenario in Policy 3 (i.e., Eq. (3.8)). The
second scenario is a successful rollback following an unsuccessful retry. Thus, P(S5;) and
F(t]S2) can be obtained by modifying Eqs. (3.4) and (3.5) to include the effects of an

unsuccessful retry. Let ¢t = ¢, —1,,, then:

P(Sy) = pFa(NAL)FG(NAL) — Fo(lp) Fa(AL)],

F(1]S,) = Fel(t)*Fm(t

A0 (3.10)

The third scenario is to restart with reconfiguration following an unsuccessful retry then
rollback when the time spent is ¢, = t.;+¢,, + N At +t,. +t.. Thus,if t =, -1, — N At —1,
then:

P(S3) = 1—pF,(NAL)F,(N.AL,),
F(1]55) F.i(t) « F.(t|an error occurred). (3.11)

With these derived probabilities and conditional distribution functions, we can compute
the probability distribution of FTL for each policy from Eq. (3.1).

4 Application of Fault-Tolerance Latency

A real-time control system is composed of a controlled process/plant, a controller com-
puters, and an environment, all of which work synergistically. A control system does not
generally fail instantaneously upon occurrence of a controller failure. Instead, for a cer-
tain duration the system stays in a safe/stable region or in the admissible state space even
without updating the control input from the controller computer. However, a serious degra-
dation of system performance or catastrophe called a dynamic failure (or system failure),
occurs if the duration of missing the update (or incorrect update) of the control input due
to malfunctioning of the controller computer exceeds a certain limit called the hard dead-
line [15]. The hard deadline represents system inertia/resilience against a dynamic failure,
which can be derived experimentally or analytically using the state dynamic equations of
the controlled process, the information on fault behaviors involving environmental charac-
teristics (such as electro-magnetic interferences), and the control algorithms programmed
in the controller computers [14].
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When an error/failure occurs in a controller computer, the error must be recovered
within a certain period, called the Application Required Latency (ARL) [13], in order to
avoid a dynamic failure. Roark et al. [13] presented several empirical examples of ARL
for flight control, missile guidance, air data system, automatic tracking and recognition
applications. It is important to note that one can derive the ARL analytically using the
hard-deadline information [14], because the sum of ARL and the minimum time to execute
the remaining control task to generate a correct control input is equal to the system’s hard
deadline. Using this information about the ARL/deadline of the controlled process and the
FTL of the controller computer, one can select (or design) an appropriate fault-handling
policy by making a tradeoff between temporal and spatial redundancy while satisfying the
strict timing constraint, FTL<ARL. One can also estimate the system’s ability of meeting
the timing constraint in the presence of controller-computer failures, which is characterized
by the probability of no dynamic failure using the evaluated ARL and FTL.

We now present an example to demonstrate the usefulness of the evaluated FTL. Con-
sider a pooled-spares system which consists of multiple modules connected to a backplane.
The system consists of power supplies, input/output modules, and a set of identical data
processing modules, a subset of which are assigned to processing tasks. The remaining
modules can be used as spares in case of an error/failure. Let the basic time unit be one
millisecond, and let the task execution time in the absence of error/failure and the mean ex-
ecution time of one instruction be given as 7" = 50 (= 0.05sec) and At; = 0.002 (= 2psec),
respectively. The error latency is assumed to follow an exponential distribution with mean
12 and 0.002 for function- and signal- level detection mechanisms, respectively. The fault
occurrence and duration are also governed by exponential distributions, where the mean
value of active duration is 0.5, and the percentage of transient faults (p;) is about 0.9. Then,
given that an error occurred during 7', the occurrence time, ¢, is uniformly distributed over
T. The diagnosis time, {4, is 50, which is assumed to yield coverage p; = 0.95. When cold
spares are used, it is assumed to take 500 units of time for system reconfiguration. We
also assume that this value can be reduced to 100 by using warm spares. When applying
rollback recovery, we set At, = 5 and N, = 4, whereas the retry period, ¢,,,
Under these conditions, the probability distribution functions of FTL are evaluated for the
four representative policies by using the method developed in Section 3. These functions
are plotted in Fig. 3.

is set to 1.

From the above evaluations of FTL, one can conclude that Policies 1 and 2 are acceptable
only when ¢, > 147(= 700 = 0.7sec). While the FTL of Policy 1 is distributed around
127(= 600) with a small variance, Policy 2 has a wide range bounded by 147, indicating
that Policy 2 is less likely than Policy 1 to violate the timing constraint, FTL<ARL, under
the above chosen conditions. Policies 3 and 4 that use retry have better distributions as
compared to Policies 1 and 2, which satisfy the constraint {4 > 127. However, to be
effective, retry usually requires dedicated hardware and immediate error detection. (Note
that the mean error latency of Policies 3 and 4 in Fig. 3 is 0.002.)

Fig. 4 plots the FTL while varying the policy parameters. We adopt a more accurate
diagnosis process with p; = 0.97, and change rollback and retry policies to N, = 5 and
t,, = 2, respectively. The error-detection mechanisms are also improved to decrease the
error latencies to 10 and 0.001 for both function- and signal- level mechanisms. In this case,
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Figure 3: Probability distribution functions (PDF) of FTL with cold spares.

the mean values of FTL become smaller, but the upper bounds of FTL are not changed.
Thus, we can draw the same conclusion as Fig. 3 in selecting an appropriate fault-handling
policy.

We also consider different fault parameters: p;, and the mean value of active duration
are changed to 0.95 and 0.25, respectively. Since the temporal-redundancy approaches get
better under such conditions, the FTLs of Policies 2, 3, and 4 cluster small values, as
depicted in Fig. 5. However, one cannot still neglect some possible FTLs larger than 107,
albeit with small probabilities.

When the hard deadline ¢4 is tight like ¢4, < 107(= 500), no policy can meet the
timing constraint, FTL<ARL. It is shown in Figs. 4 and 5 that the FTL does not change
significantly even if the policy and/or fault parameters are changed. Considering the fact
that reconfiguration is the most time-consuming among all the fault-handling stages, we use
warm spares to reduce ,, which skews significantly the probability distribution functions of
the FTLs to the right, as shown in Fig. 6 where all parameters but ¢, are the same as those
in Fig. 3. In that case, Policies 3 and 4 are suitable for systems with ¢,4 > 47'(= 200).

If the timing constraint is tighter, e.g., {4 < 47T, we can conclude that static redundancy
(or hot spares) must be used at the expense of spatial redundancy, since no policy using
dynamic or temporal redundancy can satisfy the stringent constraint.
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Figure 4: PDFs of the FTLs with policy parameters different from those of Fig. 3: p; = 0.97,
N,=5,and t,, = 2.
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Figure 5: PDFs of the FTL under fault environments different from those of Fig. 3: p, = 0.95

and E(t,) (the mean active duration)= 0.25.
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Figure 6: PDFs of the FTLs with a reconfiguration strategy different from that of Fig. 3:

warm Spares.

5 Conclusion

In this paper, we evaluated the FTL for general failure-handling policies that combine
temporal and spatial redundancy. We investigated all the individual fault-handling stages
from error detection to its complete recovery, and used some deterministic and random
variables to model the times spent for these stages. This is in sharp contrast to the previous
work that evaluated fault-recovery times with simple models or deterministic data collected
from experiments. As shown in a simple example — although the parameters used in the
example are chosen arbitrarily, their choice would not change the conclusion we have drawn
— the evaluated FTL is a key to the selection of an appropriate fault-handling policy,
especially for real-time controller computers.

Although we assumed the latencies of individual stages to be available by measuring or
modeling relevant variables, it is in reality quite difficult to obtain their accurate values,
some of which depend on each other and also on applications. We are currently investigating
ways to evaluate or model the times spent on the individual stages while considering the
system architecture, task type, and the implementation of each stage.

There are also several interesting related problems worth further investigation, including:

e Although it is not always required (because of, for example, a successful temporal-
redundancy method like retry), system reconfiguration is generally the most time-
consuming stage of fault-/error- handling. We are currently analyzing the latency of
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system reconfiguration, examining all of its features: (i) cold, warm, and hot spares,
(ii) active or passive reconfiguration (and graceful degradation), (iii) complexity of
switching and initiated built-in-testing of a spare, (iv) the tradeoff between computa-
tional capacity and system reliability associated with each reconfiguration strategy.

e It is important to derive, if possible, a closed-form pdf expression for the time spent

for each individual stage. In case an exact closed-form pdfis not obtainable, an ap-
proximate expression may be used to determine an appropriate fault-/error- handling
policy.

o The FTL strongly depends upon fault coverage, which was assumed to be a constant

determined by the diagnosis stage. However, fault coverage is in reality not simple to
determine due mainly to the effects of many coupled testing/detecting methods. The
task type and the failure occurrence rate also affect fault coverage. When periodic
diagnoses are used, there is a tradeoff between accuracy (fault coverage) and time
(frequency and diagnosis time). It is important to study all the factors determining
fault coverage and analyze its effects on the FTL.
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