
���

�����	��

���

Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate
Simulation

Michael A. Riepe, João P. Marques Silva, Karem A. Sakallah, Richard B. Brown

202-94

THE UNIVERSITY OF MICHIGAN
Computer Science and Engineering Division

Department of Electrical Engineering and Computer Science

Ann Arbor, Michigan 48109-2122

USA

Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic
Gate Simulation

Michael A. Riepe, João P. Marques Silva, Karem A. Sakallah, Richard B. Brown

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, Michigan 48109-2122

March 1994

Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

Abstract

Ravel-XL is a single-board hardware accelerator for gate-level digital logic simulation. It uses
a standard levelized-code approach to statically schedule gate evaluations. However, unlike pre-
vious approaches based on levelized-code scheduling, it is not limited to zero- or unit-delay gate
models and can provide timing accuracy comparable to that obtained from event-driven methods.
We review the synchronous waveform algebra that forms the basis of the Ravel-XL simulation
algorithm, present an architecture for its hardware realization, and describe an implementation of
this architecture as a single VLSI chip. The chip has about 900,000 transistors on a die that is
approximately 1.4cm

2

, requires a 256-pin package and is designed to run at 33MHz. A Ravel-XL
board consisting of the processor chip and local instruction and data memory can simulate up to
one billion gates at a rate of approximately 6.6 million gate evaluations per second. To better
appreciate the tradeoffs made in designing Ravel-XL, we compare its capabilities to those of other
commercial and research software simulators and hardware accelerators.

1

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

1 Introduction

Despite promising advances over the last few years in correct-by-construction logic
synthesis [5] and formal (functional) verification [8], logic simulation has yet to be dislodged
from its role as an indispensable method for design verification of large digital systems. Logic
simulation is utilized by digital integrated-circuit designers at many stages of the design process,
from early architectural studies to final foundry sign-off simulations using back-annotated delays
and complex switch-level or mixed-signal simulation algorithms. While some simulators, notably
those for Hardware Description Languages (HDLs) such as Verilog and VHDL, are flexible
enough to be used at all stages of a design, the verification requirements—in terms of abstraction
level and accuracy—change at each stage. In general, lowering the abstraction level increases the
model’s accuracy and reduces simulation speed. It is, therefore, common to use different simula-
tion point-tools at each stage of the design to address the specific requirements of the designer.

Digital circuit simulators can be broadly classified into two main categories based on the sched-
uling algorithm they employ for gate evaluation:

statically-scheduled levelized-code

 (LC) [3, 6,
27, 40] versus

dynamically-scheduled event-driven

 (ED) [22, 28, 29, 39]. LC algorithms arrange
the logic gates so that they are evaluated according to a partial ordering that ensures causality.
During simulation, all gates are evaluated in each clock cycle, regardless of whether their inputs
have changed since the last cycle. ED algorithms attempt to reduce the number of gate evaluations
by dynamically scheduling, at run-time, only those gates whose inputs have changed. Often only a
small fraction of the signals in a circuit change state each cycle so the savings is potentially large.
Such savings, however, must be offset by the cost associated with the handling and scheduling of
these state-change

events

. To maintain efficiency, ED methods require careful design of their data
structures and event schedulers; their performance is best at low levels of circuit activity.

Orthogonal to the issue of the gate scheduling algorithm is the question of whether the simula-
tor is

interpreted

 or

compiled

. An interpreted simulator steps through the circuit by traversing a
data structure representing the circuit graph, generally using time-consuming indirect addressing
modes, and alternating between graph traversal and gate evaluation using subroutine calls and
returns. As described by Lewis [25], circuit compilation is essentially a pre-processing step that
symbolically executes the simulation to “uncover” data structures that can be statically allocated.
This eliminates the code required for circuit-graph traversal, which becomes hard-coded into the
simulator kernel, and replaces most indirect memory references with direct references to static
addresses. Compilation also tends to unroll most loops and “ in-line” many function calls, thereby
reducing context switch overhead and increasing the amount of instruction-level parallelism avail-
able for use by parallel and superscalar processors. Circuit compilation, thus, tends to increase the
efficiency and speed of the simulation at the cost of greater pre-processing time and larger code
size. Historically, most ED simulators were interpreted, and most LC simulators were compiled.
Recent research on threaded-code techniques [22, 28, 29], however, has led to the development of
compilers for ED algorithms as well.

The simplest logic simulators incorporate only two-valued logic models and make no attempt

2

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

to simulate circuit timing (so-called zero-delay models) [3, 40, 41]. This level of abstraction was
traditionally the domain of LC simulators, as the zero-delay model most closely matches the sin-
gle-pass levelized gate scheduling algorithm (the presence of circuit delays introduces the possi-
bility of hazards on the gate output which cannot be simulated in a single pass through the
circuit.) Zero-delay simulation is extremely fast but is useful only in the early phases of the design
process when the only goal is functional verification. The dominance of LC techniques in this
domain is hard to dispute.

ED algorithms are more naturally suited to the task of simulation with more complex timing
models. Their ability to follow simulation activity through the circuit allows those gates with haz-
ards to be simulated as often as necessary to obtain complete output waveforms, and arbitrarily
complex timing models may be used to calculate the time at which fanout gates must be sched-
uled. Even so, LC simulation with circuit delays is possible. Maurer [27] has developed an LC
algorithm which traces all possible paths through the circuit to obtain, for each gate, the set of

all

times at which the gate

could possibly

 change, and schedules the gate for evaluation at each of
those times. This allows more complex timing models, such as unit or assigned (multiple) delay,
to be used but at the cost of many, often unnecessary, evaluations per gate. Thus, such approaches
have little chance of obtaining competitive simulation speed [21].

Because circuits with asynchronous feedback cannot be “levelized”, ED algorithms handle cir-
cuits with asynchronous feedback much more naturally than LC methods. However, iterative LC
evaluation techniques can be used to simulate an asynchronous circuit until it stabilizes [41].
Often, as in the case of the feedback paths in the cross-coupled gates of an RS-latch, only one or
two iterations are necessary.

Because of their ability to handle more complex timing models, as well as asynchronous feed-
back, ED algorithms are dominant late in the design process when circuit timing must be verified.
However, this perceived dominance is worth questioning. The ED algorithm produces a complete
waveform at each signal, showing the time and value of every transition before the signal stabi-
lizes. Usually this is more information than is needed for design validation. Except on signals that
are used to gate primary clocks, the presence of hazards in well-designed synchronous circuits is
of little concern. Generally, all a designer is concerned with when verifying correct timing behav-
ior is whether interface signals and latch/flip-flop inputs meet their setup and hold constraints.
This implies that there are only

two

 signal events which are of interest during each clock cycle,
the

first

 and

last

, and any time spent evaluating the transitions in-between is wasted. The applica-
tion of delay-accurate simulation to verify setup and hold constraints in real circuits also leaves no
place for arbitrarily chosen timing models, such as unit-delay, that have no relation to real circuit
delays—the simulator must support gate delay values with enough resolution to accurately repre-
sent the range of lumped gate/interconnect delays provided by circuit back-annotation tools.

We recently described an LC simulation model and algorithm called Ravel that addresses these
observations [31, 32, 37]. The Ravel model is an extension of a timing model that was developed
specifically to analyze and optimize the setup and hold constraints in multi-phase synchronous

3

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

circuits that employ level-sensitive latches [34, 35]. Ravel is based on a synchronous model for
logic signals which records two events per cycle, the first and last. Using a “waveform” algebra
based on this 2 event/cycle assumption, it calculates the stable signal values at the beginning and
end of each cycle as well as the width of the changing interval in between. The event times at a
gate output are calculated by a combination of

min

 and

max

 functions that depend not only on
input event times but also on their logic values. These times are exact (identical to what an ED
algorithm computes) as long as all signals in the circuit undergo

at most

 two events in each clock
period. The calculated event times may still be exact even when some signals experience three or
more events in a clock cycle. Generally, though, the computed event times are only

bounds

 on the
actual event times if the 2 event/cycle assumption is violated.

Historically, the highest performing logic simulation methods rely on custom hardware

accel-
erators

 to boost performance several orders of magnitude beyond what is achievable with soft-
ware simulators [1, 2, 4, 9, 15, 17, 23, 33, 43]. More recently, hardware

emulators

 based on field-
programmable gate arrays (FPGAs) [30] have become popular high-end alternatives because of
their faster speeds and their reconfigurability. In both cases, however, this performance premium
comes at a steep cost, and such options are usually reserved to the verification of high-volume
products such as microprocessors.

The Ravel-XL system described in this paper is a single-board hardware realization of the
Ravel algorithm designed to maximize simulation speed while remaining simple and inexpensive.
The board consists of a custom CPU chip, asynchronous bus interface hardware to a host proces-
sor, and external memory. In contrast to ED-based accelerators which require sophisticated hard-
ware support for event handling [1,2], the Ravel algorithm leads to a remarkably simple
implementation. Similar to modern general-purpose CPUs, the Ravel-XL chip features a pipe-
lined datapath that is supported by a two-level memory hierarchy optimized for the memory
requirements of the datapath. In addition, the architecture uses a compact representation for data
(one 32-bit word per signal) and provides custom hardware instructions to perform the

min

 and

max

 operations necessary to compute signal waveforms. In its current implementation, Ravel-XL
can simulate circuits with up to four distinct clock phases sharing a common cycle time. It has
instructions to simulate the basic set of logic gates (AND/NAND, OR/NOR, XOR/XNOR, INV/
BUF) with a fan-in limit of 16 inputs. It also models level-sensitive latches as well as edge-trig-
gered flip-flops, and can be enabled to perform setup and hold violation checks. As discussed in
Section 7.1, Ravel-XL is currently limited in its ability to model tri-state gates and gated-clocks.

The Ravel-XL board is designed to operate as a dedicated co-processor to a general-purpose
host computer using an interrupt-driven asynchronous interface. In this configuration, the host
processor is expected to maintain the user interface to the simulation process, to download the
“compiled” circuit and test vectors to Ravel-XL and to read back the resulting output waveforms.
Ravel-XL maintains the simulation data and instructions in its own local memory space, enabling
it to run at a speed that is independent of the host speed or that of the interface channel. The archi-
tecture allows for addressing up to 1 G-word each of physical data and instruction memory allow-
ing designs of up to 1

billion

 gates to be modeled. For example, a million gate circuit such as a

4

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

modern microprocessor can be accommodated with 16 4-Mb DRAM chips on the board.

The custom Ravel-XL chip, designed in a 0.8-micron 3-metal CMOS process, consists of about

900,000 transistors—including a 2K word data cache—and occupies roughly 1.4cm

2

 of die area
in a 256-pin package. Running at 33MHz, it dissipates about 1.1 watts and runs about 30 times
faster than the software implementation on a workstation with the same clock rate. A prototype
system board, shown in Figure 1, will consist of the Ravel-XL chip, external code and data mem-
ories, an interface to the Digital Equipment Corporation (DEC) TURBOchannel



 bus backplane
[16] realized with the DEC TcIA



 (TURBOchannel Interface ASIC) chip [14], and a small num-
ber of glue-logic chips, initialization ROMs, and bus-driver chips. It is designed to operate as a
peripheral device on a DEC workstation.

The remainder of this paper is organized as follows. Section 2 reviews the Ravel simulation
model and algorithm. Section 3 summarizes the Ravel-XL design goals. Section 4 describes the
architecture of the Ravel-XL chip, including the instruction set, pipeline and memory-system
design and host interface. The implementation of this architecture is discussed in Section 5. Sec-
tion 6 analyzes the performance of Ravel-XL and provides comparisons to representative software
simulators and hardware accelerators. Section 7 discusses our future plans for the Ravel-XL
project, and Section 8 closes the paper with some concluding remarks summarizing our contribu-
tion.

2 Ravel Model Overview

A mathematical model of the timing behavior of synchronous sequential circuits was intro-
duced in [34, 35] and used as the basis for efficient timing verification and clock schedule optimi-
zation algorithms. This general model views the circuit as a graph whose vertices are clocked state
devices—referred to as

synchronizers

 to emphasize their role in insuring synchronous opera-
tion—which are either edge-triggered D flip-flops or level-sensitive D latches. Edges in the graph
model the combinational logic between synchronizers and are labeled with the minimum and
maximum path delays through the logic. The flow of

data

signals through the synchronizers is
regulated by a set of periodic signals, collectively referred to as the

clock

, that share a common
clock period and that provide a

time

reference

for specifying the event times of the data signals.

Fig. 1. Ravel-XL system board

CLK

DEC
TURBO-

CHANNEL
RAVEL-XL

ADDR/DATA

~SEL

CODE
RAM

DATA
RAM

ACK

ACK

~CS
~RW

~CS
~RW

ADDR
DATA

ADDR
DATA

30

30

32

32

3

32

DEC

~WR

~RDY

ENABLES

~INT

CLK

ADDR/DATA

~SEL

~WR

~RDY

~RESET

~INT

32

chip TcIA
chip

backplane

5

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

Each data

signal is described in terms of the times of its earliest and latest transition events in one
complete period of an appropriate clock signal. Data signals are assumed to have unspecified

sta-
ble

 logic values at the beginning and end of each clock period; they are assumed to be

changing

and unknown between their earliest and latest event times.

The Ravel LC logic simulator [31, 32, 37] extended the above model for use in logic simulation
by requiring the stable values of data signals at the beginning and end of each clock cycle to be
completely specified. Ravel models the circuit as a graph whose vertices represent the logic gates
as well as the synchronizers. It views each data signal as a “waveform” and provides a set of equa-
tions for logically combining such waveforms. The resulting

waveform

algebra

 is unique in that it
explicitly shows the relationship between the logic values and event times of the data signals in a
circuit and allows the event times to be calculated accurately by a simple levelized traversal of the
combinational logic. The remainder of this section summarizes those features of the Ravel model
that must be considered in a hardware implementation of its simulation algorithm.

2.1 Signal Model

The models for clock and data signals are summarized in Figure 2. The circuit is assumed to
have

k

clock signals, or

phases

, labeled

φ

1

, . . . ,

φ

k

 that share a common cycle time

T

c

. Each clock
phase defines a

local

frame of reference—whose origin coincides with its latching edge—for
specifying event times of corresponding data signals. Phase

φ

p

is characterized by two parame-
ters:

T

p

, the width of its active interval and

e

p

, the occurrence time of its latching edge in a suit-
ably chosen

global

 frame of reference

1

. The phases can overlap and are not required to have the
same duty cycle, but must be numbered so that their latching edges are totally ordered:

. Furthermore, the global frame of reference is chosen so that . The

duration of the time interval between consecutive latching edges of phases

p

 and

r

is referred to as
the phase shift

E

pr

 [10]

1. Without loss of generality, level-sensitive latches are assumed to be active high and flip-flops are assumed to be negative
edge-triggered. Under these assumptions, the active interval of a clock phase occurs when the phase is high, and its
latching edge is the falling transition.

Fig. 2. Models for clock (a) and data (b) signals

φ

1

φ

2

φ

k

e

1

e

2

e

k

t=0 t=T

c

Changing

v

i

V

i

T

p

f

p

x

i

0 a

i

T

c

–T

p

A

i

T

c

T

1

T

2

T

k

(a) (b)

e

1

e

2

…

e

k

≤ ≤ ≤

e

k

T

c

=

6

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

(1)

and allows for the translation of event times between these two phases. Denoting the occurrence
time of a certain event

i

 in the

current

 local frame of reference of phase

p

by

 t

i

(

φ

p

), the same event
is seen to occur at

(2)

in the

next

 local frame of reference of phase

r.

It is important to note that the use of phase-relative
frames of reference and modulo arithmetic restricts data event times to a dynamic range with a
spread of at most 2

T

c

.

As shown in Figure 2(b), the waveform of a data signal

x

i

 is an alternating sequence of stable
and changing intervals. In any given cycle of operation this waveform is specified by a 4-tuple (

v

i

,

a

,

A

i

,

V

i

) where

v

i

 and

V

i

are the stable values at the start and end of the cycle, and where

a

i

 and

A

i

 are the event times of the first and last transitions during the cycle

in the local frame of refer-
ence of some clock signal

φ

p

. The domain of

v

i

 and

V

i

is the three-valued set {0, 1,

STABLE

} rep-
resenting the binary logic constants and a stable but unspecified logic value. Event times, in
general, must be modeled as real numbers, but are usually restricted to the integers by choosing a
suitable resolution. The two event times must obey the ordering and, for correct synchro-

nous operation, (the situation can be used to indicate that a signal is sta-

ble throughout the clock cycle, since in this case the event times are ambiguous.)

2.2 Logic Gate Model

Ravel uses a back-end pure propagation delay model for logic gates. Other delay models, such
as inertial, rise/fall, and front-end delay, are also possible but will not be elaborated further. Gate
delay is specified by two parameters representing the minimum and maximum signal
propagation delays through the gate. This delay range can be viewed as a statistical spread over an
entire family of gates, or as the deterministic difference between the shortest and longest signals
paths within a single gate. A “nominal” delay model is achieved by setting .

The basic operation performed by Ravel concerns the evaluation of the signal waveform (

v

y

 ,

a

y

 ,

A

y

 ,

V

y

) at the output

y

 of a logic gate in terms of the

n

 signal waveforms (

v

1

,

a

1

,

A

1

,

V

1

), . . . ,
(

v

n

 ,

a

n

 ,

A

n

,

V

n

) at its inputs. It is assumed that the gate’s input waveforms have been translated
in time to a common frame of reference using equation (2). Denoting the logic function of the gate
by

f,

gate evaluation can be summarized by the following set of four equations:

E

pr

e

r

e

p

–

()

T

c

e

r

e

p

–+

()

if

e

r

e

p

>()

if

e

r

e

p

≤()
î





T

c

e

p

e

r

–

()

T

c

mod

–= =

t

i

φ

r

()

t

i

φ

p

()

E

pr

–=

a

i

A

i

≤

0

A

i

a

i

–

T

c

<≤

A

i

a

i

<

0

δ ∆≤ ≤

δ ∆

=

7

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

(3)

where

 c

i

 and

C

i

 are Boolean flags indicating the presence or absence of early and late

controlling
values

2

 on input

x

i

, and

a

m

 and

A

M

 represent the times of the first and last events over all inputs to
the gate:

(4)

To avoid confusion, the “+” and “

∨

” symbols in equation (3) denote, respectively, arithmetic addi-
tion and logical inclusive OR. Juxtaposition in these equations denotes logical AND.

2.3 Synchronizer Model

The Ravel model of a D-type latch or flip-flop expresses the

next-cycle

 waveform

 at the

Q

 output in terms of the current-cycle waveform (

v

D

 ,

a

D

,

A

D

,

V

D

) at

the

D

 input. Both waveforms are specified in a frame of reference defined by the controlling clock
phase

ϕ

p

. The early and late next-cycle

Q

 values for both latches and flip-flops are obtained using

the familiar next-state equation for D-type memory elements:

(5)

On the other hand, the early and late output event times depend on the triggering mechanism. For
edge-triggered flip-flops, these times are calculated according to:

2. A controlling value on a gate input is one which always determines the output value of the logic gate, regardless of its
other inputs. A logic-one is the controlling value for AND/NAND gates, and a logic-zero is the controlling value for OR/
NOR gates. The XOR gate has no controlling value.

v

y

f v

1

v

2

…

v

n

, , ,()

=

V

y

f V

1

V

2

…

V

n

, , ,()

=

a

y

δ

c

i

a

i

c

i

a

m

∨()

1

i n

≤ ≤
 max +=

A

y

∆

C

i

A

i

C

i

A

M

∨()

1

i n

≤ ≤
 min +=

a

m

a

i

()

1

i n

≤ ≤
 min =

A

M

A

i

()

1

i n

≤ ≤
 max =

v

Q

+

a

Q

+

A

Q

+

V

Q

+

, , ,()

Q

+

D

=

v

Q

+

v

D

=

V

Q

+

V

D

=

8

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

(6)

where

δ

and

∆

 denote the (back-end) minimum and maximum signal propagation delays through
the flip-flop. The output event times for level-sensitive latches require a slightly more complex
calculation:

(7)

where

T

p
 is the width of the active interval of phase

φ

p
.

For either triggering mechanism, the following hold and setup constraints must be satisfied for
correct latching of input data:

(8)

where

H

 and

S

 are specified hold and setup parameters.

2.4 Ravel Code Generation

Equations (1)–(8) form the basis of the Ravel LC simulator. Ravel accepts as input a gate-level
synchronous sequential circuit along with a completely-specified multi-phase clock schedule, and
produces as output a customized “compiled” simulator for this circuit based on the above equa-
tions. The compilation process involves a levelized traversal of the circuit graph from the primary
inputs and synchronizer outputs to the primary outputs and synchronizer inputs, and the genera-
tion of a “program” that simulates one clock cycle of operation. The code sequence in this pro-
gram for a single-output combinational circuit fragment sandwiched between a set of source
synchronizers and a single destination synchronizer is roughly as follows

3

:

• Using the phase shift equations (1) and (2), shift each source synchronizer output waveform
from its respective frame of reference to the frame of reference defined by the clock phase of
the destination synchronizer. This change-of-origin is necessary in order to insure that the
waveforms are properly processed by the combinational logic.

• In level order, apply the gate evaluation equations (3)–(4) to all gates in this circuit fragment.
• Check the hold and setup constraints (8) at the input of the destination synchronizer.

3. Primary inputs and outputs can be easily accommodated by inserting fictitious synchronizers.

a

Q

+

δ

T

c

+=

A

Q

+

∆

T

c

+=

a

Q

+

δ

max

a

D

T

c

T

p

–

,()

+=

A

Q

+

∆

max

A

D

T

c

T

p

–

,()

+=

a

D

H

≥

A

D

T

c

S

–

≤

9

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

• Evaluate the waveforms at the outputs of the destination synchronizer using equations (5)–(7).

As described in [34], clock phases are totally ordered based on the occurrence times of their
latching edges in a global frame of reference. Within the generated simulation program, the code
sequences corresponding to different destination synchronizers are arranged in a partial ordering
that is consistent with this total order on the clock phases.

3 Ravel-XL Design Goals

The Ravel-XL system implements the Ravel simulation algorithm in hardware. Its design was
guided by three objectives. Listed according to their priority, they were:

1. To maximize performance
2. To maximize capacity
3. To minimize cost

The bulk of this paper describes the design choices we made to address the performance objective.
Capacity was maximized through the use of bit-efficient data and instruction formats, and the
design of a memory system which does not degrade significantly in performance when simulating
large circuits, making feasible the simulation of circuits with up to a billion gates. Cost was mini-
mized indirectly by rejecting expensive design options and by requiring the whole system to fit on
a single printed-circuit board.

The performance goal is measured in terms of the

effective

 number of gates processed per sec-
ond, EGPS, and is given by

(9)

where

• IPG is the average number of instructions required to process one gate
• CPI is the average number of processor cycles required to complete one instruction
•

T

c

 and

f

c

are, respectively, the processor cycle time in seconds and corresponding clock
frequency in Hz

• is the average number of processor cycles required to process one gate

• is the number of gate evaluations performed each second, and is the most

prevalent metric in the literature
•

A

 is the activity level of the circuit expressed as the percentage of gates that must be processed
in each simulated cycle of operation

Accounting for circuit activity makes equation (9) a consistent metric for comparing the perfor-

EGPS 1
IPG CPI

T

c

A

×××

f

c

CPG

A

×

--------------------- GEPS

A

--------------= = =

CPG IPG CPI

×

=

GEPS

f

c

CPG

÷

=

10

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

mance of both ED as well as LC simulators and accelerators. For LC techniques,

A

 should be set
to 1 to reflect the fact that all gates are processed regardless of the actual circuit activity. In report-
ing performance figures we will frequently use M-EGPS to denote a million effective gate evalua-
tions per second. We should note that IPG usually depends on the number of gate inputs.
Multiplying EGPS by the average number of inputs/gate yields the average number of evaluated
inputs per second (EIPS) which is often more meaningful when discussing individual circuits.
Unless explicitly stated otherwise, when deriving EGPS figures we will assume that IPG is based
on an average 2-input gate.

4 Ravel-XL Architecture

In this section we develop a hardware architecture for the Ravel algorithm that meets the above
goals. Specifically, this architecture reduces CPG: 1) by minimizing the data storage requirements
through the use of compact data and instruction formats; 2) by exploiting the inherent concur-
rency in the algorithm through the use of pipelined parallel functional units in a custom datapath;
and 3) by reducing the impact of high memory traffic through careful matching of the design of
the memory system to the data and code access patterns. The other factor in the performance
equation, namely the frequency of operation, depends on the implementation of this architecture;
implementation issues are discussed in Section 5.

4.1 Signal Representation

The software implementation of Ravel requires four 32-bit words to represent the waveform
(

v

y

 ,

a

y

 ,

A

y

 ,

V

y

) of each gate output

y

: two words to hold the arrival times, and two words to hold
the logic values. This liberal use of memory space, particularly for storing logic values, is dictated
primarily by the desire to avoid the insertion of performance-degrading bit packing and unpacking
operations in the instruction stream. In contrast, a custom-designed accelerator can have compact
data formats with no penalty, and possibly some gain, in performance.

Signal waveforms in Ravel-XL are stored as 32-bit words with 2-bit fields for the logic values
and 14-bit fields for the arrival times. The 2-bit value fields permit the encoding of the binary
logic values 0 and 1 as well as the stable unspecified value according to the following table:

The use of 14-bit time fields is justified by recalling, from Section 2.1, that the dynamic range of
signal times is at most 2

T

c

. Thus, for

T

c

 = 10ns, the minimum resolvable time in a 14-bit represen-
tation is about 1.2ps. The time fields are considered to be unsigned integers ranging from 0 to

v

y

 [1]

v

y

[0] Logic value

0 0 0

0 1 1

1 0, 1

STABLE

11

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

16,384. To represent the negative time values that may arise during the phase shift calculation at
the start of each evaluation cycle (see Section 2.4), all signal times are

biased

 so that the most
negative time that must be represented is mapped to 0. It is easy to show that the most negative
time value that must be considered is and that it occurs at the output of level-sensi-
tive latches controlled by the clock phase with the widest active interval. The bias value is calcu-
lated from the clock parameters by the host computer which adds it to (subtracts it from) the
signal times that are downloaded to (uploaded from) Ravel-XL.

4.2 Custom Hardware Datapath

The core of the Ravel-XL chip is a gate/synchronizer evaluation unit that implements equations
(1)–(8). The gate evaluation equations (3)–(4) are “unrolled” and calculated iteratively using the
template:

(10)

where

y

 represents a logic value or event time at the gate output,

x

1

,. . . ,

x

n

 represent the corre-
sponding variables at the gate inputs, and

G

 denotes the appropriate input/output transformation
(logical, min, or max). Using this algorithm, the output waveform of an

n

-input gate can be com-
puted in steps: (

n

–1) steps to calculate

a

m

 and

A

M

 from equation (4), and
 steps to calculate the zero-delay output waveform using equation (10) and to

add the appropriate gate delay using equation (3). A simple manipulation of the arrival time equa-
tions in (3) allows

a

m

 and

A

M

 to be factored out of the max and min functions yielding

(11)

where

c

y

 and

C

y

 are boolean flags indicating, respectively, the presence of one or more inputs with
early and late controlling values:

(12)

Use of equations (11) and (12) instead of equation (3) reduces the number of required computa-
tion steps to just

4

n

.

4. Strictly speaking, this is true only when . For single-input gates, the minimum number of computation steps is 2.

T

pp
 max () –

y G x

1

x

2

,()

= ;

for

i

3 to

n

=

y G y x

i

,()

;=

2

n

1–

()

1+

n

1–

()

1+

n

=

a

y

δ

c

y

a

m

c

y

c

i

a

i

()

1

i n

≤ ≤
 max ∨[] +=

A

y

∆

C

y

A

M

C

y

C

i

A

i

∨()

1

i n

≤ ≤
 min ∨[] +=

c

y

c

1

c

2

…

c

n

∨ ∨ ∨

=

C

y

C

1

C

2

…

C

n

∨ ∨ ∨

=

n

2

≥

12

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

Figure 3 is a schematic diagram of the gate/synchronizer evaluation unit highlighting its main
components. The datapath has several register banks that are used to hold the computation oper-
ands and a set of functional units for performing the required operations. The registers can be con-
veniently divided into two groups based on how they are accessed by the functional units:

1. Read-only registers that are loaded with “constant” parameters by the host computer before
Ravel-XL starts the simulation. This group includes a single 14-bit register

T

c

 that holds the
cycle time, four 14-bit registers that hold the occurrence time (

T

c

–T

p

) of the enabling edge of
each clock phase, and a bank of 16 14-bit registers,

PSH

, that hold the phase shifts between
each pair of phases as computed by equation (1).

2. Read/Write registers (shown with a shadow in Figure 3) that are loaded from the code and
data memories and read by the functional units during the simulation. This group includes:
a. Two 14-bit registers

δ

 and

∆

that hold, respectively, the minimum and maximum signal

delay of the gate or synchronizer being evaluated.
b. Two 14-bit registers that contain, respectively, the hold time

H

 and the difference between
the clock period and the setup time (

T

c

–S

) for the synchronizer being evaluated.
c. A bank of 16 32-bit registers that hold the input waveforms for the gate under evaluation.

The datapath consists of nine independent functional units that implement the gate and syn-
chronizer evaluation equations. Synchronizer evaluation is handled by three units:

1. The synchronizer unit which computes the signal waveforms at the outputs of flip-flops and
latches using equations (5)–(7).

2. The phase shift unit which implements equation (2).
3. The violation detection unit which checks for setup and hold violations using equation (8).

Fig. 3. Block diagram of the custom Ravel-XL gate evaluation datapath

unit
A

m

a

m

MAXMINsynch
unit

violation detection

phase
shiftv

y

V

y

Signal
Waveforms

∆δ

(T

c

–S)

PSH

T

c

(T

c

–T

p

)

H

Gate Evaluation Unit

Register Files

13

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

The remaining six units handle the evaluation of logic gates:

1. Unit

v

y

calculates the early logic value at the gate output.
2. Unit

V

y

calculates the late logic value at the gate output.
3. Unit

MIN

 computes in equation (11) and

C

y

from equation (12).
4. Unit

MAX

 computes in equation (11) and

c

y

 from equation (12).
5. Unit

a

m

 calculates the time of the earliest input event using equation (4).
6. Unit

A

M

 calculates the time of the latest input event using equation (4).

The gate evaluation units operate in parallel, each using the iterative template (10). As an illustra-
tion, Figure 4 shows the portion of functional unit

MIN

 responsible for computing .

4.3 Instruction Set

Ravel-XL has seven instructions: four to perform the various simulation computations, two to
handle communication with the host computer, and a NOP (No OPeration) for debugging. Three
of the simulation instructions are CISC-style instructions that are in one-to-one correspondence
with the equations for gate evaluation, synchronizer evaluation and phase shifting. To reduce code
length and still allow full access to a 32-bit word-addressable address space these instructions use
a base-displacement addressing mode [19]: the address of a word-aligned operand is obtained by
concatenating a 16-bit value from a base register with the 16-bit positive displacement field in the
instruction. The chip has 17 16-bit base registers that are implicitly paired with the input and out-
put operands of gates and synchronizers. The fourth simulation instruction is used to reload these
base registers when it becomes necessary to address operands beyond 64 K-words from the cur-
rent base. The remainder of this section provides a detailed description of the instructions; the
instruction formats are summarized in Figure 5

The four simulation instructions are: GEV for Gate EValuation, SEV for Synchronizer EValua-
tion, PSH for Phase SHift calculation, and LDB for LoaD Base registers.

GEV is a variable-length instruction that computes the output signal waveform for gates with
up to 16 inputs. For an

n

-input gate the instruction is 32-bit words long and must be
padded with zeros so that it is word-aligned when the number of gate inputs is odd. The instruc-
tion can simulate any of the eight basic gate types which are identified by the TYPE field.

SEV computes the signal waveform at the output of a synchronizer in terms of the input wave-
form and the clock parameters. The synchronizer type (flip-flop or latch) is indicated by a 1-bit
flag FF, and the controlling clock phase is specified in a 2-bit field PH. The instruction can be
enabled to perform a setup/hold check by setting the 1-bit SHC flag. To avoid propagating false
signal departure times from the outputs of synchronizers with setup violations, synchronizer out-
put departure times are clipped by the hardware to a maximum value of

T

c

 +

∆

.

PSH implements equation (2). It subtracts the phase shift value stored in the indicated PSH reg-

min

C

i

A

i

∨

()

max

c

i

a

i

()

min

C

i

A

i

∨

()

2

n

2

⁄

+

14

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

ister from the event times of the indicated signal waveform.

LDB loads a new base address into the indicated base register. When the ALL fl ag is set the
base address is written to all seventeen base registers, which is useful during initialization.

The two instructions used for host communication are ENDS and WAIT. Both cause Ravel-XL
to send an interrupt to the host and to pause until the host responds with a suitable command.
ENDS is used to indicate the completion of a simulated clock cycle, and that Ravel-XL is ready
for the next set of input patterns. WAIT instructions can be inserted in the simulation code to force
breakpoints during execution; they are useful for debugging by allowing single-stepping, and can

0 1

1 0

Start

A B

Compare

A<B

Controlling ValueA

1

V

1

A

i

V

i

φ

Fig. 4. A schematic of the datapath unit that computes in equation (11). Here, “Con-
trolling Value” is the binary controlling logic value of the gate type being evaluated. During the first
cycle “Start” is enabled and two operands, (

V

1
,

A

1
) and (

V

2
,

A

2
), are brought in. During all other cy-

cles, , “Start” is disabled and the input (V
i

 , A
i

) is combined with the current cumulative
result stored in the output register.

min

C

i

A

i

∨()

 i 3 … n =

1-bit wide bus
14-bit wide bus

Key:

(

∀

 i=2. . .n)

2 2

V

1

[0]

V

1

[1]

V

i

[0]

V

i

[1]

C

1

C

i

C

i

A

i

∨() min

15

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

also be used for synchronization in a multiprocessor implementation of Ravel-XL (see Section
7.3).

 4.4 Pipeline Design

For a typical circuit, with many more gates than synchronizers, simulation code based on the
above instruction set is clearly dominated by the GEV instruction. This, in turn, implies that the
overall performance of Ravel-XL is strongly dependent on an efficient implementation of GEV. In
this section we analyze the communication and computational requirements of the GEV instruc-
tion and describe the design of a pipeline that minimizes its execution time.

The execution of a GEV instruction for an

n

-input gate is naturally decomposed into four steps.
These steps, and the number of processor clock cycles needed to complete each, are readily shown
to be:

• instruction fetch, requiring cycles

• input waveforms fetch, requiring cycles
• output waveform evaluation, requiring

n

cycles
• output waveform writeback, requiring

α

 cycles

GEV

TYPE INPUT #1 DISPLACEMENT

016202428

INPUT #

n

 DISPLACEMENT

• • • • •

OUTPUT DISPLACEMENT

δ

∆

016202328

SEV

F
F INPUT DISPLACEMENT

S H

OUTPUT DISPLACEMENT

δ

∆

016202428 016212628

PSH LDB

PSH
REG # SIGNAL DISPLACEMENT A

LL

BASE
REG # BASE ADDRESS

15192327 2631 31

31 31

1519212627

15192327 152027

Fig. 5. Instruction formats for the Ravel-XL instruction set. Shaded fields must be set to zero and are
reserved for future use.

n

S
H

C
P

H
22

028

WAIT

31 27

028

ENDS

31 27

028

NOP

31 27

2

n

2

⁄

+

()α

n

α

16

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

where

α

 is the normalized memory system cycle time—defined as the ratio between the memory
and processor cycle times—and is typically greater than or equal to one. A baseline “serial” exe-
cution of the instruction, therefore, leads to a total execution time of
cycles.

The options available for reducing this execution time are basically:

1. Overlapping, or pipelining, the execution of the instruction phases.
2. Minimizing

α

through proper choice of memory system organization and parameters.

These options are usually considered when designing any type of processor and are not particular
to the Ravel-XL design. However, for general-purpose processors the two options are typically
intertwined and must be considered simultaneously. Fortunately, the particular “structure” of the
GEV instruction in Ravel-XL allows these two options to be considered somewhat independently.
This fact becomes evident upon examination of the execution time of a simple 4-stage pipeline
whose stages are in one-to-one correspondence with the four instruction steps. In such a pipeline,
each GEV instruction can be completed in an average of

(13)

cycles. Execution time is clearly dominated by the instruction and data fetch steps regardless of
the value of

α

. The rest of this section, thus, is devoted to further exploration of option 1. The
tradeoffs involved in option 2 are examined separately in Section 4.5.

This 4-stage pipeline implies a three-ported memory system with separate ports for 1) code
fetch; 2) data fetch; and 3) data writeback. Recognizing that code and data can be separated into
different memory spaces leads to an alternative design with a single-ported code memory and a
double-ported data memory. This split-memory design is simpler, cheaper, and potentially faster
than the initial design. Further simplification is possible by noting that, on average, there are

n

read operations for every write operation to data memory. A dedicated write channel to data mem-
ory would, thus, be under-utilized. Reducing the data memory to a single read/write port amounts
to opting for a 3-stage pipeline in which the waveform fetch and instruction writeback phases are

conceptually

 combined. The total instruction execution time in this case becomes:

(14)

The operation of such a 3-stage pipeline is illustrated in Figure 6 for a 3-input GEV instruction.
In this figure, CF, DF, and EW refer, respectively, to the

code fetch

, input waveform

data fetch

,
and output waveform

evaluation and writeback

 stages. In order to prevent conflicting read and
write requests to the data memory, the EW stage is deliberately skewed with respect to the CF and
DF stages. Thus, after reading the

n

 input waveforms of gate

G

i

, the channel to data memory

n n

3

n

2

⁄

+ +

()α

+

max 2

n

2

⁄

+

()α

n

α

n

α, , ,[] α

 max 2

n

2

⁄

+

n

,[]

=

max 2

n

2

⁄

+

()α

n

1+

()α

n

, ,[] α

 max 2

n

2

⁄

+

n

1+

,[] α

3 for

n

=1

n

1+ for

n

2

≥î



= =

17

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

becomes available for writing the output waveform of gate

G

i

-1

. This arrangement delays the eval-
uation of gate

G

i

 by

n

 - 1 cycles and increases the latency of the pipeline to 2(

n

 + 1). Fortunately,
unlike the case of general-purpose instruction processors, such high latency is not detrimental to
the performance of Ravel-XL due to the absence of branches in the instruction stream. The only
data dependency that may exist in the pipeline occurs when the waveform to be fetched is still
being computed in the EW stage (a read-after-write, or RAW, hazard), and is handled by stalling
the pipeline. More sophisticated solutions, such as adding

data forwarding

 paths to the pipeline,
are unwarranted since careful compilation can eliminate most data dependencies.

4.5 Memory System Design

Equation (14) shows that, with our 3-stage pipeline design, simulation time is directly propor-
tional to

α

, and minimized when . As can be seen in Figure 6, for a three-input gate the

pipeline makes one reference to the code memory, and one reference to the data memory, each
cycle. Our basic goal in the design of the memory system is therefore to match its

effective

 cycle
time to that of the processor in order to achieve a transfer rate of one instruction word and one
data word per processor cycle. Additionally, this transfer rate must be sustained even when simu-
lating large circuits. For processor frequencies below 100MHz a simple but expensive solution is
to use high-speed SRAMs with . However, a more practical, and much cheaper, solution
for obtaining single-cycle access is to design appropriate memory structures that allow the use of
slower DRAM chips. This goal amounts to reducing a given normalized memory cycle time

α

,
which may be >1, to an effective normalized memory cycle time

α

eff

 = 1.

To obtain

α

eff

 = 1 when the memory system must be organized so that it matches the pat-
terns of

locality

 in the code and data streams [19]. Locality is expressed in two ways: temporal
and spatial. The split memory system implied by our pipeline design gives us the opportunity to
optimize the code and data memory architectures differently. This has proven useful, since the
access patterns to the two memory spaces turns out to be markedly different.

Gate G

i-1

Fig. 6. Pipeline operation for a 3-input GEV instruction

Fetch:
&I

2

 and &I

3

Fetch:
&O and

δ

Fetch:

∆

Fetch:
&I

2

 and &I

3

Fetch: Fetch:

∆

Read:
I

1

Read:
I

2

Read:
I

3

Read:
I

1

Read:
I

2

Read:
I

3

Write:
O

Process:
I

1

 and I

2

Process:
I

3

Process: Write:
O

Process:
I

1

 and I

2

Process:
I

3

Gate evaluation cycle

Gate G

i

Gate G

i

&O and

δ

delay
Process:

delay

CF

DF

EW

Fetch:
OPC and &I

1

Fetch:
OPC and &I

1

Gate G

i+1

α

1=

α

1=

α

1

>

18

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

In general-purpose processors, the traditional method for capturing locality is with caches.
However, Lewis has observed that the straight-line code produced by compiled simulators causes
poor hit rates [24]. Instead of instruction and data caches Lewis advocates the use of off-chip
memories and a very deep pipeline—which would have no adverse side effects on branchless
code—to absorb the long latencies. This design would address the latency issues, but would have
difficulty meeting our bandwidth requirements. Ravel-XL requires an average of one memory
access to each bank each cycle—Lewis’ solution would require a very large multi-ported off-chip
memory to support this requirement.

The poor instruction cache hit rate is caused by a complete absence of

temporal

 locality. How-
ever, we can take advantage of the high degree of

spatial

 locality provided by the branchless
nature of the code to obtain

α

eff

≅

1. Our solution uses an interleaved external code memory with
prefetching. As long as the number of interleaved memory banks is greater than or equal to

α

+1,
such a memory structure will be able to deliver consecutive instruction words from the straight-
line code-stream at the rate of one per cycle in steady-state. Based on this analysis we chose to set

α

 to 3, and to use a 4-way interleaved memory to hold the simulation program instructions. At a
target processor cycle time in the 20-40ns range, this choice requires the use of DRAM memories
with cycle times in the 60-120ns range. Such parts are readily available and are fairly inexpensive.

Lewis also observed that the

data

 stream has an irregular access pattern and lacks temporal
locality as well. We have carried out a number of architectural studies, however, that indicate oth-
erwise. We will demonstrate that, with proper compiler techniques, the temporal locality in the
data stream can be controlled, allowing a cached memory organization to achieve high hit rates.
We also examine the spatial locality in the data stream, and its effects on the data cache miss rate.
In our discussion of the data cache we will address all four of the main cache parameters: cache
size, associativity, line-size, and write policy. Our analysis will decompose the miss rate into its
three components: compulsory misses, capacity misses, and conflict misses [19], and discuss the
effects of our design decisions on each.

Temporal locality in the data stream results from the re-use of output signal waveforms in the
evaluation of fanout gates, and is strongly dependent on the order in which the instructions are
scheduled. Our compiler (discussed in more detail in Section 7.2) attempts to schedule the code
stream in an order that favors the evaluation of logic gates followed immediately by their fanout
gates, thus maximizing the temporal locality of the data waveforms. Temporal locality affects the
rate of

capacity misses

, which are, in turn, controlled by adjusting cache

size

. As shown in Figure
7, architectural studies have demonstrated that a cache of 2K-words is sufficient to keep miss rates
under 20% in our largest circuit. We expect the miss rate to decrease further as we instrument the
compiler with additional optimizations.

Compulsory

 misses turn out not to be an issue in this design. Since the host processor must
download the primary input waveforms at the beginning of each simulation cycle, and since the
host interface writes waveforms into the data memory through the cache, no cold misses will
occur on the primary inputs. In addition, since all of a gate’s inputs must be evaluated before it can

19

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

be processed, waveforms will never be read before they are written. Thus, all compulsory misses
are eliminated.

The final category of cache misses,

conflict

 misses, is addressed by the degree of

associativity

in the cache. As shown in Figure 8, the architectural studies did not seem to indicate that the
expense of implementing a set-associative cache was warranted; instead, we chose the simpler
option of a direct-mapped cache. This result is due to the absence of looping behavior, and the fact
that the order in which addresses are accessed can be controlled by the compiler when it assigns
addresses to the operands.

Spatial

locality in the data stream, which depends the order in which the instructions are sched-
uled, as well as the order in which the compiler assigns addresses to the waveforms, is more diffi-
cult to characterize than in the code stream. In a cached memory organization, the use of a

line-
size

 greater than one can be used to take advantage of spatial locality in the reference stream. Our
compiler currently assigns addresses to the data variables in a linear fashion as they are first used.
If it were modified to assign them in an order that would maximize spatial locality we might see
some benefit from larger line sizes. However, such a cache adds complexity to the design, and
would require an interleaved external data memory to support fast line fills. For reasons of sim-

Fig. 7. Cache miss rate s for three different c ache sizes as a function of circuit s ize. Here circuit size
is expressed as the total number of gate inputs, since one cache access is required for each input.

Cache size is the number of 32-bit words .

��� � � � �� � � � � � � � � � ! " # $
% &'

(

)

*
+ ,

-

.

/
021

3

45 6 7 8 9 :; < = > ? @ A B C D EF G H I J KL
M
N

O P

Q
R

S
T UWV

X

Y Z[\] ^ _` a b c d e f g h i jk l m n o p q r s t u v2w xzy

{W|
}

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

ca
ch

e
m

is
s

ra
te

circuit size (# gate inputs)

~
1/2 K � 2K � 8K

20

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

plicity we chose not to explore this option.

Finally, we opted for the simpler write-through, as opposed to a write-back, write policy. This is
justified by the availability of adequate bandwidth on the memory channel to complete the write
requests without conflict: writes occur only once for every

n

 reads and read requests caused by
cache misses are expected to be infrequent. According to equation (14), consecutive write
requests are separated by at least 3 clock cycles. Thus, to avoid write conflicts, .

The fact that we have been able to obtain reasonable cache hit rates for circuits much larger
than the cache size suggests that our choice of using a data cache is justified. We believe that our
data supports a claim that miss rates will not get much worse, even for very large circuits. We base
this claim on several properties of combinational logic as used in large designs. First, the number
of logic levels between synchronizers does not increase, as this directly impacts clock frequency.
Second, the “width” of the logic, defined as the number of gate fanouts that must be maintained in
the cache at any one time, is bounded by the structured design style used in their construction.
Even in large chips, most combinational logic is grouped into relatively small blocks with few
external connections. As long as these logic groups fit within the cache, the miss rate will not
degrade.

Fig. 8. Effects of the degree of associativity on the cache miss rate . The total cache size
is constant at 2K words .

��� � � � �� � � � � � � � � � �� � � � � ��
�
�

� �

�
�

¡ ¢ £

¤

¥¦ § ¨ © ª «¬ ­ ® ¯ ° ± ² ³ ´ µ ¶· ¸ ¹ º » ¼½

¾

¿

À
Á

Â
Ã

Ä
Å ÆWÇ

È

ÉÊ ËÌ Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø ÙÚÛ Ü Ý Þ
ß àá

â

ã

ä å
æ
ç

è
é ê ë

ì

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

ca
ch

e
m

is
s

ra
te

circuit size (# gate inputs)

í
1-way

î
2-way

ï
4-way

α

3

≤

21

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

4.6 Setup/Hold Violation Detection

When setup or hold violations are detected by an SEV instruction, the address of the offending
synchronizer input signal is written to a violation table in data memory that can be read by the
host at the end of the simulation. Since violation information is diagnostic, and not intended to be
re-read during the simulation process, violation reports are written

directly

 to data memory with-
out going through the cache. Furthermore, to avoid unnecessary pipeline stalls, violation write-
back requests are assigned a lower priority than operand writeback requests. This is accomplished
with the use of a four-entry FIFO buffer to queue violation reports waiting to be written back. The
violation report at the head of the FIFO is written to data memory during idle cycles on the data
bus; the pipeline is stalled only when the FIFO is full. A larger buffer could be used to reduce the
incidence of stalls; this was deemed unnecessary, however, since violations are expected to be
infrequent and to be relatively small in number.

4.7 Ravel-XL Host Interface

The host computer sees Ravel-XL as a memory-mapped peripheral device. The host has read/
write access to both the code and data memories as well as to several internal Ravel-XL registers.
A 32-bit address sent by the host over the address bus is mapped by Ravel-XL to one of four
address spaces according to the value of the two most significant bits: code memory, data mem-
ory, the setup/hold violation tables, and the internal system registers.

In addition to the datapath registers that are used for storing the clock parameters, the host can
access the program counter, a status register, and registers that contain the address of the setup/
hold violation table and the total count of violations in the table. The status register has three
defined flag bits that are set by Ravel-XL: bit 7 is set when an ENDS instruction is executed; bit 6
is set upon execution of a WAIT instruction; and bit 5 is set by the SEV instruction upon detection
of one or more setup/hold violations.

Two pseudo registers, START and CONTINUE, are used by the host to control the simulation
process. A write to START resets the program counter and commands Ravel-XL to begin simulat-
ing; it is issued at the start of the simulation session in response to ENDS instructions. A write to
CONTINUE is used to command Ravel-XL to resume simulation from a breakpoint; it is issued in
response to WAIT instructions.

5 Ravel-XL Implementation

A single-chip VLSI implementation of the Ravel-XL architecture is currently being prepared
for fabrication. The implementation was guided by two major objectives: 1) to minimize the like-
lihood of pipeline stalls; and 2) to minimize the clock cycle time. As noted earlier, the lack of sig-
nificant data dependencies in the Ravel-XL instruction stream makes the incidence of pipeline
stalls quite rare. To further reduce the possibility of stalls, deep buffers are sandwiched between
the pipe stages to absorb any transient delays in the memory system response. Cycle time minimi-

22

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

zation was addressed by decomposing the chip into several largely autonomous functional units
each consisting of a datapath and an associated controller. Such a “distributed control”
approach—as opposed to a single global controller—reduces the possibility of a performance-
limiting critical path in the control logic. Additionally, it leads to smaller controllers that are much
simpler to design and test.

The design process started with architectural simulations of Ravel-XL using a behavioral

Fig. 9. Layout plot of the Ravel-XL chip. It is implemented in a 0.8-micron 3-metal CMOS process,
and the final dimensions of the chip are approximately 1.18 x 1.18 centimeters on a side.

PLACE CHIP PLOT HERE

23

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

model written in the Verilog Hardware Description Language (HDL) [11]. This model was manu-
ally partitioned into distinct datapath and control sections to aid the subsequent design synthesis
phase. Physical design was performed using the EPOCH silicon compiler [12]. EPOCH receives
its input in a synthesizable subset of Verilog HDL: behavioral datapath elements were manually
converted from the behavioral model into netlists of SSI and MSI macro cells defined in the
EPOCH library, while behavioral control modules were input directly from the architectural mod-
els. EPOCH performed standard-cell logic synthesis for the behavioral controllers, and provided
technology mapping for the library cells, as well as timing-driven placement, routing, and buffer
and power-rail sizing. The EPOCH static timing analyzer, TACTIC, was used in the determination
of the critical path. The longest sensitizable path in the design was found to lie in the datapath,
and results in a clock frequency of 33MHz. The chip contains 900,000 transistors, dissipates 1.06

Watts and occupies 1.4 cm

2

 of die area in a 0.8 micron 3-metal CMOS process. It will be pack-
aged in a 256-pin PGA package. Because of the large pin count the chip is pad-limited: without

the pad frame the chip core is only 0.75 cm

2

. A layout plot of the chip is shown in Figure 9.

A stylized chip floorplan showing its functional units and their major interconnections is
depicted in Figure 10. In this figure, the relative size of each functional unit roughly corresponds
to the area it occupies on the chip; for clarity, however, the position of each unit may not corre-
spond exactly to its actual chip placement. This is particularly true for the control logic: shown as
a single unit on the floorplan, it is actually partitioned by the physical design tools into blocks of
standard cells that are used to fill the gaps created during the placement of the datapath compo-
nents. The largest block on the chip is the data cache (32-bit words + 22-bit tags).
The other functional units identified on the floorplan—most of which already described—can be
divided into the following four groups:

1. Chip Interface which includes the Host Interface (HI), Code Memory Interface (CMI), and
Data Memory Interface (DMI).

2.

CF Pipeline Stage

 which is the Code Fetch and Decode (CFD) unit.
3.

DF Pipeline Stage

 which includes the Data Fetch (DF) unit and the operand Base Registers
(BR).

4.

EW Pipeline Stage

 which includes the Gate Evaluation (GE) unit, the gate evaluation
Register Files (RF) and the Violation Queue (VQ).

The physical interface to the interleaved code memory is achieved by maintaining a 32-entry
circular prefetch queue in the CMI. A controller in the CMI attempts to keep the queue full by
continuously issuing read requests to the memory to prefetch instruction words. Concurrently, the
CFD unit removes entries from this queue and performs the necessary instruction decoding and
operand routing. Immediate operands are routed to the appropriate register: gate delays and syn-
chronizer setup/hold parameters are written to the RF in the EW stage; base addresses in LDB
instructions are written to the specified BR. Operand address displacements are posted to a 16-
entry queue that is accessed by the DF unit. The DF unit removes these displacements and pairs
each with an appropriate BR before issuing a read request to data memory through the DMI. The
GE unit and its associated register files implement the custom datapath described in Section 4.2

2K 54 bit

×

24

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

and shown in Figure 3. Dual-bank registers, shown shaded in that figure, allow the CFD unit and
the DMI to write data to one bank while the GE unit operates on data in the other bank, as
required by the structure of the pipeline (see Figure 6). The DMI processes reads and writes to the
write-through Data Cache and to the external Data Memory. It accepts requests from four sources:

Fig. 10. Stylized chip floorplan showing major functional units and their address and data intercon-
nections. The relative sizes of the functional units are approximately correct, though for clarity the

placement of the components have little relation to that on the chip layout shown in Figure 9 .

Data Memory Interface

Operand
Base

Registers Violation
Queue

Code
Memory
Interface

Code
Prefetch

Unit

Host
Interface

Gate Evaluation Register Files

Gate Evaluation Unit

Data Cache
(2K x 54-bits)

Control Logic
(standard cell)

Address DataAddress Data

Data

Address

Data Fetch

Code Fetch
and decode

25

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

1) operand reads from the DF Unit, 2) operand writes from the GE Unit, 3) violation writes from
the VQ, and 4) reads/writes from the HI. Priority for access is given first to operand read requests,
second to operand write requests, and last to violation write requests. Requests from the host
occur only when the pipeline is stopped, so no notion of priority is needed in this case.

6 Performance Measurement and Comparison

In this section we compare the performance of Ravel-XL to that of several other representative
logic simulators. Both ED as well as LC simulators, implemented both in hardware and in soft-
ware, are represented. Since the algorithms and system architectures used by the different simula-
tors and accelerators are quite diverse we use the M-EGPS metric introduced in equation (9) to
insure consistency. In addition, since many of the hardware accelerators achieve their speed using
multiple boards—each consisting of a single processor pipeline and local storage—in parallel, we
consider the board to be the atomic unit for performance comparisons. Where appropriate, we dis-
cuss multi-board system performance, and note which systems are scalable.

6.1 Benchmark Results

We benchmarked several software simulators including Verilog-XL, a Verilog interpreter from
Cadence Design Systems [11], VCS, a Verilog compiler from Chronologic Simulation [13], and
the software implementation of Ravel [31,32,37]. For these simulators the EGPS figures are com-
puted directly from experimental run-times using the ISCAS-89 sequential benchmark circuit
suite [7] with sequences of randomly-generated input patterns. Experiments performed with the
Verilog-HDL model of Ravel-XL allow a direct comparison to be made between Ravel-XL and
the other software simulators. The performance of Ravel-XL is compared with several ED hard-
ware accelerators: MARS [1,2], the XP product family from Zycad Corp. [43], and the Fujitsu SP
[33]. It is also compared against several LC accelerators: an unnamed system by Zasio et. al. [42]
and the family of IBM simulation engines (LSM [9], YSE [15], and EVE [17]). For these systems
the peak performance figures are estimated from published simulation data. Since the activity lev-
els in these simulations are not given, the EGPS figures for ED simulators are estimated assuming
a 10% activity level, which is typical for circuits we have tested. Performance estimates at a 100%
activity level are also derived in an attempt to show where the trade-off between the ED and LC
methods lies. A summary of the performance study is given in Table 1.

6.1.1 Ravel-XL Performance Measurements

Assuming a circuit composed of 3-input gates and a 100% data cache hit rate, equation (14)
predicts a 4 CPG peak performance for Ravel-XL. At 33 MHz this yields a speed of 8.25 M-EGPS
which is 40 (respectively 20) times faster than Ravel in its full long/short path (respectively long-
path-only) simulation mode. However, this estimate does not take into account the structure of the
test circuits or the number of cycles lost to cache misses or pipeline hazard stalls.

26

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

Figure 11 shows experimental results measured with the Verilog-HDL model of Ravel-XL. The
figure shows how the number of cycles required to simulate each gate changes with circuit size.
Since the average number of gate inputs may not be constant across the various circuits in the
benchmark suite, we also graph the average number of cycles to process each gate input. The
results show a high simulation cost for small circuits—this is due to the difficulty of scheduling
gates without read-after-write (RAW) pipeline hazards. After this initial spike the simulation cost
increases slowly due to increasing cache miss rates but appears to gradually taper off to a near
constant value as the code scheduler is able to partition the circuit into strongly connected cache-
resident blocks.

Table 1: Simulation Benchmark Results

System Algo-
rithm

Timing
Model

Peak Speed (10

6

 EGPS) Capacity scal-
able?

activity
=100%

activity
=10%

(gates)

Verilog-XL ED 1 value .004 .04 n/a N

VCS ED 1 value .04 .40 n/a N

MARS
(one board)

ED rise/fall .065 .65 64K Y

Ravel
(long &
short)

LC min/max .20 .20 n/a N

Ravel
(long only)

LC 1 value .40 .40 n/a N

Zycad XP
(one board)

ED rise/fall 2.5 25 256K Y

Zasio et. al. LC unit delay 5.0 5.0 256K N

Ravel-XL
(one board)

LC min/max 6.6 6.6 < 2

30

Y

IBM EVE
(one board)

LC unit delay 12.5 12.5 4K Y

Fujitsu SP
(one board)

ED unit delay 12.5 125 64K
gates
5MB
mem

Y

27

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

According to Figure 11 we should expect a simulation rate closer to 5 CPG for large circuits,
which will reduce our predicted performance to about 6.6 M–EGPS, or about 33 times faster than
the software version of Ravel.

It is instructive to examine the fraction of clock cycles that are wasted while waiting for RAW
hazards and cache misses to be cleared. As shown in Figure 12, almost 40% of the processor
cycles for the largest circuits are spent servicing RAW and cache-miss stalls. We expect this per-
centage to drop significantly with better compilation of the circuit equations (see Section 7.2).
Figure 13 shows how the performance of Ravel-XL, measured as the average number of cycles to
simulate each gate-input, varies with cache miss rate. These numbers were generated using the
ISCAS-89 s38584.1 benchmark circuit by artificially forcing cache misses at the desired rate. As
can be seen in the figure, performance drops off linearly with an increase in miss rate.

It is worth pointing out that the overhead of communicating with the host will be negligible in
most cases. Asynchronous host writes to Ravel-XL cost 16 clock cycles, and reads between 15
and 18. As an example, it will r equire 10 milliseconds to download the 20,705 gate ISCAS89
benchmark circuit s38584 to the code memory at the beginning of a simulation, and the cost of
writing/reading the 290 primary input/output values each cycle represents only about 5.3% of
total simulation time.

Fig. 11. Experimental results obtained with the Verilog-HDL model of Ravel-XL using the
ISCAS89 suite of synchronous sequential benchmark circuits.

ð

ñ
ò
óô
õö ÷ø ù
ú

û ü
ýþ
ÿ
� �� �
�� �

�
�	

�
�

�
�

�

�

� � ���
� �� ��

� �

��
 ! "#
$
%&

'

(

)*
+, -. / 0

1

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 5000 10000 15000 20000 25000

C
yc

le
s

circuit size (# gates)

2
cycles/gate

3
cycles/input

28

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

6.1.2 Software Simulators

In its current implementation Ravel generates a simulation program in the MIPS R3000 instruc-

tion set [20]. The table below lists the number of machine instructions generated for a typical
gate:

At an ideal CPI of 1 on the benchmark workstation, and assuming an average of 3-inputs/gate,
Ravel runs at about 100 CPG. This ideal CPI rate is rarely achieved, however, because of the lack
of locality in the instruction stream produced by Ravel. Experiments indicated a dramatic increase
in the cache miss rate as soon as the size of the simulation loop exceeded the size of the instruc-
tion cache [32]. As we mentioned in Section 4.5, it has been observed that memory system perfor-

Delay Model 2-input 3-input 4-input

n

-input

long & short path 71 100 129

long path only 33 46 59

zero delay 8 12 16

Fig. 12. The fraction of cycles spent by Ravel-XL waiting for RAW hazards and cache
misses to be resolved , as a function of circuit size .

13 11
2

13
3

16
5

17
5

17
6

17
9

20
2

21
4

21
7

23
4

29
2

29
4

39
8

41
2

42
4

47
8

52
6

54
7

65
3

65
9

73
1

24
17

29
58

58
08

58
25

85
89

86
20

10
30

6
10

36
9

17
82

5
20

67
9

20
70

5

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

fr
ac

tio
n

of
 to

ta
l c

yc
le

s

circuit size (# gates)

RAW stalls

CMiss stalls

71 29

n

2–

()

+

33 13

n

2–

()

+

8 4

n

2–

()

+

29

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

mance degradation due to lack of locality is a problem common to LC simulators in general [22,
23]. Even for moderately sized circuits of several thousand gates the observed CPI was 2 or larger,
yielding a minimum CPG of 200 for a typical 3-input gate. The benchmark workstation, a DECs-
tation 5000/240 running at 40MHz, can be expected to achieve 0.20 M-EGPS with the full simu-
lation model and 0.40 M-EGPS with long-path-only delays. This agrees with the simulation data
gathered in [31], which observed a long-path-only simulation speed of 0.355 M-EGPS for the
ISCAS-89 S1196 circuit, a typical circuit with a 13% activity level and large enough to cause the
CPI to be around 2.

Experiments using the ISCAS-89 sequential circuit suite have shown the software implementa-
tion of Ravel to operate about ten times faster than Verilog-XL, and at about the same speed as
VCS, for circuits with activity levels near 10% [31]. In these experiments Ravel was run in long-
path-only mode to more closely match the single-delay model of Verilog. Based on this data,
Ravel-XL is expected to run 165 times faster than Verilog-XL and 16.5 times faster than VCS, and
at a 100% activity level Ravel-XL would achieve speedups of 1650 and 165 respectively.

6.1.3 Event Driven Hardware Accelerators

The MARS hardware accelerator is a micro-programmable system that can be programmed to

Fig. 13. The variation in Ravel-XL performance, measured as the average number of cy-
cles to simulate each gate-input , as the m iss rate increases . The test circuit is S38584.1.

465
7

8
9

:
;

<
=

>
?

@
A

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0.
00

%

10
.0

0%

20
.0

0%

30
.0

0%

40
.0

0%

50
.0

0%

60
.0

0%

70
.0

0%

80
.0

0%

90
.0

0%

10
0.

00
%

cy
cl

es
/g

at
e

in
pu

t

cache miss rate

30

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

simulate at many abstraction levels. Numbers reported here, for a single-board system pro-
grammed for a 2-phase multiple-delay algorithm and running at 10MHz [1, page 35], are about an
order of magnitude slower than Ravel-XL. This system is easily scalable using multiple boards in
parallel, and the authors expect an almost linear increase in speed and capacity with a multi-board
system.

Zycad Corporation markets a hardware accelerator using an ED algorithm which supports mul-
tiple-value rise/fall delays that achieves a speed of 25 M-EGPS at a 10% activity level. Circuit
activity levels must be above 50% before Ravel-XL is faster. This system is scalable with up to 16
boards, obtaining a linear speedup as boards are added. Arbitrary delay models based on function
calls can be used at a performance penalty.

Perhaps the fastest simulator reported is the multi-processing SP system from Fujitsu. The only
reported run times are given relative to an internal software simulator, complicating performance
estimation. However, they report a maximum of 800 million

event

 evaluations per second for a
64-processor system. Extrapolating back, we estimate 12.5 M-EGPS per processor at a 100%
activity level, though the conditions required for peak performance are not given. In addition, the
SP only supports a unit-delay model, perhaps accounting for its high performance relative to the
others ED approaches.

6.1.4 Levelized Code Hardware Accelerators

Several other hardware accelerators use the LC technique. One by Zasio et. al. obtains 5 M-
EGPS, though it is limited to a unit-delay model for timing. The most successful LC systems were
those designed by IBM, the Logic Simulation Machine (LSM), Yorktown Simulation Engine
(YSE) and Engineering Verification Engine (EVE), with EVE being the most recent. All share a
common architecture, which also bears some resemblance to that of Ravel-XL: it is a multi-pro-
cessor system, each board made up of a single gate processing pipeline and local instruction and
data memories. A CISC-style instruction is used, but theirs is limited to a constant 5 inputs.
Boards can be scaled in parallel using a large crossbar switch, up to a maximum of 512 boards.
They claim a peak throughput of over 3 billion EGPS and a capacity of 2 million gates for a full
EVE system—a 500K gate benchmark ran at 490 M-GEPS. The IBM systems are also limited to
a unit-delay model for timing.

7 Future Work

In this section we make some retrospective observations about the implementation and state the
goals for a second-generation chip. We also discuss ongoing work with several code optimization
problems in the Ravel-XL compiler. We conclude with some observations on the use of Ravel-XL
in a multiprocessor configuration.

31

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

7.1 Architectural Improvements

As shown in equation (14), the speed of Ravel-XL is currently limited by memory throughput.
With a higher bandwidth to memory and more parallel hardware in the gate/synchronizer evalua-
tion datapath we could conceivably obtain a simulation rate of 1 CPG. This will require the use of
technology such as a multi-port cache in the data memory and a faster interface to the code mem-
ory, such as a Rambus RDRAM [18]. As the simulation speed increases the write-through cache
will quickly limit performance, requiring a more complex caching scheme, in conjunction with
deeper write-buffers, to limit the frequency of off-chip writes.

Other improvements that are planned include the ability to model gated-clocks and tri-state
busses. The support for gated clocking may require a notion of conditional execution (i.e. branch-
ing) in the algorithm, and could introduce significant complication in the hardware. The modeling
of tri-state busses will require a representation for impedance values and a new wired-logic primi-
tive. Tri-state busses can currently be modeled by collapsing them into equivalent OR or AND
gates, though CMOS bus contention will not be correctly modeled.

7.2 Compiler Issues

In the design of Ravel-XL we made an effort to create a flexible system in which the compiler
would not be required to perform expensive optimizations to achieve reasonable performance.
The only problems in the code generation process that require potentially expensive optimizations
are: 1) the ordering of the gate evaluations in the instruction stream to maximize temporal locality,
and 2) the ordering of the waveform variables in data memory to control spatial locality. To obtain
a 100% data-cache hit rate we must guarantee that each gate waveform value stays resident in the
cache from the time that it is written until the last of its fanout gates have been evaluated. The tra-
ditional level-order (breadth-first) traversal of the circuit graph identified with LC simulators may,
for this reason, lead to poor data cache performance. This will be particularly noticeable if the
width of the circuit at any given topological level (number of gates per level) exceeds the size of
the cache.

A preliminary version of a compiler for Ravel-XL has been implemented to obtain the data
shown in Section 6.1.1. To address the problem of improving the temporal locality in the code,
and thus the cache miss rate, we have explored several traversal techniques as an alternative to the
strict level-order traversal. Basically, the compiler attempts to broadcast a gate output to its fanout
gates as soon as possible after its has been evaluated to maximize the likelihood of its presence in
the data cache, while at the same time minimizing the average lifetime of all cache entries. In gen-
eral, this problem is NP-complete [26], but we have obtained good results with simple heuristics
using a recursive depth-first traversal [38] of the circuit. The algorithm starts at a primary-output
and recursively expands its fanin-cone, generating code for each gate (if it has not already been
evaluated) as it returns from the recursion. Since cache misses are likely to result on any signals
that fanout from this block of gates to other blocks, we attempt to choose the next primary-output
from a set of candidates that uses some of the current set of unresolved fanout paths.

32

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

The only problem with this technique is that the recursive traversal encourages the scheduling
of gates followed immediately by gates they fan out to, resulting in read-after-write (RAW) pipe-
line hazards that cause frequent stalls. To correct this problem the compiler tries to ensure that
there is at least one unrelated gate scheduled between two gates connected by a common signal.
The effectiveness of these two optimizations over the simple level-order traversal is shown in Fig-
ure 14.

7.3 Multi-Processor Systems and System Scalability

With careful partitioning large digital circuits can be simulated in parallel with minimal inter-
processor communication and synchronization. Indeed, many of the faster logic simulation hard-
ware accelerators use parallel techniques [1, 2, 9, 15, 17, 33, 43]. Ravel-XL was designed with
support for multi-processing in mind. Multiple Ravel-XL boards can be placed on a single back-
plane and one design partitioned among these boards. Synchronization can be handled in one of
two ways. If circuits are partitioned only at synchronizer boundaries, communication among the
different boards is necessary only at the beginning of each clock phase when new input vectors
are loaded. If a circuit must be broken between synchronizers, however, WAIT instructions can be
placed in the code at required synchronization points. In these configurations communication
occurs only through the backplane and is managed by the host. This creates an obvious bottle-
neck, but is a cheaper alternative to the complex crossbar interconnection system found in many

Fig. 14. The effects of two different code ordering strategies on the cache hit rate (2K
word cache)

BC DFE

GIH

J KL

MON

PQ R ST U

V WYX

Z [\] ^ _` a b c d

e f

gh ij kml

n
o

p qr

s
t

uv w xy z

{}|

~

� �� � �
�

� � � � �

� �

����
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

ca
ch

e
m

is
s

ra
te

circuit size (# gate inputs)

�
levelized

�
depth-first

33

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

other multiprocessor systems.

8 Conclusions

In this paper we described Ravel-XL, a hardware accelerator for levelized-code (LC) digital
logic gate simulation. An architecture was developed to implement the Ravel LC simulation algo-
rithm in hardware, and a single-chip VLSI implementation was presented. The Ravel algorithm
adopted a unique waveform model that allows timing information to be calculated during the lev-
elized traversal of the traditional LC simulation process. This eliminates one of the serious limita-
tions of LC techniques when compared with event-driven (ED) algorithms, namely the inability to
perform accurate timing simulation. Ravel-XL, by implementing the Ravel algorithm in hard-
ware, is able to pipeline the gate simulation process and take advantage of the parallelism avail-
able in the code to provide a significant speedup over Ravel running on a general-purpose
computer. Further efficiency is gained by customizing the design of the memory system to prevent
simulation speed degradation when simulating large circuits.

This implementation is capable of executing an order of magnitude faster than the Ravel algo-
rithm running in software on a general purpose computer, and two orders of magnitude faster than
Verilog-XL, an ED simulator, when simulating large circuits with high event-activities. In a sin-
gle-board configuration, the simulation speed of Ravel-XL is also competitive with those of sev-
eral other commercial and research hardware accelerators, and its simple highly-integrated
implementation should give it a significant price/performance advantage. Ravel-XL is also easily
scalable to multi-board parallel simulation configurations, and should be capable of simulating at
speeds comparable to those of other parallel simulation accelerators such as YSE, EVE, and the
Zycad XP.

Work is still in progress on the simulation front-end software and code compilation and optimi-
zation software. An important goal in the project is to prevent the need for expensive code pre-
processing. Large circuits will require some optimizations in scheduling the code to prevent data-
cache misses, but preliminary work suggests that simple algorithms will be sufficient in most
cases. Work is also continuing on the problem of circuit partitioning to minimize the connectivity
of circuit blocks split over different processors in a multi-board parallel Ravel-XL configuration.
In addition, we are examining improvements to the architecture based on experience gained dur-
ing the current implementation.

Acknowledgments

The authors would like to thank Jeff Bell for his work on the Ravel-XL compiler, and also the
anonymous reviewers for their helpful suggestions and constructive criticism.

34

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

References

[1] P. Agrawal, W.J. Dally, W.C. Fischer, H.V. Jagadish, A.S. Krishnakumar, R. Tutundjain.
“MARS: A Multiprocessor-Based Programmable Accelerator,”

IEEE Design & Test of Com-
puters

, February 1987, pp. 28–37.

[2] P. Agrawal, W. J. Dally. “A Hardware Logic Simulation System,”

IEEE Trans. on Computer-
Aided Design

, January 1990, pp. 19–29.

[3] Z. Barzilai, J.L. Carter, B. K. Rosen, J.D. Rutledge. “HSS—A High-Speed Simulator,”

IEEE
Trans. on Computer-Aided Design

, July 1987, pp. 601–617.

[4] T. Blank. “A Survey of Hardware Accelerators Used in Computer-Aided Design,”

IEEE
Design & Test

, August 1984, pp. 21–38.

[5] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang, “MIS: A Multiple-
Level Logic Optimization System,”

IEEE Trans. on Computer-Aided Design,

1062–1081,
Nov. 1987.

[6] M. Breuer, A. Friedman. “Diagnosis and Reliable Design of Digital Systems,” Computer Sci-
ence Press Inc., Woodland Hills, CA. 1976.

[7] F. Brglez, D. Bryan, and K. Kozminski. “Combinational Profiles of Sequential Benchmark
Circuits,” in Proc. ISCAS89, 1989.

[8] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra, “Automatic Verification of Sequen-
tial Circuits Using Temporal Logic,”

IEEE Transactions on Computers

, C-35(12):1035-
1044, 1986.

[9] T. Burggraff, A. Love, R. Malm, A. Rudy. “The IBM Los Gatos Logic Simulation Machine
Hardware,” in Proc. IEEE Int’l Conf. Computer Design , October 1983, pp. 584–587.

[10] T.M. Burks, K. A. Sakallah. “Min-Max Linear Programming and the Timing Analysis of
Digital Circuits,” in Proc.

International Conference on Computer-Aided Design

, 1993, pp.
152–155.

[11] Cadence Design Systems Inc. “Verilog-XL Reference Manual,” Version 1.6, 1991.

[12] Cascade Design Automation Corp. “EPOCH Designers Handbook,” EDH-1.0Beta, 1992.

[13] Chronologic Simulation, “VCS Reference Manual,” version 2.0, 1993.

[14] J. Crapuchettes. “TURBOchannel Interface ASIC Functional Specification, Revision 0.6
(preliminary),” Digital Equipment Corporation, TRI/ADD Program, August 31, 1992.

[15] M. Denneau. “The Yorktown Simulation Engine,” in Proc.

19th ACM/IEEE Design Automa-
tion Conference

, June 1992, pp. 55–59.

[16] Digital Equipment Corporation. “TURBOchannel Specifications-Version 2C,” Digital
Equipment Corporation, TRI/ADD Program, EK-TCDEV-DK-004, September 1991.

[17] L. N. Dunn. “IBM’ s Engineering Design System Support for VLSI Design and Verification,”

35

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

IEEE Design & Test of Computers

, February 1984, pp. 30–40.

[18] M. Farmwald, D. Mooring. “A Fast Path to One Memory,”

IEEE Spectrum

, October 1992, pp
50-51.

[19] J.L. Hennessy, D.A. Patterson. “Computer Architecture, a Quantitative Approach,” Morgan
Kaufmann Publishers Inc., San Mateo, Ca. 1990.

[20] G. Kane, J. Heinrich. “MIPS RISC Architecture,” Prentice Hall, Englewood Cliffs, N.J.,
1992.

[21] Y. S. Lee, P. M. Maurer. “Two New Techniques for Compiled Multi-Delay Logic Simula-
tion,” in Proc.

29th Design Automation Conference

, 1992, pp. 420–423.

[22] D. M. Lewis. “A Hierarchical Compiled-Code Event-Driven Logic Simulator,”

IEEE Trans-
actions on Computer-Aided Design

, June 1991, pp. 726–737.

[23] D.M. Lewis. “Performance Issues in a Compiled-Code Hardware Accelerator,” CAD Accel-
erators, Elsevier Science Publishers B.V., 1991, pp. 47–59.

[24] D.M. Lewis. “A Compiled-Code Hardware Accelerator for Circuit Simulation,”

IEEE Trans-
actions on Computer-Aided Design

, May 1992, pp. 555–565.

[25] D.M. Lewis, M. H. van Ierssel, D. H. Wong. “A Field Programmable Accelerator for Com-
piled-Code Applications,” in Proc.

International Conference on Computer Design (ICCD)

,
1993, pp. 491–496.

[26] B. A. Malloy, E. L. Lloyd, M. L. Soffa. “Scheduling DAG’s for Asynchronous Multiproces-
sor Execution,”

IEEE Trans. Parallel and Distributed Systems

, Vol. 5 no. 5, May 1994, pp.
498–508.

[27] P. M. Maurer. “Two New Techniques for Unit-Delay Compiled Simulation,”

IEEE Transac-
tions On Computer-Aided Design , Vol. 11, NO. 9., September 1992, pp. 1120–1130.

[28] P. M. Maurer, Y. S. Lee. “Gateways: A Technique for Adding Event-Driven Behavior to
Compiled Simulations,”

IEEE Trans. on Computer-Aided Design

, March 1994, pp. 338–352.

[29] A. N. Parlakbilek, D. M. Lewis. “A Multiple-Strength Multiple-Delay Compiled-Code Logic
Simulator,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems

, 12(12):1937–1946.

[30] Quickturn Systems, Inc. “Enterprise Emulation System User’s Guide,” 1991.

[31] M. Riepe, K. Sakallah. “Delay Accurate Compiled-Code Synchronous Gate-Level Verilog
Simulation,” in Proc.

2nd International Verilog HDL Conference

, March 1993, pp. 121–127.

[32] M. A. Riepe, J. L. Bell, E. J. Shriver, K. A. Sakallah. “Assigned-Delay Compiled-Code Mul-
tiphase Synchronous Logic Simulation,” (in preparation).

[33] M. Saitoh, K. Iwata, A. Nakamura, M. Kakegawa, J. Masuda, H. Hamamura, F. Hirose, N.
Kawato. “Logic Simulation System Using Simulation Processor (SP),” in

Proc. 25th ACM/
IEEE Design Automation Conference

, 1988, pp. 225–230.

36

CSE-TR-202-94 Ravel-XL: A Hardware Accelerator for Assigned-Delay Compiled-Code Logic Gate Simulation

[34] K. A. Sakallah, T. N. Mudge, O. A. Olukotun. “

checkT

c

 and

minT

c

: Timing Verification and
Optimal Clocking of Synchronous Digital Circuits,” in Proc.

International Conference on
Computer Aided Design

, November 1990, pp. 552–555.

[35] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun, “Analysis and Design of Latch-Controlled
Synchronous Digital Circuits,”

IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems

, 11(3):322–333, 1992.

[36] K. A. Sakallah, T.N. Mudge, T. M. Burks, E.S. Davidson. “Synchronization of Pipelines,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

, Vol. 12
NO. 8, August 1993, pp. 1132–1146.

[37] E. Shriver, K. Sakallah. “Ravel: Assigned-Delay Compiled Code Logic Simulation,” in Proc.

International Conference on Computer Aided Design

, November 1992, pp. 364–368.

[38] R. Tarjan. “Depth-First Search and Linear Graph Algorithms,” in Proc.

SIAM J. Comput

. Vol.
1 No. 2, June 1972, pp. 146–160.

[39] E. Ulrich. “Exclusive Simulation of Activity in Digital Networks,”

Communications of the
ACM

, Vol. 12, NO. 2, February 1969, pp. 102–110.

[40] L. Wang, N.E. Hoover, E.H. Porter, J.J. Zasio. “SSIM: A Software Levelized Compiled-Code
Simulator,” in Proc.

24th ACM/IEEE Design Automation Conference

, 1987, pp. 2–8

[41] Z. Wang, P. M. Maurer. “LECSIM: A Levelized Event Driven Compiled Logic Simulator,” in
Proc.

27th ACM/IEEE Design Automation Conference,

 1990, pp. 491–496.

[42] J. Zasio, P. Hwang. “A Low-Cost High-Performance Levelized Compiled-Code Simulation
Accelerator,”

Hardware Accelerators for Electrical CAD

, IOP Publishing Ltd., 1988, pp. 46–
56.

[43] Zycad Corporation, “The XP Product Family,” marketing literature.

