Reduction of Cache Interference Misses through Selective

Bit-permutation Mapping

Santosh G. Abraham and Henky Agusleo
Dept. of EECS, Univ. of Michigan
1301 Beal Avenue, Ann Arbor, MI 48109-2122
{sga,patreg}@eecs.umich.edu

ABSTRACT

Cache miss rates have a large and increasing impact on overall performance. In this report,
we address the problem of cache interference in regular numerical programs dominated by strided
memory access patterns. In our scheme, the interfering strides in each region of memory may
be annotated by the programmer, detected at compile time, or even at run time. The algorithm
developed in this report uses this stride information to compute a permutation of address bits for
each memory region. During page placement, the operating system ensures that some low-order bits
of the virtual page number are included in the permutation that forms the physical page number.
Simulation results show that this scheme can reduce overall miss rates by nearly a factor of three
for the fftpde benchmark from the NAS suite. In an extension of this scheme, the hardware
provides support for selecting the address bits used for the set and line fields by permuting the
address bits in the desired manner before each cache access. Simulation results show that the
selective bit-permutation scheme yields a factor of four improvement in overall miss rates compared
to the standard bit-selection scheme for the blocked matrix-multiplication and LU-decomposition
programs on typical first-level cache configurations. The tomcatv and swm256 benchmarks have
regular strides and the highest miss rates on typical first-level data cache configurations in the
SPEC92 suite. Selective bit-permutation achieves a factor of two improvement in overall miss rates
on these two benchmarks.

Key Words: cache interference, cache conflicts, bit-selection mapping, cache modeling, exploit-
ing reuse

1 Introduction

Processor performance has been increasing at 50% per year but memory access times have been
improving at 5-10% per year only. As a result, the latency of cache misses in processor cycles
is increasing rapidly. Even a 6% first-level cache miss rate can halve the performance of the DEC
Alpha processor compared to a system with an ideal memory system [18]. Another trend in computer
architecture is toward processors that issue more than one instruction/operation per cycle, such as
VLIW or superscalar processors. The latency of cache misses will be higher in such future processors
with higher clock rates and wider issue widths. Therefore, it is important to develop techniques to
reduce cache miss rates.

Caches are characterized by the following three major parameters: cache size, line size and
associativity [5]. In the standard bit-selection mapping, the binary representation of an address is
divided into three contiguous fields: tag, set, and line fields. The set field is used to index into one of
the sets of the cache. The tag field is compared to the tags of the lines within a set. If the tag field
of the incoming address matches with one of the tags in the set, there is a cache hit. On a cache hit,
the line field of the incoming address is used to select one of the words in the matching line. If the
tag field does not match any of the tags in the set, there is a cache miss and the next lower level in
the memory hierarchy is accessed. In a k-way set-associative cache, each set in the cache contains &
distinct lines. In a direct-mapped cache, each set contains only one line. In contrast to the standard
bit-selection mapping, we propose selective bit-permutation mapping where the set and line fields
are obtained by selecting certain bits from the address under program control and the bits in a field
are generally not contiguous.

Intuitively, there are two major sources of avoidable cache misses in practical cache organizations.
Capacity misses occur when the working set of a program does not fit in the cache. For regular
numerical programs, there are restructuring techniques such as blocking that can reduce capacity
misses. Conflict misses occur when the addresses in the working set are mapped unevenly into
the sets of the cache and the number of addresses (or rather cache lines) mapping into some sets
exceeds the associativity of the cache. Though conflict misses can be reduced by increasing cache
associativity, a larger associativity can influence other parameters of interest unfavorably, such as
silicon area (or number of chips) and cache access time. For instance, Jouppi describes why direct-
mapped caches are desirable in first-level CPU caches [9].

Conflict misses can account for a large fraction of overall cache misses, especially in direct-mapped
caches.! Recently, several cache organizations have been proposed for reducing cache conflict misses.
In the victim cache organization, a small fully-associative cache maintains a set of lines that have
been evicted due to conflicts in the main set-associative cache [8]. In the victim cache approach, the
size of the victim cache limits the number of conflicts that can be handled. In column-associative
caches, a conflicting line uses a different hashing function to map into another set in the cache [2].
With this organization, the cache usually has the fast access time of a direct-mapped cache but a
miss ratio close to a two-way set-associative cache. In the column-associative cache, the number of
conflicts that can be handled is proportional to the cache size. The skewed-asociative cache also
uses a secondary hash if the primary hash fails [13].

In regular numerical programs typical of many engineering and scientific applications, the access
streams have regular strides. Traditionally, numerical programs have been optimized for vector ma-
chines. Recently, there has been considerable interest in migrating this workload to workstation type
systems because of their greater perceived cost-effectiveness. Though workstation systems have com-
parable processing capabilitites, they do not have the memory bandwidth of vector systems. Also,

1 Though there are some differences in the precise concept, conflict misses are also referred to as cache interference
misses and mapping misses.

parameter (n = 1024)
real ..., B(m, n)

do 10k =1, n
do 10 j =1, n
.= ... B(i,7)

10 continue
Figure 1: Sample program segment illustrating stride conflicts

even though numerical programs have strong spatial locality properties, these locality properties are
not exploited directly by the memory hierarchy of workstations. As a result, such applications tend
to have large cache conflict miss ratios, especially for certain program and cache parameters.

Access streams with certain strides use only a small fraction of the sets in the cache. For instance,
consider the Fortran program segment in Fig. 1. The B(i,j) reference has a stride of 4K because
column-major storage is used and each array element is 4 bytes. A direct-mapped cache of size SKB
with a 32-byte line size has sufficient capacity to store the entire row of B occupying 4KB. However,
the entire access stream is mapped on to two sets by the standard bit-selection mapping and the
cache misses on every access. In this case, the standard technique for reducing bank conflicts in
vector machines is to choose an array dimension of 1025. However, even when this technique is
applied, four distinct accesses are mapped to each set and the miss rate is one. Hashing the entire
address can solve the cache conflict-problem. However, such hashing can potentially decrease the
performance for the more common case of unit strides.

In this report, we address the cache interference miss problem for regular numerical programs.
We present an algorithm for analyzing strides and determining the appropriate bits to be used for
the set field and line field. For instance, in the example described above, our method chooses the bits
0,1,12(i.e. log4K),13,14 for the line field and the bits 15 to 22 for the set field. Each of the accesses
in the stride maps to a different cache line There are no cache conflicts with this bit-permutation
mapping and the miss rate is zero. We also present three schemes to implement the algorithm. In
large physically-indexed caches, the set field overlaps with the page frame number and these bits are
affected by the virtual-to-physical translation. These bits can be controlled during the placement
of pages by the operating system [10]. Thus, in the first scheme called the Limited Selective Bit-
Permutation (LSel BiP), the application provides the operating system with the desired permutation
of the address bits (excluding the bits that are part of the page offset). The operating system uses
this information in the mapping process. The speed advantage of the standard bit-selection mapping
is preserved, but the specific bits selected for the set field are tailored to the access pattern into
regions in the memory space. This scheme requires an interface through which the application can
provide desired permutation information to the operating system and a modification in the page
mapper routine in the operating system. This scheme does not require any other changes to the
hardware or the operating system and hence is a low-cost way of improving performance. In the
second scheme, Selective Bit-Permutation (SelBiP), hardware support is provided for permuting all
the address bits before each cache access. SelBiP is more powerful because the address bits used for
the entire set field and the line field are controllable. SelBiP provides greater improvement in cache
miss rates than LSelBiP. However, SelBiP requires hardware modifications and increases cache access

times. The third scheme is an entirely-hardware approach called the Dynamic Set Selection, where
the decision to permute an address and the actual permutation, if it is decided to do so, are made in
hardware. Finally, we present experimental results comparing LSelBiP and SelBiP to the standard
bit-selection scheme used in most caches. For tomcatv and swm256, two floating-point SPEC92
benchmarks, and fftpde, a floating-point NAS benchmark, we obtain a factor of two improvement
in cache miss ratios using our scheme and we almost completely eliminate the conflict misses in these
programs.

There are some limitations to our approach. Firstly, our approach is targeted to a specific class of
programs where the memory accesses are dominated by streams with regular strides. These strides
are known at compile time or can be calculated at run time before accessing the memory region
with stride conflicts. Therefore this scheme is targeted toward caches being designed for numerical
applications. Secondly, in the SelBiP scheme, special instructions that can install and remove
address masking are needed for accessing data structures with potential cache conflict problems.
Furthermore, the SelBiP scheme requires a modification of the TLB-to-cache access path and an
augmentation of the page table data structures. In the LSelBiP scheme, no special instructions are
needed to carry out the required processes. Thirdly, the Dynamic Set Selection scheme needs a
moderate amount of expansion of the tag directory of the cache. Finally, our evaluations have been
limited to small cache sizes because we need much longer simulation runs for evaluating larger cache
sizes typical of second-level caches.

The rest of the report is structured as follows. In Section 2, we contrast the proposed scheme
with related work. In Section 3, we describe the selective bit-permutation algorithm. In Section 4,
we consider the implementation options. In Section 5, we present experimental results comparing
the performance of LSelBiP and SelBiP to that of the standard bit-selection mapping. In Section 6,
we present conclusions of our work.

2 Related Work

In this section, we review previous work on characterizing cache misses into various categories as
well as strategies for reducing cache misses in each category. We describe in greater detail hardware
and software strategies that have been developed to reduce conflict misses.

Thiebaut and Stone [14] [19], Agarwal [1], Hill [6] [5] and others have proposed models which
can explain or classify misses. These models are useful both for gaining the insight required to
develop caching strategies and for evaluating these strategies. In Thiebaut and Stone’s model and in
Agarwal’s model, expressions for miss rates are derived in terms of a few trace dependent parameters.
In Hill’s three C’s model, misses are classified into three componenets: compulsory misses — misses
that occur on first time reference to lines; capacity misses — additional misses in a fully-associative
LRU cache; and conflict misses — additional misses due to the constraints of limited associativity.
In the OPT model [15], capacity misses are redefined as the non-compulsory misses from a fully-
associative cache with OPT replacement rather than LRU replacement. Instead of conflict misses,
two other miss types are defined for a k-way cache: mapping misses — additional misses in a k-way
OPT cache due to the mapping of addresses to sets; replacement misses — additional misses due
to the sub-optimal replacement strategy. For the SPEC89 benchmarks, the mapping component
accounts for 10-20% of the data cache miss ratio. This report is directed at reducing the mapping
component for programs with regular strides because such programs tend to have a large mapping
miss component.

Capacity misses can be reduced by reordering the access stream so that the reuse distance (i.e.
the number of distinct accesses between two references to the same address) is reduced to less than

the cache size. Eisenbeis et al [3] and Wolf and Lam [21] have developed data locality optimizing
algorithms that automatically block a class of regular numerical programs. Subsequently, Lam et
al [11] and Temam et al [17] show that cache interference effects in blocked programs can greatly
reduce the benefit of blocking using these data locality optimization techniques. In many cases, Lam
et al found that block sizes that are often only a tenth of the computed optimal block sizes yield the
best performance on practical set-associative caches because these smaller block sizes have much less
cache interference even though they have some additional capacity misses. In this report, we show
that bit-permutation mapping can be used to almost eliminate cache interference misses in blocked
programs such as matrix-multiply and LU-decomposition so that block sizes close to the computed
optimal can be used effectively.

Several hardware and software methods have been proposed for reducing mapping (or conflict)
misses in instruction and data caches. McFarling [12] and Hwu and Chang [7] statically remap
basic blocks in memory to eliminate instruction cache mapping misses on frequently executed basic
blocks. Temam [18] develops techniques to analyze data cache interference misses in a class of
regular numerical programs. As described briefly in the introductory section, victim caches [8],
column-associative caches [2] and skewed-associative caches [13] are cache organization schemes that
reduce cache interference misses. As illustrated in the example program described in the introductory
section, the number of conflicting lines in numerical programs can be much larger than can be handled
by any of the above schemes. Our approach uses the stride information to change the mapping of
addresses to sets and remove the conflicts. Even when there are a large number of conflicting
lines under the standard bit-selection mapping, there are few mapping conflicts in the reorganized
mapping. Kessler and Hill [10] have investigated several careful mapping algorithms to be used by
an operating system to place memory pages with the objective of reducing cache conflicts in large
physically-indexed caches. These algorithms are designed to spread the distribution of accesses of
a process over the entire cache without using any information about the memory access pattern of
the process. Our LSelBiP scheme also place pages with the objective of reducing cache conflicts but
requires information on the access pattern within the memory regions of a particular process.

3 Selective bit-permutation algorithm

In this section, we describe the algorithms used to determine the bit-permutation mapping.
We first describe some concepts and terminology associated with the cache interference problem.
We then describe the software algorithm used to compute the bit-permutation mapping when the
strides are known at compile time or at run-time. We will use the blocked matrix multiplication
program as an example as we go along. In this example, the strides of accesses are determined by
the programmer.

Some of the concepts and terminology described here are based on [21] and [18]. Particularly,
we will employ the terms self- and cross-interference for our subsequent discussion. In addition,
we define some new terms relevant to the development of the algorithm. Reuse occurs when the
same location in memory is accessed more than once. Self-reuse occurs when a static array reference
in a program accesses the same memory location, possibly on two distinct points in the iteration
space. Cross-reuse occurs when two static array references in a program access the same memory
location. The reuse distance is the number of distinct addresses accessed between two successive
accesses to the same location. A reuse is exploitable if the reuse distance is less than the cache size.
Since the cache line size is the smallest unit of allocation/deallocation, these definitions should really
be restated in terms of cache lines. Thus, reuse occurs even if two distinct memory locations are
accessed but those locations lie on the same cache line.

parameter (n = 128, m = 43)
integer A(n,n), B(n, n), C(n,n)

, min(jj+m-1,n)
kk, min(kk+m-1,n)
c(i,j) = €(i,j) + A(i,k)
* B(k,j)
10 continue

Figure 2: Blocked matrix multiplication program (MM)

In blocked matrix multiplication (MM), the blocking algorithm attempts to reorder the memory
access streams so that the reuse distance is less than the cache size for a large majority of the
references. In other words, such algorithm attempts to increase the possibility of exploitable reuse.
Our objective is to ensure that as much as possible of the exploitable self-reuse is utilized by reducing
cache interference between array references.

In our algorithm, we first identify all pairs of array references that can result in exploitable reuse.
We identify the loop level(s) through which the reuse occurs. For instance, an array reference A(7,j5)
is reused at the innermost loop level that does not iterate on either ¢ or j. For each pair of array
references with exploitable reuse, we determine the reuse path which consists of the static references
that are executed between a use and its exploitable reuse. Thus, an exploitable reuse can only be
utilized by the cache if the static array references do not access addresses that map into the same
set as the reused location.

The only kind of reuses that occur in MM is self-reuse, and they occur at the j-loop for matrix
A, at the i-loop for matrix B, and at the k-loop for matrix C. Fig. 3 shows some of the exploitable
reuse paths in MM. 2 Let us begin by examining the shortest reuse paths in the program; the reuse
paths of C (RPC’s). Reuse occurs between the same references to C. In this case, no self-interference
takes place because there are no interfering references to C. Cross-interference can occur between
a reference from A and that from C, and between one from B and one from C. Upon inspection,
we find that the stride between an A reference and a C reference is non-constant going from one
RPC to another. The same is true for the stride between a B reference and a C reference. For
instance, the A-C stride in RPC(3,6) is @(C)-@(A)-n, where 3,6 denote the starting and ending line
references, and @(C),@(A) denote the starting address of C and A. The same stride in RPC(9,12),
however, is @(C)-@(A). Likewise, the B-C strides in RPC(3,6) and in RPC(15,18) are @(C)-@(B)-1
and @(C)-@(B) respectively. Therefore, when an A or B reference interferes with the reuse in one
RPC, it may or may not interfere with the reuse in another RPC. In other words, the interferences
between A or B references and the reuse do not happen in a regular basis throughout the program.
Based on this observation, we only account for consistent interferences (in this example, they are
self-interferences) that occur in each reuse path. In an RPB, we have two strides, one of value 1 (e.g.
line 5-line 2) and the other of value n (e.g. line 8-line 2). In an RPA, we only have strides of value n
(e.g. line 4-line 1, line 16-line 13). In general, we identify all reuse paths in the program. For each
reference in a reuse path, we compute a symbolic expression for the difference between the location
accessed by the reference and the reused location. This expression is a function of array dimensions
and loop indexes. As illustrated in the example, such an expression is used to characterize the strides
of an interference.

2From hereafter, when we mention 'reuse’, we mean ’self-reuse’.

Loop counters No. Address trace

1 @A) —
i=1,j=1, k=1 2 @B) -
3 @(C)
4 RPC @(A)+n
i=1,j=1, k=2 5 @(B)+1 RPA
6 @(C)
7 @(A)
i=1,j=2,k=1 8 @(B)+n
9 @(C)+n
....... RPB
10 RPC| @A)+n
i=1,j=2, k=2 11 @(B)+n+1
12 @(C)+n
13 @ANL
i=2,j=1, k=1 14 @@B) —
15 @(C)+1
16 RPC (t;b_(,&)_a:r;l
i=2,j=1, k=2 17 @(B)+1

18 @(C)+1

Figure 3: Reuse paths of the matrices in MM

To represent in an intuitive, yet accurate, manner the interferences in a program, we construct
an interference graph. Each static array reference is a node in the graph. For each interfering
reference along each reuse path, we determine the stride between the reference and the exploitable
reuse associated with the reuse path. If such a stride exists, then we draw an arc from the array
reference to the source of the interference. Thus, an arc between two distinct nodes represents
cross-interferences between the two, and a self-arc represents self-interferences. The length of this
interference is the maximum value of the loop index associated with the stride. The weight of this
interference is the total number of times the interference appears in the reuse path which contains
it. We annotate each arc in the interference graph with its stride, weight, and length.

Fig. 4 is the interference graph for MM. Recall that there are no consistent cross-interferences
in MM. In an RPA, the interference has stride n (e.g. address 4-address 1 in Fig. 3). Since an RPA
spans a complete set of iterations on k, the length of this interference corresponds to k4, which
is m. The weight of the interference is the number of RPA’s in MM, which is the total number of
iterations divided by the length of an RPA. There are n? iterations in the program; therefore, the
weight of the interference is n3/m. The same information can be obtained from RPB’s in Fig. 3 to
get the stride, length, and weight values for the B-node. In an RPC, there is no interference, and
therefore the node is left as it is.

The binary representation of the stride between an array reference in the reuse path and the array
reference generating exploitable reuse can be written as s,, sp—1, ..., So. Consider the case where the

- w0
o
3=

=n3m

H

k]

2
1o

3k
2

3=

=n3m?

=n3m

s
=

Figure 4: Interference graph of MM

stride is a power of two. In this case, the binary representation of the stride has a single bit, sy,
that is one. Thus, it 1s clear that if some subset of the bits s;_1, ..., sg are used for the set and line
fields, then the array reference in the reuse path will consistently interfere with the exploitable reuse.
However, if the bits s; and above are chosen for the set and line fields the array reference may be
located at a different set location depending on the precise multiple. Thus, consistent interference
can be reduced by selecting bits that are to the left of the ones in the binary representation of the
stride.

The next step is to construct the interference table consisting of n columns for a machine with an
n-bit address space. 3 The purpose of constructing the table is to assign to each address bit a weight
denoting the desirability of choosing that bit for the set field. Each interference arc is represented
by a group of log(length) rows in the interference table. The binary representation of the stride is
obtained and signed-bit recoding is used to reduce the number of ones in the binary representation.
* The negative and positive ones are both represented by 1, because both have the same effect in our
application. For each interference arc, the first row is formed by entering a 1/2 at each position in
the binary representation of the stride with a positive or negative one. The remaining log(length)—1
rows are formed by placing a copy of the previous row and dividing each entry by 2 and shifting each
entry to the left by one. Now, each row in the table is multiplied by the weight of its corresponding
interfering arc. We then compute the sum of the numbers in each column. Each of the sums is the
weight of its corresponding bit and denotes the desirability of choosing the bit for inclusion in the
set field. The log(size of datum) lowest-order address bits are assigned the weight of infinity. Thus,
for a 4-byte integer, bits 0 and 1 will have infinite weights. This is done to ensure that these bits
will never be permuted. In the LSelBip implementation scheme, it is necessary to keep the log(page
size) lowest-order bits unpermuted.

The final step in the process is forming the permuted address. First, we rank the bits according to
their respective weights. We then pick the log(line size) heaviest bits for the line field of the address.
Note that this selection will always include the infinitely-weighted bits. The next log(number of
sets) heaviest bits are selected for the set field. The rest of the bits are placed in the tag field. For

3If we want to restrict the number of address bits that are permuted, we can restrict n to be less than the total
number of address bits.

*In signed-bit recoding, a string of ones is replaced by a positive one (1) and a negative one (T) For instance,
01111001 is replaced by 10001001.

[15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0]

1 N s1=512, 11 =43,
21 Pooror ot i wa=5123/43 +
22 A 5123/432
o238
2'_4 : X W1
25 |
216 : b
1 | w2=412=43
b1 1 1| w2=5123/43
. 22 ' H H
23 |
boze L L xwe
>5 | '
I N N N SR
wi wli wi wi wi wi w2 w2 w2 w2 w2 w2 . -
64 32 16 8 4 2 64 322 16 8 4 2 Bit Weight
3 11 9 7 5 3 14 12 10 8 6 4 2 1 BitRanking

Comparison (8K B direct-mapped cache, 32-byte line size):

StaBitS: (15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0]

SeBiP [15 8 7 14 13 12 11 6 5 4 3 10 9 2 1 O]

Figure 5: Interference table of MM

example, to form a 32-bit selective bit-permutation mapping which will be used to address an 8KB
direct-mapped cache with 32-byte line size, we take the five heaviest bits for the line field, the next
eight heaviest bits for the set field, and the rest for the tag field.

We are now ready to build an interference table of MM for such cache configuration. Substituting
variables with values, and acknowledging that the size of an integer in Fortran is 4 bytes, we obtain
the actual value of each stride and its properties. Fig. 5 is the final form of the table. Note that
we keep bits 1 and 0 in their places as the two least-significant address bits. Again, this is because
the unit size is 4 bytes. We then compare the address bits under selective bit-permutation and the
standard bit-selection.

The entire selective bit-permutation algorithm is summarized in Fig. 6.

4 Implementation issues

To implement the algorithm, we present three implementation possibilities. The first is LSelBiP,
in which both the stride determination and the bit permutation are done in software. The second
is SelBiP, in which the strides are determined in software but the actual bit permutation is done in
hardware. The third is Dynamic Set Selection, in which both the stride determination and the bit

SelBiP(input: program segment) {

/* Declare reuse paths */
Determine all exploitable reuse paths in the segment;

/* Build interference graph */
For (each reference in each reuse path) do
If (conflict with reuse) then {
Determine the symbolic expression of the difference between the
accessed and the reused locations;
/* This expression is the stride of the conflict */
Calculate the length and weight of the conflict;
X

/* Build interference table */
Make a table of n columns and some number of rows for an n-bit address space;
For (each stride of conflict found) do {
Obtain its binary representation;
For (each 1 in such representation) do {
power = 1;
Current bit position is the position of 1;
Start from the top-most row;
For (power < length of conflict) do {
Assign the weight (2" -power * weight of conflict) to current bit
position;
power = power+i;
Shift left the current bit position by omne;
Go to the next row;
}
X
}

/* Calculate the total weight of each column */
For (each column in the table) do
If (column is non-empty) then
Sum all the weights in that column;
else
Assign the total weight of 0 to that column;

/* Each total weight of a column denotes the desirability of choosing the
corresponding bit position for the set and line field */
Rank the bit positions according to the total weight of each;
For (each memory reference in the segment) do {
Assign the address bits corresponding to the log(line size) heaviest
bit position to the line field;
Assign the address bits corresponding to the next log(number of sets)
heaviest bit position to the set field;
Assign the rest of the address bits to the tag field;
X
b

Figure 6: The Selective Bit-permutation algorithm
10

permutation are done in hardware.

4.1 The LSelBiP scheme

The motivation for an entirely-software scheme for selective bit-permutation is its ease of imple-
mentation. The delivered improvement can be enjoyed via moderate modifications to the system
softwares, i.e. compilers and operating system, without any additional hardware. The approach
that we take assumes that the computer system supports both cache and virtual memory. From the
point of view of a cache, an address consists of a tag field, a set field, and a line field. From the
stand point of a virtual memory, the same address consists of a page number and a page offset.

A cache selects a set for an incoming reference by extracting bits from the set field of the
reference’s address. When the address is virtual (not translated), the cache is said to be virtually-
indexed; when it is physical, the cache is physically-indexed. Taylor et al [16] and Wang et al
[20] elaborate on why physically-indexed caches are desirable, especially for cases where the needed
address translation does not seriously impair access time. Often times, the size of a physically-
indexed cache is so much bigger than the size of a memory page that the set field of an address
overlaps with the page number. Fig. 7 illustrates this case for 64KB direct-mapped cache with
32-byte line size and 4KB page frames. Thus, address translation affects large physically-indexed
cache performance because page translation is partially responsible for selecting a cache set. In
the same spirit as Kessler and Hill’s careful-mapping algorithms, we introduce a selective-mapping
algorithm, which employs a variant of the selective bit-permutation algorithm, as another solution
to the problem when additional information regarding the memory access pattern is available.

In this scheme, the compiler determines the stride of a conflict and its associated properties and
calculates the bit permutation. It then generates a mask that carries information regarding the
permutation and inserts calls in the resulting object code to communicate the masking information
to the operating system. Preferably, this routine is executed at the beginning of the program;
however, strictly speaking, it can be executed anytime before the relevant memory references. In
the case where the stride of a conflict can only be determined during run-time, the compiler will
also need to add the mask-generating routines to the object code. The page-fault service routine of
the operating system uses as its page placement algorithm a variant of the selective bit-permutation
algorithm, which permutes only those address bits in the page-number field that overlap with the set
field. For large physically-indexed caches, the permuted bits will include several high-order set bits.
In our example memory parameters, four highest-order set bits are permuted. On a page fault, the
page fault service routine inspects the masking information. If a mask is found, the routine uses it
to permute the bits in the fault-causing virtual page number. The permuted bits form the low-order
part of the physical page number. The service routine has the flexibility to select the high-order
part of the physical page number from the pool of available page numbers with matching low-order
part. Fig. 8 depicts the interaction between the compiler, the object code, and the operating system
in this scheme.

4.2 The SelBiP scheme

The LSelBiP scheme has an inherent limitation in that it limits the degree to which address
bit permutation is performed. Here, we present an approach where the selective bit-permutation
algorithm is employed to its fullest extent.

11

16 bits 11 bits 5 hits

< > < >
TAG | SET LINE
< 20 bits ; }E{ 12 bits >
PAGE NUMBER | OFFSET
!
" 4bit'
overlap

Figure 7: Address Field Overlap

©)
install
mask
............ 1 @ install_mask(...,———®| Reserved
............ input output memory
............ > Compiler > for OS
........................ ©)
------------------------ CheCk for
source object @ mask ©)
VPN: vi rtu_aJ page number input Page-fault | output
PPN: physical page number VPN— rvice routind— PPN

The numbers denote the order in

which the events take place (in09)

Figure 8: The LSelBiP Scheme

4.2.1 Virtually-addressed caches

In this scheme, the compiler calculates the strides of accesses in a program segment, and uses
information on the cache parameters to calculate the SelBiP mappings to avoid the detected inter-
ferences. It then encloses the program segment with a special pair of instructions which tell the
hardware that an alternative mapping should be used for that region of the program. The instruc-
tion pair, which acts as would a pair of begin and end statements, install and remove the SelBiP
mapping from a set of special registers in hardware. In addition, they also invalidate all cache entries
at both the entry and the exit points of such region in the program to avoid aliasing problems.

For an n-bit address space, the special registers, which we will denote collectively as the selectors,
is an array of n registers whose width is log(n) bits. Thus, for a 32-bit address space, it is a collection
of 32 5-bit registers. The output port of each of these registers is connected to the select line of a
1-bit n x 1 multiplexer. The input to the n multiplexers is an address, which could be either physical
or virtual depending on the architecture of the memory hierarchy. The output of the multiplexers
represent the new address obtained under the SelBiP mapping, and go to an n-bit register. The
content of this register is then used to address the cache. Fig. 9 depicts this hybrid scheme for a
32-bit address space.

Assuming that the selectors and the input address are stable before the rising edge of the clock,
the critical path of this implementation is the propagation delay of the 32x1 multiplexers. Based

12

Software Hardware

5 hits,

Address

I* parameter is Sel BiP mapping*/
begin_remap (0,1,9,2,10,3,...) —

installs

roblem loo : 32 32 32 32
P P 3 bits] e bits bits bits

end_remap 32regs| | 10

......... 32x1 32x1 32x1

32-bit Converted Address

Figure 9: The SelBiP Scheme

on consultations with VLSI designers, this delay should be less than one-fourth of the CPU clock
cycle. In addition, since we are using this scheme only on program segments with strided accesses
and bypassing it for the rest of the program, the average cache latency for the entire program should
increase only slightly.

In many numerical programs, the dimensions of various arrays are dependent on external input.
The strides are often a function of the dimensions of some of the arrays and are not known at
compile time. In this case, the compiler will add run-time code to calculate and install at run time
the SelBiP mapping once the needed information is gathered. The new mapping can then be used
to avoid conflicting set accesses. A cache miss is incurred the first time the data is accessed under
the new mapping.

4.2.2 Physically-addressed caches

In physically-addressed caches, virtual addresses are translated into physical addresses using a
TLB (Translation Lookaside Buffer) lookup. The physical address is then partitioned into three
fields and used to access the cache.

The key feature of SelBiP implementation for physically-addressed caches is that each page
table and TLB entry is augmented with an additional field to specify the address permutation to be
employed for all accesses into that page. Thus, the new field functions as would the selector registers
described previously. On the required TLB lookup for each address, we also obtain additional
information on the set and line mapping at the same time. The physical page number, the page offset,
and the permutation information are fed to a permutation hardware that will give the permuted
address to be used for cache access.

4.3 The Dynamic Set Selection scheme

Loop-dense numerical applications (LDNA’s) have been the mainstay of the workload of engi-
neering workstations ever since their conception. These applications have a characteristic that is

13

Data Type

Regular set 00
Regular set 00
Remapped set ~, 01
Regular set \ 00

Conflicting Addresst Regular set %
Addresses Address 2 Remapping point 10
Regular set /1 00

Address 3

Remapped set / 01
Regular set / 00
Remapped set=”__ | 01
Regular set 00
Regular set 00

L

Figure 10: Dynamic Set Selection Scheme

particularly attractive for the application of SelBiP ®; namely, they have regularly-strided accesses.
That is, the loops inside an LDNA access matrices in regular (constant) strides. The desire to exploit
this phenomenon is what motivates us to develop an entirely hardware implementation. As before,
we assume a write-through policy.

The idea behind dynamic set selection is to use the cache itself as a secondary cache after a first
time miss. The first access is always conducted using the standard bit-selection (StaBitS). When
this is a miss, a second access is conducted using SelBiP. Thus, like the column-associative cache
and victim cache, a single cache access is required for non-conflicting addresses in the cache and
two cache accesses are required for conflicting ones. Fig. 10 provides a conceptual overview of the
dynamic set selection.

Under the scheme, each cache set can be one of three types. A cache set can contain data installed
under the regular StaBitS mapping (regular set). Alternatively, a cache set can contain data installed
under the SelBiP remapping (remapped set). Finally, a cache set can trigger a remapping to another
set because of conflicting addresses accessing it. Such set then acts as a remapping point. The type
of sets in the cache is maintained by a two-bit tag. Finally, a remapping point and all its remappings
that were caused by the same constantly-strided conflicts belong to a remapping tree.

Imagine that a regular, non-permuted address a is used in a write to the cache. We call the set
accessed by that StaBitS address the base set. Fig. 11 illustrates the next steps taken under the
scheme. A StaBitS access is a hit if, in addition to the usual tag match, the the base set is a regular
set. When this happens, data is written to both the set and lower-level memory. Otherwise, the
cache control logic checks the type of the base set. If it is either a regular set or a set that has been
declared as a remapping point, the cache controller continues to see if a is a part of a strided access
stream. If the base set is a remapped set, data is written to it and to lower-level memory.

When the cache controller detects that the miss-causing address a is part of a strided access
stream, it tries to remap the address to another set using SelBiP. When the remapping is successful,
data is written to the new set which we call the target set. However, the controller may find out
that the target set is a remapping point and thus a replacement policy for it is in order. As indicated
by Fig. 11, most of the time we keep the remapping point around and write the data directly to
lower-level memory. It is imperative, nevertheless, that we not keep remapping points unreplaced
all the time because each of them will outlive its usefulnes at some point. We suggest a construction
of an aging mechanism for the remapping points which guarantees that a remapping point will be

5In this section, the mnemonic SelBiP refers to the algorithm, not to the implementation scheme.

14

StaBitS[a]; Mnemonics

btype==00 ? e
Bl S StaBits{a]: 1st cache
access (regular mapping)
CPU-$; btype == ? SelBiP[a]: 2nd cache
CPU »>MEM ‘% iON‘ access (SelBiP mapping)
* Strided CPUS$; Strided % btype: type of base set

access ? access ? ttype: type of target set

CPU - MEM;
}?/ \0‘ btype := 00 15/ \OA 00: regular set

Insdll mask;, - cpy g, SdBiPld; cpu_MmEm; | O remappedset
SelBiPfal; ttype == ? 10: remapping point

btype := 10; CPU -MEM;
ttype=="? ‘}1/ ¢ONOA $: first-level cache
M ¢0N0‘ CPU-$; CPU-$ CPU—MEM; Mni\r/lnb trr;er;‘f:;;f;‘e

CPU-$; CPU-$; CPU - CPU - |\ng; CPU _,RNIISM; — : —
ttype := OL; :
CPULMEM; cpu_MEm; MEM TYPE=rn &S remapping

h assign RID
ttype := 01; assign RID
assign RID

Figure 11: Write Decision Tree

eligible for replacement after some number of accesses, and that their number does not exceed a
certain predetermined threshold. It will use information such as the length and the weight of an
interference to determine the life span of a remapping point. Such information can be determined
from an empirical study of the memory- referencing behavior of the machine’s typical workload. The
existence of such mechanism also resolves some issues regarding the possibility of having more than
one remapping trees per remapping point. This event corresponds to a matrix being accessed in
several manners, thereby resulting in several constantly-strided access streams for the same matrix.
The aging mechanism needs to employ, in addition to the interference statistics, a graph-coloring
scheme to make sure that a remapping point is only remapping one constantly-strided access stream
at a time. Such coloring scheme is widely implemented in compilers for register allocation purposes.

The read operation has also been expressed as a decision tree in Fig. 12. In resolving misses, it
follows closely the steps taken during a write operation. The difference is that on a SelBiP access
after missing on a remapping point, the scheme checks if this second access is a hit. This is not
required in the write operation because write-through caches do not distinguish between a write
miss and a write hit. A SelBiP access is a hit if, in addition to the usual tag match, the target set is
a remapped set belonging to the correct remapping tree. This new criterion brings about the need
of a remapping ID, which will distinguish one remapping tree from another. We recommend the
construction of an ID generator that will assign a number to each remapping tree. Since in general
the number of remapping points corresponds linearly to the number of matrices in an application,
which is relatively small compared to the number of cache sets, we expect the modification to the
cache structure to be fairly moderate both in complexity and in scale.

Let us examine closer the dynamic set selection scheme in the context of an LDNA. Upon a miss,
the cache controller will determine whether the missing address is part of a strided access stream.
In the case of an LDNA, the most likely answer is yes because of the strided nature of the memory
references of the program. The cache controller will then make an effort to assign a new set for the
data. This course of action corresponds to following the left path after the starred step. In the case
of other programs, for instance database applications, memory spaces are dynamically allocated and
therefore not likely to be contiguous. So, the likelihood of having a regularly-strided access stream is
dramatically reduced. This results in the cache controller following the usual miss-handling scheme,

15

StaBitS[al; Mnemonics
btype==00? StaBitS[d]: 1t cache
noA access (regular mapping)
RD btype=="? SelBiP[a]: 2nd cache
o1 10 access (Sel BiP mapping)
A
% Strided MEM - $; Strided btype: type of base set
acce< MEM — CPU: acce< ttype: type of target set
y o btype:= 00 ?/ no
?/ A ype _ A 00: regular set
'r;ag_;n[aa]* MEM - $: t?e'B'P[gll?& MEM - CPU: 01: remapped set
Fal; . ype== 10: remapping point
btype := 10; MEM-CPU; RID match ?
ttype == ? yf/ NG $: first-level cache
‘y/ | (N) 4 MEM: therest of the
v A RD ttype=="7 memory hierarchy
MEM - $; MEM - $; MEM - CPU;
MEM -CPU; MEM —CPU; o YOl 12 RID: remapping ID
ttype := 01, assign RID ; . .
assign RID MEM - $; MEM - $; MEM - CPU;
MEM - CPU; MEM - CPU,;
ttype:=01; assignRID
assign RID

Figure 12: Read Decision Tree

which corresponds to following the right path after the starred step in either tree. In conclusion,
when an LDNA is running, most of the cache sets it is using are remapped sets. In contrast, when
an application of different type is running, most of the cache sets being used are regular sets.

One concern that may come to mind after closer examination of the decision trees is the possibility
that remapped data and regular data are replacing one another before either one is reused. Such
event could easily lead to thrashing. The question now is how likely either type of data remains
intact before it is reused. To answer that, let us take a closer look at the structure of a typical
LDNA. An LDNA is comprised of clusters of loops with some common matrices being operated on
going from one loop cluster to another. Memory references made inside a loop cluster are regularly
strided. The loop clusters are separated by initializing instructions. Most of these instructions
set up the loop parameters such as loop indexes, and do not access the matrices used in the loop
cluster following them. Consequently, they are more likely to manipulate single variables (registers)
instead of matrix elements (memory space). Even when some of them do access matrix elements,
their number is usually small enough that only a few of the remappings are replaced. Therefore,
a remapping is likely to remain intact going from one loop cluster to another. As a consequence,
trashing is unlikely.

As mentioned previously, in other types of applications, most of the cache sets used are regular
sets instead of remapping ones. Thus, chances are slim that a regular set will be replaced by a
remapping. The possibility of thrashing is, therefore, minimal.

At the appendix of the report, we present an example implementation of the dynamic set selection
for the direct-mapped, write-through cache configuration.

16

5 Simulation Experiments

In this section, we compare and contrast the data gathered from simulations of two caches (64KB
and 8KB direct-mapped; 32-byte line size) under our bit-permutation and the usual bit-selection
scheme. In the first configuration, LSelBiP implementation is assumed, whereas in the second the
SelBiP scheme is used. We begin by describing the metrics we will use to evaluate the performance
of our algorithm, and continue with the description of the traces and the analysis of the result.

5.1 Performance Metrics

We use two cache performance metrics to evaluate our algorithm: total miss rate, and percentage
of mapping misses removed.

Total miss rate is the ratio of the number of misses to the total number of references. Using
the OPT model, the total miss rate can be broken down into 4 components: compulsory, capacity,
mapping, and replacement misses [15]. Mapping misses are of particular interest to us, since they
arise from the set-mapping strategy and are affected by the choice of set-mapping strategy (e.g. our
bit-permutation mapping instead of the usual bit-selection scheme).

Percentage reduction of mapping miss rate is the percentage by which the number of mapping
misses obtained under the usual bit-selection scheme is reduced by our bit-permutation scheme.
Thus, it follows that:

MmMpit—selection — MMpit—permutation
%mmreduced = P x 100%

MMpit—selection

where mm stands for mapping misses, and mma;s—setection aNd MMpit_permutation denote such
misses obtained under the usual scheme and under our bit-permutation, respectively. This metric
allows us to focus more on the effectiveness of our scheme (i.e. reducing conflict misses), since it
excludes such miss components as compulsory and capacity misses that any cache configuration
must suffer.

5.2 Environment and Trace Description

We compiled six Fortran programs on a DECstation 5000/120, and then used the Mips Pixie tool
to generate address traces to feed directly to a modified Cheetah cache simulator [15] that simulated
the configurations.

The programs are given in Table 1, and the trace of each is run to completion. ® We selected
the programs because each has regular strided accesses. In addition, MM and LU contain loops
that are typical in many engineering and scientific applications, whereas tomcatv and swm256 are
two of the SPEC92 benchmark programs that exhibit the largest data cache miss rates [4]. £ftpde
manipulates matrices that are larger than those present in the SPEC92 suite and thus is suitable for
illustrating misses in bigger caches. The blocking factors for blocked programs are determined from
the formulas n > m? + 3m and n > m? respectively where n is the cache size and m the desired
blocking factor [21].

8Except fftpde, whose run is simulated up to 50 million data references.

17

Name Description

MM Blocked multiplication of 2 128x128 matrices;
blocking factor = 43

MMbig | Blocked multiplication of 2 256x256 matrices;
blocking factor = 254

LU Blocked LU-decomposition of a 128x128 matrix;
blocking factor = 45

tomcatv | Mesh-generation program (SPEC92)

swm256 | Shallow water equation solver (SPEC92)

fitpde 3-D Fast Fourier transform (NAS)

Table 1: Description of benchmark traces

Pro- Total Miss Rate Mapping Miss Rate

gram StaBitS | LSelBiP | StaBitS | LSelBiP | % reduction
MMbig | 0.3565 0.1996 0.3252 0.1644 49.5%
tomcatv | 0.0948 0.0640 0.0533 0.0226 57.6%
fftpde 0.0699 0.0253 0.0528 0.0083 84.3%

Table 2: Miss rates for 64KB direct-mapped cache

5.3 Simulation Results and Analysis

We present our simulation results in Tables 2 and 3. Note that if the mapping miss rate
obtained under the bit-permutation scheme is higher than that obtained under the usual scheme,
the percentage of mapping misses removed becomes a negative quantity.

5.3.1 Performance of LSelBiP on 64KB cache

Our simulation assumed that a physical page frame with the desired characteristics is always
available. The results therefore represent the improvement of our scheme over the page-coloring
scheme [10] when under each scheme the page mapper can successfully find an available physical
page frame with the appropriate characteristics. Even when permutation is restricted to the bitsin a
page number, the LSelBiP scheme manages to achieve substantial reduction of misses. With only four
set bits to replace, it halves the total miss rate of each trace on average. The scheme also successfuly
removed approximately 50% of mapping misses of MMbig and tomcatv. In £ftpde, it reduces the
mapping misses to less than 1% the original count. This suggests that limited permutation is a very
attractive implementation option.

5.3.2 Performance of SelBiP on 8KB cache

The SelBiP scheme performs very well for MM and LU traces, reducing the total miss rate of
each trace by as much as a factor of 4. Mapping misses for each trace is also greatly decreased
in both cache configurations. The scheme successfuly removed up to 75% of the existing mapping
misses. The success of our scheme lies mainly in the ease at which the strides of accesses in both

18

Pro- Total Miss Rate Mapping Miss Rate
gram StaBitS | SelBiP | StaBitS | SelBiP | % reduction
MM 0.3818 | 0.0932 | 0.2475 | 0.0760 69.3%
LU 0.4878 | 0.1447 | 0.3779 | 0.0901 76.2%
tomcatv | 0.1701 | 0.0649 | 0.1258 | 0.0217 82.7%
swm2h6 | 0.1820 | 0.0990 | 0.0750 | 0.0302 59.8%

Table 3: Miss rates for 8KB direct-mapped cache

10"0

10M-1 -
D 3
©]
8]
S
= N i
= 1:Tota,StaBitS 4:Mapping,SelBiP

107-2 | 2:Mapping,StaBitS 5:Capacity, StaBitS 5

6:Capacity,SelBiP

F | 3:Total,SelBiP

1003 I I I I I I I I
16 20 24 28 32 36 40 44

Blocking factor

Figure 13: Miss rates of MM trace simulated on 8KB cache

programs can be detected. In the traces of tomcatv and swm256, the strides of accesses are not as
obvious as those in the previous traces. Nevertheless, our bit-permutation managed to achieve, on
average, a factor of two improvement in total miss rate and a 75% reduction in mapping misses for
tomcatv trace.

The plot in Fig. 13 reveals that mapping misses comprise an overwhelming majority of the total
miss rate for blocked MM. By reducing such misses, we are bringing down the total miss rate as
well. Note that as the blocking factor is increased from 40 to 44, capacity misses for both mappings
started to rise. This is due to the fact that blocks are getting too big to fit in the cache. The
difference of the manner in which each capacity miss grows, however, stems from the fact that we
are using different bits for the line field in each mapping. This causes different fully-associative miss
rates, which in turn causes different capacity miss rates. Nevertheless, the selective bit-permutation
mapping is able to maintain a superior performance relative to the standard bit-selection mapping,
as the plot evidently shows.

19

6 Conclusion

Compared to the rapid improvements in cycle time and issue widths in high performance pro-
cessors, the improvement in memory access times has been modest. Cache misses have a large and
increasing impact on overall performance.

Virtually all caches have used bit-selection mapping in which the binary representation of the
address is partitioned into a contiguous tag, set and line fields. In this report, we propose selective
bit-permutation mapping, where the address bits are permuted before being partitioned into the tag,
set and line fields. We develop an algorithm that computes the permutation required for each data
structure in the program. We use the compiling technology that has been developed for automatically
blocking programs. The objective of our algorithm is to choose a bit-permutation mapping so that
the exploitable reuse in the program is utilized by the cache. The process involves first determining
pairs of array references that result in exploitable reuse and the reuse path consisting of other array
references between the use and the exploitable reuse. For each array reference along the reuse
path, we determine if there is a consistent stride that can interfere with the reuse. For each such
potentially interfering reference we create an arc and record its stride, length, and weight to form the
interference graph. The interference table is formed from the interference graph, where the weight
of each entry denotes the desirability of choosing the corresponding bit for inclusion in the set field.
The permuted address is then formed by ranking the bits according to their respective weights, and
assigning the heaviest bits to the line field, the less heavy ones to the set field, and the light ones to
the tag field.

We conduct trace-driven simulation of six benchmark programs (2 variants of blocked matrix
multiplication, blocked LU-decomposition, tomcatv, swm256, and £ftpde) on 8KB and 64KB direct-
mapped caches. The selective bit-permutation mapping obtains as much as a four fold and a six
fold reduction of total and mapping miss rates respectively in the three kernel programs. In the case
of the more complex SPEC92 and NAS programs, the reductions range from two to three fold for
total miss rate, and from two to six fold for mapping miss rate.

We discuss the implementation options of our algorithm. We present three schemes: an entirely-
software scheme, a hybrid software-hardware one, and an entirely-hardware approach. The first
two options requires compiling techniques such as stride determination. The compiler provides the
stride of each access, typically in regions of the program that can have high cache conflict miss
ratios. It then uses this information to generate masks that will select which address bits to use
for set selection or, in cases where the strides are not known until run-time, insert code that will
generate such mask. In the entirely-software approach, the operating system uses the stored mask to
permute the address bits during the virtual-to-physical address translation; thus it is only applicable
to physically-indexed caches. In the hybrid approach, the hardware provides support for carrying
out the actual bit permutation. In the entirely hardware approach, the mask generation and the
bit permutation are done by the cache logic. Any of the last two schemes can be applied to either
physically- or virtually-indexed caches.

7 Acknowledgements

We wish to thank Ashok Singhal of Sun Microsystems, whose suggestions led to the LSelBiP
scheme, and Michael Schlansker of Hewlett-Packard Laboratories in Palo Alto, for refining the
original SelBiP scheme.

20

References

(1]

A

A. Agarwal. Analysis of Cache Performance for Operating Systems and Multiprogramming. PhD thesis,
Stanford University, 1988. Available as Technical Report CSL-TR-87-332.

A. Agarwal and S. D. Pudar. Column-associative caches: A technique for reducing the miss rate of
direct-mapped caches. In Proc. of 20th Intl. Symp. on Computer Architecture, pages 179-190, 1993.

C. Eisenbeis, W. Jalby, D. Windheiser, and F. Bodin. A strategy for array management in local memory.
In Proc. 8rd Wkshp. Prog. Lang. & Compilers for Par. Comp., 1990.

J.D. Gee, M.D. Hill, D.N. Pnevmatikos, and A.J. Smith. Cache performance of the SPEC92 benchmark
suite. IEEE Micro, pages 17-27, August 1993.

J. L. Hennessy and D. A. Patterson. Computer Architecture — A Quantitive Approach. Morgan
Kaufmann Publishers Inc., 1990.

M. D. Hill. Aspects of Cache Memory and Instruction Buffer Performance. PhD thesis, University of
California, Berkeley, 1987. Available as Technical Report UCB/CSD 87/381.

W. W. Hwu and P. P. Chang. Achieving high instruction cache performance with an optimizing
compiler. In Proc. of 16th Intl. Symp. on Computer Architecture, pages 242—-251, 1989.

N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-associative
cache and prefetch buffers. In Proc. of 17th Intl. Symp. on Computer Architecture, pages 364-373, 1990.

N. P. Jouppi. Cache write policies and performance. In Proc. of 20th Intl. Symp. on Computer Archi-
tecture, pages 191-202, 1993.

R. E. Kessler and M. D. Hill. Page placement algorithms for large real-indexed caches. ACM Trans.
on Computer Systems, 10(4):338-359, 1992.

M. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance of blocked algorithms. In Proc. of
ASPLOS IV, 1991.

S. McFarling. Program optimization for instruction caches. In Proc. of ASPLOS 111, 1989.

A. Seznec. A case for two-way skewed-associative caches. In Proc. of 20th Intl. Symp. on Computer
Architecture, pages 169-178, 1993.

H. S. Stone. High-Performance Computer Architecture. Addison-Wesley, 2"¢ edition, 1987.

R. A. Sugumar and S. G. Abraham. FEfficient simulation of caches under optimal replacement with
applications to miss characterization. In Proc. ACM SIGMFETRICS Conf., pages 24-35, 1993.

G. Taylor, P. Davies, and M. Farmwald. The TLB slice-a low cost high-speed address translation
mechanism. In Proc. of 17th Intl. Symp. on Computer Architecture, pages 355-363, 1990.

O. Temam, C. Fricker, and W. Jalby. Impact of cache interference on usual numerical dense loop nests.
Proc. IEEE, 81(8):1103-1115, Aug 1993.

Olivier Temam. Study and optimization of numerical codes cache behavior. PhD thesis, University of
Rennes, 1993.

D. Thiebaut. On the fractal dimension of computer programs and its application to the prediction of
the cache miss ratio. IEEE Trans. on Computers, 38(7):1012-1026, July 1989.

W. Wang, J. Baer, and H. M. Levy. Organization and performance of a two-level virtual-real cache
hierarchy. In Proc. of 16th Intl. Symp. on Computer Architecture, pages 140-148, 1989.

M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proc. of the SIGPLAN °91 Conf.
on Prog. Lang. Design and Implementation, pages 30—44, 1991.

Example implementation of the dynamic set selection

We present an example of how the dynamic set selection can be implemented. Fig. 14 displays the

additional datapath and memory required in the tag store. The data store of the cache remains the same.

21

NType TAG SET

v vv T2 LT3 B> o

MemWR/RDt WR/RD
—\0 1/ \01 na 10 Tk 013 1 UpdateType CTRL CType
TagWR S /-Cét NType €] [¢—RID

i e Install RID € — Age
V | TAG RID MASK AGE InstallMask <€—
Install Age €—

Update|
Type

R @’

Mnemonics

CType: Current Type

NType: Next Type

TagWR: Tag Write Enable
MemWR: Memory Write Signal
;‘ MemRD: Memory Read Signal
Permutation Hit/Miss: Usual cache hit/miss

TAG SET

y v
CType Comp RID Age

Figure 14: Example cache implementation

Suppose that a TAG,SFET pair is used to address the cache. M ASK is used to store the value of the
stride at the beginning of a constantly-strided access stream to a set, which is detected by sensing a repeated
stride of addresses. The stored value is unchanged for the duration of the stream. The value stored in MASK
acts as a mask in the remapping process.

The remapping employs a simplified SelBiP algorithm, in which the length of any strided access stream
is assumed to be I. Theoretically, { is the length of the interference in the stream; however, we assume that
the length of an interference is the same as the length of the stream containing it. Therefore, only log(l) bits
in the set field are changed. The actual value of ! can be determined from an empirical study on the memory-
referencing behavior of the typical workload of the machine. In ideal situation, the machine designer has
the control of increasing the hit rate of a direct-mapped cache to that of a I-way set associative cache. It is
preferred that the highest-order set bits are replaced. This is done to ensure the farthest-possible separation
between remappings. The intended result would be to reduce the likelihood that the remapping is replaced
before it is reused. The principle of data locality dictates that consecutive accesses are often localized in a
certain region of the cache. Thus, when an intefering access replaces a remapping, other accesses that follow
are likely to be contained to its neighborhood. By spreading out the remappings, we reduce the chance that
other remappings are clobbered once a remapping is replaced.

To give an example, let us assume that 4 highest-order bits of the set field are to be replaced with 4 bits
of the tag field. We copy bits from the tag field to the set field starting from that tag bit whose mask is 1,
and on to the left of it. The procedure is carried out until we have copied 4 bits. In the case of overlapping
copy fields (i.e. the distance between a pair of 1’s in the mask is less than 4), the procedure is done until
all the bits contained in the union of the fields and 3 more to the left of such union are copied. Thus, for
the mask 0000101011, we copy all but the highest-order tag bit to the set field. The state diagram of the
permutation logic is given by Fig. 15. Note that the clocking mechanism has to be faster than that of the
system clocking since the permutation must not take more two cycles. We do not see this as a problem due
to the simplicity and the parallelism of the operations in each state.

DON DONE

Copy;
Get next;
Count++

Copy;
Get next;
Count++

DON DONE

Copy;
Get next;
Count++

DONE

Figure 15: States of the sample permutation logic

The life of a remapping point is determined by means of an aging mechanism. Aging is a counter
which decrements the value stored in AGE. Each entry in AGE is initialized to the intended age of each
remapping point. This age corresponds to the value w*! of the interference symbolized by the existence of the
remapping point. Thus, during a cache miss on a remapping point, the cache control logic sees if the age of
the remapping point is greater than 0. If it is, it tells Aging to decrement the age of the accessed remapping
point. If it is 0, the type of the set, currently a remapping point, is converted to that of the arriving data,
either regular or remapped. The set continues to be a non-remapping point until a new constantly-strided
access stream arrives, in which case the set is converted back to a remapping point.

To generate a remapping ID (RID), we recommend selecting several highest-order bits and some lowest-
order bits of the remapping set. The principle of data locality suggests the possibility of adjacent remapping
points. Selecting the lowest order bits ensures that neighboring remapping points are assigned different
RID. However, our experience with numerical applications suggests that most of the time a remapping point
corresponds to the starting address of a matrix. In this case, the distance between remapping points are
far enough to merit selecting some highest-order bits. By covering both cases, we believe that this simple
RID-generating scheme can perform satisfactorily. I DGen is the hardware that selects the appropriate set
bits and produces the RID for a remapping point. It contains a register that stores the generated RID in
case the next cycle is a remapping and consequently the controller needs to install the proper RID in the
remapping set. The RID itself acts as a control signal. In the mandatory StaBitS access, a register inside
the cache controller stores the RID of the accessed set. In the optional SelBiP access, the stored RID is
compared against the new RID that was just read. When trying to read a remapped set, the result of the
comparison is used to determine cache hit or miss.

Fig. 16 gives the behavioral description of the cache control logic.

/* Note: follows C language convention, all numbers are in binary, */
/* | denotes concatenation of signals */
Start:
switch (WR)
case 1: switch (Hit | CType | Comp)
case 0000:
case 100x:
case 110x: TagWR = 1; /# write to set & memory */
MemWR 1;
goto Start;
case x01x: TagWR = 1; /# write to set & memory, */
MemWR = 1;
UpdateType = 1; /* and change to regular set */
NType = 00;
goto Start;
case 0001: UpdateType
NType = 10;
InstallRID 1;
InstallAge = 01;
InstallMask = 1;
Remap = 1; /* 2nd access */
switch (CType)
case 00: UpdateType
NType = 01;
InstallRID
case 01: TagWR = 1;
MemWR = 1;
goto Start;
case 10: switch (Age)
case 0: UpdateType = 1;
NType = 01;
InstallRID = 1;
other : TagWR = 1;

1; /* change to remapping point */

1;

13

MemWR = 1;
goto Start;
case 010x: switch (Age)
case 0: TagWR = 1;

MemWR = 1;

UpdateType = 1;

NType = 00;

goto Start;

other : InstallAge = 10; /* Decrement Age */
Remap = 1; /* 2nd access */
switch (CType)
case 00: UpdateType = 1;
NType = 01;
InstallRID = 1;
case 01: TagWR = 1;
MemWR = 1;
goto Start;

Figure 16: Behavioral description of the cache control logic

case 10: switch (Age)
case 0: UpdateType = 1;
NType = 01;
InstallRID = 1;
other : TagWR = 1;
MemWR = 1;
goto Start;

case 0: switch (Hit | CType | Comp)
case 0000:
case 100x:
case 110x: goto Start;
case x01x: MemRD = 1; /# read from memory */
TagWR = 1; /# write to cache */
UpdateType = 1; /* change to regular set */

NType = 00;
goto Start;
case 0001: UpdateType = 1; /* change to remapping point */
NType = 10;
InstallRID = 1;
InstallAge = 01;

InstallMask = 1;
Remap = 1; /* 2nd access */
switch (CType)
case 00: UpdateType
NType = 01;
InstallRID
case 01: MemRD = 1;
TagWR = 1;
goto Start;
case 10: switch (Age)
case 0: UpdateType = 1;
NType = 01;
InstallRID = 1;
other : MemRD = 1;

1;

13

TagWR = 1;
goto Start;
case 010x: switch (Age)
case 0: MemRD = 1;
TagWR = 1;
UpdateType = 1;
NType = 00;
goto Start;
other : InstallAge = 10; /* Decrement Age */
store RID;

Remap = 1; /* 2nd access */

if (CType=01 AND storedRID=currentRID)
goto Start;

else

Figure 17: Behavioral description (continued)

switch (CType)
case 00: UpdateType = 1;

NType = 01;
case 01: InstallRID = 1;
MemRD = 1;
TagWR = 1;
goto Start;
case 10: switch (Age)
case 0: UpdateType = 1;
NType = 01;
InstallRID = 1;
other : MemRD = 1;
TagWR = 1;
goto Start;

Figure 18: Behavioral description (continued)

