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ABSTRACT

In all massively parallel systems (MPPs), whether message-passing or shared-address space, the mem-
ory is physically distributed for scalability and the latency of accessing remote data is orders of magni-
tude higher than the processor cycle time. Therefore, the programmer/compiler must not only identify
parallelism but also specify the distribution of data among the processor memories in order to obtain
reasonable efficiency. Shared-address MPPs provide an easier paradigm for programmers than message
passing systems since the communication is automatically handled by the hardware and/or operating
system. However, it is just as important to optimize the communication in shared-address systems if
high performance is to be achieved. Since communication is implied by the data layout and data refer-
ence pattern of the application, the data layout scheme and data access pattern must be controlled by
the compiler in order to optimize communication. Machine specific parameters, such as cache size and
cache line size, describing the memory hierarchy of the shared-address space machine must be used to
tailor the optimization of the application to the memory hierarchy of the MPP.

This report focuses on a partitioning methodology to optimize application performance on cache-
coherent multiprocessors. We give an algorithm for choosing block-cyclic partitions for scientific programs
with regular data structures such as dense linear algebra applications and PDE solvers. We provide
algorithms to compute the cache state on exiting a parallel region given the cache state on entry; and
methods to compute the overall cache-coherency traffic and choose block-cyclic parameters to optimize
cache-coherency traffic. Our approach is demonstrated on two applications. We show that the optimal
partition computed by our algorithm matches the experimentally observed optimum and we show the
effect of cache line size on partition performance.



1 Introduction

In this report, we present a compile-time data distribution algorithm for shared address space multi-
processors to minimize cache coherency traffic. The algorithm partitions regular programs having linear
array subscript expressions into block cyclic partitions such that cache coherency traffic is minimized.
Applications that perform dense linear algebra computations or solve partial differential equations using
relaxation steps on regular grids are examples of regular programs. The partition algorithm is a five
step algorithm which uses compiler techniques from data flow analysis to determine the cache state for
each loop nest in the program. Changes in cache state are used to calculate the coherency traffic for the
program. Def/use analysis is performed to determine the array sections that are referenced in each loop
nest. The array sections are summarized using cyclic regular section descriptors (CRSDs) which are an
extension of an array summary technique used by the Rice compiler group. Unlike previous descriptors,
CRSDs are sufficiently powerful to represent array subset accesses induced by block-cyclic partitions.

We provide a data flow algorithm which generates the def and use data sets for distributed array data.
We characterize the state of each processor’s cache by classifying data as being in one of three states:
shared, invalid, exclusive. Then we calculate the input and output cache footprints of each state for all of
the parallel loop nests in a program. The size of the difference between output and input cache footprints
is used to estimate the cache-coherency traffic and hence the communication cost. We also show how
the cost function can be optimized by choosing the distribution parameters. We present experimental
results from the KSR1 on two sample parallel programs which show that we are correctly estimating the
cache-coherency traffic and choosing the best partitions for the sample programs.

This report is organized into the following sections. First we discuss related work and describe our
machine and program models. Then we give an overview or our algorithm, background material, and the
details of our algorithm. We follow with experimental results and finally a summary of our contributions.

2 Related Work

The methods described in this report draw primarily on two aspects of parallel processing research:
performance analysis and compilation of applications with regular data structures.

2.1 Performance Analysis

Our work on partitioning regular applications uses simple performance models to guide the choice of
data and work load partitioning of applications. Many researchers have developed tools for performance
analysis of shared memory MPPs. We describe their work below, and the limitations of the methodologies
for our problem.

Fahringer and Zima [14] have developed a performance prediction tool (PPPT) which statically com-
putes many parameters that can be used to calculate parallel program performance. Among the parame-
ters that they calculate are the amount of data transferred between processors and number of uniprocessor
cache misses. The amount of data transferred is determined using polytopes to represent array sections in
the program and calculating the area of the polytopes. Their work assumes that a block data distribution
is specified by the programmer and that communication directives have been inserted (by their compiler
VFCS). Like our work the authors calculate the amount of data transferred between processors. However,
PPPT supports only block data distributions, a subset of the block-cyclic partitions that we support.

Balasundaram et al. [6] statically evaluate the performance of different partitioning schemes for



programs executed on distributed memory multiprocessors. They assume that a rectangular block data
partitioning is specified and that communication primitives have been inserted in the code. A training
set is used to characterize the relative performance of communication and computation on a particular
machine. Similarly, we evaluate the performance of different partitioning schemes for an application
program, and then determine which scheme is optimal by our criterion. We support a larger space of
partitioning schemes than Balasundaram et al. who do not handle block-cyclic partitions.

Atapattu and Gannon [5] have created a performance prediction tool for the Alliant FX/8, which has
a single shared memory and shared cache. The tool performs assembly level analysis of vector and scalar
code for the Alliant. The shared memory is modeled with a simple queuing model. The miss rate is
supplied by the user but can be calculated using the reference window work described in [15, 13]. Our
work performs source level analysis of parallelized code for the KSR1. Like the Alliant FX/8, the KSR1
is a shared memory machine; unlike the FX/8, processors in the KSR1 have private caches. We estimate
coherency cache miss rate based on program analysis.

Larus et al. [24] propose the check-in, check-out (CICO) performance model for cache-coherent
shared-memory parallel computers. Similar to our work the authors estimate the cost of coherency
traffic. However, they rely on user annotations not program analysis to determine the state of a cache
block. Their coherency model is similar to ours, they model three states (idle, shared, and exclusive) and
they do not model contention or conflict misses.

2.2 Compilation of Regular Applications

There are several compiler projects for regular parallel applications, some of the most important
projects are FORTRAN D [20, 21], High Performance FORTRAN [19], Vienna FORTRAN [33], SUIF
[32, 4], Crystal [25, 12], and PARADIGM [30, 16]. These groups have done work in data partitioning,
interprocedural analysis and message generation which we draw on in our research. In addition to these
projects there are some smaller groups that have also done work relevant to our own.

Automatic data partitioning algorithms which minimize coherency traffic have also been developed
by Hudak and Abraham [22, 1] and by Agarwal, Kranz and Natarajan [2]. Hudak and Abraham have
developed automatic partitioning techniques for regular data-parallel loops with array accesses that have
unit-coefficient linear subscripts. Agarwal, Kranz and Natarajan generate optimal block partitions for
cache-coherent multiprocessors. They generalize the program model to handle any array index expressions
that are affine functions of loop indices. The data footprints for array references are calculated and
combined to determine the cache usage. A partition is chosen which minimizes that footprint in the
cache. An approximation is used to combine data footprints for references having different strides. Like
[2], we support array index expressions that are affine functions of loop indices, in addition we support
block-cyclic data partitions which they do not handle.

Heuristic techniques for automatic data partitioning have been developed as part of the PARADIGM
compiler. The compiler calculates constraints and cost functions for the loops in the program which are
combined into a quality measure that is used to choose a data distribution. Once the data distribution has
been specified another module generates the send and receive communication sets for a message passing
machine. The heuristics appear to perform well. However, PARADIGM is a message-passing compiler
and it does not necessarily generate partitions which minimize coherency traffic. We have developed a
partitioning algorithm with the goal of minimizing coherency traffic. Unlike, PARADIGM, our model is
not heuristic, it is optimal under our programming and machine model.

Our algorithm for generating block-cyclic data partitions use array summary methods similar to those
developed for interprocedural analysis. Array summary methods are methods to represent the set of array
elements accessed within a region of code. The following array summary techniques have been proposed:



Regions by Triolet et al [28], Linearization by Burke and Cytron [9], Atom Images by Li and Yew [26],
and Data Access Descriptors by Balasundaram and Kennedy [7]. Our cyclic regular section descriptor is
an extension to regular section descriptors used at Rice University for interprocedural analysis [10, 18] as
part of the Fortran D project. We propose adding an additional parameter to the RSD notation in order
to represent the subarray assigned to processor when a block cyclic data distribution is used. We use
CRSDs for analysis of communication cost due to distributed arrays on a cache coherent multiprocessor.
The PARADIGM research group uses a summary notation similar to ours for generating message send
and receive sets for block-cyclic data distributions.

Message generation while not directly applicable to cache-coherent multiprocessors is also of interest
to us. Message generation requires determining exactly what data must be communicated between
processors and identifying the sending and receiving processors. Similarly, we need to determine the
amount of data that must be communicated between processors for a given set of partition parameters.
Gupta, et al. [17] provide closed form solutions for the generation of communication sets for distributed-
memory machines. They use a virtual processor approach to find the communication sets for block-cyclic
distributions. The communication sets are efficiently generated at run time for a user (or compiler)
specified data distribution. This solution to message generation requires that the block-cyclic parameters
be completely specified to enumerate the communication requirements of the partition. Therefore we
cannot use the method directly for generating the parameterized cost function used by our optimization
procedure. However, we may be able to incorporate a virtual processor approach in our algorithm.

3 Machine Model

We use a shared address space MIMD multiprocessor as our machine model and assume a hardware-
coherent memory hierarchy consisting of local cache, possibly a local memory, and remote memory where
the latency to access remote memory is on the order of hundreds of processor cycles. Remote memory
consists of the memory or cache storage local to other processors and communication between processors
occurs when remote memory is accessed. This model covers a wide spectrum of machine types including
distributed shared memory architectures such as the Stanford DASH, bus based multiprocessors such as
the Sequent Symmetry and SGI Challenge Series, and cache only memory architectures (COMA) like the
Kendall Square Research KSR1 and KSR2.

Hardware-coherent multiprocessors require a mechanism to maintain the status of data within the
local cache of a processor. For a given unit of storage in the cache, valid/invalid and exclusive/shared
information must be recorded. The valid/invalid field specifies whether the local cache contains a valid
copy of the data for a given data item. If the data is valid, the exclusive/shared field specifies whether
the local processor owns the data in exclusive mode or shared mode. A data item will be in shared mode
if it is read but not updated. Several processors may have a copy of the same data item in shared mode.
The data must be owned in exclusive mode in order to be updated. A state diagram of the coherency
protocol for the KSR1 is given in Figure 3.

3.1 KSR1 Architecture

The Kendall Square Research KSR1 was used to evaluate our methods. We give a brief description
of the architecture here, much of which has been taken from [31, 8]. The KSRI1 is characterized by a
hierarchical ring interconnection network and cache-only memory architecture. Each cell, consisting of
a 20 megahertz processor, a 512 kilobyte subcache, and a 32 megabyte local cache, is connected to a
unidirectional pipelined slotted ring. Up to 32 processors may be connected to each ring and multiple
rings may be connected in a hierarchy of rings. We ran our experiments on a 64 processor two ring
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system. The KSR architecture is diagramed in Figure 3.1.

The size of a local cache subblock, called a subpage, is 128 bytes and serves as the unit of transfer
between processors. Communication requests by any processor proceed around the ring in the direction
of ring communication. Such requests are viewed by all processors as they pass by, enabling the hardware
cache management system to maintain memory coherency. Given a P processor system, when a processor
¢ makes a read request on the ring, the first processor encountered which has a valid copy of the subpage,
processor j, will respond by placing a copy of the subpage on the ring. Every processor encountered
between j and ¢ which contains an invalid copy of the subpage can optionally update its copy automatically
as the request passes on its return path to the requesting processor i (referred to as automatic update).
Likewise, if a processor needs to write to a shared copy of a subpage, it must send a transaction around
the ring requesting that each processor with a copy of the subpage in its local cache mark the subpage
as invalid.

A shared-address space multiprocessor such as the KSR1 provides a simple programming paradigm
to the user. There is no need to explicitly assign data to processors and determine when data should be
sent or received from another processor. However, because remote data accesses may take an order of
magnitude longer than local data accesses, high performance can only be achieved when remote accesses
are minimal. On the KSR1 remote accesses take 135-175 processor cycles within a single ring of the system
(Table 3.1). Remote accesses occur implicitly whenever a new or an invalid data item is referenced by
the processor and whenever a shared data item is written by the processor.

3.2 Program Model

We assume a data parallel programming model with the parallelism expressed as DOALL loops. The
DOALL loops may not contain any cross processor dependencies because the dependencies would intro-
duce nondeterministic program behavior for a cache coherent multiprocessor. The input program may be
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Memory Component

Memory Size

Memory Access

(Mbytes) Read (Cycles)
Each Subcache 0.25 2 (1 per clock)
Local Cache (existing page) | 32.0
(allocated block) 23.4
(unallocated block) 49.2
Remote Cache 32.0 each
(allocated page AE:0) (1024 total) 135-175
(allocated page AE:1) (34816 total) 470-600

Table 1: Memory Size and Read Access Latencies of the KSR1

Reproduced from [31]




program JACOBI

real a(n, m),b(n, m)
align a(1, j) with b(4, j)

do k£ =1,1000
doall j =2,m—1
doalli =2,n—1
a(i,j) = (b(i = 1,5) +b(i +1,5) + b(4,5 — 1) + b(4, 5 + 1))/4
enddoall
enddoall
doall j =2,m—1
doalli =2,n—1
b(i, ) = ali, )
enddoall
enddoall
enddo

end
Figure 3: Jacobi Example

comprised of DO loops, DOALL loops and assignment statements. Any ordering of these statements are
allowed with the following restriction: any DOALL loops occurring in the same subtree of the program
control flow tree are perfectly nested with respect to each other. This restriction is imposed so that the
program is either running sequentially or running in parallel and is running on the entire processor set
when running in parallel.

We use CRSDs to summarize the array sections accessed within the DOALL loop nest. The following
assumptions regarding the array subscript expressions and loop bounds within the DOALL loop nest
ensure that we can represent the array accesses precisely with CRSDs. Within a DOALL loop nest the
expressions for the loop bounds are of the form b - k£ 4+ ¢ where k is the index of the innermost sequential
DO loop enclosing the DOALL loop nest and b, ¢ are invariant with respect to the innermost sequential
DO loop and any enclosing DOALL loops. Array subscript expressions are of the form a-i+5b-k+ ¢ where
¢ is a DOALL loop index variable, a is an expression which is invariant with respect to the innermost
sequential DO loop and any enclosing DOALL loops, and b, ¢, k are as described above.

This model allows multiple array variables, triangular or trapezoidal iteration spaces, nonperfect
nesting of DO loops and sequential DO loops within DOALL loop nests. Figure 3 shows an example of
a program that fits our model. Our program model encompasses a wider class of loops than presented
by Chen and Hu in [12] or Abraham and Hudak [23], who assume that all loops are perfectly nested and
that DO loops can not occur within DOALL nests. It is also a wider model than presented by Agarwal
et al., who consider only a single loop nest and assume that the iteration space is rectangular.

4 Partition Generation

As described in the Section 3 the cache state for our machine model has three components: data
owned in exclusive mode, data owned in shared mode and data in invalid mode. The cache state for
a processor can be represented with three sets (outX, outS and outI) and coherency cache traffic can



PARTITION
1) Generate control flow tree (CFT) for program
2) Prune sequential branches and mark parallel nodes of CFT
3) Determine def/use sets for parallel nodes in CFT
4) Determine cache state and cost function for CFT
5) Optimize cost function generated in step (4)

Figure 4: Outline of Partitioning Algorithm
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a(i,j) = ((b(i-1,j)][b(i,j) =a(i,j)]
+b(i+1,j)+b(i,j-1)
+b(i,j+1))/4

Figure 5: Control Flow Tree for Jacobi

be calculated based on the changes in the cache state variables. Our partitioning algorithm calculates
the cache state for each statement and loop nest in the program and calculates a coherency traffic cost
function which is optimized to determine the appropriate partition for the application. An outline of our
algorithm is given in Figure 4

In order to describe the details of our algorithm we must define some background material and notation
used in this section. First we describe the control flow tree representation of a program. Then we describe
definition and use sets for the statements of a program as well as cyclic regular section descriptors used
to summarize array regions in the definition and use sets. Next we describe the state transition equations
for the cache state variables. Finally we give the details of our algorithm.

4.1 Control Flow Trees

The control flow tree (CFT) represents the control hierarchy of the program and contains four types
of nodes: DO loop nodes, DOALL loop nodes, assignment nodes and a program node. Loop nodes may
have any number of children which represent the body of the loop. The children may be loop nodes or
assignment nodes where the leftmost child is the first statement in the loop body and the rightmost child
is the last statement in the body. An assignment node represents an assignment statement and contains
array subscript expressions for the left hand and right hand sides of the assignment. The program node
is the root of the control tree and like a loop node may have any number of children. The children may
be loop nodes or assignment nodes and the nodes are in sequential program order from left most child to
right most child. The control flow tree for the Jacobi example is given in figure 5.

The data structure for each node of the control tree contains several fields. The fields which define the



structure of the control flow tree are: type which is set to one of DO, DOALL, ASSIGNMENT or PROGRAM,;
le ftechild which points to the first node in the list of children nodes, rightchild which points to the last
node in the list of children nodes, and next which points to the right sibling of a node. Parallel is a flag
which is set to TRUE if a node is executed in parallel or FALSE if it is executed sequentially. Loop nodes
have the fields index, lb, and ub which are the loop index variable, loop lower bound and loop upper
bound respectively. In addition each node has the fields def, DEF, use, outl, outS, outX and cost
which are used to determine cache state and calculate coherency traffic cost. These fields are described
in more detail below.

4.2 Definition/Use Analysis

Definition and use analysis is standard in today’s compilers. A value is defined when it is written, (i.e.
whenever it appears in the lhs of an assignment statement) and used whenever it is read (i.e. whenever
it appears in the rhs of an assignment statement). Definition and use analysis (Def/use analysis) can
be applied either to variables or live values. For cache optimization we are concerned with the memory
locations themselves so our def/use analysis is on variables.

In our partitioning algorithm, array definition and array use information is stored in three variables
def,use and DEF for each node of the control tree. For a given node in the tree, def[node] is a list of
CRSDs, one CRSD for each array variable defined in the subtree rooted at node, and use[node] is a list
of CRSDs for arrays read by the subtree rooted at node. The variables def and use represent the array
sections referenced by a single processor. The variable DEF' represents the data that is defined on any
of the processors and is the union of def for all processors.

4.3 Cyclic Regular Section Descriptors

We use cyclic regular section descriptors (CRSDs) to summarize the def/use and cache state array
sections used by our algorithm. CRSDs are a generalization of RSDs defined by Havlak and Kennedy in
[18]. RSDs have the same format and meaning as the triplet notation used in FORTRAN 90. An RSD
is comprised of three fields for each dimension of an array: a lower bound, an upper bound, and a stride.
As such, RSDs can precisely represent arrays that are block distributed or cyclically distributed across
processors. However, it is not possible to represent the more general block cyclic distribution with a single
RSD. A cyclic distribution assigns every pth element to the same processor. A block cyclic distribution
divides the data space in to blocks and assigns every pth block to the same processor. We have extended
the regular section descriptor defined in [18] to include a repeat field in order to represent block cyclic
data distributions.

The CRSD is represented by a 4-tuple for each dimension i of the array, [lb; : ub; : s; : r;], where Ib;
is the lower bound, ub; is the upper bound, s; is the stride and r; is the repeat value for dimension . If
r; is not specified then it defaults to a value of 1. A CRSD with r; = 1 is equivalent to an RSD of the
form [lb; : ub; : s;]. Figure 6 diagrams some block cyclic regular sections. The CRSDs corresponding to
the figure are A=[1:20:5:2], B=[2:20:5:2], C=[2:20:5:1], D=[1:20:5:3], and E=[1:20:5:1]. C and E can be
represented as the RSDs C=[2:20:5] and E=[1:20:5].

In our use of CRSDs we need the following operators: intersection (N), union (U), difference (—),
and sizeof. The operands for the binary operators are restricted to CRSDs with the same stride. This
corresponds to having one cyclic partition for all arrays in the program. CRSDs are not closed under
intersection, union or difference. These binary operations applied to any two CRSDs may produce a list
of CRSDs. In this report we use the term CSRD to refer to a single descriptor or a list of descriptors
representing array sections of a single variable.
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Figure 6: Cyclic Regular Sections

4.4 CFT Generation and Initialization

The first step in the partition algorithm is the generation of the control flow tree (CFT) for the
program. CFT generation is performed in most compilers during parsing so we do not describe it here
[3]. The second step of the algorithm performs two functions, pruning sequential branches and marking
nodes as parallel or not parallel. We prune sequential branches of the tree because we assume that the
computationally significant portions of the code are parallelized and because the amount of data that
must be gathered and then scattered for sequential regions does not vary with the shape of the partition.
Nodes are marked as parallel or not parallel for use by the def/use and cache state algorithms. A node in
the CFT is parallel if it is a DOALL node or has an ancestor that is a DOALL node. A recursive descent
of the call tree can be used to mark the parallel nodes. The nodes marked as parallel by this method are
shaded in the Figure 8.

4.5 Calculating Def/Use

The DEF_USE_ANALYSIS algorithm traverses the CFT from leaves to root. For each node marked
as parallel it generates def[node], use[node] and DEF[node]. The algorithm is given in Figure 7. At
the leaves of the tree the nodes are all assignment nodes, and the def ,use, and DEF are simply set to
the array references within the assignment statement. The routine MAKE_CRSD() converts the array
subscript expressions of the program into CRSD notation. For example, the call MAKE_CRSD(a(%, j))
returns afi :4:1:1,7:7:1:1].

For each do loop, the def/use sets of all the children nodes are unioned together to form one CRSD
which is then expanded to summarize the array references for all iterations of the loop. The routine
EXPAND_CRSD() modifies the def/use CRSDs by updating the lower bound, upper bound, stride and
repeat values of the CRSD in the dimension indexed by the index variable of the do loop with the
appropriate loop bounds. The routine takes the parameters: CRSD, index, lower bound, upper bound,
stride and repeat. For example, the call EXPAND_CRSD(a[i :¢:1:1,j:7:1:1],4,1,n,1,1) returns
all :n:1:1,5:7:1:1]. The expanded CRSD summarizes all array references for the subtree of the
CFT which is rooted at the loop node.

Similarly, for each doall loop node the def/use sets of the children are combined and then expanded to
summarize the array references for the entire loop. However, since the loop is parallelized, the CRSD only
represents the iterations assigned to a single processor. Partition parameters along with the loop bounds
are used to specify the iterations assigned to a processor under a general block cyclic partition. The



DEF_USE_ANALYSIS
1) Perform a bottom up traversal of CFT
2) Generate def/use sets for each parallel node of CFT

DEF_USE_SETS (node)

if (type[node] = ASSIGNMENT) then
def[node] — MAKE_CRSD(lhs[node])
DEF[node] — MAKE_CRSD(lhs[node])
use[node] — MAKE_CRSD(rhs[node)

else if (type[node] = DO) then

def[node] — |, piaren d€flchild]

DEF[node] — Uchildren DEF|[child]

use[node] — |, ;11 4ren ws€[child]

de fnode] — EXPAND_CRSD (def[node], indez[node],
Ib[node], ub[node], STRIDE_ONE, REPEAT_ONE)

DEF[node] — EXPAND_CRSD (D EF[node],indez[node],
Ib[node], ub[node], STRIDE_ONE, REPEAT_ONE)

use[node] — EXPAND_CRSD (use[node],indez[node],
b[rode], ub[node], STRIDE_ONE, REPEAT_ONE)

else if (type[node] = DOALL) then

def[node] — |, piaren d€flchild]

DEF[node] — ..o DEF[child]

use[node] — |, ... use[child]

de f[node] — EXPAND_CRSD (def[node],indez[node], pidaim - block_sizegdim + lb[node],
ub[node], p_dim - block_sizegim, block_sizedim)

DEF[node] — EXPAND_CRSD (D EF[node],indez[node],
b[node], ub[node], stride_one, repeat_one)

use[node] — EXPAND_CRSD (use[node],indez[node), pidaim - block_sizeqim + lb[node],

ub[node], p_dim - block_sizeaim, block_sizedim)

Figure 7: Def/Use Analysis Algorithm
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Figure 8: Control Flow Tree for Jacobi annotated with de f[node]

partition parameters used are: p,,pp - the number of processors in the vertical and horizontal dimension
respectively; v, h - the block sizes in the vertical and horizontal dimensions respectively; pid, = (processor
id) / py; pidp = (processor id) mod pp. Note that def/use sets are parameterized with the processor
ids (pidy,pidp); Though p processors generate p different def/use sets, all of the sets are represented by
a single CRSD parameterized by pid. Also note that we use the two-dimensional block-cyclic notation
throughout this paper in order to minimize notational complexity. In Figure 8, de f[node] of the innermost
DOALL loops have been expanded in the dimension accessed by index variable i. The definition sets for
the other nodes of the Jacobi call tree are also given.

4.6 Calculating Cache State and Coherency Traffic Cost

The CACHE_STATE_ANALYSIS algorithm traverses the CFT in a depth first manner stopping at the
highest DOALL node in each branch. For each DOALL node it calculates the cache state and coherency
cost as a function of the output cache state of the previous node and the def/use information of the
DOALL node. As the algorithm traverses back up the tree it calculates the communication cost for the
subtree rooted at node by summing the cost of the children and summing the cost for all iterations of
the loops.

4.6.1 Cache State Flow Equations

We represent the cache state for a processor with three variables (out X, outS and outI) at each node
in the control tree, where i is the processor id parameter. out X [node] is a list of CRSDs summarizing the
array data elements that are owned in exclusive mode after executing the current node of the control tree.
Likewise, outS[node] and outI[node] are lists of CRSDs that summarize the array data owned in shared
mode and in invalid mode respectively after executing the current node. Any particular data element
is either in exclusive mode, shared mode, or is invalid in the cache; therefore outX, outS and outl are
disjoint array sections. Figure 9 diagrams the possible transitions between cache states. The data flow

11
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Figure 9: Cache State Transition Diagram for Processor i

formulas for calculating cache state are given by equations (4.1) through (4.5).

recv; = (def Uuse) — (inS UinX) (4.1)
p—1

RECV = | ] recv (4.2)
pid=0

outl] = inl U(DEF NinS) — (use Udef) (4.3)

outS = (inSUrecvU(RECV NinX))— DEF (4.4)

outX = (inX — RECV)Udef (4.5)

For each processor, recv is the set of data that is required but not available locally. The union of de f
and use gives the data required. The union of :nS and inX represents the data already in the cache.
RECYV 1is the union of the receive data for all processors.

The new set of data in the invalid set, out/, is derived as follows. Data that is invalid will stay invalid
if it is not used, this gives us the term i¢nl. Data that is currently owned but is defined by another
processor will become invalid giving the term (DEF NinS). Note that we are using a data parallel model
thus exclusively owned data will never be defined by another processor and never become invalid. The
final term, (use U def), is necessary because any data being referenced by the current processor must be
removed from the invalid set.

The new data set for shared data, outS, is computed as the sum of four terms. The first term, inS is
included because any data that is in shared state will stay in shared state if it is not written or invalidated.
The shared state also includes new data that is received, recv, and data that is initially exclusively owned
but read by another processor, (RECV NinX). Finally we must exclude from the shared data set any
elements written by the local processor or any remote processors, DEF'.

Similarly, the exclusively owned set, out X, is derived by taking the union of data already exclusively
owned and not read by other processors, inX — RECV | with data that is written, def.

4.6.2 Cache State Algorithm

Figure 10 gives the CACHE_STATE_ANALYSIS algorithm which determines outl, outS, out X, and
cost for each node of the CFT. The algorithm performs a forward traversal of the control flow tree treating
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the parallel nodes as leaves. For each DOALL node the def/use information is used to calculate the cache
state for the node using the data flow equations above (4.1)-(4.5). The node cost is calculated by taking
the difference between the input and output cache state. There are three cost coefficients C's, C'x and
Cfr, one for each cache state. They represent the cost incurred on a transition to the specified cache state.
The The SIZEOF() routine calculates the size in number of array elements of the CRSDs representing
the difference between input and output states.

For a program node the cost function, cost[node], is the sum of the difference between the input state
and the output state of the left most child plus the difference in output state between neighboring children
from left to right. The cache state for each child is calculated by recursive calls to CACHE_STATE. The
final cache state is equal to the cache state of the right most child.

Cost and cache state for a sequential DO loop is calculated similarly. The cost of the first iteration is
calculated as described above, then the children are each visited once more to determine the steady state
cost for the loop, this cost is summed for all remaining iterations of the loop. The output cache state for
a sequential DO loop is equal to the output state of its right most child on the last iteration of the DO
loop. The routine SUBSTITUTE(exprl, expr2, expr3) replaces occurrences of exp2 in exprl with expr3
and is used to replace an expression in a CRSD or subtree of the CFT with another expression. We use
SUBSTITUTE() to modify the index variable expressions when calculating cache state and cost for DO
loops.

The operation of the CACHE_STATE_ANALYSIS algorithm for the Jacobi example is diagramed in
Figure 11. The cache state for one block of the block cyclic partition is shown and the CRSDs for out X
are given.

4.6.3 Correctness of Algorithm

The CACHE_STATE algorithm makes the assumption that the cost function computed for the second
iteration of a DO loop is representative of the rest of the iterations. This is true if the cost is specified
by a linear function of the iteration variable of the do loop, k. To prove the cost is linear in k£ we need to
show: 1) the original subscript expressions are linear in k, 2) CRSD generation preserves linearity in k,
3) CRSD combining operations (N, U, —) preserve linearity in k, and 4) SIZEOF() produces a product
of linear functions in k.

The original subscript expressions are linear in k. This is true because of the assumptions of our
program model. Array subscript expressions are of the form a-i4b-k + ¢ where 7 is a DOALL loop index
variable, k is the index of the innermost sequential DO loop enclosing the DOALL, and a, b, and ¢ are
an expressions which are invariant with respect to the innermost sequential DO loop and any enclosing

DOALL loops.

CRSD generation preserves linearity in k. CRSDs are generated in two steps. First the CRSD
upper and lower bounds are set to the subscript expressions for an array reference. So (b and ub are of
the form a-14+b-k+c. Then the loop bounds of the loops that enclose the array reference are substituted
into the CRSD for the loop index variable 7. Since loop bounds are of the form b-k+¢. The resulting
expression looks like a - (b -k +¢é)+b-k+ c which can be rewritten as (al; +b)k + (¢4 ¢). Thus the lower
and upper bound of the CRSD are still linear in &.

CRSD combining operations preserve linearity in k. Let C' = AopB where op is one of the binary
operators N, U, —. The resultant lower bound, lb., of C' is either max(lb,, lb;) or min(lb,, (b;). Likewise
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CACHE_STATE_ANALYSIS
1) Perform a depth first traversal of CFT, treat DOALL node as leaf
2) Generate cache state and cost for each node of the CFT visited

CACHESTATE (node, inl,inS, inX)

if (type[node] = DOALL) then
recv[node] — (de fnode] U use[node]) — (inS U inX)
RECV[node] — | J; recv[node]
outl[node] — inl U (DEF[node]NinS) — (use[node] U de f[node))
outS[node] — (inS U recv[node] U (RECV [node] NinX)) — DEF[node]
outX[node] — (inX — RECV[node]) U de f[node]
cost[node] — Cs - SIZEOF (outS[node] — inS) 4+ Cx - SIZEOF (outX[node] — inX)
+Cr - SIZEOF (outl[node] — inl)

else if (type[node] = PROGRAM) then

cost[node] — 0

child «— leftchild[node]

while (child # nil) do
CACHE_STATE (child, inl,inS, inX)
cost[node] «— cost[node] + cost[child]
inl — outl[child], inS — outS[child], inX — outX|[child]
child — next[child]

else if (type[node] = DO) then
cost[rode] — 0
child «— leftchild[node]
while (child # nil) do
CACHE_STATE (child, inl,inS, inX)
SUBSTITUTE (cost[child],indez[node], lb[rode])
cost[node] — cost[node] + cost[child]
inl — outl[child], inS — outS[child], nX «— outX[child]
child — nezt[child]
child «— leftchild[node]
while (child # nil) do
SUBSTITUTE (child, indez[node],indez[node] + 1)
CACHE_STATE (child,inl,inS, inX)
cost[node] — cost[node] + 3 0 | SUBSTITUTE(cost[child], indez[node] + 1, 1)
inl — outl[child], inS — outS[child], inX — outX[child]
child — nezt[child]
outl[node] — SUBSTITUTE(outl[rightchild[node]],indez[node] + 1, ub[node])
outS[node] — SUBSTITUTE(outS[rightchild[node]], indez[node] + 1, ub[node))
outX[node] — SUBSTITUTE(outX[rightchild[rode]],index[node] + 1, ub[node])

Figure 10: Cache State Analysis Algorithm
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out X =

a[ pi dv*v+1: n: v*pv: v,
pi dh*h+1: m h*ph: h]

out X =

a[ pi dv*v+1: n: v*pv: v,
pi dh*h+1: m h*ph: h],
b[ pi dv*v+1: n: v*pv:v,
pi dh*h+1: m h*ph: h]

out X =

a[ pi dv*v+1: n: v*pv: v,

pi dh*h+1: m h*ph: h],

b[ pi dv*v+2: n-1: v*pv:v-2,
pi dh*h+2: m 1: h*ph: h- 2]

out X =

a[ pi dv*v+1l: n:v*pv:v,
pi dh*h+1: m h*ph: h],
b[ pi dv*v+1: n: v*pv: v,
pi dh*h+1: m h*ph: h]

TrT

Figure 11: Output Cache State for Jacobi from CACHE_STATE() Algorithm
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ub, is either max(uby, uby) or min(ub,, uby). A max or min function of two linear functions is either one
of those linear functions if the two lines do not intersect or it is a piecewise linear function if the two lines
do intersect. In the first case linearity in k is preserved. If at compiler time, & is the only non constant
value in the linear expressions for the upper and lower bounds then we can preserve linearity by splitting
loops in the program at the intersection points and treating them as separate loops. A similar technique
is used by Carr and Kennedy in [11]. Unfortunately, if there are unknows other that k in the bounds
expressions then our technique may not work because we may be unable to perform CRSD combining
operations.

SIZEOF() produces a product of linear functions in k. SIZEOF() can be estimated by the
equation HZ 15 Zi(ub; — Ib; + 1) where n is the number of dimensions in the CRSD. If the conditions in
1), 2), and 3) are met then ub and b are linear in k. The stride s; and repeat r; are static for a given
partition and are thus constant in k. Therefor the SIZEOF() function is a product of factors that are
linear in k.

4.7 Cost Function Optimization

The first four steps of the PARTITION algorithm produces a symbolic cost function representing
interprocessor communication. In step five of the algorithm, the cost function is optimized by choosing
partition parameters that minimize the function. The partition parameters are p,, pp - the number of
processors in the vertical and horizontal dimension respectively and v, A - the block sizes in the vertical
and horizontal dimensions. Qur optimization process is a generalization of the work by Hudak and
Abraham presented in [23].

The first stage of step five is simplification of the cost function. This includes simplifying some terms
and eliminating others. We use the heuristics listed below.

1) assume that processor zero has at least as much communication as any other processor
and use pidy = pid, =0

substitute p for p, - pp

remove terms which are not a function of h, v, p,, or pp

remove low order terms

assume that terms of the form var — const/var are approximately 1

2
3
4
5

N~ e e

From the Jacobi example the cost term due to acquiring shared border elements for exclusive ownership

is cost = Cx - éooo[vzu pn T (nv 1;:7:-1) m oy UZ);SU Z)hph + (2= 5)151: 2) (mh Z:l)]. Using the heuristics
listed above this equation simplifies to cost = Cx - 999[2” 4 ZZ;”].

Once a simplified cost function is found then we find the optimal value for the parameters one at a
time. If cost is a function of the processor parameters, p, and p,, then use the equality p, = p/p, to
represent pp in terms of p,. Similarly, A can be represented in terms of v using the equality A = T"p”l
where 7 is the number of block cyclic regions assigned to each processor. After the cost function is
expressed in terms of the parameter which is being optimized, we use the first derivative test to find
the extreme value of the cost function and use the second derivative test to verify that the value found
is a minimum. We can determine the value of pj, from p, and thus determine the ratio of p,/ps that

minimizes the cost function. Similarly we can find the ratio of v/h that minimizes the cost function.

The cost function for iterations 2 through 1000 of the Jacobi example is cost = (999)(4 - Cs + 2 -

Cr+2-Cx) ’Z’]’; B Tet f = 22 4 2 We can rewrite f as a function of v using h = "T’; to
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get f =120+ 7-vand = —375 + 7 = 0. Solving for v we get v =, /222, Solving for h gives us

h =, /%2 Thus the aspect ratio, v/h = 1, which implies that a square decomposition should be used.

4.8 Extensions

We have considered two extensions to the partition generation algorithm given in this section. The
first extension broadens the machine model by taking cache line size into account when determining the
cost function. The second extension broadens the programming model by using a heuristic to handle
conditional code constructs such as if statements.

Cache line size can easily be taken into account by modifying the SIZEOF function as shown below.

SIZEOF (A)
size «— %(ubl =l +1)
n — dimensionality(A)
for i — 2 ton do
size «— size - g—z(ubz —1b;+ 1)

We assume that arrays are aligned on cache line boundaries and that the size of the first dimension of
an array is a multiple of the cache line size. We also constrain 7y > [ where [ is the cache line size. This
really is not a constraint at all since r; will always be a multiple of the cache line size in order to prevent
thrashing due to false sharing of cache lines between processors. If the Jacobi example is reworked using

cache line size [ the cost function is f = "‘Zl + % The resulting aspect ratio after optimizing this

v
function is v/h = .

Conditional statements are difficult to handle because branches of the conditional may have very
different definition/use patterns. Therefore the output cache state of the branch can not necessarily be
determined at compile time. Currently, we assume that one branch of the conditional dominates and we
substitute the body of the most frequently taken branch for the conditional node in the control flow tree
eliminating the conditional node. Static branch prediction methods, profiling data or user input can be
used to determine the taken branch [29],[27].

5 Experimental Results

We hand optimized two programs using the techniques presented in this paper. The first program
that we optimized was the Jacobi program which is given in Figure 3 and has been used as an example
throughout this paper. Jacobi is representative of many computational codes that have uniform commu-
nication between neighboring processors. In addition we optimized the LU factorization linear algebra
routine. We chose LU factorization because it has different analysis requirements than Jacobi. The
definition/use and cache state variables are dependent on a sequential do loop index in the LU program
whereas these variables are constant for each iteration of the Jacobi program.

We ran our experiments on a 32 processor KSR1. Details of the machine are given in Section 3.
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| Aspect Ratiov/h [[v [ h |

0.17 32 | 192
0.37 48 | 128
0.67 64 | 96
1.50 96 | 64
2.67 128 | 48
6.00 192 | 32
24.00 384 | 16

Table 2: Aspect ratios used in Jacobi experiments

5.1 Jacobi

The cost analysis of the Jacobi algorithm determined that square partitions are optimal for machines
with a cache line size of one and rectangular partitions with aspect ratio of v/h = [ are optimal for
machines with a cache line size of [, where [ is the number of datum per cache line. We ran several
experiments on the KSR1 and give their results. To simulate various cache line sizes, !, we indexed the
first dimension of the data arrays with a step value of step = 16/l. The subcache size on the KSR1 is
128 bytes or 16 data elements, since we only access every stepth element the effective cache line size is
[ = 16/step.

For our experiments we used 24 processors, a 384x384 array size, and p, = 384/v, pp = 384/h. We
varied the effective cache line size from 1 to 16. For each effective cache line size we ran seven different
partitionings. The values used are given in table 2. We report the execution time per array element. The
results of the experiments are summarized in Figure 12.

The analytical and experimental results correlate closely. Figure 12 give the normalized execution
time as a function of the partition aspect ratio, v/h. Each curve in the figure represents a different cache
line size, { = 1 to [ = 16. The optimal partition aspect ratio for a cache line size of one is near one, as
can be determined by the minimum point in the /sl curve. As the cache line size increases, the minimum
point shifts to the right indicating that a rectangular partition with v > h should be used. The default
partitioning scheme on the KSRI1 is column partitioning which works well for this example since the
array size is small. However the curve starts to flatten out between aspect ratios of 6 and 24 and column
partitioning will not be optimal for larger array sizes.

5.2 LU Factorization

We used the LU factorization code given in Figure 13 for our experiments. While optimizing this code
we learned a few things about our procedure.

The first was that it is easier to represent some array sections using CRSDs with a stride less than
zero because the lower bound of the CRSD has two roles, specifying the lower bound of the array sections
and specifying the starting position of the repeated blocks within the array section. In the case of LU
factorization the array sections are dependent on k the outer loop index. When £ is used as the lower
bound, more that one CRSD may be needed to represent and array section because the first block will
not be complete if £ falls in the middle of it. If we represent the CRSD using n as the lower bound and
using a negative stride we don’t have this problem.

The second lesson was that partitioning can introduce conditional statements. In the LU factorization
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Figure 12: Normalized execution time for Jacobi using various line sizes

| Aspect Ratio p, /ps || Do | Dh |
0.042 (col)
0.167
0.375
0.667
1.500
2.667
24.000 (row) 24

CO| O | R DND| =

Table 3: Processor aspect ratios used in LU factorization experiments

the left subtree is only executed on processors owning the pivot column. Conditional execution such as
this occurs in loops that do not access the entire data space. We assumed for our analysis that the left
subtree is not executed.

The cache state of the LU algorithm for a given processor as a function of k& is shown in Figure 14 for
optimal and column partitioning strategies. The simplified cost function generated by our algorithm for

LUis f=C5 - ﬂn‘?—_ll[L + 1%] When we differentiate and solve for p, we find that p, = py = /p will

Pv

minimize cache traffic. Using a cache line size of { the cost equation is f = Cj - ﬂnQ—_lz[ﬁ + p%] Solving

for p, we get p, = \/p/l and pp = +/p-1. The aspect ratio is p,/pr = 1/l. Thus with large line sizes,
column partitioning works best.

We used block-cyclic partitioning on 24 processors for our LU experiments with v = [ and A = 1.
The array size was 384. We simulated various cache line sizes as described above. For each effective
cache line size we ran seven different partitionings as given in table 3. The results of the experiments are
summarized in Figure 15.

The analytical results and experimental results also match closely for this example. The optimal
partition aspect ratio for a cache line size of two is near between 0.375 and 0.667 this matches closely
with the predicted value of 1/l = 0.5. As the cache line size increases the minimum point shifts to the
left indicating that column cyclic partitioning should be used.
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program LU
real a(n,n)

dok=1,n
doalli=F%k+ 1,n
a(i, k) = a(i, k)/a(k, k)
enddoall
doalli=F%k+ 1,n
doall j=k+1,n
(l(l,_]) = Cl(l,_]) - a(i’ k) * Cl(]{?,j)
enddoall
enddoall
enddo

end

|Iu factorization|

DO k=1, n

|DOL\|_L i=k+1,n| |DoA|_|_ i:k+1,n|

y

a0 W = ali o DOALL j =k+1, n

la(k, k)

a(i.j) =a(i.j)
- a(i, k) ra(k, j)

Figure 13: LU Factorization Example
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Figure 15: Execution time for LU using various line sizes
6 Conclusion

There are two main contributions in this report: algorithms to compute the cache state on exiting
a parallel region given the cache state on entry; methods to compute the overall cache-coherency traffic
and choose block-cyclic parameters to optimize cache-coherency traffic.

We introduce the notion of statically characterizing the state of each processor’s cache in a cache-
coherent multiprocessor by classifying data as shared, exclusive or invalid. The algorithms for calculating
the cache state of each parallel node extend data-flow analysis techniques to the important problem
of managing cache-coherency traffic. An interesting aspect of this algorithm is that, under our program
model, the cache-coherency traffic for all iterations of a loop can be determined by symbolically computing
the output state twice. These algorithms are also useful for performance estimation and analysis of
partitioned parallel programs on cache-coherent multiprocessors. The overhead of cache-coherency traffic
is not readily apparent to a programmer/user and our algorithms can be used to provide useful feedback
to the programmer on the amount of cache-coherency traffic The user may use this feedback to alter the

partition to improve performance. The application of these algorithms may indeed be simpler in this
context because the most of the parameters involved are known.

Using our algorithms for finding the difference between CRSDs and the size of CRSDs, the cache-
coherency traffic is computed at each sequential DO node in the control tree. Several simplifications
and approximations are applied to the resulting expression. The block-cyclic partition parameters are
chosen to minimize the traffic. The approach can naturally accommodate the effect of cache line size.
The partitions produced by our approach are non-obvious and illustrate the effect of cache line size on
partition performance. For instance, our approach produces a two-dimensional block-cyclic partition for
the LU program in contrast to the commonly used column-based partitioning.

Though we believe that we have a promising approach for partitioning programs for multiprocessor
systems, further research is necessary to firmly establish the feasibility of our approach. A major issue is
whether the symbolic manipulation of CRSDs that are required in our approach can be automated. It is
also not clear whether an automated system can make the right assumptions to simplify expressions.
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