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Abstract

We present a working implementation of a dynamics based architecture for visual sensing. This
architecture provides field rate estimates of the positions and velocities of two independent falling
balls in the face of repeated visual occlusions and departures from field of view. The practical
success of this system can be attributed to the feedback interconnection between two strongly
nonlinear dynamical systems: a novel “triangulating” state estimator; and an image plane win-
dow controller. We detail the architecture of this active sensor, provide data documenting its
performance, and offer an initial analysis of its soundness in the form of a convergence proof for
(a simpler version of)) the estimator and a boundedness proof for (a somewhat idealized version
of ) the manager.

1 Introduction

We have built a three degree of freedom robot that bats two balls into simultaneous stable
periodic vertical trajectories that commonly persist for the better part of an hour [20]. The
juggling algorithm underlying this behavior relies on a continuous stream of ball position and
velocity estimates delivered by a stereo camera system that views brightly illuminated white
balls against a dark background. Despite the structured visual environment, this system did
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not work until we had replaced our originally conceived sensor subsystem — essentially a linear
observer driven by image plane centroids — with a more complicated scheme that feeds back
the state of a nonlinear “triangulating observer” to be used in the control of a “camera window
manager.” At a time when many in the robot vision community are exploring the benefits of
“visual servoing” or have found the need for including “attention mechanisms” in their camera
architectures, we offer this account as documentation of a particular system which seems to
incorporate most of the essential features of the “active sensor” yet remains simple enough to

permit some formal analysis.

Developing and reasoning formally about this specific system interests us more generally in
view of the apparent need to develop a theory and practice of “dexterous robots.” This term,
as we understand it, denotes an autonomous machine capable of interacting with a dynamical
world. The strategies of general interest to us are, as in the present case, feedback algorithms:
they specify the manipulator’s actions at each instant in time as a function of its current state
and that of the world. For a juggling machine, the world’s state reduces to the current position
and velocity of one or two balls and the task of estimating this state forms the narrow focus
of the present paper. It is our belief that a much larger range of dynamically dexterous tasks
(of which juggling is but a simple example) will necessitate the ability to generate timely and
accurate estimates for the state of the environment independent of the specific control algorithm.

Of necessity such estimation will require a model of the world’s dynamics. This estimation
model will necessarily include both a set of state variables (which describe the system’s belief
about the current condition of the world) and a set of parameters (which describe the behavior
of the world, or possibly how we observe the world). It follows that there are two classes of
“dynamical vision” problems and two forms of each class to be considered. One may attempt
to control or mearly estimate the world state variables. FEither class of problem may in turn
take form with or without prior knowledge of the exact parameters. Several of these four
logical variations have been well studied in the literature [16, 1, 11, 6]. The work presented
here focuses on what may be arguably be the simplest: the problem of estimating the state
of the world given explicit prior knowledge of the relevant parameters. Related research, often
categorized as visual servoing, normally focuses on the direct control of the world state given
similar parametric information [15]. Recently there has emerged a body of work focused on this
same control problem, but without the presumption of complete prior calibration [11]. We will
offer more comments below on the relationship between these problems.

Given the desire to perform tasks in the physical world the natural sensor choice would
provide cartesian measurements. However cartesian sensors are expensive and often complex.
One common alternative is to employ a stereo vision system of some sort (e.g. two cameras,
one camera with constrained objects, one camera and structured lighting, etc.). Of course these
sensors are nor truly cartesian: they actually provide a non-linear measurements of the current
configuration of the world state. The signal processing required to interpret these measurements
forms the topic of this paper. Beyond the description in Section 2 of a successful laboratory
architecture, the paper presents two separate but interrelated contributions. Section 4 examines
the details of our approach to the “active vision” problem, the underlying goal being to develop
an analytic understanding of reliable strategies capable of managing the acquisition of sensor
data in such a way that both estimator convergence and future measurement acquisition can be



guaranteed. Section b presents a new approach to state estimation based on visual data, which
makes use of a dynamic filter to perform triangulation in much the same way “visual servo-
ing” makes direct use of visual data to achieve task level goals. The desired measurements are
normally computed from the sensor data through inversion of the sensing operation (i.e. trian-
gulation), whereas we describe a new approach to this inversion problem based on a combination
of estimator theory and non-linear least squares optimization. Our experience suggests that the
construction of actual system capable of dexterous manipulation will require the inclusion of
both active vision and estimation subsystems. It is this inevitable combination, and the need to
understand the implications of their interaction that motivates our addressing both topics here.

2 Setting

The class of sensor systems we wish to build require an understanding both of how the world
they attempt to sense evolves over time, and how they perceive that world. Thus we pause here
to develop simple models for the falling and bouncing ball, the robot juggling strategy, and the
robot’s physical sensors (each will be used repeatedly below).

2.1 Physical Models: The Robot’s Environment

State estimation can only be as effective as the model of the environment. For the juggling
problem, the model in question will consist of two parts: flight, which describes the behavior of
a ball under the influence of gravity; and impact, which describes how a ball will bounce off the
robot’s paddle.

2.1.1 Flight Model
For simplicity, we have chosen to model the ball’s flight dynamics as a point mass under the

influence of gravity. A position-time-sampled measurement of this dynamical system will be
described by the discrete dynamics,

Aséll 8[]; asélésml (1)

where s denotes the sampling period, @ is the gravitational acceleration vector, and w; € IR®
embodies the entire state of the object (its position and velocity).

2.1.2 Impact Model

Consider a ball with trajectory b(¢) colliding with the paddle in robot configuration ¢ € Q
(depicted in Figure 1) at some point, p on the paddle which has a linear velocity v. We seek a
description of how the ball’s phase, (b,b), is changed by the robot’s phase, (¢, ¢), at an impact.



As in [5, 13, 19] we will assume that the components of the ball’s velocity tangent to the
paddle at the instant of contact are unchanged by impact, while the change in the normal
component is governed by the simplistic (but standard [23]) coefficient of restitution law. For
some « € [0, 1] this impact model can be expressed as (b, —v.,) = —a(b, — v, ), where b, and v/,
denote the normal components of the ball and paddle velocities immediately after impact, while
b, and v, are the velocities prior to impact. Assuming that the paddle is much more massive
than the ball (or that the robot has large torques at its disposal), we conclude that the velocity
of the paddle will remain constant throughout the impact (v' = »). It then follows that the
coefficient of restitution law can be re-written as b, = b, + (1 4 a)(v, — b, ). and, hence,

W =b+(1+a)nn’(v—b), (2)

where n denotes the unit normal vector to the paddle.

2.2 Behavioral Model: The Robot’s Strategy

Figure 1: The Biihgler arm (left) and it’s kinematics (right) [22].

A detailed development of our juggling control strategy can be found in [17]. Briefly, the “mirror
law,” is a map (m) from the phase space of a ball into the configuration space of the robot.
Thus the robot’s reference trajectory is specified by ¢4(t) = m(w(t)), where w(t) denotes the
state of the ball. The function, m is defined as follows. Using (6) from [21], define the joint
space position of the ball
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where ¢~ is the inverse kinematic map (including the paddle’s length s that provides an effec-
tive fourth degree of freedom) for our machine, which is shown in Figure 1. We now express
formulaically a robot strategy that causes the paddle to respond to the motions of the ball in
four ways:

(i) qan = ¢» causes the paddle to track under the ball at all times.

(ii) The paddle “mirrors” the vertical motion of the ball through the action of 8, on ¢4 as
expressed by the original planar mirror law [5].



(iii) Radial motion of the ball causes the paddle to raise and lower, resulting in the normal
being adjusted to correct for radial deviation in the ball position.

(iv) Lateral motion of the ball causes the paddle to roll, again adjusting the normal so as to
correct for lateral position errors.

To this end, define the ball’s vertical energy and radial distance as
1.
S b+ 5 and, py = sin(fy)s, (4)

respectively. The complete mirror law combines these two measures with a set point description
(17, p, and ¢) to form the function
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The important idea to note is that the “strategy” we have chosen to implement presumes
continuous availability of the ball’s position and velocity. As more systems are designed to
function in dynamic settings it seems reasonable to expect more and more systems to require
such information about their environment .

2.3 Sensing Model: The Robot’s Sensors

For the juggling system, the focus of this work, the available data consists of two fields of image
data which are simultaneously acquired from two cameras. It is then the responsibility of the
sensing system to report the location of the ball (or balls) in space. As stated above, the visual
environment is structured such that an individual pixel may be identified as either part of a
ball or the background simply by its intensity — we are looking for white balls against a black
background. This structure allows us to use a “simplistic” geometric model of the world (pixels
are either part of the ball or not) to simplify the image processing. Although we have chosen to
make use of structured lighting, the environment is far from uniform. As a ball travels across
the image it appears to change shape due to the lighting effects. Thus a geometry based vision
system could reliably report ball locations only if it was capable of taking into account these
poorly modeled lighting effects. As will be seen we use the dynamic model to make up for this
lack of geometric detail.

2.3.1 Camera Model

The simple projective stereo camera model of the form,

c: R’ — IR,



(which maps positions in affine 3-space to a pair of image plane projections in the standard
manner) has been sufficient for the experiments associated with this paper. Knowledge of
the cameras’ relative positions and orientations together with knowledge of each camera’s lens
characteristics (at present we model only the focal length) permits the selection of a “pseudo-
inverse” or “triangulation-function,”

R — R, (6)

such that ¢t o ¢ = idrs. We have discussed our choice of pseudo-inverse at length in previous
publications [21], and details of the calibration scheme can be found in Appendix A and [19].

More precisely, ¢, is formed by stacking together the perspective projections due to the two
individual cameras,

N !

where £
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‘H, is the the homogeneous-matrix representation of the base frame in the ith camera’s frame,
and f; is the ith camera’s focal length.

2.3.2 Impact Detection

One significant drawback of a camera system as the primary sensor is its relatively low data
rate: determining the exact time that a falling ball impacted a moving surface from a 60Hz data
stream is difficult. In order to implement an estimation system capable of dealing with such
events we require both a model of impact (presented above) and rather precise knowledge of
the time the impact takes place. To detect the impacts we have chosen to augment the sensing
system with a physical impact detector. This device consists of a single microphone attached
directly to the robot paddle whose output is passed through a narrow band filter tuned to the
fundamental frequency produced by the impact, then rectified and threshold detected.

3 An Active Visual Estimator

The design of a complete sensing system for an environment such as that just presented requires
the careful integration of a number of functional submodules. In the following section we attempt
to explore both our experience constructing such a system as well as the manner in which those
experiences have lead to an architectural framework suitable for its analysis. Note that although
we dedicate much of this section to the development of this particular architecture, we hope to
suggest a framework suitable for the analysis and interpretation of dynamical sensor systems in
general. We conclude this section with experimental results gathered from the juggler’s sensor
system in order to highlight the benefits of the dynamical sensing framework.
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Figure 2: A generic active visual estimator.

3.1 The Challenge of Constructing an Integrated System

Ideally a purely cartesian sensor could be purchased or designed which would be capable of pro-
viding the “continuous” state estimates necessary for implementation of a controller of the type
described in Section 2.2. Currently, however, such sensors are either prohibitively priced or lack
sufficient sophistication to cope with anything but the most stringently structured environment.
We thus face the task of designing our own sensing system.

It seems natural to partition a sensing system suitable for this type of dynamical task into
three subsystems as shown in Figure 2. This architecture separates the sensing system into
the following modules: data processing encompasses the algebraic (memoryless) signal process-
ing; state estimation contains the dynamic model based processing; and finally, sensor control
implements the feedback segment responsible for guiding the “attention” of the low level data
processing. Depending on the specific nature of both the sensors and the problem, any of the
three abstract modules shown might become trivial. However it is our contention that this ar-
chitecture can be found in nearly any system, and that thinking about the overall behavior in
terms of these separate modules is advantageous.

The sensor control block in Figure 2 presumes a fundamental need and/or advantage to
constructing “active” sensing systems. Our experimental experience and that of others [8, 7, 15]
suggests that such an advantage both exists and can be practically exploited. Clearly, an active
sensing system can be used to minimize the total incoming data by “focusing the attention”
of the machine only where meaningful data is likely to be found. This type of improvement,
however, seems at most superficial since if we had available sufficiently greater processing power
the consideration would not arise. More importantly, “focusing the attention” of a machine can
be used as a means to introduce temporal knowledge about the environment’s behavior back
into the data processing task, thereby making the “feature extraction” task more tractable. The
simplest example of this can be seen in common approaches to solving visual correspondence
problems in image sequences, where the presumed dynamic model for the world is either zeroth
or first order (static or constant velocity) and features are matched based on their proximity to
previous observations. There is a clear advantage in offering location clues to low level feature
extraction, for if they include certainty bounds they may be used to perform an initial data
segmentation, thus significantly simplifying the “early vision” problem.

3.1.1 An Initial Design
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Figure 3: Our initial implementation of the active visual estimator.

Our initial foray into the design of a sensor system suitable for use in robot juggling followed
basic engineering principles for reliable signal processing and state estimation modules. However,
little thought was given to their interconnection. Consequently, the associated sensor control
module connecting them was correspondingly trivial. Figure 3 depicts the architecture of this
initial version of the system:

Data Processing Following Andersson’s experience in real-time visual servoing [3] we chose
to employ a first order moment computation applied to a small window of a threshold-sampled
(thus, binary valued) image of each field. Thresholding, of course, presumes a visually structured
environment. In our case white ping-pong balls are illuminated with halogen lamps while black
matte cloth is used as cowling on the robot, and as curtaining to hide any background scene.
Thus, the “world” as seen by the cameras contains only one or more white balls against a
black background. The result of this simple “early vision” strategy is a pair of pixel addresses
containing the centroid of the single illuminated region seen by each camera. For the remainder
of this presentation we will denote by W} the function that takes a white ball against a black
background into a pair of thresholded image plane regions and then into a pair of first order
moments at the k** field,

v = Wi (e(Cpy)).

We use p; := F'=7 (wy) as an “extra” state variable to denote the delayed image of the ball’s
state due to image acquisition and processing delays.

Sensor Control Computational resources in the juggling system preclude examining more
than about 1200 pixels from any given video field (our digitization system delivers individual
fields at a rate of 60Hz). Thus the system is forced to process subwindows from the images to
assure completion of the image processing task before the arrival of a new field. Figure 3 depicts
the trivial sensor control strategy used in this initial design, which functions by centering the
window for a new field over the location of the centroid from the previous field. This strategy
implicitly presumes that objects do not move (or at least they do not move far) between images.

Triangulation In the initial implementation we chose to perform “exact” algebraic triangula-
tion as defined by direct computation of ¢! from (6). The resulting spatial position measurements
were then passed directly to a linear observer. The result of application of ¢! to the centroid



data may be written as

C(py) = by = cl o Wy 0¢(Cpyp), (8)

to make explicit the role of the data processing module.

State Estimation Due to digitization and processing latency, the image measurements gen-
erated by the data processing section are results from images that are at least one field (16ms)
old. It follows that we ought to construct an observer which operates on this delayed data,

Prar = 7 (Br) — G(Cpy — by), (9)

where the gain matrix, G € IR®*®, is chosen so that A;, + GC is asymptotically stable — that
is, if the true delayed data, C'p;, were available then it would be guaranteed that p, — p;'.

3.1.2 Drawbacks

As detailed above, it is not the ball’s position, b;, which is input to the observer, but the result of
a series of computations applied to the delayed copies of the cameras’ image planes, by,. Prior to
attempting two-juggle experiments, we ignored this “detail” and happily ran with the open loop
sensory management procedures used to obtain data (8) [17]. It soon became clear that these
procedures could not be similarly transparent in the more demanding domain of the two-juggle
task. The practical limitations of our robot arm necessitated considerable enhancements to the
vision subsystem, and getting these management issues right became one of the chief sources of

difficulty.

For reasons detailed in [18] the considerable torque generating capabilities of our Biihgler
arm did not prove sufficient to permit easily tracked ball trajectories in the two-juggle setting.
We were forced to juggle higher (longer flight times between impacts) and to bring the two
balls much closer together in space (shorter distance between impacts) than had been originally
planned. This necessitated adding two new corresponding features to the vision system. First,
we required an ability to sense and recover from out of frame events (a ball passing out of the field
of view due to the height of the juggle). Second, we required that the system handle regularly
occurring ball occlusions (two balls appearing at or near the same location in an image).

Neither the data processing nor the sensor control module described above are equipped with
mechanisms suitable for handling either of these events. In particular the data processing module
is incapable of recognizing occlusion events, and will happily produce erroneous measurements
in their presence, while the naive sensor control strategy will never be able to reacquire a ball
which leaves the field of view unless it returns near enough to the point of departure. The
particular approach to solving this problem, which we will present below is a natural extension
of our basic design.

'In principle, one might choose an optimal set of gains, G*, resulting from an infinite horizon quadratic cost

functional, or an optimal sequence of gains, {GF}"_,

(probably a better choice in the present context), according to the standard Kalman filtering methodology. Of

resulting from a k-stage horizon quadratic cost functional

course, this presumes rather strong assumptions and a significant amount of a priori statistical information about
the nature of disturbances in both the free flight model (1) as well as in the production of b from d via the moment
generation process. To date we have obtained sufficiently good results with a common sense choice of gains G
that recourse to optimal filtering seems more artificial than helpful.



3.2 An Integrated Solution
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Figure 4: Working implementation: the active visual estimator.

This section presents the intuitively conceived modifications we made to the original sensing
system described above. Individually, each of these represents a minor enhancement to the
original system. However, getting them all to work in concert requires a greater amount of
thought.

3.2.1 Data Processing: Making Use of Dynamic Segmentation

As mentioned above the fundamental weakness of the initial design centers around the inability
of the data processing subsystem to recognize uninterpretable images. The necessary changes to
“fix” this problem are not difficult and are presented here. However these modifications cause
a fundamental change in the sensing operation and result in a ripple of changes throughout the
remainder of the sensor system.

Occlusion and Out of Frame Events The construction of a system capable of handling
occlusion and out of frame events must include the capability to either detect and reject images
containing such events, or to reliably extract the relevant information in spite of these events.
Clearly, in the case of out of frame events, there is no choice but to predict future behavior
without new information, however our interest in exploring robust and extensible algorithms
makes us disinclined to pursue more complicated recovery schemes even when they are possible.
Having already committed to measuring the first order moments of a binary image as the primary
method of localization, it is natural to extend this notion and use the zeroth and second order
moments as simple and robust occlusion detectors. Under reasonably well-structured lighting
conditions, the “ballness” of an image is easily determined by placing thresholds around the
zeroth order moment and the the ratio of the eigenvalues of the matrix of the second order
moments in conjunction with a test on the planar orientation of its eigenvectors.

The claim that the sensing system can be made more functional by making use of prediction
both when data is unavailable (when a ball is not in sight) and when the data is difficult
to interpret (when two balls pass close together in an image) is based on our belief that a
unified approach to these problems will promote behavioral consistency and ultimately afford
an analytical understanding. Additionally while a two-ball occlusion can be relatively easily
disambiguated from geometric information, more balls or more complicated shapes will give rise
to increasingly difficult and computationally intensive problems whose real-time solution will
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not be practical. Thus, we prefer to make a very coarse (and presumably, more robust) decision
concerning when an occlusion has occurred, entrusting the dynamical model (the observer of
Section 3.1.1) to provide sufficient information about where both balls will be in the future,
thereby ensuring their reacquisition. As will be seen directly, this decision has consequences
that set us on the path of building a “dynamical sensor.”

This modification change amounts to augmenting the data processing segment of the system
with a “confidence measure” suitable for deciding when the system has seen a ball and when it has
not. Clearly the choice of “confidence” measures chosen here is simplistic and merely adequate
to the task at hand. More sophisticated approaches have been proposed in the literature [2, 16].
The important idea to note is that when the sensing system controls how measurements are
acquired, it must be capable of determining if a measurement was successful.

Active Segmentation In choosing to reject uninterpretable images at this low level we have
implicitly assumed that the higher levels of the sensing system will be able to guide our future
measurement efforts. Specifically we expect the sensor control module to supply clues sufficient
to guarantee that a temporarily ignored object will be reacquired. In addition to providing a
means to negotiate past losses of data, the availability of these clues makes the image processing
task less complex by providing accurate initial estimates for an object‘s location. This “initial-
ization” of the data processing subsystem allows for a more rational and localized search of the
available data when attempting to extract meaningful features.

3.2.2 Sensor Control: Feedback for Active Vision

The idea of centering an image, whether in a sub-window or by moving a camera, is referred to
as the “visual tracking” problem [6, 14]. As discussed above, the active control of the sensor is
motivated by the need to provide suitable clues to the data processing subsystem so as to assure
continued acquisition of useful measurements. What follows below are our intuitive ideas about
the design and implementation of such a system. The more formal question of the stability of
the ensuing (nonlinear) feedback system is the subject of Section 4,

Window Placement The guarantee of regular occlusion events (because the balls are pur-
posefully juggled high and close together), coupled with the policy outlined above of ignoring
data from occluded windows severely compromises the effectiveness of the simple previously ac-
ceptable window placement scheme. An obvious improvement results from using the estimates
of the observer to place the windows. Namely, the windows in the next image to be processed
are centered at a point formed by projecting the present state of the observer onto the camera
image planes. Thus, the window location is now fedback from the output of the estimator whose
inputs it provides. This connection of the observer back to the low-level data processing is
exactly the sensor control module discussed above, and forms the “active vision” aspect of this
system.

11



Window Size Adjustment Our inability to compute with more than a small percentage
of the available pixels during the 16 msec interval between successive camera fields forces a
tradeoff between the accuracy of the centroid data input to the observer and the possibility of
an unnecessary and unrecoverable out-of-window event. This tradeoff is governed by the choice
of sampling resolution or, equivalently, image plane window area. Intuitively, it seems clear that
we ought to be able to develop some rational scheme for adjusting the sampling resolution in
accord with an evolving set of error estimates. But what model of decision making offers an
appropriate basis for such decisions, and where might one find a reasonable model by which to
form the requisite estimates of error?

There are three principal sources of error in the sensing system. First, noise inevitably
corrupts the image processing (e.g., distortions introduced by thresholding an imperfectly illu-
minated scene, or by insufficient spatial resolution). Second, the observer is itself compromised
by parametric errors (e.g., the gravitational force, @ in (1) is obtained through our calibration
procedure) and omissions (e.g., there is no model of spin during flight). Finally, these are exac-
erbated by the intermittent loss of input data that attends occlusion events (e.g., out-of-frame
events may easily last in excess of 0.25 seconds).

Section 4 offers a formal presentation of the system theoretic ideas which support our current
implementation. Fundamentally we grow the window area following any image plane measure-
ment failure (i.e., an occlusion event), while the window area is shrunk following valid measure-
ments. The exact size of the window needed to guarantee a successful future measurement is
derived by bounding the current error in the state estimator, so as to ensure that the window
will encompass the actual location of the ball. ?

3.2.3 State Estimation: A Nonlinear (Triangulating) Observer

A central difference between the system presented in Section 3.1.1 and the one discussed here
arises from the idea of discarding data from individual cameras whenever the image is “difficult”
to interpret. The significant side-effect of this change is apparent when we look at the algebraic
triangulator used to supply spatial ball positions to the linear observer. The system is unable
to perform triangulation whenever date from either camera has been rejected, and thus new
inputs can not be provided to the observer. Since it it is unlikely for data from both cameras to
be invalid simultaneously, the discarding of questionable data from one camera has apparently
forced the system to needlessly discard valuable data from the other.

Motivated by this apparent misuse of the available data we began investigating the use of
partial data during an occlusion event. What resulted is a “triangulating observer” or “dynam-
ical triangulator”. Essentially this amounts to a nonlinear dynamical filter which is capable of
making use of input from any number of cameras to update a state estimate for an observed
linear dynamical system. The details of the development of this filter are the topic of Section 5.
Needless to say such a filter can easily be given “zero-error” measurements whenever data is
unavailable from a camera and continues to make use of all the available data. In addition to the

2Unfortunately, the larger the windows, the greater the chance of their overlapping and multiple balls being
visible in a single window. The data processingsystem is augmented with an excision rule to removing intersecting
regions from one window and assigning them exclusively to the other.

12



added capability of not being forced to ignore useful data, we are drawn to the notion of using
a dynamical system to perform triangulation rather than computing an algebraic inverse. The
potential for improved robustness through management of measurement uncertainty by replac-
ing an algebraic operation with a dynamic filter has further motivated our interest in exploring
this class of state estimators.
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Figure 5: Measured and predicted (by the observer) ball heights for an out of frame juggling
sequence (a), and an expanded view of a single recovery event (b).

3.3 Effect of the Modifications

We are convinced that the sensing enhancements discussed above have significantly contributed
to our success at the two juggle task, as discussed in [17]. This Section documents the perfor-
mance of the sensing system for the previously unmanageable situations discussed above.

Recovery from Out-of-Frame As mentioned above, the use of state estimator output to
place the windows, has allowed the juggling height to be raised to the point that every juggle
passes out of the field of view of our vision system. Figure 5 (a) and (b) depict exactly such a
sequence. The top 0.25 to 0.4 seconds of each flight are outside the field of view, as is evident
by the lack of position measurements during this period. Nevertheless the observer continues to
predict the ball’s location, and the ball is recovered as it passes back into the system’s field of
view. Iigure 5(b) shows a detail of a single recovery. Evidently there is indeed a slight build up
of prediction error (approximately 5 cm vertical error) over the near 0.5 second that this ball
was outside of view. However since the measurement window has grown, this magnitude of error
is readily accommodated.

Recovery from Ball-Ball Occlusions Similarly we have been been able to observe the
occlusion events discussed above. Figure 6 and 7 depict the image plane tracks generated during
an occlusion event. The small squares represent measurements assigned to ball 0, while the
triangles are those associated with ball 1. The solid and dotted boxes are the windows used for
moment calculations for ball 0 and 1 respectively. These are numbered corresponding to the
temporal sequence of fields read. Figure 7 is a blow-up of a subregion of the right image plane
shown in the previous figure, and is included so that the occlusion event (which occurs in the
left camera) can be more clearly seen. In this particular sequence ball 0 (the squares) is rising

13
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Figure 6: Left and Right image-plane tracks of a ball-ball occlusion event.
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Figure 7: Expanded view of the left image-plane tracks showing the occlusion event.

towards its apex as ball 1 falls “behind” it causing an occlusion in the 5" frame. * The balls
remain occluded (lying within the overlap region between the two large windows) until the 10"
frame at which point ball 1 reappears from behind the search window for ball 0, and frame 11
when ball 0 becomes visible due to the search window for ball 1 shrinking and exposing it.

The Triangulating Observer The inclusion of the triangulating observer, which is discussed
in great depth in Section 5 has afforded more reliable recovery from out of frame events. This
is due to the ability of this observer scheme to make use of data from one camera even if there
is no data from the other camera. Figure 8 demonstrates the difference between this observer
and and the triangulator/linear-observer system in just such a situation. Figure 8(a) shows
the overall flight of the ball as estimated by both observers, and measured by the triangulator
(absence of the solid line indicates that the ball was out of frame). In this example the ball
travels out of frame for approximately 0.2 sec. As can be seen in Figure 8(b) (a blowup of
the ball returning into the field of view) the dynamical triangulator is capable of updating its
estimate while the triangulator/observer pair are forced to simply predict the trajectory (note the
differing behavior from 1.05 to 1.10 seconds). Significant reduction in tracking error then results
as the ball reappears in both camera’s fields of view at 1.10 seconds. This anecdotal picture is
confirmed by experimental statistics. Figure 9 shows the mean and standard deviation of the
norm squared tracking errors (position only) for the first four frames after recovery from an out

3To enhance visual clarity we have chosen to not show the windows that failed one of the “valid data” (ie.,
zeroth or second order moment computation) tests and thus result in no input to the observer. Consequently, the
windows “jump” from 4 to 11 and 4 to 10 for ball 0 and 1 respectively.
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Figure 8: Experimental Data: Triangulated ball height and estimated ball height from both
observers during recovery from a typical out of frame event.
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Figure 9: FExperimental Data: Mean and standard deviation for the spatial observer errors
immediately after recovery from out of frame, averaged over 102 events.

of frame event for 102 typical events.

4 “Active Vision:” Controlling the State of Attention

Whether choosing what segment of an image to process, where to look with a camera, or what
camera to look with, many modern vision based systems incorporate an implicit control system
— the control of the “state of attention” of the machine. In the case of our robot juggler this
problem appears quite explicitly as a result of the limited real-time vision hardware. The machine
is limited to only processing a small fraction of the total available data and must thus choose what
data to process. This problem of active vision introduces a novel aspect of control to the sensing
problem: the system responsible for control of attention must balance the benefit of examining
only a small amount of sensor data against the risk of failing to generate useful measurements.

15



What follows is a detailed examination of this problem under the presumption that there are
three noise sources (sensor noise, modeling inaccuracy, and measurement inaccuracy due to the
“area of attention”) to be balanced against the need for the state estimate to converge.

4.1 The Sensor Control Variables as a “State of Attention”

The sensor control module of Figure 2 is responsible for controlling the locus and extent of the
image plane windows used for information extraction by the data processing subsystem. Thus,
we tentatively define a window’s state of attention at some field interval, k, as the pair

ar = (b, pi) € R® x R* (10)

where b, denotes an estimate of where the falling ball is expected to appear, and the positive
scalar py is a measure of “certainty” of this estimate. With respect to a norm, || - ||, which will
be defined below, a; induces two windows on the two camera image planes including all stereo
image pixel pairs, x, in the set

N () = {o € c(IR®) : [[by — ¢ (2)l|nr < pi -

The data processing subsystem will process these windows, and if the “ballness” tests (zeroth
and second order moment tests) are passed, the first order moments will be passed to the
state estimation to be interpreted as a spatial position. Otherwise, an “empty window” will
be reported. For the sake of notational simplicity, we will denote the situation that first order
moments are successfully formed inside the windows of the £* camera field as

c(by) € N (ag_y).

The dependence of the k' measurement on a;_; immediately suggests the dynamics intrinsic
to the general sensor management problem — which appears here as mere delay. Regardless of
how it is computed, the state of attention, a; must be assembled from information derived from
existing sensory observations. Thus, the acquisition of new data is necessarily mediated by old
knowledge and a feedback loop is formed.

For a suitable norm, we look back to the stabilized observer equations (9). Because the poles
of the closed loop observer have been placed within the unit circle there exists a positive definite
symmetric matrix, M, such that

[A,, + GC)T M [A,, + GC] < M,
and we will denote the Euclidean norms induced by this matrix as
1/2 A
)5 [Alle = sup (| Ap|la

[lp]|ar=1

A
Iplla = (p" Mp
For ease of exposition we introduce the notational conventions,

A _ A
a — ”ATfHM; a — HATf + GCHM (11)

and assume, purely for further notational convenience, that the poles of the closed loop observer
equation (9) have been placed on the real line with multiplicity two with the consequence that

I [A,, + GC] ™ lar = 1/
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4.2 Observer Errors from a Noisy Model

The task at hand is to develop a control scheme for updating the state of attention, a; as a func-
tion of its previous value and presently available data. To do so we must append to our previous
state estimation procedure some notion of its changing degree of certainty. Thus, reconsider the
Newtonian flight model (1), with the addition of both a process and a sensor noise model. We
wish to model the inaccuracies in the Newtonian flight law as well as the salient features of the
inaccuracies in ball position measurement introduced through the use of the camera. The latter
includes two central phenomena: the absence of data when the ball lies outside of its assigned
window; and the imprecision of spatial localization as the size of the window grows (and either
delay grows or resolution shrinks correspondingly). For present exploratory purposes, we will be
content with a crude deterministic representation of the imprecision inherent in these process
and sensor models.

We substitute for (1) and (8) the system

w[(j+ r] = F7 (w(jn)) + nn(i)
e = ulkr] (12)
by, = Cy [pr + ns(pr-1)]-

As a first crude model for the failings of the putative Newtonian free-flight model (1) we take
ny to be a bounded deterministic sequence of uncontrolled inputs (perhaps generated via a map
on the state space), and ng to be the sensor noise introduced by thresholding a finite resolution
image before computation of the moments. Because the window resolution must decrease as the
window size increases (as a consequence of subsampling), ng is non-decreasing in its argument.
Since no subsampling is required for sufficiently small windows, ng is a positive constant for
small values of its argument. These considerations suggest an affine model of sensor noise as a
function of window radius.

[ns(pi)llar < vo + vipy. (13)

We choose to ignore the details of how ¢(-) and ¢!(-) influence the creation of errors in the
measurement of b, since this would require a careful assessment of the reflectance properties of
the balls — a distant second order effect given the current structured lighting. In contrast we
are greatly concerned with developing correct window management logic, and we will explicitly
embed the influence of W(-) in C' as follows.

The deterministic output map, Cj returns the value C' = [I,0] as in (1) when the body’s
image is in the examined area of the image plane, and vanishes otherwise:

oo ) C 0 re(by) € N(ag-1)
@‘{o o(be) @ N (ap_r) (14)

This models the salient behavioral features of the data processing subsystem introduced in Sec-

tion 3.1.1, as it returns no data (zero) when an “out of frame” event occurs. This results in
the observer simply extrapolating the present state estimate in such situations. The resulting
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observer takes the same form as (9) only with Cy from (14) incorporated,

Dr41 =Fm (ﬁk)ﬂ‘ G(by — Ckpk)
Wkt +jr) = Frrretit (B,
. j:0717"'77-f+Lk+1_Lk
bk - CFTf (ﬁk)

(15)

Here, we distinguish between the state estimate, (-), that is sent forward to the juggling
algorithm, and the attention variable, i), that will be sent back to the sensor control module.
The robot gets @w(k7;) as soon as it is formed, with future predictions being made at the faster
physical rate, 7.. The sensor control module will make use of p; in the form of by, to handle the

(k4 1)*" image.
The result is a system with two distinct kinds of error, * each with its own causes and effects.
The first is the standard error due to the observer,
. A .
Pr = Pt — Pk
and is governed by the dynamics
Drt1 = (ATT + Gck) Pr + N

A (16)
ny = Gns(pr-1) + ny[(k = 1)7;].

Denoting the present error magnitude by 9, = ||k ||ar, we can conclude that
Py < A% + ||kl mr

a { a<1 :e(by) €N (apy) (17)
T a>1 ielby) €N (ak-1)

(o and @ are defined in (11)) and it follows that the necessary and sufficient condition on Cj
and A, for a measurement to be successfully taken may now be expressed as

e(b) € N (ax-1) <= [|CT(Cw[(k = 1)7s] = beoo)llar < pe-s. (18)

Thus, there is a second sort of error associated with this event. It is due to the conjunction of
process noise with time delay in the formation of the extrapolated state estimate. For, assuming
[[nn||ar is bounded above by the scalar vy, we have

ICT(Cw[(k = 1)) = b))l < [Jw[(k = D)rg] = F (Pr-1) |m
<a(Wp_1+7vN).

(19)

It follows that if p;_; is at least as large as the last expression, we are guaranteed (within the
limits of our noise model) that the k" window will not be empty — that condition (18) will

hold.

*Note that there is actually a third sort of error, which concerns the quality of the estimate passed forward to
the robot. If @y = w(kry + 1x) — w(kty) we have, ||@x||mr < a'* (9 + (75 + tx)vn), where 7 < o < 4. Thus,
||k ||as is a non-decreasing function of both & and p. But this error is never seen in the sensory loop.
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4.3 Window Radius Control

The construction of a functional observer of the form presented in (12) necessitates the imple-
mentation of a sensor controller. Specifically, this amounts to choosing window sizes, p;, and
locations, I;k, in such a fashion that the acquisition of new measurements can be guaranteed in
conjunction with the estimated state converging to the actual state.

4.3.1 Certainty Estimates from a Parallel Observer

The result of (19) implies that p; should be set in relation to 9, in order to insure data to the
observer. But, unfortunately, we are not in possession of the error magnitude, 9, for the very
reason that we were led to build an observer in the first place (our inability to measure ball
velocities). Since p represents our only knowledge of p, the best estimate of ¥ is 0 as matters
stand presently. To address this deficit, we will build a second state estimator and attempt to
construct and estimate of ¥ by comparing the two.

Using the invertibility of the observability matrix,

c
@._[%],

we may define a very different estimate of p taking the form

cer (% ]2))

This is a dead-beat observer in the sense that Jk = pr — dp converges to zero in two steps from
all initial estimates, dy in the absence of noise, ng = ny = 0.

Through careful comparison of the estimates provided by these two observers (as detailed in
Appendix B) we are led to define a worst case estimate for 9 as

Vs 2 1Pk — dillar + valpr—1, pe—2)] /@, (20)
where
(8
va(pr—1spr—2) := |Ine_1llmr + ampvn + 6l (vn +[Ims(pr—1)llar + [[ns(pr—2)llar)

which guarantees that 191«—1 > 1.

4.3.2 Control of Window Radius

Equipped with a worst case estimate for ¥, we are now in a position to adjust p. According to
the previous calculations (19), a window radius management strategy that achieves the relation

pr > o (Vg + Tpvn)
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guarantees data to the observer at step £+ 1. Noting that ¥, is causally determined by p;, and
thus cannot be estimated directly by the procedure (20) at stage k, we appeal to (17) and note
that the desired relation is implied by

pr > o (A1t + ||ngoal|mr + Trow).

This demonstrates that the radius adjustment procedure

Pr = (/\k_ﬂgk_l + ||k—1llar + TfVN) (21)

will always yield a window large enough to capture the next centroid, up to the limits of the
error models employed.

4.3.3 Boundedness of Estimator Errors

This then leaves the question of observer convergence. Recall that as p increases, the quality of
the robot estimates deteriorates. Eventually, the recourse to subsampling might begin to have a
net destabilizing effect through the injection of noise represented by ny in (17). We must show
that the coupled dynamical system (17), (21) remains stable.

As derived in Appendix B.2 the coupled dynamics for 9, and p; may be bounded by

Vepr < Ak +vipro1 + 900 + N
Pry1 S« (TfVN + v(vo + vipr—1) + vn + %" [0 + 2va(pr,s Pr—1)] )
Moving to the coordinate system, x 2 [Xl,XQ,Xg]T, where x;(k) > 9, bounds the actual

Lyapunov magnitude of (15) and xa(k) > px, x3(k) > pr_1 represent bounds on the most recent
window radius values, we obtain the dynamics

z(k+1) =Qrz(k)+r
Ak 0 141

a;\k avigy Oov14gs
0 1 0 (22)

1>

Qr

™
A

T T )

0

where the symbols ¢;,7;,7 = 1,2 denote constants derived from the computations developed
above.

By construction of the radius adjustment procedure (21), the state of this system enters a
region where A\; = & < 1 after an initial transient. Now, elementary root locus analysis of the
characteristic polynomial of this system,

s’ (—a+s)+av [(g2 — Da+ (ag — g2)s + 6157

shows that the matrix ¢) has roots in the unit circle of the complex plane for small enough values
of v; (they originate at {a,0,0}). This implies that if the noise coefficient, v, is sufficiently
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small relative to the other parameters then the window management system succeeds in keeping
the windows large enough to retain the required image, but not so large as to destabilize the
estimation procedure.

4.4 Implementation

As reported in Section 3.3, we have implemented and performed experiments on a system similar
to that described here. The particular implementation was constructed as a precursor to the
analysis presented here. As such the experimental implementation uses a slightly less precise
method to adjust the window sizes than as presented in (21). In particular the experimental
implementation does not make explicit use of a parallel observer to generate confidence esti-
mates, but rather makes use of a small finite state automaton to control window size based on
a less carefully designed model of the recent history of measurement success and failure. The
implementation is however structurally equivalent, and has provided significantly enhanced ca-
pability in the sensing system as documented in Section 3.3. It is worth noting that prior to
implementing a window management strategy of this type our machine had been incapable of
tracking two falling balls for a sufficient period of time to allow for experimental verification of
the underlying juggling algorithm.

5 Dynamic Triangulation

)

(a
(o) —@—(os) | -
(b) @

Figure 10: Two approaches to inverting an information preserving nonlinear function: (a) direct
or algebraic inversion; (b) dynamic inversion.

—
v

We endeavor here to embed the triangulation process directly in an observer and thereby making
use of all the available data at all times, while continuing to guarantee convergence of the state
estimates. As discussed at the end of Section 3 the previously mentioned “waste” of data arose
from the use of an “algebraic” inverse to transform image plane measurements into spatial
positions. The alternative we present here is based on performing this inversion implicitly in a
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dynamical filter. 5. Figure 10 demonstrates the underlying structural difference between these
approaches.

Section 4 formalized the notion of control of attention for an observer that receives data (a
measurement of the spatial location of the ball) or not, depending only on the placement of
windows. This is an overly simplified processing architecture (detailed in Figure 11) appropriate
to the use of ¢! in converting image plane data to spatial ball locations: after all ¢! cannot be
computed if data is not available from both cameras. More realistically, an occlusion or out of
frame event is likely to inhibit data from one camera or the other, rather than both. Thus, there
is apparent benefit to be gained from constructing an observer which can make use of this partial
data when it is available. What follows is an approach for achieving this greater efficiency.

Underlying the new estimation technique is the simple idea of augmenting the standard (lin-
ear) Newtonian flight model, b= @, with a nonlinear “output map,” v = ¢(b), and constructing
a non-linear observer which updates its state estimates based on the image plane data rather
than a spatial measurement derived through triangulation. The structure for this “new” ob-
server is shown in Figure 11. The significant change here is to abandon the use of an algebraic
triangulation function to invert ¢(b) and instead revert to using a dynamical system to smooth,
predict, and perform this inversion, all through its update law for the estimated state. The ex-
pectation here is that beyond the efficiency achieved by not “wasting” good data, such a system
will exhibit better noise immunity since it does not directly attempt to invert c.

Data Processing State Estimation

Centroid
Coordinates

Ball
Position

Window | stesssssssssssssnnnns,
Location H

(a)

......................................................................
Centroid
Coordinates

Ball
Position

Window
Location | ssssssssssssssssssnnn,
H

Sensor Control

Figure 11: Structure of the observer scheme from Section 4 (a), and Structure of the triangulating
observer (b).

How should we think about this scheme fitting in the class of visual servoing systems? Let
us agree to define a visual serving task as a problem wherein some measured visual data is to be
aligned with some desired visual data value. Then the system we are considering clearly fits that

®In much the same way an integrator in a feedback loop can be used to implicitly form the derivative of an
input signal, or an analog computer can continuously find root of a polynomial
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definition: “move” the estimate of a ball’s position to visually align with the measured data.
Traditionally [11, 15, 9, 10] researchers working in this are have had static goals for environments
they can manipulate (i.e. move the robot until the the scene looks like “this”). Our problem
is the dual of this in much the same way a linear observer is the dual of a linear controller
— we must manipulate our state estimate so that it coincides with the visually acquired data.
This section offers a detailed look at the mathematics behind this class of problems, followed by
some simple example systems to which existing theory may be applied, and concludes with an
algorithm relevant to the physical problem at hand, whose success has not yet been theoretically
explained.

5.1 A Property of the Perspective Projection

Recall from (7) that the stereo camera transformation, ¢, is formed by stacking together the
perspective projections due to the two individual cameras. In this section we note that

e(b) = c(b) = Ab,b)C(H) (b-b) (23)
= AGHCB) (b-b),

where C'(b) is the jacobian of ¢ evaluated at b and

s 'Hg b
7 A | T H, bIZ 0
A(by b) - [ 0 I 2H0 512]
TIs 2H, b

This fact emerges directly from computation. Given b lying in the frame of reference of a
camera with focal length f, we have

a [ [b
T4(b) = be [bJ : (24)
The Jacobian of this projection is then given by
frro —b—l]
Dyr (b)) = = ba |, 25
T ( ) b3 0 1 —Z—i ( )

Expanding the right hand side of the top row of (23) in these coordinates gives

i)g I;l b1
— ===, 26
fb3 (b3 bs) (26)

and similar results follow for the remainder of the rows. This establishes the original assertion.

Throughout the remainder of this section we will assume that A is positive definite. Ge-
ometrically, this implies that both b and b always lie on the same side (front/back) of all the
cameras at all times. In practice this is not an unrealistic assumption: it merely requires that
neither the actual object cross the singularity in (7) nor that the initial errors in the observer
system become so large as to cause the estimated object location to cross this same singularity.
Formally, this assumption allows us to assert that

(b—b)CT(b)(H—v) > 0. (27)
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5.2 A First Order Observer

Consider the dynamical system described by

b = Ab+u

v = ¢(b). (28)

This system is “fully-measurable” — that is, algebraic triangulation can fully reconstruct it’s
state b. But it seems helpful to underscore the utility of (23) by considering an observer for this
system that filters the resultant state estimates and allows for estimation during hypothetical
partial loss of measurements. In fact this class of system has formed the central focus for a
majority of the current visual servoing research [1, 12]. An observer for this class of system
takes the form

S
|

Ab+u— KCT(b) (8 - v) (29)
b= cb),
with K € IR***. Forming the error dynamics for & 2 % — v we have
b= A5 — KCT(b) (5 - v). (30)
Making use of (23) allows us to substitute for (o — v), and results in
b= (A- KCT(B)AD,b)C(H)b. (31)

From (27) we know C*

JA(b,b)C'(b) is positive definite from which it follows that there exists
a K such that® lim,_ ., b =

QA
b=0.
5.3 An Observer for Mechanical Systems with Linear Dynamics

In contrast to the completely measurable system presented above, let us now reconsider the
system, b = @, written more generally as

b~1 = b2
by = Aiby + Asbhy +u (32)
v = c(by),

where b; and b, represent the position and velocity of the object respectively. This system is of
particular interest since it includes our model for the ball falling under the influence of gravity.
The associated observer now takes the form

i)l = i)z - FlcT(Bl) (?AJ - ’U)
I;z = Ali)l + Azi)Q + u— FQCT(I;l) (’Z] - ?J) (33)
’l} = C(bl),

5Note, due to the time-varying nature of (31), the choice of stabilizing K is necessarily influenced by the initial

conditions. In practice a reasonable bound could be placed on the initial errors such that a suitably large fixed
K may readily be chosen.
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with gain matrices I'y and 'y free to be chosen. Proceeding as above we take differences to
determine the error dynamics

bl = Bl - FlcT(i)l) (i] - ‘U)

7 } A X (34)
b2 = A1b1 + A2b2 - FQCT(bl) (/IAJ - ’0) )
which simplifies to
b= (I-TCT(b)A ( by)C ( )13 (35)
by = (A= To0T(b)A (b, b:)C (b)) by + Asb.

While the convergence properties of the “first order observer” (30) follow directly from (27), the
steady state properties of (35) are more difficult to establish. Numerous simulation studies and
physical experiments indicate that the system converges, and an analysis of the assumptions
under which convergence can be proven is currently in progress.

5.4 Implementation

Although the analysis of the previous section is at best in its infancy we proceeded, following
a number of promising simulations, to construct a functional implementation of the observer
described above. As usual, the real world departs from the assumptions underlying these models
in certain important regards. What follows is a brief discussion of the differences between the
previous section and the actual system, along with both experimental and simulation results
demonstrating the utility and pitfalls for this type of observer.

5.4.1 Choice of Observer Gains

Having no immediate insight at the outset concerning choice of the gain matrices I'y and I'; in
(33), we chose to use the same gains as for the linear observers. Poor convergence in our first
simulations demonstrated that this simple choice was inadequate. The primary cause for this
effect was that the spatial dependence of C (?)) leads to widely differing effective gains depending
on the ball’s location in space. We were able to successfully compensate for this by making use
of non-linear gain matrices of the form

r =T, (C"(hek) .

This essentially amounts to performing local triangulation (i.e. FCT((;) is the linear approxima-
tion to ¢! at ), and dramatically improved the convergence behavior of the observer.

5.4.2 Time Sampled Implementation for Second-Order Systems

Real cameras are not continuous time devices — the affordable devices we are interested in
generally take snapshots of the world at a fixed sampling rate, in our case, 60 Hz. Since the
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Figure 12: Simulation: Convergence of the continuous and discrete time observers for small
initial error.

observed system’s motion is significant relative to this rate (near impact, the ball often travels in
excess of 10 cm between successive images), sampling considerations cannot be ignored. For the
observer of Section 3.1.1 (with explicit triangulation) implementation with sampling presents
no problem since the dynamical system we are observing is linear. Traditional discrete time
systems theory affords a reliable observer (9). However no analogous theory is available for our
new nonlinear dynamic triangulator, even were the theoretical questions of Section 5.3 entirely
resolved.
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Figure 13: Simulation: Convergence of the continuous and discrete time observers for larger
initial error.

In the absence of any theory we have studied numerically both the continuous and discrete
time systems. Figures 12 and 13 demonstrate how a change in the initial conditions can result
in instability for the discrete system, while the continuous version remains well behaved. Figure
12 depicts a case where the discrete and continuous system demonstrate comparable behavior
for identical gains and small initial errors, Figure 13 demonstrates that the same systems can
display markedly different behavior for different initial conditions. In this particular example
the continuous system converges reasonably quickly, while the discrete version initially behaves
reasonably well, then slowly begins to fail until 5.5 seconds, when it “explodes”.
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5.4.3 Integration in the Juggling System

As pointed out in Section 3.3 the inclusion of this new type of state estimation system has lead
to improvements in the behavior of the overall juggling system. The experimental validation of
this approach has further motivated us to consider extensions of this idea to other visual sensing
problems. One example which seems to naturally fit this model is the problem of integrating
sparse data from a large number of sensors, or “sensor fusion” problem.
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A Vision System Calibration

In the course of developing the sensing system discussed in this paper, we have been led to
re-formulate a very attractive coordinated camera-arm calibration scheme originally proposed
by Hollerbach [4]. At calibration time, one supposes that some point on the robot’s gripper
(that we will take to be the origin of the “tool” frame) is marked with a light reflecting material
in such a fashion as to produce an unmistakable camera observation — a four vector, ¢ € IR*
comprised of these two image plane measurements. The problem is to determine the kinematic
parameters, k € R8+3(m+1), that characterize the robot chain as well as the relative camera
frame relationship and camera focal lengths by comparing measured camera values with the
joint space locations that produced them.

The Setting Denote by g;, the forward kinematic transformation of the kinematic chain that
expresses the robot’s tip marking with respect to the base frame (that we take to be the frame
of the “right” hand cameras with no loss of generality). According to the Denavit-Hartenburg
convention, the parameter vector, (ky,...,knp1) € RS(m+1), that characterizes this function
appears in the form

3

ji=1

aul) = (mH Hi(oz»))

-0 o O

where 6; is a joint variable and J;; is a constant 4 x 4 array whose exponent yields the ho-
mogeneous matrix representation of the unit screw scaled by parameter k;;. If these 3(m 4 1)

. .. . T
parameters were known then g, would yield for every jointspace location, ¢ = (6,,...,6,)" € Q,
the homogeneous representation of the tool frame origin in base frame coordinates.

Now denote by H, the homogeneous matrix representation of the screw relating the “left”
hand camera frame to the base frame,

6
Hy = exp Zkonoj ,

ji=1

where Jy; constitutes an arbitrary basis for the Lie Algebra corresponding to the group of
rigid transformations and &y € IR® parametrizes the relative camera frame transformation ma-
trix accordingly. The camera transformation is now characterized by the parameters k; =
(Koo, kpos /Nco) € IR® that appear in the the stereo projective transformation, ¢ : IR’ — IR*, that
for a given camera pair associates with each spatial point a pair of ( “left” and “right” camera)
planar points. Specifically, let I, 7 denote the projections from IR* that pick out, respectively,
the first two, and the third coordinate, of a homogeneous representation of a point. The camera
transformation may be written as

e(w) = H(w)/kyom(w)
H(How)/koom( How)
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This function admits a family of pseudo-inverses ¢! : IR* — IR®, whose effect on the camera
image plane, C(BB) C IR*, returns the original spatial point — that is ¢’ o ¢ is the identity
transformation of IR® — and whose effect off the camera image plane is to return the “closest”
spatial point to that four-vector with respect to a suitable metric.

A Modified Procedure Hollerbach’s proposed procedure tested in simulation of a planar
arm, [4], calls for recording some number of joint-space/camera-image pairs, D = {(q, 1)},
and then performing a Newton-like numerical descent algorithm on the cost function

> et e - gu(a)

When we attempted to implement this procedure for the three degree of freedom Biihgler arm,
we found that the procedure was extremely sensitive numerically.

Instead, we have had great success with a variant on this idea that substitutes a cost function
in the stereo camera image space,

Z ller = e o grla)ll,
=1

for the previously defined workspace objective. We have been using this procedure on average
several times a month (the experimental apparatus is frequently torn down and put back together
again to incorporate new hardware, necessitating continual re-calibration) for the last six months
with very good results. Starting from eyeball guesses of k = (kq, k1, ka, k3, k4), we have been
able to achieve parameter estimates that give millimeter accuracy in workspace after a short
period of gradient descent farmed out on a network of eight 1.5 Mflop microcomputers (Inmos
T800 TRAMS). We have experienced similar reliable convergence properties with a variety
of algorithms — standard gradient descent; Newton Raphson; Simplex descents — none of
which seemed to avail (either singly or in more clever combination) using the original objective
function.

B Mathematical Details of Window Management

B.1 Upper Bound for -

In Section 4.3.1 a worst case estimate for ¥;_; was developed, its derivation follows from the

fact that
e : Cr_ns(k — 1)
dy =Y Alny(rg)— A, 07| 0 TEUES
k Z monn(T]) i Cy (nsg(k) + ny(k — 1))

ji=1
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Noticing that
i — dillar = [|dx — Pellas
= || (ATT + Gék) Dr—1+ Np_1
+ E]Tfﬂ Ai:jnN(Trj)
Cr_yns(k —1)

_AWQ_llCﬂﬁﬂk%+mﬂk—1D o

Z mﬂk—l — VaA(Pr—1,Pr—2)s

where N
VA(Pr-1,Pr—2) = ||nx—1|lsr + aTpvn
+1arr (v + |Ins(pr-1)llar + [[ns(pe—2)llar) »

we are led to define a worst case estimate for 9 as

19k—l é [Hﬁk - dkHM + VA(pk—lvpk—2)] /d- (36)

B.2 Bounded Coupled Dynamics for p; and 9,

The bounded coupled dynamics for p, and 9, used in Section 4.3.3 is constructed by first
approximating the appearance of p in nj, and va to first order (13). This results in

(17| ar <v(vo+ vipr-1) +vn
UA(pr, pr-1) < (14 ats)vy +v(vo + vipr)
+m (vn + 200+ vipy + vipp_1)
= (L+ a7y + 1/[|0]|ar)vn + (7 + 255, 7o

g (7 + ||®77M) Pr+ Viggy, Pr-t-

The coupled dynamical inequalities in question now may be written

Vpp1 < AW +vippo1 + 700 + N
pry1 < a(mivn +v(vo +vipeo1) N
+25 [0 + 2va(pes pi-i)] )
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