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Abstract

We report results of a process for conceptual modeling of programmable servo-controlled manufacturing-equipment, where
the models would be useful in developing software for real-time monitoring and control. The objective is software reusability
and extensibility, i.e. reducing the net effort and time to develop related future applications, through the approach of defining
initial requirements in a way that facilitates evolution. Although researchers agree, in general, that such a focus offers very
high payoff, they also agree that it is a very complex and difficult subject that will require long-range research. One part of
this study was to devise a suitable conceptual process, gleaning and adapting from a number of different approaches taken
by researchers and developers in the fields of software engineering, database design, artificial intelligence, and manufacturing
engineering. The resulting process is a combination of object-oriented analysis, domain analysis, and knowledge engineeering.
Beginning from a definition of the purpose of the conceptual model, the process steps are to bound the domain, select a
reference model architecture for intelligent machine control, and outline a model of the key concepts in the form of candidate
object-classes that characterize programmable servo-controlled manufacturing equipment. The study demonstrates how the
model 1s reusable across applications that have been historically treated by industry as different. Furthermore, the study
shows how the model can be extended to applications beyond the initial boundary. The study also reports insights gained
through a rapid pre-prototyping approach to explore certain ideas. Not surprisingly, one conclusion from the study is that
the conceptual modeling will be an iterative and incremental process—the next iteration of rapid prototyping is planned on
an object-oriented CASE Tool.
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1 Purpose

This report addresses issues in conceptual modeling of pro-
grammable manufacturing equipment for the purpose of
computer-automated control, monitoring, diagnostics and
maintenance. The motivation is to make it easier to reuse,
extend and integrate software for these tasks.

The purpose of the equipment-models is to maximize the life-
cycle economics of computer automation. This is to be accom-
plished by allowing the integration of knowledge available to
perform these functions (the cellular manufacturing concept
[52]), using available computer technology. The initial body
of knowledge should be reusable and extensible, as economics
permit.

1.1 Definition of reusability

According to Prieto-Diaz [41],

Reusability is a collection of principles and heuristics for
the creation and evolution of software systems ...they
provide guidance on how other technologies can best be
used. In particular, they should provide guidance on how
to capture and organize reusable information ...

According to Biggerstaff [7],

Software reuse is the reapplication of a variety of kinds of
knowledge about one system to another similar system
in order to reduce the effort of development and main-
tenance of that system. This reused knowledge includes
artifacts such as domain knowledge, development experi-
ence, design decisions, architectural structures,, require-
ments, designs, code, documentation ...

Reusability . .. depends on a particular problem and problem-
solving context, i.e., ...method [41, pp.10].

This study focuses on the reuse of domain knowledge, includ-
ing constraints on its reusability. The results are at the level of
requirements analysis in the traditional software engineering
life-cycle. The knowledge 1s organized around architectural
structures, which, in turn are also a reusable resource.

1.2 Ultimate economic objective

The economic payoff of research and development in con-
ceptual modeling of manufacturing equipment will come
through improvement in the productivity (including quality
and speed) of engineering innovations in systems that control
and monitor manufacturing automation. Many studies and
projects sponsored by the U.S. Department of Defense [1, 36]
document information from many sources leading to the fol-
lowing conclusions that motivate this study:

e Opportunities for further creation of wealth abound in
improving manufacturing productivity through intelli-
gent automation.

e The time-window of such opportunities has typically
been short. It is getting shorter.

e Human skill is a constraining resource in the timely ex-
ploitation of such opportunities.

o Flexibility or versatility or reusability of manufacturing
resources 1s a key enabler.

o Control software modification and integration [52] have
become a major bottleneck in the creation of innovative
computer-automated manufacturing systems.

An appropriately-organized, reusable base of knowledge,
available on-line, in an open architecture, is a key enabler
in reducing the time and cost to engineer and integrate intel-
ligent manufacturing automation [52]. This resource is iden-
tified as an “Information Base (IB)” in [48]. The acquisi-
tion and organization of the required knowledge is a well-
recognized problem in the fields of Artificial Intelligence [35]
and Software Engineering [41]. This study addresses the issue
of organizing an initial amount of knowledge in a way that it
can be extended economically.

Todorov and Levi [52] observe that the current state in prac-
tice (and, we add, in manufacturing research communities) is
to interface different programs and packages, with great dif-
ficulty. They recommend a single integrated database. We
focus on the element of conceptual integrity [11] implied in
their recommendation.

Next, we decompose this purpose into a number of techno-
economic objectives to be accomplished in stages. In the
process, we bring out certain issues in accomplishing these
objectives. These issues, in turn, provide the rationale for the
scope and the direction of investigation chosen in this study.
In this process, as recommended by Prieto-Diaz [41, p.10], we
will define scope by the extent over which reuse is valued and
the extent over which the problem domain is cohesive and
relatively stable.

1.3 Productivity objectives

The initial conceptual model should support the basic objec-
tives given below. We chose the conceptual model as the level
of reusable resource, since the consensus of experts [6,27,45]
is to focus on reuse at a high level of abstraction, rather than
at the code-level.

1.3.1 Basic objectives

1. The conceptual model should support the creation, mod-
ification and evolution of software for the functions to be



performed. To quote Krueger [27], “...it must be easier
to reuse ! the artifacts than it is to develop the software
from scratch...” or from code fragments, as used in cur-
rent practice.

2. Users should be able to derive conceptual models for re-
lated manufacturing equipment more easily, in less time,
at less cost and with fewer errors than is possible in cur-
rent practice.

1.3.2 Post-extension objectives

1. Users should be able to integrate different manufactur-
ing devices more easily, in less time, at less cost and with
fewer errors, when applying this conceptual model in a
standard open systems architecture. In current practice,
these devices are often procured from different vendors.
Since these devices are typically engineered at different
sources with inadequate coordination in the software,
their integration is a very costly, time-consuming process
today. Cost and schedule overruns are common. The
resulting software is not very maintainable.

2. The paradigm should be applicable to a computer-
automated machining system (workstation) composed of
one or more such manufacturing devices, tooling, fixtur-
ing and the workpiece.

3. The paradigm should be applicable to larger manufactur-
ing systems that consist of several workstations or ma-
chines, several workpieces in a family and their corre-
sponding sets of workholding fixtures and tools.

4. Tt should be applicable to related manufacturing automa-
tion of types other than the initially modeled class of
devices.

5. Tt should be possible to derive capability /constraint mod-
els of manufacturing devices, for the purpose of planning
the execution and monitoring of tasks to be performed
by these devices. Such information in today’s computer-
integrated manufacturing systems is available only at a
very primitive level and not in a very organized form.

6. Monitoring software within and above the cell should get
meaningful, compact feedback through the abstraction
and reduction possible by using the conceptual model.
The feedback from today’s manufacturing device control
systems is very primitive and does not facilitate timely
reaction, troubleshooting and diagnosis. When monitor-
ing sensors are added, due to their poor integration with

1 The cost of reuse includes the cost of finding, modifying and indexing
for future reference.

the control system, higher-level monitoring systems re-
ceive sensory data—often in bulk—without the proper
context to support meaningful interpretation, leading to
unnecessary overhead and incorrect interpretation.

1.4 Some Issues

There are several economic and technical issues in the creation
and maintenance of such a conceptual model. No successful
commercial examples exist.

1.4.1 Amortizing over expected applications

The initial cost [45] to create such a reusable resource is much
higher than the cost of a single-use solution. There are many
uncertainties in amortizing this cost over (future) applications
that are not fully defined and specified at the beginning.

In cases where the commonality across expected applications
is high (narrow domain [7]) and very visible and there is
a large volume and frequency of such cases, it is relatively
easy to identify the abstractions and establish their economic
worthiness. For example, the benefit of parametric feature-
definition in a family of parts is well-established. However,
with more abstraction many issues and difficulties arise:

1. The volume and frequency of their future uses is not as
visible.

2. Until these abstractions are applied in sufficient number
of sufficiently different conditions, it is difficult to estab-
lish their technical and economic soundness [45].

3. As the application of this approach changes design-
practice and as a result of other changes in practice over
the development-period, the usage pattern may change
and invalidate the original basis of the economic value of
certain abstractions.

Thus, the process of defining the right abstractions for the
right domains is going to be iterative by its very nature [41],
adding to the complexity of the economics. This study ex-
plores two approaches to deal with these difficulties. The first
approach is to search for ways to bound the domain to obtain
stability. This is an open research question [41]. The second
approach is to find a modeling technique that makes evolution
easy. This is also an open research question [41]. However, a
combination of the two approaches may be a fruitful direction.

1.4.2 Gaining user acceptance
There are two known obstacles to reuse of software:

1. Users perceive reuse to be a constraint on their creativity.
One approach to avoid this problem is by concentrating



on applications of well-established engineering practice.
Thus the conceptual model should reduce the labor of
applying routine engineering and allow the engineer more
time for the creative part of the task [41]. Ideally, the
conceptual model should be perceived as a support for
creative work.

2. The practice of function-level abstractions is not common
in mechanical engineering, especially in manufacturing
applications. Traditional MCAD tools do not support
practitioners at this level of abstraction. Therefore, we
should concentrate on problem domains where function-
level abstractions are more easily accepted and pay off
more quickly.

The domain of programmable servo-driven electro-mechanical
machinery lends itself to function-level abstractions well. We
can also show that the use of these abstractions will reduce
“lower-level” programming involved in customizing control
systems to different configurations of manufacturing equip-
ment. However, there are many possible abstractions, some
of which may appear better than others depending on the
specific needs of a particular application. Any chosen set of
abstractions would have to be evaluated over a number of
application-development cycles, to gather convincing evidence
of their economic value.

1.4.3 Understanding what to represent

It has been recognized, in the fields of Artificial Intelli-
gence, Software Engineering and Object-Oriented Program-
ming, that one of the most difficult problems is the represen-
tation of the real world in ways that are economically reusable
in a variety of applications, situations and contexts. To quote

Newell [35]:

Much of the difficulty turns out to be that we don’t un-
derstand what we want to represent, not that we can’t
find first-order ways of doing it. Another part of the dif-
ficulty is that the representation is often very awkward
and indirect. Thus much research goes into finding al-
ternative forms ...that are much easier to use or more

perspicuous.

This study focuses on this issue of knowledge acquisition and
representation, following the process described in Section 2.

1.4.4 Capturing undocumented information

It is not sufficient to base the conceptual model on information
formally-documented in current practice, because it may not
be sufficient for reuse. Davis [14] observes:

Typically, much of the design and organizational infor-
mation is not well managed. It is widely scattered, e.g.,
throughout comments in system code, in documents and
manuals separately, and in the mind of the system archi-
tect.

1.4.5 Data-structure management

With respect to the implementation of these representations,
Davis [14] explains how some of the engineering cost and time
is wasted in data-structure management:

Even adding a new instance of an existing data type is
a major task (difficult to find all of the necessary infor-
mation)...Various approaches to knowledge representa-
tion (predicate calculus, semantic nets, production rules,
frames, etc.) have all presented a non-trivial problem in
data structure management.

Prieto [41] describes this problem as the lack of a reuse in-
frastructure. As one conceptual modeling approach may be
better connected to some elements of a reuse infrastructure
than other approaches, this factor is also considered briefly in
this study.

purpose -> objectives

approach -> methodology

definition of domain & environment

nested hierarchical architecture

models of elements & primitives
of manufacturing machines

synthesis models

Figure 1: Overview of framework for modeling manufacturing
automation.

1.4.6 Multiple disciplines

Another view of the scope of the project is in terms of iden-
tifying the established disciplines and subdisciplines of com-
puter science and application domains that are involved in
the problem, as depicted in Figure 2.



Disciplines involved in the problem:
e Software engineering

— Requirements/specifications.

— Miscellaneous reusable software.
e Information Storage and Retrieval

— Content Analysis and Indexing
— Abstracting methods

o Artificial Intelligence

— Knowledge engineering

— Machine learning
o Mechanical Engineering

— Machining processes
— Machine dynamics and kinematics

— Machine design
e Systems Science

— Control systems

— Signal processing and Statistics
e Business

— Economics

— Market analysis and strategic planning

1.5 Organization of this report

Next, we examine the role of technology with respect to the
economic objectives and the obstacles discussed above. We
develop the method followed in this study as an assimila-
tion and adaptation of a number of published methodologies.
Following the chosen methodology, we further prepare the
The result i1s a collection of natural-
language-requirements for domain-analysis. As forecast by
Arango and Prieto [41, p.14], this turns out to be a network
of domains. As we proceed with the investigation of the do-
main of manufacturing equipment, along lines recommended
by McCain [31], we identify subdomains of equipment. At
this point, it becomes necessary to define the purpose of each

domain information.

subdomain. In turn, it becomes appropriate to define a ref-
erence architecture. We have done this by gleaning, adapting
and synthesizing from published architectural models. Sub-
sequently, we define subdomains for each class of components
in manufacturing equipment. The various (sub-)domains are
defined in terms of a taxonomy of entities and skeletal frames
for each entity. Next, we address models to synthesize or inte-
grate components into subsystems and the equipment-system.

market analysis &
Strategic p.aniing

econamics

CONCEPTUAL MODE. FOR
\ MANUFACTURING EQUIPMENT

dalabase design \

content anolysis & nolexing
~abstracting methoos

“of Lware enginzering

doman engineering

requirements specification

“nowledge engineening

macine learning

machine design

mechanics /

\slgnal processing and statistics

trols engineering

manufacturing processes

Figure 2: Disciplines involved in this study.

Figure 1 outlines our overall conceptual framework for mod-
eling manufacturing automation.

In conclusion, we summarize the contributions made in this
study and the numerous issues yet to be resolved. As this
study crosses many research areas, the review of related re-
search 1s presented as each topic comes up. Since the subject
matter includes terminology from many different fields, the
report includes appendices for acronyms, abbreviations, and
a glossary.



2 Technical Approach

From a review of pertinent literature, research projects, con-
sortia projects and industrial practice, we find many ap-
proaches to the issue of making it easier to reuse, modify,
extend and integrate software for manufacturing equipment:

e building libraries of reusable code

e defining standard interfaces between application-code frag-
ments[48]

o defining interoperability standards for implementation plat-
forms[48]

e defining architectures in various views and at various levels[2,
48]

e applying CASE tools

e building tools and aids such as expert systems

e building special-purpose application-generators

e using the “right” programming language, e.g., ADA[12]
o defining schema for an Information Base

e creating models[12]

Many of these approaches overlap and many are complemen-
tary. Chaar [12] is the closest and most recent example of a
methodology developed and applied to real-time control soft-
ware for a manufacturing cell. It encapsulates complete de-
vices into formal models and transforms these models into
implementation-language-level components. The models are
used for scheduling jobs to the cell, sequencing operations on
the jobs and monitoring a device as a whole. In contrast,
the models in our study are more concerned with the prim-
itives from which devices are composed, with the purpose of
monitoring and control of motion and the process at a finer
granularity in time.

In most literature on the general problem of software reuse
[6,18,27,41,45], there is general agreement among the vari-
ous sectors of the research community that the critical need
is to organize knowledge of the application domain. Prieto-
Diaz [41] identifies this task as domain analysis, as a part of
the overall field of domain engineering, analogous to software
engineering. We next devise a methodology for domain anal-
ysis by assimilating ideas from different sources and present
the chosen method in terms of modifications to the published
methodologies. This is consistent with the recommendation
given by Freeman [18] where he also states that no such
methodologies exist and establishing such methodologies is
a long-term research task.

2.1 Methodologies surveyed

We start with an overview of tasks in domain engineering, as
outlined in [41, pp.20-21].

Tasks requiring domain expertise

1. Identify relevant areas of knowledge.

2. Identify reasonable boundaries for these areas.

3. Organize and disambiguate the vocabulary in each problem
domain so the semantics of application-specific concepts are

refined.

4. Select and sketch representative applications to be used as
case studies whose conceptual and design structure will be
starting points for detailed analysis.

5. Provide rationales or justifications for specification and im-
plementation concepts.

6. Review and critique resulting domain models with domain
experts.

Other tasks of domain analysis

1. Acquire knowledge.

2. Organize and encode the acquired information into a domain
model.?

3. Verify the correctness of the domain model with respect to
representation standards.

4. Validate the information in the domain model vis-a-vis exist-
ing systems.

5. Analyze the effects of changes on the model and evolve the
model.
Tasks of infrastructure analysis

1. Define the number, distribution, and structure of repositories
of reusable information, access procedures, and tools.

2. Define the components to be included in each repository and
how they should be represented.

3. Conduct market analysis: *

e Forecast the software production needs of the organiza-
tion for the given domain.

o Assess the coverage of the infrastructure,

e FEstimate throughput of the reuse system.

e FEstimate average cost of implementations.

e Monitor the routine operation of the reuse system.
o Identify the need to evolve its infrastructure.

o Assess the impact of changes in the infrastructure (cov-
erage, costs, etc.)

2We cut off this study at a partial model that includes a taxonomy
of entities and skeletal frames. The subsequent tasks are not addressed
in this study.

3We modify the method by performing a brief qualitative version for
defining the boundary of the domain.



In comparison, we also considered the methodology for developing
reusable components, given by McCain [31]. Following is an outline
of the part that corresponds to the domain engineering process
given above.

1. Perform “market analysis”.*

2. Perform domain analysis
e for the application, and
e for the components.

3. Perform usability analysis.

4. Implement/use prototype (includes full user interface). °.

Within the revised scope of domain analysis noted earlier, we next
review the steps in this task. Prieto-Diaz [40] proposes a method-
ology in terms of data flow diagrams, from which we extracted the
following outline:

1. Prepare domain information

a) Define approach
b) Bound and define domain

(
(
(c) Select knowledge sources

(d) Define requirements for domain analysis
2. Analyze domain

(a) Identify common features

(b) Select specific functions/objects
(c) Abstract functions/objects

(d) Classify

(e) Define domain language

e Taxonomy®
e Frames
e Language

o Model
3. Produce reusable workproducts ’

McCain [31] recommends that abstract interface specifications
should be defined for each reusable component. However, before we
can define component interface specifications or even component
functions, an architecture relating the components to the system
is needed. This is a major task that we treat in a separate section,
before developing the component models.

4 As mentioned earlier, we chose this recommedation, making these
cost /benefit considerations at the domain-scoping stage.

5We modified the methodology by creating a rapid pre-prototype,
including the user interface, with only a small part of the conceptual
model

8 The output of domain analysis in this study ends at this point.

"Excluded from scope of this study.

2.2 TIterative rapid prototyping

We have developed a rapid pre-prototype of a user interface that
integrates the functions of engineering, maintenance, setup, and
operation. Thus, setting a comprehensive context for discussions
with domain experts, we launched a second iteration of the pre-
prototype to partially model manufacturing equipment, for further
interaction with domain experts. The results of the experience are
reported in Section 7.

2.3 Combining Top-down and Bottom-up
Approaches

In designing a software architecture for reuse, flexibility and exten-
sion, the traditional top-down or outside-in approach is inadequate,
as explained by Parnas [38], who proposes

these (...outside-in approach and inside-out ap-
proach ...) as complementary approaches which must
be used in some judicious combination according to the
needs of the situation.

We have taken an approach consistent with this recommendation.
Parnas [38] recommends

...begin with a specification of the family of objects
one wishes to construct ... members must be highly simi-
lar items. To describe a broad family of objects we must
describe a set of lower level mechanisms which will be
common to all members ...

2.4 Method used in this study

After considering the methods and recommendations reviewed
above, we have devised the following procedure for modeling el-
ements of flexible manufacturing equipment:

S1: Consider some common configurations of flexible machines, as
shown in Appendix D.

S2: Identify functions that these machines perform.

S3: Identify classes of physical components from which these func-
tions and function-groups can be composed.

S4: Identify elemental functions from which the functionality of
these physical components can be composed.

S5: Identify the conceptual primitives from which these elemental
functions can be composed.

S6: Model the conceptual primitives.

S7: Build models of component functions and classes successively

from the conceptual primitives.

The work-product of steps S3 and S7 will be classes of objects,
from which it will be possible to compose many more subsystems
and machines than contained in the starting collection. In other
words, the process yields a generic set of models. However, to
assure their adequacy, reusability, and extensibility, the process is
incremental and iterative, as observed by Booch [9].



2.5 Method envisioned for validation

Next, we give a procedure to validate the adequacy of these
models, although this study did not reach that stage.

S1: Identify test cases, e.g., physical components and their assem-
blages, deemed useful by users, but different from the ones
originally identified.

S2: Build models of these physical entities on the conceptual
framework to be tested.

S3: If some weakness is discovered in the underlying conceptual
tree, examine the concepts to understand weaknesses.

S4: Revise the concepts as necessary.

S5: When a family of physical entities and their underlying ab-
stractions are prototyped, review the models with some spe-
cialist with practical experience in applying that family of
physical entities.

S6: Record the concerns, doubts and suggestions expressed.

S7: Validate these comments through similar reviews with others,
as necessary.

S8: Revise concepts as necessary.

With this procedure, one can evaluate whether useful physical enti-
ties, assemblages, subsystems and machines can be composed, and
whether the scheme can be followed easily with “natural” knowl-
edge of the domain.

2.6 Approach taken for extensibility

Another departure from the published methodologies is the notion
of a soft boundary for the chosen domain. The purpose is to im-
prove overall lifecycle economics. The idea is to limit development-
investment at the front-end by making the domain of applications
extensible in small steps. We have followed the following procedure
in this study, to arrive at a conceptual framework for extensibility:

S1: Establish overall scope and expectations of extensibility early
on. Other Sections describe the small steps in which knowl-

edge can be added.

S2: Establish a top-level architectural model of the information
in the scope, including the extensibility.

S3: Selectively allow early start on “bottom up” approach in con-
cepts where good generalizations already exist in technical
literature, even though these generalizations might not have
been exploited in practice.

S4: Involve domain experts in identification of additional useful
generalized concepts.

S5: Take chances in some generalizations not finding great use

later on; the cost of carrying unused concept-fragments is low
relative to discovering later on that the framework is too nar-
row.

We believe that the conceptual framework, thus established, will
reduce the disadvantages of iterative and incremental (bottom up)
growth (Section 2.4), namely, difficulty of maintaining the concep-
tual integrity of the whole system, and the data integrity. Unfor-
tunately, schema evolution may require additional manual effort,
as the tools and technology are not yet adequate.

3 Bounding the domain

This is the second step in “preparing domain information” as out-
lined in Subsection 2.1. Also recall that one result of this step is
the identification of a network of domains.

A key issue we address is an approach to incrementally evolve a
model of a domain to achieve a specified level of performance with
a given target reuser. As recommended by Arango [5], we strive for
a systematic and incremental approximation to a definition of an
ontology and semantics for this problem domain. Per Freeman [18],
this is a long-range research issue. Our approach to the domain
of manufacturing equipment may be viewed as a case-study in the
path of long-range research efforts in software-reuse.

We want to focus on equipment for machining ® automotive cylin-
der blocks, cylinder heads, transmission cases, and such other parts
that fit within the requirements and bounds imposed by these
parts. There is an emerging growth in the use of programmable
servo-driven equipment to machine these products. The automo-
bile and agricultural machinery industries produce these parts in
the order of 7 million sets a year.® However, as these products
evolve and their manufacturing processes change, we want our
equipment models to be reusable and extensible at minimum life-
cycle-cost. One major issue is that if extensive engineering is done
in the beginning:

o [t delays the start of benefits
o It increases the initial investment.

o It delays the start of validation (the history of reusability in
software has not been very promising [41, 12]).

e Over the course of the elaborate engineering process, condi-
tions may keep changing.

These factors make the life-cycle-economics of extensive front-end
engineering less attractive (lower net present value; higher uncer-
tainty). On the other hand, if too little engineering is done in the
beginning, the reusability may be poor. If the original engineer-
ing team is in place to perform the next round, it may be able
to provide a more enduring solution, reusing its prior experience.
However, the more common situation is that the original team is
not in place and the project budget and schedule do not allow for
the additional investment to make the engineering reusable and ex-
tensible in the future. Therefore, we need an approach that yields
an optimal balance between these two extremes.

We approach this study by organizing for extensibility whatever
manufacturing knowledge is readily available in the beginning, as
opposed to gathering or creating more knowledge.
turns out to be easy, we will consider the organization of knowledge
adequate. If extensions are difficult, we will conclude that either
the organization or the amount of starting knowledge or the tools
might have been inadequate.

If extension

The initial amount of knowledge and its organization may turn out
to be more than the minimum necessary for our objectives. We
believe that the added cost is worth the reduction in the risk of
discovering later that the conceptual foundation was inadequate.

8limited to milling, boring, drilling, thread-cutting
%from published annual production of automobiles.
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Figure 3: Scope of cell

The boundary of extensibility is represented in Class-structure 3,
in terms of a system called a cell that processes some product(s)
in some given environment. To bound the scope of this system, we
bound the scope of the processes, the products, and the environ-
ment. Similarly, we plan for extensibility in terms of the processes
that the cells will perform, the products they will accommodate,
and the environmental conditions in which they will function.

3.1 Scope of manufacturing

We first establish a broad context in which we can set a relatively
narrow starting scope, so that the underlying concepts can support
potential future extensions of the scope.

The term manufacturing is often used synonymous to the terms
producing, making, and processing. For example, even the cre-
ation of software has been viewed as “manufacturing” software
[30]. Manufacturing has been more commonly used in the context
of making a product, which, historically, has been a physical prod-
uct. However, software is also being viewed as a product. The
views and usages of the term manufacturing are changing with the
socio-technological environment. In consideration of this trend,
it would be advantageous to leave room for cognitive and com-
putational processes and products, in the broadest definition of
manufacturing, as depicted in Class-structures 1 and 3.

We limit the scope of this study to economically useful physical

product
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class-structure 1: Taxonomy of product

products and to processes that add value primarily through me-
chanical material-transforming action. Generally, many secondary
processes support the primary process. The conceptual model
should include the necessary supporting processes.

Referring to Class-structure 3, these secondary processes may be
physical, computational or cognitive, or even the process of exis-
tence. Cyc[19] has associated the concept of existence with things,
i.e., physical objects. It serves the purpose of associating a start-
ing time and an ending time between which the entity exists in a
certain context. It unifies the concepts of product and process.
Next, we further bound the scope of manufacturing by bounding
the scope of the physical products manufactured and the physical
processes performed on these products.

3.2 Scope of products

The product is a separate domain. We will attempt to define its
intersection with the domain of manufacturing equipment. We
hypothesize that focus on the abstracted properties of products
(see Class-structure 1), will be adequate for our purpose. Later,
it will be necessary to test the adequacy particularly for assessing
the economic usefulness of manufacturing-equipment models.

Although, we could have defined, at the outset, the domain '°
chosen for this study, laying a wider foundation serves several pur-

10hlocks, heads, cases




poses. First, the manufacturing equipment concepts that we want
to model could have wider applicability than our initially chosen
scope. For example, equipment for material-additive processes may
be similar, but it may have to deal with the deposition of the
material in a form outside the initial scope. Secondly and more
importantly, the wider concept of physical-product allows us to
capture the characteristics of certain byproducts of manufacturing
shape-retaining products, e.g., dust, smoke, and chips, which have
a twofold relationship with the manufacturing equipment. First,
these byproducts affect the characteristics of the equipment. Sec-
ondly, the equipment has to handle these byproducts. This might
involve reclamation and recycling in the case of material-additive
processes.

Engine blocks, heads and transmission cases fall in the class of
discrete mechanical products. The purpose of laying the broader
taxonomy is to prepare for later extension of the manufacturing-
equipment concepts to making other discrete, shape-retaining
products, such as electrical and electronic parts.

It should be noted that the classes solid and shape-retaining-
product require certain material properties. However, bounding
the material properties alone is not sufficient to assure these prop-
erties.

By limiting the scope to a discrete, shape-retaining, solid, we can
trace an instance of the product and its transformation through the
manufacturing equipment. This allows us to simplify the domain of
manufacturing equipment. Henceforth, we will refer to the product
as a workpiece or, more commonly, part.

By limiting the scope to a precisely-shaped product, we require
that the process be executed or successively repeated within close
specified limits. By restricting the allowable variability or uncer-
tainty, we would be able to formulate models of manufacturing
equipment that match the real world more closely. The term pre-
cise(see glossary) is relative. Instead of providing an absolute def-
inition here, we leave provision for bounding it through associated
concepts (See section 3.2.6).

To review our scope-bounding strategy, we started with a target
family of applications in mind. We began identifying parameters
that allow generalization. We also began to lay successive stages of
specialization-generalization of concepts, thus setting up potential
stages of extension. Eventually, we have to test if the usefulness
(scope) of our concepts is expandable economically.

ISO/STEP [24] has developed a taxonomy under shape-retaining
products, with a subclassification for discrete mechanical parts.

We adopt the ISO/STEP taxonomy.

3.2.1 Scope of shape

Shaping the workpiece to specifications is the main function of the
manufacturing equipment on which we want to focus. Therefore,
one aspect of bounding the domain of manufacturing equipment is
by bounding the scope of overall shape of the workpiece and the
shape of features on the workpiece that will relate to the manufac-
turing equipment.

Opitz [37] established a parts-classification scheme to organize the
knowledge for processing these parts. This scheme has two main
categories of workpiece shapes: prismatic and cylindrical. The

scheme also has other classes of part-shapes.

We adopt Opitz’ scheme for classifying parts. Prismatic parts ac-
count for two-thirds of the machining equipment used [8] and ac-
count for the bulk of the variety in equipment configurations. The
large amount of potential usage provides the economic attraction.
The large variety provides the attraction that the initial concepts
will be more easily extensible. Transmission cases, engine blocks,
and cylinder heads are examples of prismatic parts.

Prismatic parts also have cylindrical machined shape-features, e.g.,
bores and counterbores. There are commonalities in the process-
ing of these features with the processing of cylindrical parts. We
include a broader classification in the scope, in order to extend use
of abstractions that are common to different types of part-shapes.

3.2.2 Scope of shape-features

A stronger commonality across different part-shapes can be found
in the shapes of the manufactured features. Kramer [26] has com-
piled a catalog, which we adopt. Within these features, we limit
the initial scope of manufactured features to shapes that are pla-
nar, cylindrical, conical, a section of a torus generated by a circular
arc, or a composition of these surfaces. Practically all machined
surfaces in engine blocks, heads and transmission cases fall within
these bounds. This allows us to start with simple motions required
from the manufacturing equipment, which, in turn, simplifies the
models. However, it should be noted that the surfaces actually pro-
duced seldom conform perfectly to these nominal shapes. There-
fore, monitoring and assuring quality, for even these simple surfaces
will still be quite complex.

3.2.3 Abstraction of workpiece geometry

For the purpose of modeling manufacturing equipment, we abstract
the workpiece as a rigid body consisting of manufactured surfaces,
locating surfaces, clamping surfaces, support surfaces, and access-
clearance surfaces, as shown in Class-structure 2.

abstracted-work-geometry

support- clamping- locating- manufactured- access-clearance-
surfaces surfaces surfaces surfaces surfaces

class-structure 2: Abstraction of workpiece geometry

The combination of locating, supporting and clamping functions
will be called workholding or, more commonly, fixturing. The
workpiece may have multiple sets of workholding surfaces for use
in different setups. The workpiece may also have secondary fixtur-
ing surfaces to be used for handling. We limit the scope of these
surfaces as defined below.

Manufactured surfaces are surfaces that will be processed by
the manufacturing equipment to be modeled. We have al-




ready established a bound on the shape of manufactured fea-
tures above.

Locating surfaces are surfaces that will be used in the manu-
facturing equipment to establish the position and orientation
of the workpiece. Locating surfaces shall provide repeatabil-
ity consistent with the accuracy required in the manufactured
features. This is typically accomplished through a kinemati-
cally sufficient and non-redundant scheme, commonly known
as the “3,2,1 locating scheme” in which three locating points
establish the first locating plane, additional two points estab-
lish an orthogonal second locating plane and a third locating
point establishes the third orthogonal plane, thus establishing
a unique position and orientation of the workpiece.

Clamping surfaces are surfaces that will be used in the manu-
facturing equipment to secure the workpiece in the established
position and orientation.

Support surfaces are surfaces that will be used in the manufac-
turing equipment to support the workpiece, in order to mini-
mize its deformation under its own weight or under processing
loads.

Access-clearance surfaces are surfaces that the manufacturing
equipment, fixture and tooling will encounter in order to ac-
cess the manufactured surfaces, locating surfaces, clamping
surfaces or support surfaces. We limit the scope to work-
pieces in which the access-clearance surface can be modeled as
a plane or a cylinder bounded by two planes, or a composition
of such planes and cylinders. This restriction allows simplifi-
cations in geometric aspects of the manufacturing-equipment
model. For example, the enveloping surfaces of a prismatic
part could be modeled as planes enveloping all points in the
workpiece, for the purpose of computing interferences with
the manufacturing equipment.

We deliberately omit, i.e., “abstract away” geometric details about
the presence and absence of material elsewhere within the work-
piece, because that very detailed information is not necessary for
the purpose of bounding the domain of manufacturing equipment.
Although abstractions of the manufactured surfaces (under such
names as form features or part features) are being used in pro-
cess planning systems, abstractions of certain other surfaces, e.g.,
access-clearance surfaces, have not been found in literature on
manufacturing research.

We limit the scope to workpieces in which other useful properties
can be simply related to these surfaces. By wuseful we mean prop-
erties that affect the behavior and performance of the manufactur-
ing equipment during operation. Examples of such properties are
mass, inertia, stiffness, damping, thermal deformation and heat
transfer. By simply related we mean that the purpose would be
adequately served by such mathematical simplifications as:

e lumping mass or inertia at a single point

e lumping stiffness and damping at a few points

e lumping load at a point or treating it as some simple distri-

bution

e uniform distribution of certain properties
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e treating locating, clamping and support surfaces as points for
the purpose of kinematics and dynamics

e treating contacts at these locating, clamping and supporting
points as simple springs and dampers

e treating the workpiece as a beam or a plate between points
of load-application and support.

3.2.4 Scope of workpiece material

We limit the scope of the material of the workpiece such that the
following assumptions hold for the purpose of modeling the per-
formance of the manufacturing equipment.

e The workpiece is a perfectly elastic body.

e Material is homogeneously and continuously distributed over

its volume.

The material is isotropic, i.e., the elastic properties are the
same in all directions.

Structural materials do not satisfy the above assumptions com-
pletely [51]. Yet they are a part of well-established engineering
practice for limited specified purposes. Steels, high-quality cast
irons, aluminum and aluminum alloys are examples of commonly
used materials in machined products for which these assumptions
can be made.

Cyc [19] has a taxonomy of substances, including materials, which
we adopt at the top level. STEP [24] provides a taxonomy of ma-
terials and their properties, which we adopt under the substance
model. Materials for the workpiece, cutting tools and components
of the manufacturing equipment will branch off under this taxon-
omy. Additions for machinability properties may be necessary, if
the STEP model does not include them in time.

3.2.5 Scope of size

Most automotive transmission cases, engine blocks and cylinder
heads fall within a cuboid smaller than 500 mm side and larger
than 100 mm side. So, we want the equipment models to cover
at least that range. Machines for this size range have existed for
decades. There is significant experience about the behavior of these
machines. Although this experience is not formally documented, it
forms the implicit basis for the models used in current engineering
practice. We do not know how valid these models are in different
size regimes, e.g., microscopic parts or very large space structures.
So we limit our initial scope to the size range that fits between the
100 mm and 500 mm cuboids arbitrarily. If an application outside
the bounds is considered, then these models would be re-examined
for their sensitivity to the extension.

The smallest machined feature commonly found in engine blocks,
heads and transmission cases is a hole of approximately 1.5 mil-
limeter in diameter. So we limit the scope to holes of diameter at
least 1 mm (going a little beyond limits of current practice). Once
again, the purpose is to limit ourselves to available experiential
knowledge. We avoid unknowns associated with miniaturization.
Examples of grounds for concern, as the tool diameter reduces,
are:



e Structural-support properties of the tool reduce exponentially
with the diameter.

e Cutting geometry and clearances cannot be maintained in the
Therefore,

same proportion as with larger diameter tools.
conventional drilling process models may not hold.

e The equipment may not be able to sense the weaker cutting
process signals well enough for monitoring.

3.2.6 Scope of accuracy and finish

Following the same rationale, we limit the accuracy levels to those
we have experience with, in engine blocks, heads and transmission
cases, as given in Table 1

Table 1: Scope of tolerance limits
limit (microns

Parameter of machined feature

Dimension of a bore
Cylindricity of a bore
Distances between bores
Alignment of bores

)
2
1
3
1
Dimension of a face 3
2

Flatness of a face

These tolerances, when associated with the bounds on size, ex-
clude “super-precison” manufacturing, which, in turn, relaxes con-
straints on the accuracy of the equipment models.
Roughness of a surface shall not be required any finer than 0.7 mi-
crometers (arithmetic average). This limit gives a crude indication
of the dynamics-related information-content that could be useful
in the equipment-model. Models of tool-to-workpiece dynamics
will require re-evaluation for validity if finer surface finishes are to
be monitored and assured automatically, during operation.
These limits on accuracy and finish represent the bulk of current
machining practice. A crude approach was taken above, to avoid
initial engineering expense. The numeric values given above are in-
dications of order of magnitude rather than absolute limits. Other
metrics for size and accuracy might have been more appropriate.
It will take considerably more engineering effort to improve upon
the benefit from the information. Such an investigation would
be appropriate for a future iteration. For example, some factors
for consideration could be the relationship of: “workpiece size to
tolerances on machined surfaces”, “manufactured-feature-size to
accuracy”, and “slenderness ratio of a bore to its accuracy”.
A taxonomy of these concepts is still evolving in European research
using Al concepts in machining [53], where the attributes identified
for a hole are shown below.
hole:

nominal diameter

tolerance grade

tolerance position

positional tolerance

surface roughness

type of material

process
A A
G © © ©
istence physical- computational{ cognitive-
process process process
A
~CTC\~C
material- heating material- handling | measurement
transforming-|| coolin transformation
energy-
motion
supply F( € ©
machining| | holding transfer | prientation
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counterboring
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class-structure 3: Taxonomy of process

3.3 Scope of processes

Machining operations used in blocks, heads, and cases fall in the
mechanical-chip-peeling class, in Class-structure 3. It accounts for
the largest proportion of all equipment for transforming shape of
mechanical parts [8]. In Class-structure 3, we also show processes
that support machining. These attendant processes are also within
the scope.

Our taxonomy separates certain processes that are not specific to
machining processes. Although they are secondary to machining,
they allow us to form a view of equipment characteristics in a way
that can be applied to some other manufacturing processes.
Although motion processes supply the energy for material-
transformation in machining, motion processes are also in-
volved in non-machining functions. Therefore, in our taxonomy,
Class-structure 3, we did not classify motion under material-
transforming-energy-supply, which then includes other forms of
energy that the equipment supplies for transforming material.

3.3.1 Scope of machining processes

We start with those machining processes that are currently used
in such prismatic parts as engine blocks, heads and transmission
cases, as shown in Class-structure 3. Cylindrical parts employ




some of the same processes, but their main process is turning.
Common abstractions of process models can be found for boring
and turning processes, provided the bores are large enough. To
the extent of capturing that commonality, we also include turning
in the scope. This example is typical of the approach taken for
domain-extensibility.

3.3.2 Scope of heating/cooling processes

Although heat is a secondary process, it plays many significant
roles, which we define below as the scope of our interest in heat-
ing/cooling:

Limit deformation It is a major source of dimensional deformation
that affects the operational accuracy of the manufacturing
equipment. Our interest is in monitoring the temperature rise
and in limiting the temperature-fluctuation for the purpose of
estimating this deformation. Fluctuations may be minimized
by addition, removal or redistribution of heat.

Limit degradation Excessive temperature rise (and secondar-
ily the accompanying structural deformation) accelerate the
degradation of equipment [13] (e.g., excessive wear in dis-
torted bearings, detereoration of fluids, life-reduction of elec-
tronic parts). The scope of our interest is in monitoring and
limiting the temperature rise.

Detect abnormality Excessive temperature rise or abnormal tem-
perature distribution could also be monitored to yield prog-
nostic and diagnostic information about the cutting tool and
machine elements [47,54]. The scope of our interest is in
monitoring the temperature rise, distribution and trend.

Class-structure 4 is a taxonomy of the different thermal processes
of concern in the domain of manufacturing equipment for machin-
ing processes. Heat-generation processes are classified by their
sources. The location and model of heat-generation can be asso-
ciated with the respective sources. Heat-transfer is classified by
more basic modes. A different model can be associated with each
type of process. That process-model can be associated with an
appropriate location, e.g. the whole machine space, or the mount-
ing interface between a source and the rest of the machine, etc.
The corresponding models have not been elaborated in this study.
However, we have craeted a base for extensibility here.

3.4 Scope of monitoring and control

Monitoring and control are subclasses of computational and cong-
nitive processes. They are complex and vary in scope considerably,
across applications. Therefore, we state the broad purpose of mon-
itoring and control here. Since they are also compositions of other
computational and cognitive processes, we define the correspond-
ing scope of those processes below.

The purpose of computer-automated monitoring and control of
equipment is to allow manufacturing of parts safely, correctly, and
productively and to stop operation of the equipment if it is not able
to provide this service. The computer-automated system should
support the maximal utilization of the total investment, to the ex-
tent that given causal laws allow. Maximizing utilization includes

heat-generation (from energy-transformation)
cutting-process
rolling-element-bearings
spindle-bearings
drivescrew-support-bearings
ballscrew-nut-pair

sliding-bearings
electrical-losses
resistance-heating
servo-motors
brushless-DC-type

spindle-drive-motors
DC-motor
AC-motor

heat-transfer
radiation
hot chips
solar gain

convection
air circulation around machine

conduction (e.g., surface contacts)
phase-transformation

evaporative cooling
mass-flow

cutting coolants

lubricants

class-structure 4: Thermal processes in machine

minimizing the execution time, and the parasitic losses, e.g., due
to failures. Models in Section 5 provide the structures to set the
appropriate limits and states.

3.5 Scope of computational processes

The conceptual model of manufacturing equipment should support
preprogrammed computational tasks for monitoring and control
of the manufacturing equipment. By “preprogrammed” we mean
that the program is available before its execution is needed. The
computational tasks are typically cyclic or periodic.

Examples of computational processes to support monitoring are:

1. Acquire value of some variable sensed in the controlled sys-

tem.
2. Collect a prescribed time-history of such values.
3. Reduce or condense this time history to some meaningful pa-
rameter, in accordance with prescribed procedure. These pro-
cedures may use equipment models.
Compute the expected value of the sensed or derived param-
eter. These computations may use equipment models.




5. Compare the sensed value or the derived parameter with a
corresponding expected value.
6. Compare the difference or deviation with allowable or pre-

scribed limit.
7. Trigger prescribed action upon reaching or crossing such limit.
8. Store the intermediate computational results as prescribed.
The prescription may include further reduction procedures
and the maintenance of a time history. These reduction pro-
cedures may use equipment models.

Examples of additional tasks for control are:

1. Acquire value of some controlled variable or parameter from
prescribed plan of execution (typically decomposed from a
program for processing workpieces).

2. Decompose or transform this acquired value to values of vari-
ables/parameters to be controlled by execution agents. These
transformations would use equipment models.

3. Distribute/transfer the values to these execution agents. The

ultimate resulting values are set as outputs to some controlled
actuators in the manufacturing equipment.

3.6 Scope of cognitive processes

We bring out the scope of the less structured knowledge-acquiring
computational tasks under the heading of cognitive tasks.

One class of such tasks is known as machine learning. Our scope
of machine learning is limited to the fitting of parameter values in
previously prescribed models, using prescribed model-fitting pro-
cedures (external to the equipment model). The purpose is to
support the tasks of monitoring, control, prognostics, preventive
maintenance, diagnostics, corrective maintenance, and enhance-
ment or engineering improvements.
learning may come from operational data or from controlled cal-
ibration tests, performance-evaluation tests or other engineering
experiments.

The conceptual model of manufacturing equipment should pro-
vide the structure of the models needed for such machine learning.
Causal laws are given in terms of parameters, but generally the
exact values of parameters are not known. However, these val-
ues can be estimated with a combination of controlled calibration

The data for such machine

experiments. The given causal laws also allow estimation of the
reaction time needed for each physical function to be serviced and
the response time needed by the physical serving mechanism.

Equipment models should also support learning about perception.
Most of the time the perception is not at the point of interest, but
at some remote location (generally the closest available real-estate
that provides maintenance access). Thus, feedback is correspond-
ingly distorted and contains systemic errors, uncertainty and noise
of measurement, in addition to similar deviations from the moni-
tored process. Established causal laws and quantitative informa-
tion do not allow clear isolation of these factors. Our objective is
to have the system perform optimally (at the most economic level
possible) and to protect itself, as much as possible, from adverse ef-
fects of the unpredictable elements. Recall that our objective is to
minimize the time, cost and errors in realizing a specific implemen-
tation of such a control and monitoring system. In other words,
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the scope of the cognitive processes is to learn from operational
data by applying available knowledge, but to generate and signal
an alarm when it crosses some prescribed threshold of “ability to
learn”. Over the course of time, human review of the history of au-
tomated operation and learning is expected to yield improvements
in these processes, thus changing the limits of “ability to learn”.
Cognitive processes should support simplification and selection of
models of other processes by association with the contexts and
by limiting the accuracy to what is needed for the purpose. For
example, we consider the case of heating or cooling. The follow-
ing different reasons for cooling impose progressively more difficult
modeling and computation:

1. maintain safe temperatures
2. avoid degradation of machine elements and fluids, and
3. maintain operational accuracy (most difficult).

Appropriate estimations of heat-generation and heat-transfer rates
are needed to design cooling capacity in the system. For opera-
tional accuracy, on-line control of temperature would also be ben-
eficial. Feedback control is not sufficient, because of the long time-
constants in temperature-changes. Therefore, some degree of pre-
dictive control would be necessary. Some of the same engineering
information that was needed for the design of the cooling system
capacity could be used in predictive control, along with on-line
information about the different operational speeds and loads that
affect the heat-generation rate in various parts of the machine.
This collective information makes it possible to regulate cooling
and even active heating to minimize the fluctuation of tempera-
tures. Simply balancing heat-gain and heat-removal could reduce
much of the fluctuation. The initial models would provide the
knowledge to predict and account for such first-order effects. The
modeling framework should also provide the facilities to improve
upon these models as experience is gained.

3.7 Scope of physical environment

We identify factors in the physical environment that will affect the
models and the performance of the manufacturing equipment. Iso-
lation and abstraction of these factors would allow us to extend
models correspondingly when the need arises to extend beyond
these limits. However, there are economic and technological limi-
tations to such extensibility. There are similar limits on how well
the environment can be controlled or compensated for. These fac-
tors are illustrated below with examples, providing the rationale
for limiting the scope of product size and accuracy.

We limit the scope of equipment modeling to constraints on en-
vironmental factors given below. These limits are consistent with
the nominal specifications in most industrial-scale manufacturing
plants. Many of these specifications are not met in practice. We
explain below the nature of these deviations. Equipmentmodels
should be extensible to cope with these deviations.

Mounting surface for the equipment is stable, i.e., it provides a
stable coordinate frame of support and reference for position
and orientation and it isolates the equipment from shock and
vibration, within limits that the process will tolerate. (This

constraint is not explicit). However, perfectly stable floors



will seldom be available. Best achievable stability will be too
costly for the ordinary applications.
to be relaxed for less demanding processes. Only crude rule-
of-thumb guidelines are available to practicing manufacturing
engineers. So, the initial course we chose was to impose spe-
cific numerical limits on the accuracy goals on products (see
Section 3.2.6).

So the constraint has

ments and its fluids, making performance unreliable and
accelerating degradation.

4. Summer shutdowns have an analogous effect on distor-
tion. Additional effects may be:

e Degradation of fluids with microbeal activity accel-
erated at the higher temperatures.

e Drying and caking of dirt on machine elements;
it increases resistance to motion and accelerates

Ambient fluid surrounding the equipment is air. However, it
should be possible to extend equipment models to other sur-
rounding fluids, if it has been designed for such operation and
if the needed design information is available. In many appli-

degradation.

Gravitational force is constant.

Relative humidity is maintained at an average of 50%, but does

cations, the work-zone is submerged under a flood of cutting
fluid, either to remove process heat or to maintain uniform
temperature distribution or to remove chips and other pro-
cess debris or to provide lubrication in the process or to serve
as an electrolytic fluid. Even though such applications have
been running in production for a long time, there is little doc-
umentation available on the performance models of equipment
submerged in these fluids.

Ambient temperature may vary over the range of 55-85 de-

grees Fahrenheit, but bulk air is supplied to maintain an av-
erage within 65-75 degrees. In practice, actual temperatures
fluctuate over a wider range. Although it would be desirable
to have equipment models extensible to cope with these de-
viations, it is very difficult. Therefore, we take the conserva-
tive, though less widely useful, approach of limiting the scope
to the 55-85 degree range. We explain the various sources of
larger temperature fluctuation and the resulting compromises
below.

1. Vertical stratification occurs. Temperature at the floor
is lower than temperature at the roof of the plant. The
variation can exceed 20 degrees F. This stratification af-
fects tall machines significantly. The phenomenon is not
predictable enough to compensate for its effects. This
factor imposes an upper limit on the height and size of

equipment for which the equipment models would be
valid.

2. Solar heat gain from windows and skylights raises tem-
perature of equipment non-uniformly. The resulting dis-
tortion is significant on large machines. The tempera-
ture rise varies with the position of the sun, cloudiness,
etc. So it has not been practical to compensate for its
effect. This factor also imposes an upper limit on the
size of the machine for which equipment models would

be valid.

3. Winter shutdowns allow the temperature to drop consid-
erably below the 55 degree limit. Some plants shut down
the heat totally. The resulting shrinkages are severe.
There is differential shrinkage between the floor and the
machine. Upon restoration of normal temperatures, the
machine does not return to the original relationships
and locations. This affects operational accuracy. The
phenomenon affects larger machines more significantly.
A second effect is condensation within the machine ele-
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not exceed 80%. As explained above, this constraint is not
held in practice during shutdowns.

Work-stoppage conditions will be kept close to steady-state

operating conditions. In current practice, equipment perfor-
mance models are most valid when the equipment has been
running under steady-state operating conditions for some
time. Work stoppages make the performance less predictable.
The longer the stoppage the greater is the uncertainty until
steady-state-stoppage conditions are reached. Examples of
sources of uncertainty are:

1. Changing temperature-distribution across parts of the
machine, changing the thermally-induced deformations.
It would be desirable to extend the equipment models
to compensate for predictable and measurable changes
in temperature distribution.

2. Changes in preloads, and, as a result, changes in stiff-
ness and damping properties, resulting from changes in
temperature distribution. These effects are more diffi-
cult to predict. Therefore, we rule them out of the intial
scope.

3. Changes in lubrication of moving parts. The effects are
very difficult to predict. Therefore, we impose a con-
straint that joint-lubrication will be maintained during
work-stoppages. Industrial-scale plants follow this prac-
tice for short work stoppages. However, the practce is
not widely followed for overnight stoppages. Thus, our
models will not be valid for the startup phase after such
stoppages. The compromise is being made in view of
the technical difficulty.

Longterm shutdown effects are outside the scope, i.e., if the

equipment is not operated for a length of time, the models
may not hold valid. After such a shutdown, properly en-
gineered startup and revalidation procedures must be per-
formed on the equipment. The interpretation of longterm is
dependent upon the design specifications of the equipment.
The longterm-shutdown effect of most concern is the effect
on moveable joints in the equipment, i.e., seizure or “freez-
ing” of the bearing surfaces.

Electrical power supply, EMI, RFI shall be within design

specifications of the manufacturing equipment. Although
most plants have such nominal specifications, often signifi-
cant deviations occur. To that extent the equipment models
may not be valid.



Thus, we have reviewed a number of environmental factors which
are likely to cause the behavior of the equipment to be different
from the predictive models. In many cases, these conditions will
have to be carefully validated before applying the models. In some
cases, the models can be structured for extension to account for
additional variables.

3.8 Scope of manufacturing equipment

We confine the scope to equipment that has been designed with
the intent to satisy the following conditions:
1.
2.

It will operate properly in the environment of the plant.

It is protected from emissions of the manufacturing process,
e.g., chips and dust.

3. It is observable and controllable [39].

4. Tts behavior within its operating range may be approximated
as a linear system.

The noise in signals from continuous processes, e.g., position
feedback in servo-controlled motion, may be treated as white
Gaussian noise.

These conditions often do not hold in operation. However, they
are an appropriate starting point, because they the basis of current
design practice. Much of the time these assumptions are found to
be workable, because the product and the manufacturing process
are not sensitive to the violation of these assumptions. In Section 4
we develop a part of the conceptual framework that will allow
extension beyond the assumptions of linearity and white, Gaussian
noise.

Recognizing that we have already constrained the scope to equip-
ment for the products and processes in the scope defined above,
we now consider equipment-specific characteristics.

In Class-structure 5 we show a taxonomy of manufacturing re-
sources within a typical machining cell, Class-structure 3 decou-
pled from the processes such equipment might implement. Our
initial scope is limited to the basic machine, the resource that pro-
cesses the workpiece. Examples of peripheral-mechanism are tool-
changer and work-changer. Examples of auxiliary-equipment are:
hydraulic-power-unit and oil-cooler. We provide for extensibil-
ity through the generalization hierarchy of controlled-processing-
equipment, processing-equipment, processing-resource
ample, there could be commonality between models of elements
of a servo-driven basic-machine and a servo-driven, robotic tool-

...For ex-

changer.

3.8.1 Correspondence of function and constituent

Most computer-automated machining cells in use today can be
functionally partitioned as shown in Class-structure 5. The ba-
sic machine provides relative motion between the tool and the
workpiece. We confine our scope to basic machines which will
provide an unambiguous correspondence between a monitored or
controlled function and a constituent unit (see Class-structure 7).
We believe this constraint is reasonable in the context of machining
systems for industrial-scale production as in the automobile indus-
try. Since such systems need high reliability and maintainability,

intra-manufacturing-cell
resource
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class-structure 5: Taxonomy of manufacturing resources in
a machining cell.

the construction is modular. It is desirable to make active compo-
nents and subassemblies individually replaceable and testable. It is
natural to have their corresponding controls modular, to facilitate
diagnosis, testing, and calibration. This justifies the constraint of
unambiguous correspondence between a monitored or controlled
function and a constituent unit. Nevertheless, we recognize that
there are some well-known phenomena in which a function does
not purely correspond to one constituent. For example, a pris-
matic joint with the nominal function of providing translation in
the direction of the x-axis may also have undesirable (but very
small) motion in other directions. We will present an approach to
accommodate such deviations in our conceptual model, as long as
the deviation can be usefully approximated as a function of the
motion of an axis-group.

In the cases of less accurate machines and certain special-purpose
machines, a one-to-one correspondence between function and con-
stituent may not be the design intent. Therefore, our conceptual
model will limit its initial scope to exclude such machines.




workstation
basic-machine
peripheral-mechanism
auxiliary-equipment
workholding-fixture
tooling
cutting tool
toolholder

“global” sensor, i.e., not included in entities above
tool-to-workpiece-position-sensor
tool-to-workpiece-load-sensor
ambient-temperature-sensor

class-structure 6: Constituents of an automated machining
workstation

substructure or axis-group
translational-joint
joint-pair
drivetrain
leadscrew
pulleys, gears ...
coupling
drive
amplifier
motor
feedback-sensor
position-sensor
velocity-sensor
current-sensor
temperature-sensor
rotational-joint
spindle

class-structure 7: Constituents of a programmable servo-
controlled basic machine

3.8.2 Scope of kinematic configurations

We limit the scope to kinematic non-redundant mechanisms that
can be modeled in terms of the ISO standard for representing kine-
matics [22]. Furthermore, we limit configurations to one of those
categorized in Appendix E of [36].

We limit our initial modeling-scope to machines, Class-structure 7,
equipped with programmable servo-controllable actuation, as well
as perception of pertinent state. Most common state information
is the servo-position and velocity (often derived from position).
Information of average actuation power is also usually available.
Temperatures of external machine surfaces and fluids are also avail-
able at relatively low expense. Information on forces is often only
indirect.

3.9 Review of extensibility of domain

We have identified some potential extensions that would cover the
manufacturing of a wide range of discrete mechanical, optical and

16

electronic parts. By identifying such potential extensions, we will
be able to explore appropriate conceptual primitives at early stages
of the project. We have also identified a possible series of progres-
sive increments of extension that we describe below.

1. Machines of other configurations, but composed of commonly-
used building blocks. See Appendix D.

. Precision machines performing different types of functions on
different types of discrete shape-retaining parts:

e positioning, orientation and other manipulation of dis-
crete mechanical, electrical, optical or electro-optical
parts;

measurement of dimensions[21], locations, orientations
(relative and absolute);

assembly of such parts by placement or insertion at pre-
determined absolute or relative locations;

e combinations of such functions in the same work-cell.

Machines with lower precision where the repeatable perfor-
mance, relative to non-repeating deviations, is not as high
as in precision machines. The signal-to-noise discrimination
problem becomes more severe, and representations become
more complex.

Monitoring, tracking, estimation and use of changing dynamic
and kinematic characteristics such as friction, stiffness, back-
lash, geometric errors of motion, and thermal deformation[21].
. Inclusion of fixture, workpiece, tooling, and such attachments,
to extend the scope of the system from the basic machine to
the workstation level and then to the cell level.

Processing control objectives other than those specifiable in
traditional numerically-controlled machining;:

e dimensional metrology of parts in process;

e machining or assembly of parts to relative dimensions
determined in process;

machining or assembly of parts controlled by constraints
of cutting forces or by some user-defined objective func-
tion;

machining or assembly of such parts using combinations
of control strategies mentioned above switching control
strategies under prescribed rules.

7. Other sensors that may be used to enhance dimensional accu-
racy, performance, reliability or availability of the manufac-
turing cell.



4 Architectural model

By architecture, we mean the fixed structure(s) from which specific
applications can be composed with minimum additional engineer-
ing time and cost. The term fized is used relative to a time scale,
i.e., the architecture is reusable or amortizable over a number of
application-development cycles.

Biggerstaff [7] concludes that for any significant reuse of software
components it is essential to have an architectural standard for the
domain over which the components are to be reused.

Krueger [27] ranks architecture second among eight different ap-
proaches to reuse, when the objective is to reduce the intellectual
effort required to go from the initial conceptualization of a system
to a specification of the system in abstractions of the reuse tech-
nique. Application generators, the highest ranking reuse-approach,
also owe their success to a standard architecture of domain seman-
tics. Whereas application generators have been successful in very
narrow domains, we can widen the applicability with a systematic
evolution of an architecture for the application domain.

Recall that a conceptual model must be defined in relation to its
purpose. The domain defined in Section 3 establishes the overall
boundaries on the purpose and contexts.
mation available within the system is very broad. We resort to a
reference model architecture, for the application domain, for fur-
ther organization and partitioning of information in the system to
provide more accurate, timely, effective and efficient usage. There
are also many fundamental issues in correct and timely inferences.

Even then, the infor-

4.1 Some requirements addressed in the ar-
chitecture

We present our approach to the architecture in relation to some
fundamental research questions about organizing knowledge for
correct and timely inferences:

Q1: How should contexts be set up to help narrow the inference
process? (The hierarchical architecture, shown in Section 4.2,
sets up the contexts).

How should knowledge be represented and organized for
timely prediction and recovery? [43] (The concept of tem-
poral span, shown in Section 4.6, provides for specification of
the duration for which information in an architectural branch
is valid).

How should knowledge be organized to extract the con- tent
of the sensed information? Schank [43] puts this question
under the Inference problem. (Appropriate contexts are set
up in the hierarchy of the architecture).

How should knowledge be organized to draw conclusions from
disparate data, e.g., sensed information? Schank [43] treats
this question as a generalization problem. The concept of
contexts is mentioned in [19, 29], but they did not report any
general solutions or any methodology to determine what con-
texts are adequate and sufficient for the purpose.

How should knowledge be organized to apply relevant case ex-
perience in prognostics and diagnostics about the controlled
system? This question is linked to the previous question.

Q2:

Q3:

Q4:

Q5:
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Forbus [17] defines the issue as merging measurement inter-
pretation with explanation.

4.2 Hierarchical structured systems

Many notable scientists strongly recommend an hierarchical repre-
sentation [10,32,35]. It is a well-established approach to manage
complexity. Still there is controversy in industry and the concept
has not been put into practice explicitly. We offer the following
additional arguments in support of an hierarchical representation:

1. The underlying body of general engineering knowledge is hi-
erarchical, though the knowledge used in a particular system
is often not explicit. Lytinen [29] brings out the notion of
organizing structures for causal knowledge that comes from
more general causal laws, so that the same knowledge can be
applied in different situations.

2. Such physical systems are engineered in an hierarchy of con-
stituents. Therefore, an information hierarchy corresponding
to the constituent hierarchy becomes natural for some of the
information, as depicted in Figure 4.

3. We have limited our scope to machines with a correspondence

between constituents and their functions and behavior in Sec-
tion 3.8.1.

Our conceptual model is based on deploying the following types of
hierarchy in organizing the information:

o Generalization/specialization hierarchy

¢ Constituent hierarchy (or aggregation)

o Task (decomposition) hierarchy

¢ Resolution-relevance (spatial, temporal) [23]

NIST [2] has demonstrated the workability of such an architecture.
Their reference model architecture for intelligent control provides
a good starting point for a hierarchy. From this reference model,
we constructed Figures 4-2, and Table 3.

4.3 Nested hierarchical control

Meystel [23, 33] describes the concept of nested hierarchical control.
He has applied it to unmanned mobile robots in an environment
considerably less structured and less predictable than the environ-
ment for our manufacturing applications. Thus, we postulate that
the concept of nested hierarchical control, as shown in Figures 4-5,
would not be overly restrictive.

From Figure 4, taking Level 1 as an example nesting, we show its
internal structure [2] in Figure 4. It consists of:

TD Task decomposition, which includes the functions:
e Assign task or job
e Plan

e Execute the plan

Albus [2] places the knowledge required for each task in task
frames.

SP Sensory Processing, i.e., monitoring or detection or perception
about the controlled entity.
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Figure 4: Levels of control and tasks within a level

WM World modeling, i.e., the state of the controlled entity.
It may use and update prior information in the system.
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in the nesting. The outermost level is controlled by an authorized
human, who may set up the system to take further commands from
a remote computer. A subsystem at any level may take commands
only from the level immediately outside, i.e., above it. Commands
may be plans or programs stored at the time of setting up a par-
ticular subsystem. Additional plans or parameter values or other
information may be put in place at any later time prior to the
start of an execution cycle at that level. Figure 5 shows the overall
hierarchical control scheme.



4.4 Task decomposition

Associated with the jurisdictionalentities at each level are tasks or
functions or responsibilities of those entities. Generally the func-
tions and behavior, by design intent, fit into a corresponding con-
stituent hierarchy (see Figure 4). There are deviations from this
correspondence, which we will discuss further in Section 5.

For each level, let the task-specification be a sequence of (object,
task, latest-tolerable-delivery-time) triples. Under that premise, in
Figure 2, we show the typical tasks at each level and the objects
on which the tasks are performed. The motion-related tasks are
examples of operations that would be composed from primitives
modeled in Section 5 and synthesized in Section 6.

Physical action in the external world is performed only at Level 1.
Actions at higher levels are successive compositions of the physi-
cal actions at Level 1. Thus, the performers are only conceptual
entities. Most of these semantics are established in the application-
domain and are documented in literature [2,48]. We have found
some additional abstractions to be useful—we will discuss these
abstractions in Section 5.

4.5 Spatial span and resolution

The spatial span and resolution at the innermost nested level have

the smallest values. Spatial span increases and resolution gets
coarser at each successive outer level, as shown in Table 3.
In our case, spatial span corresponds to the constituents at each

level shown in Figure 4

Table 3: Resolution-relevance in the system

Level:Role Spatial span Temporal span
6:Cell Several workstations 3,600,000T
5:Workstation Intra-workstation 180,000T
4:Equipment Multiple 20,000T
- basic-machines -
3:Elemental- Multiple 2,000T
move axis-groups

2:Primitive Individual 200T
- axis-group -
1:Servo Individual 20T
- joint or axis -

Note: T is the temporal resolution.

4.6 Temporal span and resolution

Table 3 focuses on functions related to servo-motion within a man-
ufacturing cell. T represents the smallest temporal resolution in
the whole system, i.e., the shortest state-change interval. The tem-
poral resolution may be the shortest sampling interval in the case
of a sensor or the fastest update interval in the case of a servo-
actuator. Similarly, the temporal span may be the planning hori-
zon in the case of commands to be generated and issued or it may
be the length of historical traces or data-streams. The temporal
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span entries in Table 3, given as multiples of T, indicate orders
of magnitude, assuming a just-in-time manufacturing system. For
example, if T were 1 milli-second, the temporal span of a cell would
be in the order of an hour.

We postulate for the case of the chosen domain, Section 3, that in
a system with n levels, for 1 <k <n +1

1. An external-world task mapped in Level k will have a time
constant coarser or longer than the longest of the time con-
stants of its subtasks assigned to Level k£ — 1.

2. There is no need for temporal resolution at Level k to be finer
than temporal resolution at Level k — 1.

3. There is contention for resources requiring deadline-based or-
dering of tasks.

4. Increase in computational capacity increases cost.

5. Computational cost can be reduced if real-time deadlines can
be relaxed.

6. There is economic advantage in allowing computational tasks

to be serviced in the longest time tolerable.

Figure 5 shows the overall information architecture. Each level up
to Level m performs an execution cycle within a guaranteed time
limit, i.e., these levels are real-time subsystems.

Sensory information is processed, assimilated or integrated or fused
and used in the context set up for each subsystem. Further-
more, other information pertinent to that context—iéemporal and
jurisdictional—is made available to that subsystem.

We observe that the temporal and spatial resolution of the equip-
ment models used in each level need to be commensurate with the
resolution of the tasks at that level. Also, world models at one of
these levels may be valid only for the temporal and spatial span
and resolution of that level. In this manner the architecture sets up
jurisdictional contexts and temporal contexts for each subsystem.
These contexts help address the questions raised in Section 4.1.
These contexts also have significant implications in reducing com-
putational costs for a given level of complexity in the application.

4.7 Applicability to a simple cell or machine.

In simpler compositions of a cell, the functions at certain levels
may be thought of as “pass throughs”. At the time of original
creation, the cost of inserting a ”pass-through” level in a simple
system is relatively insignificant. However, at a later stage in the
life cycle of the system, when functions at that level are added,
the cost of retrofit is much lower than in a system that lacked such
provisions in the original design.

We will show in Section 5 examples of applying the architectural
model to simpler configurations, mechanisms and elements.

4.8 Hierarchy of sensory feedback

We shall illustrate the value of an hierarchical architecture through
the following example. Let us consider the case of an information-
request from some client-process on sensor signals. The request
may concern any of the following:

o Instantaneous value



Table 2: Task hierarchy in a machining cell

LEVEL | PERFORMER | PERFORMED ON TASK
6 Cell Workpiece Make
5 Workstation Workpiece-setup Macro-operations (Machining sequence in given setup)
4 Equipment Workpiece-setup Elemental-move-sequences
Fixtures
Palettes
Trays
Tool-assembly
3 Machine Peripheral-mechanism | Elemental-moves: move, rapid-move ...; approach, slow-approach ...
Auxiliary-equipment
Workpiece-setup
Tool-assembly Machining-tasks: mill, bore, turn, drill ...
Measure
Insert
Fixtures Holding-tasks: place, put ...; touch, clamp, grasp ...; unclamp, release ...
Palettes
Trays
2 Axis-group Workpiece-feature
Tool-tip Go-along-path
Move-to-point
Other-object-features
1 Axis or joint Actuator Move: translate, rotate
Note: Control position, velocity, acceleration, deceleration, force, etc. in spe-
cified profile over time.
Turn-On, Turn-Off

e Values over current period
e Recent history
e Longer history

The example illustrates the consideration of several factors in the
representation of the capabilities and limitations of manufactur-
ing equipment. Let us take the case of axis-position feedback
signals. Typically in higher-performance servo-controlled manu-
facturing automation, axis-position is sampled at sub-millisecond
intervals (the PWM power-amplifiers can accept signals at 0.00025-
second intervals). In contrast, 0.125-second update-interval is suf-
ficient for the display screen, i.e., 1 in every 500 readings of the
position-feedback. However, for human reading the interval does
not have to be precise. Therefore, it could vary from 0.125 to
0.016 second in practice. If the reading sent to the display screen
were to be sent to the client-process (as is the case in current
practice), the sequence of readings would not be very useful for
mathematical /statistical processing by the client, because of the
widely varying unknown time-interval between readings.

4.8.1 Extracting servo-model parameters

Computation of parameters of the servo-subsystem model (see Fig-
ure 11 is a useful client process. Intuitively, if there is value in a
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command-interval of 0.00025 second (per example under consid-
eration), the parameter-calculating process should get readings at
intervals repeatable within 0.00025 second at worst. Thus, 4,000-
8,000 samples per second would have to be recorded. The cost
of processing, communication and storage resources has prohib-
ited usage of position-time history data. Since this signal history
contains valuable information about the real behavior of the servo-
subsystem, it would be desirable to find an economic way of cap-
turing and using this history.

4.8.2 Data reduction approaches

Several approaches are available for processing the signal close to
the point of acquisition:

1. Lossless data compression and then forwarding the com-
pressed data to some client process operating under less strin-
gent response-time requirements in some other resource. This
may be viewed as an application-independent compression
technique within the domain of 8-KHz signals.

. Extraction of useful information from the signal history close
to the point of acquisition and then throwing away the raw
data, e.g., a curve-fitting process based on a reference model.
This may be viewed as an application-dependent compression



technique. A priori models of the servo-subsystem in current
usage only capture the dominant characteristics of the sys-
tem. These models may be sufficient to control a “normal”
system, but not sufficient to detect and diagnose abnormali-
ties. Such commonly occurring phenomena as backlash and
stiction are not captured. Effects of common malfunctions,
e.g., errors in the position-feedback device, worn gear-teeth
in the drivetrain, are also not captured. It would be useful to
model some of the well-known abnormalities or malfunctions
to the extent necessary to detect or identify their presence.
Thus, modeling the signal is closely related to modeling the
servo-subsystem.

In-between techniques may also be worth exploring, where
an a priori model of the servo-subsystem is not used as a
reference, but the signal is classified by some generic charac-
teristics of the servo-signal subsystem. An appropriate signal-
compression scheme is accordingly chosen, e.g., processing in
the time domain, frequency domain, time frequency domain,
or frequency-time domain.

Any of these approaches is feasible with current and emerging
DSP technology. DSPs are becoming common for processing the
servo-control algorithm. The same processor could implement the
chosen compression or information-extraction algorithm and pass
on the compressed information to the client process(or). If the
servo-control algorithm is being implemented at a 0.00025-second
interval (4 KHz frequency), its “parent” (next higher level, say
Level 2) process might be implemented at a 0.002-second inter-
val (500 Hz frequency). Even this frequency is so high that it
becomes attractive to apply some model at this process-level to
further extract useful information, apply the useful information at
its level and send to the next higher level (say Level 3) information
reduced further, say at 0.016-second intervals (60 Hz frequency).
The model at the Level-2-process should be good enough to detect
a clear local failure and broadcast it to processes within the same
axis-group (kinematic subsystem). Resulting actions could be to
correct velocity of each axis in the group so as to maintain the
coordinated space-time trajectory. It may suffice to store only the
last 48 0.002-second-interval readings (three 0.016-second periods)
at the Level-2-process. Older readings could be discarded under
the premise that all information, useful beyond the time-span of
Level 3, is retained in the 0.016-second-interval signal-model and
the last forty-eight 0.002- second interval readings. The model
at the Level-3-process should be good enough to compute a trend
(change in behavior or impending failure); the trend should be sta-
ble enough for the next few Level-3 cycles (next few 0.016- second
intervals). The change or new information would be disseminated
and used in machine-wide peer processes. Resulting actions might
be to interrupt the machine cycle or to alter (adapt) the material-
processing rate.

The Level-3 process would reduce the feedback information and
send it to the Level-4 process at 0.125-second interval (which brings
us to the frequency of updating the human display). The timing
of the computation could vary up to 0.016 seconds. This scheme
would make it possible to send “good enough” feedback-data to a
client process(or), without the excessive burden of sending all raw
data or sampled raw data with unacceptably-uneven spacing.

Even a rate of eight sets of data per second becomes excessive for
long-term storage (86,400 seconds per day!). Thus it is desirable to
continue the process of successive reduction outlined above. This
scheme would require a model of the system good enough for the
reduction process at each successive level.

4.8.3 Equipment-degradation models

Equipment characteristics changing in a “non-convergent” man-
ner (e.g., some parameter drifting away from the mean value or
increasing variation in some parameter) over time periods in the
order of months could be caused by degradation (e.g., wear caus-
ing reduction in stiffness of drive-leadscrew bearings or backlash in
the drivetrain). Thus, equipment models capturing such changes
in behavior should be related to equipment-degradation models
(see Figures 10 and 11.

These models would be useful:

1. in planning preventive maintenance, e.g., when to schedule
the next calibration or other detailed inspection;

2. in planning repair, e.g., when to order replacement parts,
when to take equipment out of service for repair;

3. as feedback for design-improvements and retrofits; and

4. as a basis for future system specifications and design.

4.8.4 Data for quality audit

In certain situations, e.g., parts of high value or high consequen-
tial costs, manufacturers find it valuable to maintain an audit trail
specific to each part manufactured [44]. Audit trail data become
very voluminous. Therefore, even for an archival level in the in-
formation architecture, there is value in using information models
that allow data reduction or compression. In current practice, the
major items of data are:

1. Record of inspection, e.g., measurements on a coordinate mea-
surement machine.

2. Part program.

3. Values modified during the execution of the part program,

e.g., offsets, feedrates, spindle speeds.

Besides being voluminous, these pieces of data do not easily yield
insight into the causes of a quality problem that might be discov-
ered later on.

Also, off-line inspection is very costly. Thus, the trend is to as-
sure quality on line, maintain knowledge of the process-capability
of the system and use this knowledge to determine how well quality
can be obtained [44]. Thus, it is expected that in the future the
audit trail will also include process-capability models of the man-
ufacturing system, especially the equipment. Nau [34] has shown
off-line usefulness—with on-line-modeling, the effect of equipment
on process-capability could be traced and compensated much more
productively.

Storage of process-capability history, while valuable, could also be
excessive in storage and retrieval costs, since each part cycle could
be as short as a few seconds—commonly around 30 seconds in
major automotive parts (over a million records a year!). Thus it



would be valuable to devise a modeling scheme that would reduce
this burden.

Table 4: Levels of Data Reduction

Process level | Incoming data | Variation | Sets of
level interval in interval data
1 0.0002 s - 8

0.002 s 0.0002 8
3 0.016 s 0.002 8
4 0.128 s 0.016 8
5 1.0s 0.128 8
6 8s 1 8
7 64 s 8 8
8 512 s 64 8
9 4096 s 512 8
10 2expl5 s (hour) 8
11 (days) (hours) 8
12 (month) (days) 8
13 year (month) 8

Note: s denotes second(s)

This example shows 13 levels of data reduction. '! It has eight
sets of history data per level. Only 104 sets of data have to be
stored over a year of operation. The example was given to indicate
that a progressive data reduction scheme would allow manageable
amount of data to model the real capability of the machine.

4.8.5 Issues in data reduction

Some issues, not considered in the example above, are mentioned
below. These considerations will require more intermediate storage
and more involved intermediate states, not modeled in this study.

1. How to preserve the low-frequency content in the data cap-
tured at the lower levels?

2. How to represent a sudden event, e.g., effect of a micro-
fracture instead of smooth continuous wear on the change
in behavior?

3. How to distinguish between “noise” and “real effect”? (Would
information get inadvertently filtered out as noise and there-
fore delay detection of a change in behavior or lead to erro-
neous model of behavior?)

4. How to devise a model-validation scheme such that when sig-
nificant abnormality or uncertainty is detected from running
data or at some time when the machine is not engaged in pro-
ductive activity, a controlled, properly designed test sequence
is run to determine the real behavior? How to merge or fit the
results of such tests into information derived from long-term
running data? Which data-set is more real? Controlled tests
seldom represent behavior under real production conditions—
could the running data be considered more real and true? A
representation scheme should capture these considerations.

11 Process levels 5 and higher may be performed at architecture level
6 shown in Table 3.



5 Modeling elements of manufactur-
ing equipment

Our primary purpose of modeling is to represent real-world basic
machines in a way that captures their characteristics essential to
the applications bounded in Section 3. Secondly, we want to rep-
resent this knowledge in a way that maximizes reusability, e.g., by
abstracting commonalities across different basic machines.

We have focused on characteristics related to monitoring and con-
tinuous control of servo-controlled motion, with the intent to ex-
tend the model for monitoring and diagnostics.

Hayes-Roth [20, p. 143-144] recommends that the conceptualiza-
tion stage should focus on identifying the key concepts and their
relations and not commit to formal representations prematurely—
different representation frameworks may be more suitable for dif-
ferent concepts. Therefore, our primary focus is on modeling ele-
ments of a basic machine in the language customary to the domain
and the related engineering subdomains.

Loucopoulos [28] classifies conceptual modeling orientation along
one of three dimensions: data modeling, process modeling, and
event modeling. The domain of manufacturing equipment requires
a mix of all three dimensions. However, since this study is at
the beginning stage of modeling this domain 2, it is oriented to-
ward data modeling—the dimension least dependent on applica-
tions. Entity-Relationship (ER) Diagrams [50] are used to repre-
sent entity classes and their inter-relationships. These diagrams
have been extended with other modeling notation to suit the do-
main. Relationships shown are mostly aggregation or inheritance.
In some cases it was convenient to identify the entities in a tabular
form. In most cases, attributes and constraints are not shown in
the ER Diagrams for clarity. A separate textual format (“tem-
plate”) is used to show attributes, key operations, and basic state
models of the entities. In certain cases (where the primary rela-
tionship was inheritance) it was convenient to represent functions
as objects in an ER diagram, although the usage was unconven-
tional. In some cases, features of real-world objects are further de-
fined as mathematical formulae. In the event modeling dimension,
Section 6.4 and Class-structure 23 show our approach to model-
ing generic states of manufacturing equipment. Thus, structure,
behavior and dynamics of the manufacturing equipment are de-
coupled from each other, as recommended by Rumbaugh [42], al-
though the three types of information are shown in the same tex-
tual “template” or skeletal frame. For ease of human readability,
object class features are not named with concatenated or cryptic
words (as done for computer-readability); instead, descriptive text
is used.

We also reviewed literature on conceptual primitives for machine
tools. The NGC Schema [48] is the closest work, in which a number
of “primitive data types” are proposed as part of a standard for
the next generation of controllers. Some examples are given in Ap-
pendix A. On the one hand many of these “primitive data types”

'3 are not the conceptual primitives from which manufacturing

12No adequate starting point was found in technical literature.
13For example, database-ms-type, which stands for database manage-
ment system type

machines can be composed. On the other hand, many concep-
tual primitives are missing. It seems that the domain primitives
became obscure in the programmer’s view of the problem.

5.1 Physical quantities and phenomena

Attributes of machine elements are described in terms of basic
physical phenomena and quantities, as shown in Class-structure 8
and Appendix G. The term quantity is used here to mean: “a
measurable attribute of phenomena or matter” [4].

specia.iza lion—func lior

\ soecialize

transformation—-furction }7<

— narne

‘ basic—physical—quantity unit

transform

Cl derived—physical-quantity ‘
offset ? Q scale

scaled—quantily ‘

relalive—quantily

incremental—
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differertial—
easuremen:

referred—
measurement

class-structure 8: Relationships among measurable physi-
cal phenomena

The first column in Table 6 is the conceptual entity. The second
and third columns are attributes. Using a standard basis of physi-
cal quantities will ease reuse, extension and integration of software.
The vocabulary is based on the “International System of Units [4]”
and STEP.

Definitions of quantities and units
tities are defined in the SI standard [4].

The physical quan-
For derived units in




Table 5: Derived quantities used in modeling material prop-

erties

*
Physical quantity Measurement-unit Symbol
elastic-modulus newton/meter? N/m?
bulk-modulus newton/meter? N/m?
tensile-strength newton/meter? N/m?
damping-coefficient | kilogram/meter/second | kg/m -s™!
damping-ratio none none
stiffness newtons/meter N/m

Table 8 that are already expressed in terms of basic units, the
entries in their symbol column also serve as the formulae defin-
ing these units in terms of the basic units. The dot represents
the multiplication symbol. For derived units with different names,
Table 7 provides formulae or mathematical definitions of these de-
rived units in terms of the more basic units, as defined in [4]. The
same (table) structure serves to define physical quantities that de-
scribe material properties, as shown in Table 5, where material
property is a derived physical quantity. The same table structure
suits the expression of other relationships between physical phe-
nomena, e.g., impedance, by extending the interpretation of the
column for formulae, represented as the transformation function
in Class-structure 8. In more complex cases, different simplifica-
tions of the transformation function may be selected based on the
conditions of the case. This is a form of specialization.

Other physical quantities Class-structure 8 provides the
framework for defining other physical quantities (that may be
needed in modeling machines) in terms of previously defined quan-
tities. These definitions may require more complicated mathemat-
ical expressions and conditions for selecting appropriate expres-
sions, e.g. surface roughness. Certain quantities, e.g., hardness
may have to be defined in tables of numbers or curves relating
them to previously defined quantities.

Unit conversions and scaling factors. Some other derived
units, defined in the ST standard [4] or in usage in the trade, can
be related to the units defined above by conversion factors, i.e.
scaling constants (see Class-structure 8). Such scaling factors may
also be defined and used to allow for different orders of magnitude.

The structure of Table 7 accommodates these definitions.
Scale shifts and intervals. Industrial measurements are
mostly not on an absolute scale, traceable to a standard. Industry
distinguishes measurements with such terms as relative, incremen-
tal, and differential. Class-structure 8 shows our unifying approach
of treating all industrial measurements as relative to some refer-
ence. An incremental measurement is relative to the previous mea-
surement. A differential measurement is relative to some other
changing or fluctuating commensurate quantity. Some examples
are given below:

Duration. An interval of time during which something exists or
persists.

Extent. An interval of length over which something exists or
extends.

Linear-position. A set of intervals of length relative to a reference
coordinate frame.

Orientation. A set of plane-angles relative to a reference coordi-
nate frame.

5.2 Constituents of a basic machine

Class-structure 7 shows constituent elements of the the basic ma-
chine. A substructure may be given a name in the application,
e.g., tool-tip-motion unit as named in Class-structure 25.

5.3 Abstraction of a joint and its compo-
nents

We abstract a single joint or axis of motion as a composition of
joint-pair, drivetrain, drive and feedback-sensor. Our approach to
modeling these components is shown in this section. The synthesis
of these models into joints is discussed in Section 6.

Let joint-component be a generic or parameterized class of these
four classes of joint-components, as modeled in Class-structures 9,
10 and 11. Many of the attributes are parameterized, and their
appropriate values must be filled in, to obtain the classes joint-
pair, drivetrain, drive and feedback-sensor. The generality of the
approach begins with the abstractions of input and output, build-
ing on the concepts described in Subsection 5.1. This abstraction
is a significant contribution toward unification of monitoring, di-
agnostics and control in various time-span horizons. These models
capture the key features of such components used in most applica-
tions in industry today.

In Class-structure 11 the dynamics model of the component,
treated as a linear multivariable continuous-time system is de-
scribed [46] in terms of the following equations,

Z(k +1) = AZ(k) + Bi(k)
7(k) = O3 (k) + (k)

(1)
(2)
where:

% is the input vector of dimension m,

7 is the output vector of dimension p,

¥ is the noise vector,

Z is the state vector.

n is the order of the system,

RnA", BT, LC" (dynamics-model-
parameters) that identify the dynamics of the system.

As an example, descendants of the generic joint-component
are modeled in Class-structures 12, 13, and 14. The symbols,
u,y,v,p,m,n, A, B,C, in these class-structures, refer to Equa-
tions 1-2.

Many of these attributes describe involved characteristics. At the
generic-component level, a characteristic may be a complicated
equation or a pair-sequence (or equivalent curve). For example,
consider the dynamics-model of the generic component, in the next

are constant matrices

section.
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class-structure 9: Joint-component hierarchy: Example for
servomotors

5.4 Modeling dynamic characteristics

Physical dynamic behavior is one of the essential characteristics of
machine elements involved in the control of a manufacturing ma-
chine. It is shown as a complex attribute in Class-structure 10. It
provides for multiple inputs m, multiple outputs p and a specifiable
order n of the dynamics model through matrices A, B, C. However,
this complex attribute may be specialized to some simpler form for
the various subclasses of components. For example, as indicated in
Class-structure 14, a precision d.c. servomotor operating within its
specified range at a steady state may have a constant ratio K. '*, of
output angular-velocity to input electromotive force (emf) across
armature.

14 commonly known as velocity constant or gain

Configuration-related attributes:
rated-life :time
mass :mass
output, ¥ (dimension p) :physical-quantity
input, @ (dimension m) :physical-quantity
Calibration-related attributes:
dynamics-model
E(k +1) = AZ(k) + Bi(k)
7(k) = CF(k) + (k)
calibration-procedure :string
calibrated-deadband :real
internal energy losses:
f(load, speed, temperature)
heat dissipation model: ...

Monitoring-related attributes:
life-consumption or degradation :time
f(load, speed, temperature, duration)
operating range:
output range:
upper limit, ¥max
lower limit, #min
input range:
upper limit, @max
lower limit, @min
vibration limit :acceleration
shock limit :acceleration
jerk limit :jerk
relative-humidity limit :real
contamination :complex attribute
operating temperature :temperature
upper limit
lower limit
ambient
dynamics-(model-)parameters:
upper alarm-limit
lower alarm-limit
mean
life(-consumption-limit) :fime
Where the typical attribute is a complex object, e.g.,
contamination is the set of tuples:
<contaminant, measurement-unit, limit>

class-structure 10: Generic joint-component - Part 1

5.5 Modeling a component for different ar-
chitectural levels

Attributes are grouped by their central purpose, for ease of com-
prehension. The model provides for abstraction of monitored in-
formation into the levels in the control architecture shown in Class-
structure 5. Attributes related to configuration are primarily for
use in levels 3—6. Attributes related to calibration may be used in
levels 2—6. Certain information available in these structures might




Operations:
transform-energy
:[transmit-energy, transduce-energy|
accept discrete events
:[enable, disable, ...]
generate discrete events
[fault, ok,...]
accept continuous-time signals,
Z11(k)|zi1 € {physical-quantity}
generate continuous-time signals,
Z12(k)|z12 € {physical-quantity}
compute state estimate for level1 —1 <1< n
compute dynamics-parameter-estimates

State- and parameter-estimates:
current state vector at level 1 Z(k)
measurement noise vector at level 1 7(k)
dynamics-parameter-estimates
(A(k), B(k), é(k) in Equations 1-2)
deadband :real
state-estimate at level 1, £(k)
state-estimate at leveln € {2,...,6}:
functions of state-estimate at level n — 1, e.g.,
abnormality indices,
life-consumption,
violations of operating range.
Where:
T is the sampling interval at level 1
k is the kth sample at level 1 (when time=t)

5.6 Drive and drivetrain

Our initial focus is on programmable servo-drives for an indus-
try that overwhelmingly uses direct-current (electrical) servomo-
tors with pulse-width-modulated power-amplifiers coupled with
ballscrew-nut pairs.

Drive. However, as shown in Class-structure 9, the drives are
modelled generically to support extension to other types of drives.
Class-structure 16 shows the model of a power regulator or ampli-
fier. Although in Section 3.8, the scope of equipment was limited
to linear systems, Class-structure 16 models two major sources of
nonlinearity at the operating limits of the power amplifier. Satura-
tion is one type of nonlinearity, when the power amplifier current
limits or voltage limits are reached. Deadband is another type
of nonlinearity—when the input is close to zero, no output is ob-
served until some threshold value of input is crossed. The model
also provides for monitoring when deadband '° exceeds some pre-
established limit.

Drivetrain. The most commonly used drivetrain component in
servo-controlled machining equipment is a preloaded ballscrew-nut
pair. However, as shown in Class-structure 18, we have modeled a
generic drivetrain component to facilitate generation of other types
of drivetrain components.

class-structure 11: Generic joint-component - Part 2

be used at a lower level of Class-structure 5 in a different form, for
meeting timing constraints.

The proposed model provides for specializations of the attributes
within the same system, depending on the context of usage. Even
though the dynamics-model may be complicated over the whole
operating range, it can often be simplified over the narrow range
in which a servo-loop is operating in any particular context. The
nested hierarchical architecture discussed in Section 4 sets up these
contexts. A higher level in the hierarchy may give a different
simplified model at different times to different lower levels nested
within it.

The architecture proposed in Section 4 provides for categorizing
goals [29] which help determine which models and which approx-
imations and simplifications are appropriate when in pursuit of a
goal of a particular category. This modeling approach, including
the nested hierarchical architecture discussed in Section 4, provides
scaleability to cover different cost-performance tradeoff points, ver-
satility to accommodate different kinds of devices, and extensibility
beyond the original bounds of the domain.

Configuration-related attributes:
output:
dimension, p = 2
y1 :[linear-velocity, angular-velocity)
y2 :force, torque, current, flow)
input:
dimension, m = 1
u1 :[emf, pressure]
Operations:
transduce-energy as defined in input and output
= move :[rotate, translate]
Where:
cogging is a “capacitance effect” over certain values of position or
orientation;
ripple means harmonics of the output.

class-structure 12: Actuator

Configuration-related attributes:
input, w1 = Fin emf
armature-resistance= R, :electric-resistance
armature-inductance, L, :inductance
Operations:
move :[rotate, translate]

class-structure 13: Electrical-actuator

15along with other monitored states and parameters




Configuration attributes:
output, y1 = w :angular-velocity
output, y2=1 :current
moment of inertia, J,, :rotational moment of inertia
viscous damping coefficient, B,, :damping-coefficient
torque constant, K
voltage constant, K.

Monitoring-related attributes:
order of system, n = 1

Derived attributes:
FElectrical time constant, T, = Lo/ Rq :time
Mechanical time constant, To=RqJm K/ K} :time

Damping ratio, { = 1/2+/To/T. :real
Natural frequency, w, = ﬁ :frequency
State space model:

— TRy . ;
w= e rangular-velocity
_ E-Kew .
1 T.s35, ‘current

Derived discrete state space model:
wlk+1) = (1 = Ealyo(k) + K1 (k)

m

I(k41) = (1 = BaD )1 (k) 4 25" KeT (k)

Operations:
rotate :angular-velocity
generate discrete events :[overheated]

Where:
K:I = output torque at motor shaft.

Configuration-related attributes

output:
dimension, p = 2
y1 = F emf
y2 = I :current
input:
dimension, m = 1
v; remf

maximum input power :power
input power at maximum output :power
form factor = f(u1) :real < 1
input to output propagation delay :time
slew rate
internal losses = f(F,I)
limits on voltage :emf
peak upper voltage limit, Vi,
peak lower voltage limit, —V,im
peak upper current limit, Vi,
peak lower current limit, — Vi,
RMS upper limit, Vims
RMS lower limit, —V,

TmMS

class-structure 14: Rotary d.c. servo-motor

dc-brush-type-motor
Monitoring-related-attributes
brush-life :time
brush-life-consumption= f(brush-life-factors, duration) :time
brush-life-factors:
commutator-surface-speed= f (output
velocity
commutator-bar-to-bar-voltage= f (input emf) :emf
brush-current-density= f(current) :current-density
brush-commutator-interface  power= f(current,

velocity) :linear-

emf)
:power

commutation-limit :current

terminal-resistance :electric-resistance

class-structure 15: DC brush-type motor

5.7 Joint pair

Class-structures 19—20 show a generic model for a rotational or a
prismatic joint pair. Class-structure 21 shows an example of spe-
cialization of the generic joint pair model to a rotational joint pair
model. The model captures information about dynamics, static
load capacity, kinematics, errors of motion, and operating limits
that are specific to joint pairs. Provision is also made for modeling
errors of motion as a function of temperature profile across the ex-
tent of the joint pair. Many of these characteristics are not tracked
in current practice. However, research results have established the
value of such information in precision manufacturing. Thus the

class-structure 16: Power amplifier - Part 1

model provides for future extension to utilize these research re-
sults and emerging technologies.
this study is the association of this information with a joint pair.
Typically, such information has been a system level only—often be-
cause it 1s acquired by calibrating an installed operational system.
Associating the information with its causal sources provides more
genericity and flexibility in the deployment of the information in
other contexts. Since such decomposition and allocation may not
always be possible, the scope has been limited (see Section 3.8.1)
to systems where such correspondence exists.

In Class-structure 20, the nominal location of the moving link rel-
ative to the fixed link (reference frame B) of the joint pair is given
by BTw. For a prismatic joint pair (translational slide) with no

A noteworthy contribution of

errors of motion,

By, —

oo o=
o o= o
o~ o o

where:

X and Y are constant offsets of the origin of the slide coordinate
system with respect to the fixed-link frame, and d is the joint
variable identified in Class-structure 20.

If errors of motion were included [16],

1 —e. ey X+ 6

Bp  _ £, 1 —ez Y464
M= —€y Ex 1 d+bg

0 0 0 1

where:
ey 18 rotational error about x-axis, yaw,
ey 1s rotational error about y-axis, pitch,




Calibration-related attributes:
calibration-procedure :string
calibrated-deadband :real
calibration model (form as in state space model)

State space model:

E:Ev|_‘/’vlm§Ev S‘/vlm
= - 'vlm|E'v < _Vulm

= ‘/'ulm|Ev > ‘/'Ulm

= Koorlster,) p

= _‘/zlm|Ez < _‘/ilm

= ‘/zlm|Ez > ‘/ilm

¢ ka\sl+1 vi

Where:

Ko is amplification of voltage-amplifier stage;

K; is amplification of current-amplifier stage;

wky 18 electrical supply frequency;

Tk; 1s time constant of current-amplifier stage;

Derived discrete state space model:
E,(k+1)=

Ey(k) + Koavi(k +1) — Kyqvi (k) (1 — Twiy)
Ei(k+1) = (1 — 7—)Ei(k) + 7-vi(k)
Ei(k+1) = Vam|Ei(k +1) > Vim
Ei(k+1) = - am|Ei(k+1) < —Yz‘lm
Ei(k+1) = Bi(k+1)| = Vim < Ei(k +1) < Viom

Operations:
transduce-energy as defined in input and output
accept continuous-time signals:

:[current

linear-velocity or angular velocity

position or orientation]

accept discrete events :[commutation-directions]

Where up to 3 out of 6 commutation-directions may be signalled

at once

v

2
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class-structure 18: Drivetrain-component hierarchy

class-structure 17: Power amplifier - Part 2

€ 1s rotational error about z-axis, roll,

b5 is translational error about x-axis,

8y is translational error about y-axis,

b4 18 Eranslational error about z-axis,

by = ém‘i‘amz 'd;

by =6y + ay- - d,

5$ is straightness error of slide in direction of x-axis,

Sy is straightness error of slide in direction of y-axis,

- 1s angular error between axis of motion of slide and x-axis of
fixed-link frame B,

oy is angular error between axis of motion of slide and y-axis of
fixed-link frame B, and

all errors, particularly angular errors, are small.

This kinematic model of motion becomes the foundation upon
which the (kinematic) motion of the work point in a complete
machine can be modeled, as shown in Section 6.2.

input-output
output:
dimension, p = 1
y1 :[linear-velocity, angular-velocity]
input:
dimension, m = 1
u1 :flinear-velocity, angular-velocity]
service
serviceable-constituents
flimit-switchesfenum],
semi-durable-components[enum]
Travel limits
location of home, dhome 0T 8rome :flength, plane-angle]
location of overtravel limits :[length, plane-angle]
forward limit, dfwaiim or 8fwdiim
reverse limit, dreviim O7 Oreviim
location of travel stops :[length, plane-angle]
forward stop, djwdasiop 0 8fwdsiop
reverse stop, drevsiop OT Orevsiop

class-structure 19: Joint-pair - Part 1




kinematic constituents :[base-link, moving-link]
fized-link frame, B :coordinate frame
moving-link frame, BTy :coordinate frame

link offset, d :length

joint angle, 8 :angle

joint-variable = d or 8 :[length, plane-angle]

location of center of gravity = f(d, B, Tar) dength

location of centroid = f(d, B,” Tar) dength
Calibration-related attributes:

calibration-procedure :string

calibrated kinematic model

BTMC = f(datf’lfaBTM)

Monitoring-related attributes

fized-link temperature profile, ty = f(ly)
Where:

link offset, joint angle, link-frame

are terms from the Denavit-Hartenberg notation;

fixed-link
supports the measurement reference,
provides the guidance for the moving-link, and
provides the actuation for the moving-link;
B B
Ta, "The
are 4x4 homogeneous transformation matrices;
B
TMc

includes errors of motion;

ly
= distance from B
along PTw Z, moving-azis;
Dynamics
calibrated deadband :real
friction-model
stiction
inertia :[mass, rotational moment of inertial
stiffness, K = f(d, B,® Tar)
mazimum-static-load, Load =
F(PTa, jointvariable, de flection)
:[force, moment]
where:
I
= wvector of stiffness in 6 directions;
Load

= wvector of static-load limit in 6 directions;
Deflection = allowable deformation under load
in given direction :[length, plane-angle]

Operations
transmit-energy = guide-motion
:[guide-translation, guide-rotation]
generate discrete events:
forward overtravel limit
reverse overtravel limit
derive nominal kinematics matriz, Bru
derive calibrated kinematics matriz, Brure
derive dynamics properties

Configuration-related attributes
output:
dimension, p = 1
y1 :[angular-velocity]
input:
dimension, m = 1
u1 :fangular-velocity]
inertia :rotational moment of inertia
location of home, Opome :plane-angle
location of overtravel limits :plane-angle
forward limit, 8¢waiim
reverse limit, Oreviim
location of travel stops :plane-angle
forward stop, 0fwdstop
reverse stop, Brevstop
Operations
guide-rotation

class-structure 20: Joint-pair - Part 2

class-structure 21: Rotational joint-pair




6 Synthesis of machine models

Ideally, previously modeled knowledge about machine elements,
e.g., joint-components should be reusable to obtain models of their
compositions, e.g., joints. However, there is very little published
literature on this subject. Chaar [12] models workstation-level
assemblages as a simple union of the constituents. However, in the
case of a joint, we need a model of an assemblage of its actuator(s),
sensor(s), drive-train, etc. as shown in Class-structure 7.Recall
that the purpose of the model is to support monitoring, control
and diagnostics. A simple union will not suffice for this purpose.
Biggerstaff [7] observes, in the context of software components,

The composing process imposes the most challenging re-
quirements on the representation used to specify com-
ponents... The notions of functional composition drawn
from mathematical theory are largely inadequate. Math-
ematical compositions produce their results through
straightforward combination of the local effects of in-
dividual components...Unfortunately, such composition
systems are too limited. Human designers produce com-
positions of components having both global and local
effects ...

Considering Biggerstaff’s observation analogously in the domain of
manufacturing equipment, we observe that the composition may
contain new properties and conditions that do not exist in the
individual components. For example, take a 3-axis machine where
each axis individually has a certain range of travel. However, when
the three axes are considered together, certain positions of one or
two axes may prevent interference-free travel of the third axis.
More such “global effects” arise as a result of other attachments to
the machine (e.g., fixture, tool). Another example is a change in
the temperature-rise-profile, due to changes in air-flow patterns.
In view of the difficulty involved in composition, we have limited
the scope of the modeling effort mainly to the synthesis of kine-
matics and dynamics of motion, for the purpose of monitoring and
control and diagnostics within the planned operating parameters.
In other words, these models are to be used under the premise that
the process was correctly planned and designed. Any other con-
straints to be applied would be explicitly specified by the user. The
synthesis models are given below in terms of mathematical equa-
tions, example rules of composition, and textual explanations.

6.1 Composing features of a joint from its
constituents

Using Chaar’s model [12], i.e., an assembly as a union of compo-
nents, as a point of departure, we show in Class-structure 22 sam-
ples of different rules for composing different features of a joint:

e the simple aggregation relationship between constituents and

assembly,

connectivity relationship for the purpose of dynamics and
kinematics,

resultant operations,

resultant states.

Configuration-related attributes

constituents = ﬂ] (components of the joint) [enumer-
ation]

connectivity of components modeled per [22]

input = input of first component in connectivity chain
output = output of last component in connectivity
chain

serviceable constituents
of components)
Kinematic and dynamics model
lower (intra-joint) kinematic model
derived from models of constituents
higher (extra-joint) kinematic model
= model of jointpair component
Travel limits
U limeq ()
Dynamics model
derived from models of constituents
Calibration-related attributes
calibration procedure = | JCP(5)[C Px]
calibrated deadband :real
calibration model = f([CM(j)]
Operations
U] U, (op(3, 5) N(restriction(i, 5)) |, op(k)
derive lower kinematic model from models of constituents
derive dynamics model from models of constituents
Equations 4-6

= U (serviceable constituents

States
FIS(HIU Sk

Where:
op(i, j): operation ¢ of component j, and
restriction(t, j): restriction imposed on it at joint-level
op(i, j) is “independent” of operations in other components

. 0p(k): set of additional operations at joint-level
[S(7)]: set of states of components j
Sk: additional state-information at joint-level
[CP(5)]: set of calibration of procedures of components j
[C Px]: set of additional calibration procedures at joint-level
[CM(j)]: set of calibration models of components j
limeq(j): equivalent limits of component j

30

class-structure 22: Joint

6.2 Kinematic synthesis model

Our basic synthesis model is the ISO standard [22] for kinematic
modeling, which is close to the well-known Denavit-Hartenberg
(D-H) model [15]. This draft standard had its genesis in robotics,
primarily oriented toward a single robotic device. Since manufac-
turing equipment could consist of multiple such devices working
on a single workpiece or set of workpieces, we extend the ISO
kinematic model, by building on the notion of substructures
mentioned in the ISO model, to provide for the inclusion of
kinematic models for fixtures, workpieces, and tooling. The D-H
model is also extended to include kinematic errors of motion, as
described by Donmez [16]. The composed property of interest is
the motion of the work-point as a result of motions of the joints
(or vice versa). Mathematical transformations for non-redundant
compositions are available [16] as an established body of knowl-




edge. In general, if there are n links in an open kinematic chain,
sequentially numbered starting from ground, i.e., some fixed frame
of reference in space, U, and

the work-point is located on link n, and

“~17} is a homogeneous transformation that gives the location of
the sth link-frame relative to the (z — 1)th link-frame (referring to
Section 5.7 and Class-structure 19),

then, the location of the work-point is given by:

,="1n 'L, Ty, (3)
The kinematics model also supports the model of dynamics and
states, developed below. At the joint-level, these models are assim-
ilated in Class-structure 22. At the level of a multi-joint machine,
the kinematics-model and the calibration-model would follow the
principles documented in [16]. The other features would be a union
[12] of the features of all the joints in the machine, with certain
conditions, restrictions, and values added for specialized cases or
specific instances. A model of a machine composed in this manner
can be applied to lathes, milling machines, drilling machines, ma-
chining centers, grinders, coordinate measurement machines, and
robotic mechanisms. Thus this approach to abstraction is more

generic than the approach used in [48].

6.3 Synthesis of dynamics model

Since we modeled the elements of manufacturing equipment with
the property of linearity, their assemblages can be modeled as a
network of linear system components. The composed property of
interest is the dynamics of the resultant system, generally, the dy-
namics model between the input at an actuator and the output
motion at some reference point on the joint. Mathematical trans-
formations are available [3,49] to derive the dynamics model for
joints having compositions of the type shown in Class-structure 7.
As an example, the different types of joint components identified
in Section 5.3 are shown assembled in a schematic in Figure 6.
As shown in Class-structure 22, we derive most of the properties
of a joint from the properties of its constituents. The (application-
developer) user has to define the constituents and their connectiv-
ity, and would have the option of defining additional operations,
state information, and constraints at the joint-level. Thus, by cap-
turing a feature in the model of its source, we minimize the effort
required to update the joint model, if and when a particular com-
ponent is changed. As an example of deriving properties, consider
the following well-known procedure.

Procedure for deriving dynamic properties. The trans-
fer function of a joint, between its input R and output C, is derived
from the following rules, applied to the connectivity network model
of the joint, e.g., Figure 6.

S1: Derive the transfer function, G, for each forward leg in a loop
k, of components 1...n connected in series, from the equation:

G = ﬁ Gi
=1

(4)
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Figure 6: Dynamics model of a typical joint

where, Gt is the transfer function for component

S2: Derive the tranfer function, Hy for each feedback leg in loop
k of components 1...m connected in series, from the equation:

(5)

where Hj is the transfer function for component j.

S3: Derive the transfer function for each loop k from the equa-
tion:

Cv Gy

R_k 1 4+ G x Hy, (6)
where:
C is the output of loop &
Ry 1s the input of loop k
S4: Apply steps S1—S4 to the network until it is reduced to a
simple loop containing one forward leg and one feedback leg.



6.4 Modeling of states

First we review recent work in modeling states of manufacturing
machines.

The NGC Schema [48] defines a number of state-related primitive
data types and entity-types,

shown in Section B, as types of attributes for other models, e.g.,

e The system as a whole

e Components, e.g., robot-hand

e History-logs, plans, requests, goals, events.
We note several issues in this review [48]:

1. The distinction amongst the definitions of state, event, goal-
outcome and value is unclear.

2. Different types of states address the same characteristic, i.e.,
there is unnecessary overlap or duplication.

3. There is inconsistency in abstraction, i.e., some types enu-
merate values that are too specific.

4. Tt is not clear how states and semantics specific to a particular
kind of component or task should fit into the generic types of
states being established.

These issues led to two questions:

1. Should states be modeled as a weak entity (that is only an
attribute for other entities) and not as a primitive data type,

as defined in the NGC Schema [48]7

2. Would the architecture be simpler and more useful if a unified
hierarchy of states were established?

We found that certain states of (automated) manufacturing equip-
ment can be modeled in a generalization hierarchy, as mentioned
by Rumbaugh [42, p. 94-98].

In Class-structure 23, we show an integrated approach to modeling
the various types of states pertinent to a machine capable of con-
tinuous servo-controlled motion. At the most general level state
has the attributes, entity-id, (whose state) and readiness-status
(state of readiness). These attributes are almost independent of
the process or the equipment.

At the next level, we have two orthogonal specializations:

1. By association with the entity process, we have process-states
that could apply to almost any automatically controlled pro-
cess.

2. By association with the entity resource, we have availability
as a resource-state, applicable to any type of resource in the
system.

The states of a planning task—a subclass of the entity process—
form a simple example of nesting of states[42, pg 97].
The class continuous-motion-state is obtained by associating
process-state with the continuous-motion class of tasks. In Class-
structure 23, we show continuous-motion-state as an aggregation
of orthogonal components [42, p. 95]. continuous-motion-state

coordinate-system, e.g., cartesian, cylindrical ...

reference frames

position

orientation

<enabl ed- r eady,
enabl ed- not - r eady,
di sabl ed>

resource

process

resource-stafe process-state

schedule-status

(évailability—statuQ
<not - avai | abl e, <st a_rt gd,
avai | abl e- busy, wai ting,
avai |l abl e-i dl e> bl ocked,

- -l — = —— = —eSuspended,
runni ng,
aborted,
failed,
conpl et ed>

computationa
process
©
plan
- ' inh?
_
planning-state planning-status
<exanining-resource—
(reference-frames cont-motion-state availability,
-‘ i generating-plan,
posifion / repllanniing>

orientation

class-structure 23: Partial model of states of a manufac-
turing resource

We identyify three specializations (subclasses) of continuous-
motion-state (not shown in Class-structure 23):

spherical-space-motion-state

cylindrical-space-motion-state

cartesian-space-motion-state
Some of the state-components are different for each of the sub-
classes. For example, cartesian-space-motion-state is described in
terms of the attributes shown in Class-structure 24.
Next we apply this scheme to the specific case of the motion of
a tool-tip in cartesian-space in a machining center. The motion
task i1s to change the state of the tool-tip from some initial state,
e.g., the current state, to some final state, e.g., goal of the motion
task. Class-structure 25 shows the aggregation of the components
of state, including the inherited state information.
Now we give some examples of how this general model can be
applied to different configurations of machines, different types of
moves and different ways to enhance accuracy.
In the case of a simple, stable single-axis motion, only one attribute
may be changing.
In the case of a simple, stable translational multi-axis motion,




cartesian-space-motion-state

reference-coordinate-frame-id

reference-position-x

reference-position-y

reference-position-z

reference-orientation-gamma
/*rot about ref-x-axis*/

reference-orientation-beta
/*rot about ref-y-axis*/

reference-orientation-alpha
/*rot about ref-z-axis*/

position-x

position-y

position-z

orientation-gamma

orientation-beta

orientation-alpha

velocity-x

velocity-y

velocity-z

velocity-gamma

velocity-beta

velocity-alpha

instance-id: id of the object, e.g., tool-tip
readiness, e.g., enabled-ready
process-state, e.g., running
reference-coordinate-frame-id
reference-position-x
reference-position-y
reference-position-z
reference-orientation-gamma (rot about ref-x-axis)
reference-orientation-beta (rot about ref-y-axis)
reference-orientation-alpha (rot about ref-z-axis)
position-x
position-y
position-z
orientation-gamma
orientation-beta
orientation-alpha
velocity-x
velocity-y
velocity-z
velocity-gamma
velocity-beta
velocity-alpha

class-structure 24: Cartesian-space-motion-state

many of the orientation attributes may have fixed values.
The reference positions and orientations may be defined as

a constant nominal value

+ a function of certain temperature measurements

+ a function of these temperature measurements and axes-
positions, as mentioned in Class-structure 19.
The reference coordinate-frame itself may be defined in terms of
some other reference and may be changing as a function similar to
that described above.
Thus, even if no axis in a multi-axis tool-tip motion was being
actuated to move, but temperatures changed, the result would
constitute a change of state for the tool-tip motion.
The novelty in this approach is the organization of information for
on-line use of emerging technologies to enhance machine accuracy.

6.5 Synthesis at a workstation level

Let us consider manufacturing resources organized as an auto-
mated workstation, in Class-structure 6. A specific workstation
would be an aggregation of resources of one or more of the types
shown in the struct. Its operations would be the union [12] of the
operations of its constituents.

6.6 Modeling maintainability aspects of ma-
chine tool performance

The focus of this study in the earlier parts had been on modeling
the operational capabilitites, constraints and behavior of servo-
controlled manufacturing automation. One problem with such
models is that operational behavior does not stay the same over
time. However, modifications of parameter values in the model
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class-structure 25: Tool-tip motion-state in a cartesian co-
ordinate system machine

help in maintaining fidelity of representation, in many cases. For
example, when the changes are reversible ' or the changes repre-
sent “settling” or “wearing in” and are “convergent”.

However, there are forms of equipment degradation (“irreversible”
changes) due to wear and tear in “normal” operation that will
affect the operational behavior of the machine over time. Incorpo-
ration of leading causal factors in the model of the machine tool
may help track key changes in a beneficial manner. This potential
benefit is the motivation for modeling and tracking maintenance-
related characteristics of a machine.

6.6.1 Relation to prior machine-behavior modeling

work

Modeling machine tool behavior in academic work has been pur-
sued primarily to facilitate design and adaptation of control. A
second objective has been to design and improve operational plans
and process programs. A third objective, not well pursued, has
been to assist in prognostics and diagnostics. In certain cases, the
same models, tests and procedures that help in the first objec-
tive also serve the third objective. However, degradation does not
show up soon enough in these tests. Some of the reasons for which
degradation-modeling has not been pursued very much are:

1. Complexity of the physical phenomena

. Unknown variability of the operating conditions

2
3. Very long research time-span 7
4

. Very costly implementation 2.

16¢.g., effects of tolerable fluctuations in bulk temperature

"many years
18

cost of monitoring equipment and labor




The following premises acn help reduce the complexity of the
problem:

1. Some aspects of the degradation processes are predictable.

2. Some aspects are observable at relatively less cost during
“normal” use.

3. Some types of on-line record-keeping at the machine has be-
come more affordable in terms of computer-resources and
record-keeping labor.

4. Setup ' of such record-keeping could be made more affordable
by identifying classes of machine elements and subsystems
that exhibit similar degradation behavior.

5. Some behavior-changes could be anticipated or detected early;
thus, corrective action could be identified and performed
sooner.

6. With provision for capturing unanticipated degradation
events, the system could support a learning component of the
system.

The generic component model, Class-structure 10 and 11, in-
cludes attributes concerning component life, degradation, and life-
consumption, designed to help in preventive maintenance. Some
factors affecting life-consumption are easily available during oper-
ation, e.g. duration for which the monitored element is subject
to some load, speed, or temperature. However, typical controllers
of manufacturing machinery do not provide on-line facilities to
capture this data. Typically, separate maintenance-management
systems are installed to monitor the equipment, but without the
benefit of the crucial operational data, e.g., the time history of load,
speed, and temperature to which the component is subjected. We
demonstrated the potential of this idea through a small prototype
reported in Subsection 7.3.

7 Early prototyping

As recommended by McCain in Subsection 2.1, we experimented
with rapid protoyping of a few ideas embodied in the vision de-
scribed in this report. Four different teams participated at four
different times to work on four different parts: user-interface spec-
ifications, user-interface screen-views, machine-tool accuracy en-
hancement, and preventive maintenance.

7.1 Prototyping User-interface

The first step was to develop specifications for a user interface
that integrates the functions of engineering, maintenance, setup,
and operation. The motivation was to share (and thus reuse) in-
formation across these functions, traditionally not integrated at
the point of use. One output of this effort was to identify the roles
of different types of users, as documented in Appendix C and re-
viewed with a wide cross-section of industry representatives in the
Nezt Generation Controller (NGC) program. A second output was
a specification of a set of user-interface screen-views, assimilated

19 ossibly machine-specific customization
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from studies of user interfaces on commercial numerical controllers,
and robots and other specifications for such user interfaces, and
our own experiences with needs on other projects. Our initial fo-
cus was on content of information that should be integrated and
reused, rather than on the aesthetics of screen layout.

In the second step, most of this specification was prototyped on an
IBM-PC-compatible desktop computer, using Borland’s ObjectVi-
sion, a software tool that integrates screen views 2° with a rela-
tional database under Borland’s Paradoz database engine. This
“live-screen” prototype gave us a base for discussions with domain
experts in industry and faculty in the Mechanical Engineering Dept
at the University of Michigan. These reviewers were satisfied that
the information-content represented and integrated in the scope
was comprehensive.

7.2 Prototyping model to enhance accuracy
of machine tools

In the third step, we launched a rapid prototype to model the kine-
matics of simple machine tools, for further interaction with ma-
chine tool researchers, at the University of Michigan, experienced
in enhancement of kinematic accuracy of machine tools. These
researchers were not applying software-reuse technology in their
research projects to develop and prototype accuracy-enhancement
software for machine tools.
ing the prototyped software-reuse approach, by building error-
correction software for different machine configurations. Figure 7
shows the scheme. Generic prismatic joints and rotational joints
are combined in different arrangements to form generic or reusable
substructures. To define the configuration of a particular machine,
appropriate substructures are reused from the library and con-
nected as required, and specific values for the joint parameters are
provided. Toolholder assemblies and fixture assemblies are also
treated as substructures. Thus, the scheme allows the kinematic
modeling of the complete loop from the work-point on the tool,
through the toolholder, tool-supporting substructure of the ma-
chine, ground, workpiece-supporting substructure of the machine,
fixture, and, finally, the work-point on the workpiece. Connectivity
is defined by extending the ISO kinematic model [22].

The mechanical engineering researchers 2! agreed that the scheme
could save software-creation labor by reusing previous knowledge
captured in the database. However, they also felt that the com-
mercial software tools used in the prototype were not sufficiently
robust to commit a project for industrial use.

These researchers are now evaluat-

7.3 A prototype for preventive maintenance
of machine elements

In order to demonstrate the potential of software-reuse in pre-
ventive maintenance, as mentioned in Section 6.6, we prototyped
a database to record the usage history, maintenance performed
and to schedule preventive maintenace, based on given degradation
model and life-consumption, calculated from the usage history. A

2045 forms

21Dr. Milton MU and Zhang Bai
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Scheme for synthesizing kinematic models of ma-

key part of the database was a multi-level aggregation-hierarchy
(from a degradeable component to a machining cell). This model is
shown in Figure 8. The model was built using the Oracle relational
database management system, very soon after installation of their
X-Windows version of SQL Forms at the University of Michigan.
The conclusion of the student team was that the triggers in the
SQL Forms were so cumbersome to build that such software-tools
might not be acceptable for factory-use.

8 Conclusion

We have defined and experimentally prototyped a process to de-
velop a conceptual model of the domain of manufacturing automa-
tion. We defined the domain in a manner that supports economic
extension, building on prior knowledge, including conceptual prim-
itives, and an architecture for monitoring and control applications.
Through this experience and study, we have also identified certain
technological limitations that require high-skill effort in the re-
alization of novel applications in the manufacturing automation
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Figure 8: Aggregation hierarchy used to monitor degradable
machine components

domain. We propose future work to investigate and resolve some
of these issues.

8.1 Contributions in methodology

Our method to develop the conceptual model for manufacturing
equipment is a synthesis of recommendations from many diverse
sources, with some novelties that we describe next.

Early user-interface prototyping Our first step was a de-
parture from published methodologies. We began rapid prototyp-
ing a user interface at a very early stage, for partial validation of
the scope of applications and functions that users %2
We are building on the lessons learned, in an iterative and incre-
mental manner.

would value.

Early economic tradeoff assessment Another departure
from published methodologies was the performance of an early ver-
sion of a market analysis[31] in terms of potential gain in applica-
bility versus the pain of assuring applicability, i.e., assessing degree
of flexibility against degree of development uncertainty, cost, and
time.

Building on readily available scientific knowledge
Rather than proceeding to acquire more knowledge about the do-
main, we chose to begin the modeling process with readily available

22researchers and developers of applications



knowledge, in keeping with our incremental, iterative approach. By
readily available knowledge we mean the established body of knowl-
edge in the field of manufacturing engineering and the underlying
foundations of mechanical engineering and physics. We believe
that the use of this systemized body of knowledge leads to an ar-
chitecture with better conceptual integrity and completeness than
the traditional approach in expert systems of extracting knowl-
edge from a human expert, or the approach of evolving generaliza-
tions from a “representative” set of applications or scenarios. Our
approach also has an advantage over general knowledge-building
approaches such as Cyc, in terms of cost-effectiveness.

Anticipating extensions Another new feature of our process
was to establish expectations of extensibility early on. Again, we
have addressed the subject from the perspective of underlying is-
sues documented in literature. Our approach has an advantage
over the traditional industrial approaches of customer surveys and
forecasting trends, in terms of enabling the evolution of a concep-
tual architecture with integrity and completeness.

8.2 Contributions in domain analysis

We have employed the notion of a soft boundary 2* for the domain,
as an approach to treating reusability and extensibility as joint
goals.

We have identified a network of inter-related (sub)domains that
help characterize the domain of programmable servo-controlled
manufacturing equipment. Some of these domains help bound the
scope of the tasks that the equipment will perform and the envi-
ronment in which it will operate. These boundaries, in turn, assist
in bounding the scope of the manufacturing equipment. We have
characterized these tasks and the environment in a way that al-
lows extension of the conceptual model from the initially chosen
domain of a basic machine to the more useful, but wider, domain
of a small-cell-level manufacturing system. We have characterized
the products to be manufactured and the processes to be exe-
cuted on the manufacturing equipment in such a way that initial
equipment-models can be developed with relatively low cost and
risk of error. Yet, our characterizations allow extension of the do-
mains of products and processes in relatively small steps.

8.3 Contributions in architectural model

Our conceptual model integrates multiple approaches to software
This whole effort—from the
statement of purpose to the model of an actuator or sensor—can be
viewed as architectural modeling at different levels from different
perspectives.

architectures for such automation.

Hierarchical model-specialization We have proposed a
nested hierarchy of model-specializations that provides a system-
atic way of simplifying equipment-models to suit the purpose and
timing-constraints of lower control levels. To our knowledge, such
systematic specialization in the same system has not been reported.

23However, it also results in an involved definition of the limitations
of the modeling framework.
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State-hierarchy We have proposed a generalization-hierarchy
of states of a (manufacturing) machine that is new, to our knowl-
edge, in terms of the use of multiple-inheritance, the conceptual
primitives devised, and the width of their applicability.

8.4 Contributions
blocks

We have proposed a model of elements of a basic machine in terms
of a combination of a product-ontology and a process-ontology.
Although the idea is borrowed from Cyc, its application to elements
of manufacturing machines is new.

in conceptual building

Prototype for kinematic modeling A prototype based on
a relational model was constructed to define and apply the kine-
matic configuration of multi-axis numerically-controlled machine
tools.

8.5 Limitations and further work proposed

The major technical limitation is that this type of modeling is
an iterative and incremental process [9]. Significant effort will be
required to evaluate the reusability and extensibility of software
based on the proposed conceptual model. This study is a small
early step in a long spiral road of incremental iterations.

Inadequacy of tools poses another obstacle.
prototyping experiences using relatively
database systems showed that these tools are still not easy to use.
In certain cases, it appeared that multiple inheritance could reduce
reuse effort, but support for implementation of multiple inheritance
was not available in commercial tools.

Early pre-

“mature” relational

Future work We propose to construct a rapid prototype of a
subset of the conceptual model, using an object-oriented CASE
Tool, for evaluation, as mentioned above. Some of the steps in the
prototyping process are given below.

1. Develop a more precise boundary for the domain, in con-
sultation with researchers and developers in the application
domain, particularly for the subdomains described in Sec-
tions 3.5 and 3.8.

2. Select a subset of the proposed model and prototype it.

3. Develop a test plan and metrics for evaluating the technical
aspects of the reusability and extensibility of the model, in-
cluding review by application developers. Follow Procedure
for validating the adequacy of these models, outlined in Sec-
tion 2.4.

4. Select the prototyping infrastructure and tools.

5. Modify the model to fit within the limitations of the available
tools.

6. Implement the prototype.

7. Perform the designed tests.

8. Analyze the experiences.



9. Document the results.

10. Plan further work.

A Primitive entities in the NGC

Schema

The NGC Schema [48] starts with a number of primitive data
types—some examples are shown in Figure 9. Some other exam-
ples are listed below:

1. controller-action-type: Actions that cause an entry in the

controller-monitor-log.

. exception-effect-type: Occur when exception raised, but with-
out successful recovery.

exception-type: that occur in the system, e.g., some limit
exceeded.

effector-type:

function-name-type: those that can be remotely executed.
measurement-type:

measurement-units-type:

0 -1 O Ut

sensor-type:

TYPE component-type
ENUMERATION OF
(switch ...)
coordinate-type
SELECT
(cartesian-, spherical-, cylindrical-coordinate)
coordinate-system-type
ENUMERATION OF
(cartesian- ... cylindrical-space)
coordinate-space-type
ENUMERATION OF
(work-space, actuator-space)
database-ms-type
ENUMERATION OF
(paradox, oracle, ingress, sybase, dbase)
euler-angle = REAL
entried-type
ENUMERATION OF
(table, log)
execution-direction-type
ENUMERATION OF
(forward, backward)

Figure 9: Examples of primitive data types identified in the
NGC Schema.

B States, goal-outcomes, values and
events in NGC Schema

Following are extracts from the NGC Schema [48] that pertain to
definitions of state, event, goal-outcome and value, along with our
comments. First is an extract of state- and status-related types:
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component-state-type: ENUMERATION OF (open, closed,
flood, mist, empty, ...) **

robot-hand-state: ENUMERATION OF (open, closed) **
discrete-states: ENUMERATION OF (on-state, off-state, ... )

log-status: ENUMERATION OF (requesting-log, generating-
log, finished-log) 2¢

generic-state: (pertains to motion) 7
resource
phenomenology 2*
sensed-value
units
coordinate-system
abs-rel
position
orientation

system state: ?° ENUMERATION OF (quiescent, started, idle,
running, suspended, halted)

Next is an excerpt [48] showing types related to events and goal-
outcomes.

goal-status: ENUMERATION OF (ready, executing, halted,
suspended, aborted, completed) (Comment: How is a goal-
status different from the state of the task?)

goal-outcome: ENUMERATION OF (success, failure) (Com-

ment: Why is outcome not simply one of the states of a task?)

event-type: ENUMERATION OF (exceptionl, ., finished-

plan-step, successful-func-call, aborted-func-call, ...)

C Types of users of machine con-
trollers

Following is a description of different types of users of a system
to monitor and control flexible manufacturing equipment. These
user types were identified in the NGC Requirements Definition
Document [36] and the NGC Schema [48]. The descriptions also
refer to the Needs analysis document [44]. The descriptions are
ordered by increasing scope of tasks and responsibilities. This
order is based on the premise that a user is trained in all tasks up
to the user’s own type in the ordered list.

24Comment: The last 3 examples do not apply to many components.

25Comment: The fingers of a robot could be continuously controlled
too. If they have only two discrete states, then how are they different
from other discrete-state-components? How are they different from the
tool-retention-mechanism in a spindle-nose?

26 Comment: Why should logging be distinguished from any other
task?

27Comment: Tt is not clear how a model of states should differ from a
model of the measurement

28other attributes focus on position.

29Comment: These states seem to be a mixture of states for com-
ponents or resources and states for tasks. Perhaps, there should be a
generic set of states for equipment or resource that will execute a task.

30Comment: How are these events different from the states of any
process, task or request?



Attendant Performs routine, normal operation and associated
repetitive tasks. End-user of functions described in Needs
analysis document Table 3.2-3 items 2d, 2f, 4, 5, 6; Table
8.2-7 items 5, 6e, 6f; Table 3.2-9 item 20.

Operator Additionally, performs associated planning, prepara-
tory and evaluative tasks, e.g., manual data input. End-user
of functions described in Needs analysis document Table 3.2-
8 items 2c¢, 2e, 2g-i, 2l-n, 3a, 7, 8, 9a, 9c, 13, 16, 17; Table
8.2-6 items 1b2, 1b3, 1b6, 15; Table 3.2-7 items 6h1; Table
8.2-9 items 12d, 20.

Setter and manager of workstation Additionally, user of functions
described in Needs analysis document Table 3.2-1 items 7a,
7i-j, Tp, 9a, 9c; Table 3.2-3 items 10a, 12, 15, 18; Table 3.2-
1 item 22¢; Table 3.2-2 items 1b-h, 1l-m, 6; Table 3.2-6 items
1a, 1b1, 1c, e, 1f, 1g, 1h, 2, 3d, 10, 12; Table 3.2-9 items
12, 20.; Table 3.2-9 items 5c-¢, 12d, 20.

Process planner, programmer for specific parts For complex tasks,
user of functions described in Needs analysis document Table
3.2-1 items 2c¢3, 5h; Table 3.2-2 items 6; Table 3.2-6 items 1k,
1m, 3c; Table 3.2-7 item 15; Table 3.2-9 item 11, 12, 20.

Process planner, programmer for master process programs e.g.,
programming families of parts Needs analysis document Ta-
ble 3.2-6 items 1a. User of capabilities described in Needs
analysis document Table 3.2-9 item 20.

Maintenance—troubleshooter User of capabilities described in
Needs analysis document Table 3.2-1 items 6a, Ta.4, 7c.4-6,
7d, Te-g, Tk-l; Table 3.2-9 item 20.

Maintenance-repair-person User of capabilities described in
Needs analysis document Table 3.2-1 items 6d; Table 3.2-9
wtem 20.

Maintenance—test and calibration-technician User of capabilities
described in Needs analysis document Table 3.2-1 items 7c.8-
9, Tm; Table 3.2-9 item 20.

Process development engineer Updates knowledge about man-
ufacturing processes; includes process-related properties of
workpiece materials; includes knowledge to determine pro-
cessing parameters; includes part-feature-definitions; includes
sequence of operations for defined part features; includes tool-
ing configurations, how to select and apply tooling, perfor-
mance characteristics, tool-degradation- models, procedures
to monitor, inspect and calibrate tools and corresponding
corrective, protective and replacement procedures; includes
knowledge for statistical process control. Needs analysis doc-
ument Table 3.2-3 items 5a, 6b4, 6¢, 6f5, 9b, 12b, 15, 18;
Table 3.2-1 items 2.¢, 51, 7a, 18, 22¢, 22¢; Table 3.2-2 items
1b, 1c, 1d, 1g, 13, 1m, 4a8, 4a4, 8; Table 3.2-4 items 2f, 3m;
Table 3.2-5 items 2¢, 5, 6, 7; Table 3.2-6 items 1c, 1e, 1f, 1g,
1¢, 1k, 1m, 2, 7a, 10, 12; Table 3.2-7 items 5, 6, 8. User of
capabilities described in Needs analysis document Table 3.2-1
items Th; Table 3.2-9 item 11, 20.

Equipment development engineer Updates knowledge about
equipment configuration, capabilities, constraints; includes
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kinematic and dynamic models of driven mechanisms; in-
cludes procedures to monitor, test and calibrate the equip-
ment and its elements and corresponding corrective or pro-
tective procedures and help- or repair-guide. Needs analysis
document Table 3.2-3 items 5a; Table 3.2-1 items 2e, 51, 7a,
Te, 7d, 73, Tk, 9c, 22d, 22f, 22q, 22h; Table 3.2-4 items 3r,
3s; Table 3.2-5 items 3, 6; Table 3.2-6 items, 3c2.

User of capabilities described in Needs analysis document Ta-
ble 3.2-1 items Tn-o, 7q, 20, 22b; Table 3.2- 4 items 2a-d;
Table 3.2-9 item 20.

Control logic designer Creates, updates machine control logic.

User of capabilities described in Needs analysis document Ta-
ble 3.2-5 item 4; Table 3.2-9 item 20.

Adaptive and Servo Control engineer Creates, updates knowledge
or models or algorithms or parameters for controlling motion
and other processes. (NA Table 3.2-1, 2e; Table 3.2-4 items
3, 4).

User of capabilities described in Needs analysis document Ta-
ble 3.2-1 items 2¢e.5, 2e.7; Table 3.2-4 items 7; Table 3.2-5
ttem 2d; Table 3.2-6 item 1b5; Table 3.2-9 item 20.

System integrator—application development User of capabilities
described in Needs analysis document Table 3.2-1 items 2c,
2d.4, 2d.5, 2¢, 83, 4, 5.a-m, 5.0-t, 8; Table 3.2-2 ilem 12;
Table 3.2-3 items 1, 11, 13, 14, 16-18; Table 3.2-/ items 2,
3a, 5; Table 3.2-5 items 2.a-c; 8; Table 3.2-7 items 4, 7, 16,
17; Table 3.2-8 item 2; Table 3.2-9 items 3, 14f-g, 17, 19, 20.
Creator of capabilities described in Needs analysis document
Table 3.2-3 item 4-7; Table 3.2-5 items 3, 5-7; Table 3.2-6
ttems 1c¢; Table 3.2-7 items 5, 6, 9, 11a, 12, 13, 14.

System integrator- multi-station machines, multi-machine sys-
tems User of capabilities described in Needs analysis docu-
ment Table 3.2-1 items 2a, 2d, 2¢; Table 3.2-9 items 2, 4, 5,
14f-g, 16, 20.

System integrator- controller to equipment within a workstation
User of capabilities described in Needs analysis document Ta-
ble 3.2-1 items 2¢, 2d, 2e.2, 2¢.3, 2¢.7-12; Table 3.2-4 items
6; Table 3.2-7 item 11b-c; Table 3.2-8 items 1, 3; Table 3.2-9
items 6, 20.

System integrator- real-time-level Replaces, modifies or tests
function and performance of some module (hardware or soft-
ware or combination) in the real-time-control-platform or in
the application running on it. User of capabilities described
in Needs analysis document Table 3.2-1 items 1, 2e.5, 2¢.9;
Table 3.2-4 items 1, 2; Table 3.2-5 items 1; Table 3.2-7 items
8, 11d; Table 3.2-9 items 10, 20.

D Common kinematic configura-

tions in manufacturing equipment

Following is an excerpt from the NGC Requirements Definition
Document [36, Appendix E] that describes different types of ma-
chine configurations in common use in manufacturing industries.



The list is arranged in order of increasing complexity. The review-
ers of the NGC Requirements Definition Document [36] considered
these categories very comprehensive.

1. 1-axis motion(s) + a spindle to rotate tool or workpiece.

(a) Few translational independent axes of motion.

(b) Many independent, but concurrent, translational pro-
cessing motions with closely coupled workpiece changing
motions.

2. 2-axis motion(s) + a spindle to rotate tool or workpiece.

(a) One such translational pair coordinated for continuous-
path motion.

(b) Several independent, but concurrent, translational-axis-
groups, with closely coupled workpiece-changing mo-
tions.
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3. “T'wo-and-a-half-axis” motion(s)

(a) One 3-translational-axis group, with only two axes co-
ordinated for continuous-path motion.

(b) One group as above, with part probing capability.

(c) One such group with two rotational axes coordinated
for continuous-path motion and the third axis provid-
ing concurrent translational motion, possibly including
servo-controlled, instrumented end-effector.

(d) Several axis-groups of the two categories above, with
overlapping workzones or work volumes.

4. 3-axis translational motion(s), coordinated for continuous-
path motion, + spindle-rotation motion(s) to rotate tool or
workpiece; includes part-probing capability.

(a) One such group, with up to three axes.

(b) One such group, with spindle capable of being coordi-
nated with other axes for continuous-path motion.

(¢) Two or more such groups, processing one or more work-
piece(s), with overlapping workzones.

5. 4-axis motion(s), with three translational axes and one rota-
tional axis; including spindle with automated clamping; in-
cluding part-probing capability.

(a) One such group, with three translational axes coordi-
nated for continuous-path motion.

(b) One such group, with all four axes coordinated for
continuous- path motion.

(c) One group, as above, with part-probe providing contin-
uous signal proportional to displacement, driving axes

to minimize signal deviation from neutral value.

(d) One such group, possibly with peripheral automation
for changing measuring tools and workpieces.

319 axes perform continuously coordinated motion and the third axis
is a positioning axis
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5-axis motion, with three translational axes and two rota-
tional axes; including spindle with automated clamping; ro-
tational axes and spindle axis are orthogonal with common
intersection; including part-probing capability.

(a) Omne such group, with the rotational axes used for
positioning only and the other three axes used for
continuous-path motion.

(b) One such group, as above; part-probe providing contin-

uous signal proportional to displacement, driving axes

to minimize signal-deviation from neutral value.
One such group with 5-axis-continuous-path motion.

One such group as above; part-probe providing continu-
ous signal proportional to displacement, driving axes to
nullify signal.

One such group, as above; utilizing nondestructive test-
ing probes to measure other properties of workpiece.

(f) Combinations of various types of axis groups described
above, possibly with peripheral automation for changing

and measuring tools, workpieces.

5-axis motions as in item above but rotational axes and spin-
dle axis are not orthogonal and do not have common inter-
section.

. More than five axes of coordinated motions including tool
rotation axis and workpiece-rotation axis.
Other kinematic combinations of axes generating planetary,

helical, cycloidal and other geometrically definable paths.

10. Other combinations of axes including serially chained articu-

lated joints.

11. Other combinations of axes including parallel-driven joints.

E

ASTM. American Society for Testing and Materials

Abbreviations and Acronyms

IB. Information Base
ISO. International Standards Organization
IEC. International Electrotechnical Commission

MAP/TOP. Manufacturing Automation Protocol/Technical Of-

fice Protocol
mfg. manufacturing
MMS. Manufacturing Message Service
NGC. Next Generation Machine/Workstation Controller
NGC SOSAS. “Next Generation Machine/Workstation Con-

troller” Specifications for Open Systems Architecture Stan-

dards
OSI. Open Systems Interface
PDES. Product Data Exchange System
SNMP. Simple Network Management Protocol
STEP. Standard for Exchange of Product Data



F Glossary

ACTUATOR. A device, e.g., a motor, that converts electrical,
hydraulic or pneumatic energy to motion.

ARCHITECTURE. A view of a system that satisfies the overall
system requirements. It provides for the definition, under-
standing and integration of all components of the system and
their interrelationships and impact on others.

ARM. An interconnected set of links and joints between an end-
effector and its support structure.

ATTRIBUTES. Data elements that represent characteristics to
describe an object.

AXIS. Equivalent to a joint in a robot.
AXIS GROUP (COORDINATED). A group of axes whose mo-

tion is coordinated to produce a resultant trajectory within a
specified tolerance (limit on deviation from specified trajec-
tory and rate).

CELL. A manufacturing unit that has the capacity to manufac-
ture (or completely transform) a (family of) product(s) from
a “buyable” incoming form, e.g., casting or forging, to a “sell-
able” finished form with assured conformance to specs, with
all the necessary resources within its own control.

CLASS. The abstract data typing mechanism of the object-
oriented paradigm that groups objects with commonality of
attributes and services.

COMPUTING PLATFORM. The computing infrastructure con-
sisting of processor(s), memory and other storage media,
other related hardware, system software, utility software,
communication mechanisms and 1/O interfaces.

CONCEPTUAL SCHEMA. Schema that is not configured for a

specific implementation.

CONFIGURATION. The arrangement of a manufacturing work-
station as defined by the nature, number, interaction and
main characteristics of its functions. The features, customer
options, software modules and engineering specifications that
collectively define the functionality of a manufacturing work-
station.

CONTAINER CLASS. A class whose instances are collections of
other objects. Container classes may denote homogeneous
collections (all of the objects in the collection are of the same
class) or heterogeneous collections (each of the objects in the
collection may be of a different class, although all must share a
common superclass). Container classes are most often defined
as generic or parameterized classes, with some parameter des-
ignating the class of the contained objects.

CONTEXT. The conditions that bound and relate discrete events

temporally, spatially and semantically.

DATA ABSTRACTION AT CONCEPTUAL LEVEL. (in the
context of databases, per Korth [25] A description of what
data are actually stored in the database, and the relationships
that exist among the data ...in terms of a small number of
relatively simple structures ... (the abstraction) hides certain
details of how the data is stored and maintained.
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DATA MODEL. A collection of conceptual tools for describing
data, data relationships, data semantics, and consistency con-
straints.

DATA STRUCTURE. A formal representation of information for
communication and processing purposes without regard to
actual storage configuration.

DYNAMIC BINDING. An association of software elements not
ncessarily made until the moment just before execution of
that software.

EFFECTOR. A device or tool that physically performs an action
or transformation function.

ELEMENT. Some component of a manufacturing system. It may
be a subsystem decomposable into other elements or a logi-
cally “indivisible” element.

END EFFECTOR. An effector, located at the end of the last
joint of a mechanism closest to the workpiece, by which an
action on an object can be performed.

ENTITY-RELATIONSHIP MODEL. An object-based logical
data model of a real world. It consists of basic objects called
entities, and relationships among these objects ...and con-

straints to which the contents of a database must conform. An

entity is an object that is distinguihable from other objects
by a specific set of attributes. A relationship is an association

among several entities.

ESPRIT. European Strategic Program for Research and Devel-
opment in Information Technology—a major manufacturing
technology program that includes all countries of the Euro-
pean economic community.

EXCEPTION HANDLING. Managing unacceptable deviations

from the planned or nominal production or process.

HIERARCHICAL CONTROL. Control in which tasks are de-
composed into sequences of subtasks that are passed on to
the next lower level in the hierarchy until the lowest level is
reached.

INFORMATION BASE. An abstract storage mechanism that
may consist of multiple coordinated information stores (e.g.,
data bases, knowledge bases, memory maps). The conceptual
structure to which all requests to store, access or manipulate
shared data are made.

INSTANCE. A distinguished occurrence of a particular object.
INSTANTIATION. The creation of an instance.
INTEGRATION. The formation of one complete and harmonious

entity or coordinated entities of different applications or pro-
cesses that will accomplish a complete process solution.

INTERCHANGEABILITY. A characteristic of system compo-
nents that makes it possible to replace one component with
another of equivalent functionality, where the replacing com-
ponent may be made by another vendor.

INTERFACE. The definition of a common boundary or a com-
mon application point of interaction between two or more
distinct entities, defined by functional characteristics and in-
put/output specifications.



INTEROPERABILITY. A characteristic of distinct entities in a
system that makes it possible for these entities to intercom-
municate and work together properly, to provide the required
system functionality.

LATENCY. Time between the request for an action and the ini-
tiation of response to that request.

MANUFACTURE. verb 1.a. To make or process (a raw material)
into a finished product, especially by means of a large-scale
industrial operation. 1.b. To make or process (a product),
especially with the use of industrial machines. 2. To create,
produce, or turn out in a mechanical manner. noun 1. The
act, craft, or process of manufacturing.

MANUFACTURING WORKSTATION. A material transform-
ing device along with a workholding subsystem or device
or fixture, a toolholding mechanism or device, a controller,
including the computing platform and the human interface,
and possibly such peripherals as work-exchanging and work-
handling subsystem, tool-exchanging and tool-handling sub-
system, part-gaging subsystem, and tool-gaging subsystem.

MODEL. A structured data representation that provides a de-
scription of a system or its elements, e.g., machine or process,
and simulates its properties and characteristics of interest.
Also see data abstraction at conceptual level.

OBJECT. An abstraction of an entity representing an encapsu-
lation of its attributes and services on those attributes.

OBJECT-ORIENTED. A viewpoint that models data and be-

havior as objects.

OBJECT-ORIENTED PROGRAMMING. Programming in a
language that embodies the concepts of objects, classes, in-
heritance, polymorphism and dynamic binding.

OBJECT-ORIENTED STRUCTURES. Two methods used to
manage complexity, (i) classification structure, which cap-
tures class/member organization and (ii) assembly structure,
which portrays whole/part organization.

OPEN SYSTEM. A system that provides capabilities that enable
properly implemented applications to run on a wide variety of
platforms from multiple vendors, interoperate with other sys-
tem applications and present a consistent style of interaction
with the user.

OPEN SYSTEM ARCHITECTURE. A specification of the capa-
bilities or services that provide the interconnection structure
and defines the interface between interoperating components,
thus allowing applications to be integrated with a consistent
style of interaction.

PARAMETERIZED CLASS. A class that serves as a template for
other classes, in which the template may be parameterized by
other classes, objects, and/or operations. A parameterized
class must be instantiated (its parameters filled in) before in-
stances can be created. Parameterized classes are typically
used as container classes; the terms generic class and param-
eterized class are interchangeable [9].
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PHYSICAL. adjective 1. Of or pertaining to the body, as dis-
tinguished from the mind or spirit; bodily; corporeal. 2. Of
or pertaining to material things. 3. Of or pertaining to mat-
ter or energy or the sciences dealing with them, especially
physics.

POLYMORPHISM. In an object-orineted language, the charac-
teristic of an operator that allows it to work on objects of
different classes.

PORTABILITY. The ability to operate the same component on
different computing platforms.

PRECISE. adjective Capable of, resulting from, or designating
an action, performance, or process executed or successively
repeated within close specified limits.

PROCESS. noun 1. A system of operations in the production o
something. 2. A series of actions, changes, or functions that
brings about an end or result.

verb 1. To put through the steps of a prescribed procedure.
2. To prepare, treat or convert by subjecting to some special
process.

PRODUCTION. The creation of value or wealth by producing

goods and services.

PRODUCT. Anything produced by human or mechanical effort

or by a natural process.

PROTOCOL. A set of semantic and syntactic rules for achieving
communication.

REAL TIME. Within a strict, predictable, bounded time interval.
REUSABLE SOFTWARE. Software that can be used for more

than one implementation.

SCALABILITY. The capacity to increase or decrease the func-

tionality of a system or its elements.

SCHEMA. A data model that defines all abstract data types in-

cluding relationships, attributes and constraints.
SOFTWARE LIBRARY. A repository for software components.
UPGRADEABILITY. The characteristic of enhancing speed, ca-

pacity or functionality of a system or its elements.

VERSION. A formal record used to help track an object’s evo-
lution over time; a version may be associated with a context
and loaded according to that context.

VIRTUAL MACHINE SERVICES. A set of domain-independent
mechanisms that provide fundamental capabilities and a com-
mon software interface to (possibly independently developed)
domain-specific functional entities, enabling their integration,
independent of the implementation underlying these services.

VIEW. A presentation with limited perspective based on context.
WORKING ENVELOPE. A defined boundary representing the

maximum extent or reach of a machine in all directions.

WORKING RANGE. All reachable positions within the working
envelope. The range of any variable within which the system
normally operates.



WORLD COORDINATE. A position relative to a frame of ref-

erence fixed on the manufacturing workstation.

WORLD MODEL. The system’s estimate and evaluation of the
history, current state and possible future states of the world,
including the states of the system being controlled.

(Some definitions have been adopted from the NGC
Schema [48]).

G Physical quantities and measure-
ment units

The information shown in Tables 6—8 on page 42 corresponds to
measurement-type and measurement-units-type in Appendix A.

Table 6: Basic physical quantities

Physical-quantity Measurement- | sym
(basic) unit -bol
length meter m
mass kilogram kg
time second s
electric-current ampere A
thermodynamic- kelvin K
temperature - -
luminous-intensity candela cd
amount-of-substance | mole mol

Table 7: Formulae for derived units with different names

Physical-quantity Measurement- formula
- unit -
energy joule N-m
charge coulomb A-s
electromotive-force | volt W/A
capacitance farad cl|v
electric-resistance ohm V/A
magnetic-flux weber V.s
inductance henry Wb/A
magnetic-flux- tesla Wb/m?
density

luminous-flux lumen cd-s
illuminance lux Im/m?
temperature degrees Celsius | T'— 1T,

Note: In the formula for temperature,
T=thermodynamic temperature and 7,=273.15 K.

Table 8: Derived physical quantities

Physical-quantity Measurement-unit symbol
(derived) (derived unit) -
plane-angle radian rad
solid-angle steradian ST

area meter? m
volume meter® m®
frequency per second st
density kilogram/m? kg-m®
linear-speed meters/second m- st
linear-velocity meters/second m-s!
linear-acceleration meters/second? m- s 2
linear-jerk meters/second’ m-s?
angular-velocity radians/second rad - s
angular-acceleration radians/second? rad - 572
force newton N
pressure newton /meter? N/m?
torque newton - meter N-m
moment newton - meter N-m
couple newton - meter N-m
kinematic-viscosity meter?/second m?/s
dynamic-viscosity newton - second /m? N -s/m?
energy joule J

work joule J

heat joule J

power watt \
charge coulomb C
potential-difference volt A%
electromotive-force volt A%
electric-field-strength volt/meter V/m
electric-resistance ohm Q
capacitance farad F
magnetic-flux weber Wb
inductance henry H
magnetic-flux-density tesla T
magnetic-field-strength | ampere/meter A/m
magnetomotive-force ampere A
luminous-flux lumen Im
luminance candela/meter? cd/m?
illuminance lux Ix
wave-number per meter m~!
temperature degrees Celsius °C
entropy joule/kelvin J/K
specific-heat-capacity joule/kilogram kelvin | J/kg - K
thermal-conductivity watt/meter kelvin W/m- K
radiant-intensity watt/steradian W /st
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