
University of Michigan Technical Report Nov 1994 Hibino & Rundensteiner/Page 1

A Graphical Query Language
for Identifying Temporal Trends in Video Data

Stacie Hibino
Elke Rundensteiner
Department of EECS
University of Michigan
Ann Arbor, MI 48109
hibino@eecs.umich.edu, rundenst@eecs.umich.edu

ABSTRACT

Previous work in video annotation and analysis has concentrated more on the process of annotation than analysis.
The focus of our research instead is to provide support for video analysis by developing an environment for the
“casual user” to query the video data using spatio-temporal characteristics and to review visual results for trend
analysis. In this paper, we present our approach for identifying trends in video data via examining relationships
between video annotations. This approach allows users to characterize the video in terms of relationships between
events (e.g., events of type B frequently follow events of type A). The focus of this paper is on temporal
relationships and trends. We present a graphical query language for specifying relative temporal queries between sets
of annotations. This query language builds on the notion of dynamic query filters and significantly extends them. It
can be used in visual information seeking to discover temporal trends in the video data.

1 INTRODUCTION

1 . 1 Motivation

Movies, news, MTV, Channel 1, literature classics, sports, home videos, and observational data—from the home to
the classroom to the research laboratory, video is becoming more and more commonplace. Indexing, re-using,
reviewing, or analyzing this video, however, can be a cumbersome and time-consuming process. Few tools exist to
aid in this process, and the few which do are typically limited in one way or another. Users need to be able to index,
parse, and make personal comments about a video—they need to be able to make annotations to it. And once they
have created annotations, they should later be able to easily retrieve and analyze the video data by exploiting these
annotations.

Uses for Video Annotation and Analysis

Since video can be recorded in various settings for a variety of purposes, video annotation and analysis are not
restricted to a particular domain. Video annotation could be used to describe, clarify, and highlight different parts of a
video. It could be used by educational researchers to describe and interpret classroom video data; by communications
or film experts to identify different film shots and transitions in a movie; by physics teachers to overlay abstract
physics diagrams on top of real-life objects, etc.

In this research, we are examining the annotation and analysis of video that has been collected as video data. Video
is becoming more and more a common form of data collection. For example, video is collected for classroom
studies, lab studies (e.g., during usability testing), and workplace studies. Researchers can use video data to study
social interactions, individual user errors during usability studies, etc. One of the advantages of video data is that it
preserves a lot of detailed information which would be difficult to capture by other means of data collection. The
data collected by video, however, is qualitative, and as such can be used to provide typical and atypical scenarios, or
can be coded and analyzed to identify trends and formulate quantitative results. Our research focuses on coding and
analyzing video data via the use of video annotations.

Consider the case where educational researchers use video annotation for describing and interpreting video data
collected in a classroom setting. For example, they might be interested in studying teacher effectiveness in the
classroom. By using the annotation system, they can link notes directly to the video rather than keeping binders of
notes on paper or on a separate system. They can also use annotations to code the video data (e.g., to indicate places
in the video when the teacher is speaking vs. when the student is speaking). Later, they can use the annotations to
find relevant video segments, as well as to gain an overall understanding of the information being captured by the

University of Michigan Technical Report Nov 1994 Hibino & Rundensteiner/Page 2

video. In addition, they can create annotations using different types of media, such as text, audio, graphic objects,
and bitmaps. This allows them to create text labels to identify objects and people, use graphic objects such as
circles to highlight interesting situations, etc. Furthermore, by storing annotations in a database, researchers can
search for trends in the video data by specifying queries to locate occurrences of, and relationships between the
annotations (e.g., do students generally speak for shorter periods of time than the teacher?).

The Need for a Video Annotation and Analysis System

While existing authoring, multimedia, or video editing systems could be used for annotating video, there would be
several difficulties in doing so. In the case of video editing, the original video is not preserved, and tools for
indexing and accessing video segments are usually not provided. In order to use a multimedia authoring
environment, users must know how to program in the authoring environment. Users should not have to learn to
program to work with video. They should be able to annotate and access video as easily as they can annotate and
access text. They need technology tools to treat video as a primary document. And, they need an easy-to-use method
for annotating these video documents as well as techniques for retrieving and analyzing their annotations in the
context of the annotated data.

Video annotation systems have recently been given increased attention. A few have been developed (Mackay, 1989;
Roschelle, et al., 1990; Davis, 1994; (see section 4)), but they focus more on the mechanism of synchronizing
annotations to video. That is, these systems focus on temporally linking annotations to video, but do not deal with,
or are limited in dealing with, the spatial dimensions of video. In addition, these systems focus more on the process
of annotating rather than analyzing the video. True video annotation should allow users to annotate video in three
dimensions—temporally and spatially. And, subsequently, retrieval and analysis of these annotations should also
take advantage of the temporal and spatial characteristics of the video. Our video analysis support environment is
specifically being designed to meet these needs. In particular, we are using temporal-spatio annotations, coupled
with graphical query and presentation languages to support the user in visually analyzing the video data.

1 . 2 Terms and Definitions

This section defines the terms video annotation and video analysis as they are used in the context of this paper.

Video annotations. A video annotation is an object that is temporally linked to one or more video segments and
spatially linked to a position on top of or next to the video (i.e., to a position on the display relative to the video
window). An annotation can be a text, audio or graphical (e.g., square, circle, arrow, etc.) object. In hypermedia
terms, an annotation can be thought of as an object containing a link to an anchor in the video. When reviewing all,
or a set of retrieved annotations, users can click on any annotation instance to access the corresponding video
segment. Links are bi-directional in that when the video is played, annotations can be played or displayed at the
appropriate times and (spatial) places. In addition to spatial and temporal characteristics, each annotation may also
have some descriptive characteristics, including name, category and description. In this paper, the term event refers
to the real-world situation being captured by the annotation.

Video Analysis. In this paper, video analysis refers to the process of identifying trends and relationships between
events in the video data. This use of the term video analysis is in contrast to bit-level video analysis such as that
used for object extraction (see Section 4 on related work).

1 . 3 Overview

The remainder of the paper is organized into four additional sections. Section 2 states the problem description and
presents our approach for addressing it. Section 3 presents a temporal graphical query language for specifying
relative temporal queries. Section 4 discusses related work. Finally, Section 5 presents a summary of contributions
and discusses future work.

University of Michigan Technical Report Nov 1994 Hibino & Rundensteiner/Page 3

2 PROBLEM AND APPROACH

2 . 1 Overall Problem Description and Approach

When analyzing video data, researchers typically code (i.e., annotate) the video, and then perform analysis through an
iterative process of examining various relationships between different types of events. The overall problem then is
to provide support for creating annotations and for analyzing video by supporting the process of identifying temporal
and/or spatial relationships between temporal-spatio video annotations. More specifically, users need to be able to
create annotations and then query the annotation collection to search for relationships and data trends. The results
retrieved from relative queries need to be visually presented to facilitate this searching for trends. Also, to aid in the
trend searching process, and to identify statistical significance, users may also need to review quantitative summaries
and statistical information.

Figure 1 presents our overall approach to this problem. The approach consists of four components: query,
presentation, navigation, and quantitative and statisticial analysis. Annotations are layered on top of the video and
stored in a database. Users incrementally specify relative queries through graphical query languages (GQL).
Dynamic presentations provide visualizations of subsets of the annotation collection (e.g., a view of results retrieved
from a query). Users specify the format of a presentation via a presentation language (PL). A statistics calculator
(SC) is provided to specify different types of quantitative information. Finally, navigation controls allow users to
navigate within the temporal presentations.

Query

Presentation
(Visualization

of results)

Navigation
Controls

Statistics
Calculator

Figure 1. Overall Approach and System Description.

In this paper, we present our results of the specification of graphical query languages to support and simplify the
analysis process for the users. More specifically, we will focus on a graphical query language for specifying relative
temporal queries over video data.

2 . 2 Problem Statement

In general, a temporal graphical query language (TGQL) could be used in different contexts by various types of users.
The language could be used by query language and system developers to extend existing languages or by interface
designers to tailor query widgets to domain specific needs. A TGQL can also provide a simple query interface for
application users. The goals of this paper are (1) to define a general TGQL that can be easily integrated into a
variety of applications and (2) to design a TGQL interface that is easy and intuitive to use by application (i.e., video
annotation and analysis) users who are typically query language novices.

Thus, the specific problem addressed in this paper is that of the users’ need for a simple interface for specifying
relative temporal queries to video data. Relative queries are necessary for examining relationships between events and
thus for identifying trends. A graphical language is desired to correspond with the graphical nature of the objects in

University of Michigan Technical Report Nov 1994 Hibino & Rundensteiner/Page 4

the database and is much more suitable for the type of novice query users we are targeting. In addition, we
hypothesize that a temporal language is required to facilitate searching for temporal data trends.

2 . 3 Background Paradigm

The process of analyzing video using video annotations involves incrementally and iteratively formulating queries
and visually reviewing results for data trends. This process is similar to what Ahlberg and Shneiderman (1994) term
visual information seeking (VIS). Ahlberg and Shneiderman describe VIS as a process for browsing database
information. This is a process characterized by rapid filtering, progressive refinement, continuous reformulation of
goals, and visual scanning to identify results. They have designed dynamic query filters to support rapid filtering,
and starfield displays to support visual scanning. Dynamic query filters allow users to rapidly adjust query
parameters via the use of sliders, buttons, etc. A starfield display presents a visual summary of query results. The
starfield display is updated every time users make changes to any query filter. Thus, queries are expressed
incrementally as users specify desired values for each record field. In addition to the dynamic links to the display, the
query filters are also linked to one another to prevent the specification of null subsets. That is, when the user adjusts
one query filter, the other filters are automatically updated to only include valid values with respect to the values of
the current filter being adjusted. In this way, users can gain a sense of causality between adjusting a query filter and
the corresponding changes presented in both the other query filters and the starfield display.

The characteristics of progressive refinement, continuous reformulation of goals, and visual displays make VIS
particularly well suited for searching for trends in the video annotations. We thus propose to adopt this methodology
as a framework for addressing our analysis problem. Note, however, that the methodology is limited in that it
cannot handle relative queries. That is, while we can use the approach to identify and specify interesting subsets of
data, we cannot use the approach to specify relationships between these subsets. Thus, while the methodology is
suitable for analysis, it is not yet sufficient for the type of relative analysis desired. In this paper, we thus are
extending the methodology to address this problem.

In order to better understand this problem, consider a query such as “show me all annotations where the student is
working while the teacher is speaking.” While we can use dynamic queries (DQs) to select subsets such as the
“student working” and “teacher speaking” annotations, we cannot use DQs to specify a desired relationship between
members of these subsets. In the case of the example, we need to be able to specify a relative condition that holds
true for each (teacher-speaking, student-working) pair returned. Rather than specifying a range of absolute values, we
need to specify relative values. In order to handle such queries, DQs need to be extended to handle variable binding as
well as the specification of relationships (i.e., a temporal relationship for the example provided).

Video analysis of video data requires the specification of relative temporal and/or spatial queries. Extending the use
of DQs to handle such relative queries of video data requires binding subsets of the data to variables and specifying
temporal, spatial, or motion relationships between these subsets. Two subsets can be specified through the use of
two sets of standard query filters. Specifically, we provide a query palette for specifying each subset. Parameters
specified in the Subset A query palette automatically bind the subset formed to the variable A. The corresponding
functionality is provided for binding the second subset to variable B. For example, we can use query filters in the
Subset A palette to bind the subset “teacher talking” to variable A. We can then use query filters in the Subset B
query palette to bind variable B to “student working” (see Figure 2). A temporal, spatial, and/or motion
relationship R between sets A and B can then be specified with specialized spatial, temporal, or motion query filters
(see Section 3 on temporal queries). Progressive refinement of queries is preserved by allowing the adjustment of
query filters for A, B, or R at any time and in any order.

University of Michigan Technical Report Nov 1994 Hibino & Rundensteiner/Page 5

Figure 2. Simple examples of potential subset query filters.
Note that these are only simple examples, used to illustrate how subsets can be formed. The actual subset
query palettes allow the user to set more parameters and parameter values (e.g., to specify annotation
names, categories, additional actions, etc.). The sliders at the bottom of each subset palette allow users to
specify absolute temporal information for each corresponding subset. This is in contrast to the relative
temporal information that will be specified using the graphical temporal query language (Section 3).

Notice that the query filters for specifying numerically valued ranges (e.g., the query filter for specifying duration) are
double-thumbed sliders. Ahlberg and Shneiderman (1994) introduce this type of filter for specifying ranges of
values. Each thumb has an arrow, pointing towards the range being specified. The thumb arrow is filled to indicate
that the endpoint of a range is included, or empty to indicate that the endpoint of a range is excluded. Ranges are
filled in the sliders for further clarification. The text above the slider indicates exact values. Figure 3 identifies each
of these components of the double-thumbed slider.

labels below
slider indicate
range of valid
values

filled area of
scrollbar
indicates selected
range

Slider thumbs:
- filled arrow indicates
 endpoint of range is included;
- open arrow indicates endpoint
 is excluded

Text above slider
indicates the
value(s) selected.

Figure 3. Description of a double-thumbed slider query filter.

University of Michigan Technical Report Nov 1994 Hibino & Rundensteiner/Page 6

In addition to double-thumbed sliders, Ahlberg and Shneiderman introduce a number of other interfaces for different
types of query filters. For example, they use a single-thumbed slider (with no arrow) for specifying a single value,
or a single-thumbed slider with an arrow to indicate a range towards one of the extremes of the slider. Rather than
requiring the user to change the type of slider filter for different types of ranges, we are adopting a single type of
slider filter (i.e., the one illustrated in Figure 3) to handle all range query specifications. It is as powerful as the
specialized type of sliders, and the uniformity should simplify the user interface.

3 SPECIFYING TEMPORAL RELATIONSHIPS

This section presents a graphical query language for specifying relative temporal queries. The basic language is
composed of temporal query filters, a disjunctive operator, and a macro operator. The approach to this work is
motivated by the goal to gracefully integrate these temporal filters and operators with the standard DQs and VIS
properties introduced in Section 2.

Relative temporal queries are composed of two components—relative duration and relative temporal position. We
assume that absolute duration and position are specified with the corresponding subsets A and B. In Figure 1, for
example, subset A is set to all “teacher speaking” annotations with duration greater than one minute and which occur
at any time in the video, while subset B is set to all “student working” annotations with any duration and which
occur at any time. Query filters for relative temporal duration and position are presented in Sections 3.1 and 3.2.
The disjunctive operator is introduced in Section 3.2.

Temporal diagrams and descriptions used to enhance the clarity of a temporal query are presented in Section 3.3. We
consider these aids to be unique augmentations to our temporal query language, increasing the utility of our approach
to novice users. User-created macros (i.e., the macro operator) included for improving efficiency of query
specification over time are presented in Section 3.4.

3 . 1 Relative Duration

Two events A1 and B1 can be temporally related in terms of their durations. Although relative duration may
sometimes be dictated by relative temporal position (e.g., if event A1 “contains” event B1, then the duration of event
A1 is longer than the duration of event B1), this is not the case for all temporal position relationships (see Section
3.2). In addition, users may wish to specify relative duration queries independent of relative temporal position. For
example, users may wish to locate all events where student S1 works on a task for a longer period of time than
student S2. To address this need, we propose a query filter for relative duration.

Given the absolute durations (dur) of events A1 and B1, the basic relationship for relative duration between the
events can be described as follows:

dur A1 θ dur B1

where θ ε { <, >, = }. While this relationship can be used to qualitatively describe the relative duration between two
events, it cannot be used to specify quantitative information about that relative duration. For example, if we are
interested in cases where event A1 has a longer duration than event B1, then we can specify the constraint dur A1 >
dur B1. This does not, however, specify the amount of time that A1’s duration is greater than the duration of B1.
We can address this problem by redefining the relationship in terms of differences:

(dur A1 - dur B1) θ 0
where θ ε { <, >, = } and 0 denotes zero. If we let ∆dur = dur A1 - dur B1, then we can say:

∆dur θ 0,
where θ ε { <, >, = }. Now if we are interested in cases where the duration of A1 is one or more minutes longer
than the duration of B1 (e.g., student S1 spends at least one minute more on a task than student S2), then we can set
∆dur > 0 and more specifically, we can set ∆dur ≥ 1 minute. This is in contrast to the first representation, where we
would only be able to say dur A1 > dur B1.

In addition to allowing us to quantify the relative duration, the ∆ representation facilitates specification of values
from a continuous range. This allows us to use a slider query filter for specifying relative duration (see Figure 4).

University of Michigan Technical Report Nov 1994 Hibino & Rundensteiner/Page 7

Figure 4. Query filter for specifying relative duration.
Example: Student S1 works one or more minutes longer on tasks than student S2. Given a subset A
bound to “student S1 working” and a subset B bound to “student S2 working,” we can specify the query
“Show all situations where student S1 works one or more minutes longer than student S2” by setting ∆dur
> 0.

This now makes the relative duration specification compatible with the DQ interface we are designing for video
analysis. Another advantage of this type of range selection is that it allows us to specify values at different levels of
granularity. To illustrate this, consider the following examples:

Example:
(Find all (Ai,Bj) pairs such that:) ∆ value Query Filter

Ai is one minute longer than Bj ∆dur = 1 min

Ai is at most one minute longer than Bj 0 < ∆dur ≤ 1 min

Ai is longer than Bj ∆dur > 0

3 . 2 Relative Temporal Position

Given two events A1 and B1, the relative temporal position between these events refers to the relationship between
the temporal starting and ending points of the events. It describes information such as whether A1 starts before B1
or whether A1 and B1 finish at the same time. In order to be complete, a temporal graphical query language needs to
be able to specify any primitive temporal relationship (Allen, 1983) as well as any combination of these primitives.
This section describes how our temporal graphical query language can be used to accomplish this.

Individual temporal relationships

Allen (1983) describes thirteen primitive temporal relationships between two events: before, meets, during, starts,
finishes, overlaps, the symmetric counterparts to these six relationships, and the equals relationship (see first
column of Table 1). These temporal relationships can be described in terms of the relationships between the
temporal starting and ending points of each of the events. Consider two events A1 and B1, with starting and ending
points ao,af and bo,bf, respectively:

A1 B1

ao af bo bf

There are four pairwise endpoint relationships between these events:
ao θ bo,
ao θ bf,
af θ bo,
af θ bf,

where θ ε { <, >, = }. We assume that the conditions ao < af and bo < bf always hold true.

University of Michigan Technical Report Nov 1994 Hibino & Rundensteiner/Page 8

Similar to relative duration, these relationships can be redefined in terms of differences.
∆o θ 0, ∆o = ao - bo;
∆of θ 0, ∆of = ao - bf;
∆fo θ 0, ∆fo = af - bo;
∆f θ 0, ∆f = af - bf;

where θ ε { <, >, = }. Recall that the benefit of describing these relationships in terms of differences is that it
allows us to specify quantitative and continuous ranges of values, which is a natural specification to be handled by
DQ sliders. All of Allen’s thirteen temporal relationships can be uniquely defined by specifying one to three of these
endpoint relationships. The last four columns in Table 1 summarize the minimum endpoint relationships required to
uniquely specify a corresponding primitive temporal relationship (rt). Double-lined boxes indicate which
relationships are required, whereas the other relationships are automatically inferred.

Given four dynamic query filters for the four endpoint relationships, we can thus specify any primitive temporal
relationship. Therefore, we incorporate these filters into our temporal graphical query language. Because ∆o and ∆f
query filters can be used to uniquely define over half of the primitive temporal relationships, they are placed as the
top two filters. Figure 5 illustrates what these filters look like.

Figure 5. Query filters for specifying relative temporal position queries.
Example: Students S1 and S2 start and finish working at the same time. Given a subset A bound to
“student S1 working” and a subset B bound to “student S2 working,” we can specify the query “Show all
situations where students S1 and S2 start and finish working at the same time” by setting ∆o = 0 and ∆f =
0.

Note that the thumbs of the filters are always pointing inwards, thereby allowing the user to specify a continuous
range. The significance of a continuous range is described in more detail below, in the section on single
neighborhoods.

University of Michigan Technical Report Nov 1994 Hibino & Rundensteiner/Page 9

Table 1. Summary of Individual Temporal Relationships
[Double-line borders indicate minimum endpoint relationships required.
∆of = ao - bf, ∆o = ao - bo, ∆f = af - bf, ∆fo = af - bo]

r t
graphical

description
Freksa’s

icons ∆of ∆o ∆ f ∆fo

<
before ao af bo bf

< 0 < 0 < 0 < 0

m
meets

< 0 < 0 < 0 = 0

o
overlaps

< 0 < 0 < 0 > 0

fi
finished

by

< 0 < 0 = 0 > 0

di
contains

< 0 < 0 > 0 > 0

si
started by

< 0 = 0 > 0 > 0

=
equals

< 0 = 0 = 0 > 0

s
starts

< 0 = 0 < 0 > 0

d
during

< 0 > 0 < 0 > 0

f
finishes

< 0 > 0 = 0 > 0

oi
overlapped

by

< 0 > 0 > 0 > 0

mi
met by

= 0 > 0 > 0 > 0

>
after

> 0 > 0 > 0 > 0

University of Michigan Technical Report Nov 1994 Hibino & Rundensteiner/Page 10

As in the case of other query filters (i.e., those used to specify a subset), these four temporal query filters are bound
to one another so that users cannot specify invalid queries. That is, when the user changes one query filter, the other
three are automatically updated to exclude any invalid ranges, if necessary. In the example in Figure 5, the user
needs to set both the ∆o and ∆f filters. However, only one filter can be set at a time. Suppose the user first
specifies the ∆o filter (i.e., the user sets ∆o = 0). As soon as this new value for ∆o is set, the ∆of and ∆fo filters are
automatically updated so that ∆of < 0 and ∆fo > 0. These latter two filters are updated because these are the only
valid ranges for them when ∆o = 0 (see the last four columns of Table 1). ∆f remains unchanged, because it can
have any valid value when ∆o = 0. After the user sets ∆f = 0, neither of the other three filters are updated because
they are already set to include valid values.

We can determine whether or not to automatically update a query filter by using Table 2 below. This table was
derived from the information presented in the last four columns of Table 1. Consider the following examples
regarding how to use this table. If the user sets ∆of < 0, then none of the other filters are updated, since any value is
valid for each one. If the user sets ∆of = 0, however, then the other three filters are automatically updated to only
include values > 0. If the user sets a filter to include more than one range of values (e.g., ∆of ≤ 0) then the valid
values for the other filters are determined by performing a union of each range. Thus, when the user sets ∆of ≤ 0, no
update is made to ∆o since the union of any value (as allowed by ∆of < 0) and values > 0 is any value (i.e., (-) union
(>0) = (-)). Similarly, no updates are made to ∆f or ∆fo when ∆of ≤ 0.

Table 2. Automatic updating of query filters
When a query filter is set as specified in the first column, the other query filters are automatically updated as
indicated. [Key: *= current filter being set; - = any value is valid (i.e., no update necessary)]
Query filter and
value being set ∆ o f ∆ o ∆ f ∆ f o
∆of < 0

= 0
> 0

*
*
*

-
> 0
> 0

-
> 0
> 0

-
> 0
> 0

∆o < 0
= 0
> 0

< 0
< 0
-

*
*
*

-
-
-

-
> 0
> 0

∆f < 0
= 0
> 0

< 0
< 0
-

-
-
-

*
*
*

-
> 0
> 0

∆fo < 0
= 0
> 0

< 0
< 0
-

< 0
< 0
-

< 0
< 0
-

*
*
*

Neighborhoods of Temporal Relationships

Single neighborhoods

In addition to the primitive temporal relationships, we may also need to specify a combination of these primitives.
For example, we may wish to find all events where student S1 starts working at the same time that student S2 starts
working (i.e., they start at the same time, but may or may not end at the same time). Because the filters allow us to
specify ranges of values for the endpoint relationships, we can use them to specify such a combination of temporal
relationships. That is, we can set ∆o to 0 and ∆f to “any” in the case of the example (see Figure 6). Note that this
one query palette now specifies a disjunctive combination of related primitive temporal relationships, corresponding
to the disjunction of several primitive predicates in typically textual query languages (e.g., Snodgrass, 1987). That
is, in the example, setting ∆o = 0 and ∆f = any is equivalent to requesting events of type A which “start”, “equal”, or
are “started by” events of type B.

University of Michigan Technical Report Nov 1994 Hibino & Rundensteiner/Page 11

Figure 6. Using dynamic query filters to specify a temporal neighborhood.
Example: Student S1 starts working at the same time that student S2 starts working. Beginning with the
query specified in Figure 5 (i.e., “student S1 and S2 start and finish working at the same time”) and
increasing the range of ∆f to include all valid values, we can use the query filters to specify a conceptual
neighborhood of (possible) temporal relationships. In this example, the query palette would retrieve all a,b
pairs characterized by the started by, equals, or starts relationships. (Note: This figure presents the full
temporal query palette. The use of the “OR” button is described at the end of this sub-section while the
“Create Macro” button is described in Section 3.3. The temporal diagram at the bottom of the palette
visually describes the query specified (see Section 3.3).)

Moreover, because the filters can specify ranges and because they are bound to one another to prevent invalid
combinations, we can use the filters to specify single “neighborhoods” of related temporal primitives. Freksa (1992)
defines two primitive temporal relationships between two events to be (conceptual) neighbors if a continuous change
(e.g., shortening, lengthening, or moving of the duration of the events) to the events can be used to transform either
relation to the other [without passing through an additional primitive temporal relationship]. Thus, the “overlaps”
() and “finished by” () relations in Table 1 are neighbors, because we can move the ending
point of A from the middle of B to the end of B without specifying any additional primitive relationship. On the
other hand, the “overlaps” () and “contains” () relations are not neighbors. This is because we
cannot move the ending point of A past the ending point of B without first passing through the “finished by”
relation. A set or combination of temporal relationships between two events then forms a (conceptual)
neighborhood if it consists of relations that are path-connected through conceptual neighbors. Thus, the use of
continuous dynamic query filter sliders to specify temporal relationships allows us to capture meaningful
disjunctions of the temporal primitives.

Multiple- or non-neighborhoods

Although we may prefer to specify single neighborhoods most of the time, we sometimes may also need to specify
multiple- and non-neighborhood combinations of temporal relations. A multiple-neighborhood is a combination of
two or more neighborhoods that together do not form one neighborhood. A non-neighborhood, on the other hand,
combines a single primitive with either another primitive or a neighborhood, in such a way that the final result is

University of Michigan Technical Report Nov 1994 Hibino & Rundensteiner/Page 12

not a single neighborhood. Consider the example where a user wishes to find all events where student S1 and
student S2 start working at the same time, but finish working at different times. This example requires a
discontinuous range for the same endpoint relation (i.e., for the ∆f filter, since we need to set ∆f < 0 or ∆f > 0), thus
making it impossible to specify with one set of query filters. To alleviate this problem, we incorporate an option to
OR any set of temporal relationships together. In this way, the sliders and disjunctive operator form mechanisms
which are sufficient to specify any disjunctive combination of temporal (position) relationships between two sets of
events. Figure 7 illustrates the use of dynamic query filters and the disjunctive operator for the above example.

Temporal diagrams (described in Section 3.3) at the bottom of the query palette are used to indicate each part of the
disjunctive OR query formed. An arrow to the right of the diagrams indicates the current part of the OR query that is
being specified or edited. If users wish to edit a previously specified part, they can simply click on its corresponding
diagram. Once this diagram is selected, the arrow is moved to indicate that that part of the OR query is being edited.
In addition, the dynamic query filters are also automatically updated to match the part of the disjunctive temporal
query being edited.

Figure 7. Using dynamic query filters and a disjunctive operator to specify a non-
neighborhood.

Example: Students S1 and S2 start working at the same time but finish working at different times. The
user specifies this query by forming the following disjunction: “students S1 and S2 start working at the
same time but student S1 finishes before student S2” OR “students S1 and S2 start working at the same
time but student S1 finishes after student S2.” A user can specify the first part of the disjunction by setting
∆o = 0 and ∆f < 0, and then clicking on the OR button. Once the OR button has been clicked, the system
creates a new temporal diagram (which is initialized as a copy of the previous diagram) at the bottom of the
query filter. An arrow points to this newly created temporal diagram to indicate the part of the OR
disjunction being specified. A user can then specify the remainder of this query by setting ∆f > 0. The new
diagram is automatically updated to reflect the temporal primitives specified by the query filters (see Section
3.3 on temporal diagrams).

University of Michigan Technical Report Nov 1994 Hibino & Rundensteiner/Page 13

3 . 3 Clarifying the Temporal Query Specified

Although users can quickly adjust the query filters to specify any of the individual or any combination of the relative
temporal position primitives, they may find difficulty in determining whether or not the query specified corresponds
to the desired query semantics. Part of this ambiguity may be inherent in the finely-grained definitions of the
primitives (e.g., three different primitives meet the specification that events “start” at the same time). In order to
reduce ambiguity, we have thus incorporated two techniques for providing quick visual confirmation of the specified
query—the use of temporal diagrams and textual descriptions. Each of these is described in more detail below.

Temporal Diagrams.

Note that Figures 6 and 7 include graphical representations of the specified temporal relationships at the bottom of
the temporal query palette. In the diagrams, the box refers to B events, while the connected circles are used to
describe potential relative positions of A events. The open circles represent possible starting points for set A, while
filled circles represent possible ending points. Freksa (1992) uses similar diagrams to describe individual
relationships but then uses different icons to describe combinations of temporal relationships (see columns 2 and 3
of Table 1). While the use of Freksa’s icons provides a compact graphical description, it is more difficult to decipher
than the diagrams presented in the above figures. In other words, they are not visually intuitive. Part of the
difficulty in deciphering Freksa’s icons is that individual endpoint relationships (e.g., ∆o vs. ∆f relationships) are
obscured. That is, temporal queries model relationships over time, and this continuous temporal dimension is
obscured in Freksa’s icons. In addition, Freksa did not intend to develop a query language for users, but rather to
demonstrate some theoretical principles of temporal neighborhoods. Table 3 compares the use of Freksa’s icons to
the temporal diagrams used in Figures 6 and 7 above.

Table 3. Comparison of Freksa’s Icons to Temporal Diagrams
Freksa’s icons Temporal Diagrams

We have developed a transformation function to automatically generate the temporal diagrams from the relative
temporal position query filters. The primitive operators of this transformation function are defined using Table 4.

We introduce a half-filled circle (e.g., graphical results of (11) and (12)) to denote the overlap of starting and ending
points of A. The transformation function has twelve (vs. thirteen, the number of temporal primitives) components
because it evaluates potential endpoints specified rather than specific primitives selected. That is, it is used to
determine which of the five starting points of A are specified, which of the five ending points of A are specified, and
whether there is a case where a starting and ending point of A overlap at either the starting or ending points of B.
The function is complete because it tests for each possible endpoint position.

University of Michigan Technical Report Nov 1994 Hibino & Rundensteiner/Page 14

Table 4. Transformation function used to define temporal diagrams

∆ Value(s) Def ines

∆o < 0 (1)

∆o = 0, ∆fo ≠0 (2)

∆o > 0, ∆of < 0 (3)

∆of = 0, ∆f ≠ 0 (4)

∆of > 0 (5)

∆fo < 0 (6)

∆fo = 0, ∆o ≠ 0, (7)

∆fo > 0, ∆f < 0 (8)

∆f = 0, ∆of ≠ 0 (9)

∆f > 0 (10)

∆o = 0, ∆fo = 0 (11)

∆f = 0, ∆of = 0 (12)

In general, the relative temporal position query filters pass ∆ information to the transformation function. Each part
(i.e., line) of the function evaluates as true or false. The graphical results of each valid part of the transformation
function are then collapsed into one temporal diagram and a line is used to connect the endpoints. Consider the
example of Figure 6: “student S1 starts working at the same time that student S2 starts working.” In this example,
we have ∆o = 0, ∆f = any, ∆of < 0 and ∆fo > 0. Using the transformation operators depicted in Table 3, we see that
the following parts evaluate to true:

(2)

(8)

(9)

(10)

This leads to the following composite diagram:

As described in Section 3.2, query filters are linked together so as to permit the specification of only logically
feasible situations. Hence, only valid relationships will be passed to the transformation function from the query
filters. As a consequence, it is not possible to derive an invalid diagram where the only starting point of A comes
after its ending point. In addition, because only continuous ranges are specified by the query filters, all valid starting
and ending point combinations of the diagrams are included. A new temporal diagram is derived for each part of a
query formed using the disjunctive OR operator.

University of Michigan Technical Report Nov 1994 Hibino & Rundensteiner/Page 15

The temporal diagrams presented in this section represent a valuable aid for confirming the specified query to the
users in a visually intuitive manner (e.g., see Figure 7). This should increase the speed and certainty with which
users modify or construct complex queries.

Textual Descriptions of Temporal Relations Specified

In order to provide further clarification of the specified temporal query, we also include an option for users to view
corresponding textual descriptions. In addition, if the results of the trend analysis are printed in the form of a report,
then these textual descriptions could be used as captions to accompany the visual results. Given the specification of
∆’s, we can use a simple language to semantically describe the relationships between events A and B. This language
is briefly described below.

Exp Translation
= 0 at the same time as
< 0 after
> 0 before
≤ 0 at the same time or after
≥ 0 at the same time or before

∆o A starts ____________ B starts
∆f A finishes ___________ B finishes
∆of A finishes ____________ the start of B
∆fo A starts ___________ the finish of B

Thus, if we have a query filter specifying ∆o < 0, then our translation tool would generate the following textual
description:

A starts after B starts.

3 . 4 User-Created Macros

Although users can easily specify temporal queries through the temporal query filters, they may have a tendency to
use some settings over and over again. For this reason, we provide a mechanism for users to load “meaningful”
groups of, or macros for, temporal relationships. While it may be difficult to define and enumerate all “meaningful”
groups of relationships, we can identify some characteristics of such groups. For example, we can specify an “all
starts” temporal relationship to describe the case where events start at the same time (e.g., Figure 6). In addition, we
can provide a button (i.e., operator) to allow users to create and name their own macros for specifying temporal
relationships. Users can then load any macro into the temporal query palette and manipulate the query filters starting
from the settings specified by the macro.

4 DISCUSSION AND RELATED WORK

Research related to this work can be categorized into four areas: video annotation and analysis, video analysis,
temporal queries, and multimedia databases. Work in video annotation and analysis has often focused more on
creating annotations rather than analyzing them (e.g., Mackay, 1989; Weber and Poon, 1994). There is, however,
some work involving storing annotations in an underlying database (Roschelle, et al., 1990). This then would allow
for queries on the annotations as supported by the database. Unfortunately, this work focuses on absolute queries
rather than relative ones. That is, users can search for events, but they cannot search for relationships between
events without previously identifying and explicitly annotating the relationships themselves. Harrison et al. (1994)
do not use a database to aid in the analysis process, but they use timelines for temporal analysis. They graph
annotations over time, thereby indicating all of the occurrences of an annotation over time. By displaying all
annotations in a parallel timeline, they present absolute as well as relative temporal information. This approach to
finding relative temporal trends in the data is limited, however, in that users can only see a part of the timeline at a
time. This makes it simple to find individual or a few instances of a temporal trend, but difficult to determine
whether such a temporal relation holds true over several instances (i.e., over all time). In comparison to these
approaches, we have presented a tool (in the form of a graphical query language) for directly retrieving absolute and
relative temporal information. In addition, our use of dynamic queries allows users to specify queries incrementally,
thereby giving them a sense of causality between adjusting a query filter and corresponding changes to the
presentation of retrieved results.

University of Michigan Technical Report Nov 1994 Hibino & Rundensteiner/Page 16

In computer science, the term video analysis has been frequently interpreted as analysis of video at the bit level.
Thus, work in this area tends to focus on issues such as scene and shot detection (Hampapur, et al., 1994), object
extraction (Chua, et al., 1994), and some motion analysis (Dimitrova and Golshani, 1994). While these types of
analyses are different from the type of analysis we propose to support, they are complimentary. In fact, we could use
object extraction techniques to automatically create annotations of where people and objects occur in the video. Our
analysis system could then be applied to the annotated video as before. In this way, bit-level video analysis can
serve as a front-end to our more coarsely-grained analysis of relationships between video events.

Some of the work in temporal queries has focused more on the context of evolutionary databases rather than on
databases of temporal information (e.g., Snodgrass, 1987). Evolutionary databases, such as those used to manage
medical images (Chu, et al., 1992) are different from databases of temporal information in that they focus on discrete
changes entered into the databases as an effect of changes made in the real world (e.g., John broke his leg on April
10, 1994). That is, these databases focus on discrete changes to static objects rather than changes in continuous,
dynamic media. In addition to this focus on evolutionary context, work in temporal queries has focused on textual
rather than graphical query languages. For the type of users we are targeting, an SQL type language would be
unacceptable. We are exploring the development of a graphical query language to simplify query specification. We
also hypothesize that our graphical query language and the VIS approach we are adopting and adapting will be more
efficient for the purpose of searching for temporal trends in the video data. This hypothesis is supported by a study
comparing the use of dynamic queries to a forms-based query language (Ahlberg, et al., 1992). In this study, the
researchers found that users performed significantly better using dynamic queries over a forms-based approach for
three out of five tasks, one of which involved looking for trends in the data.

Research in multimedia databases varies somewhat due to the interpretation of the term multimedia. Some
researchers consider image databases (i.e., images + text databases) to be multimedia, but such databases do not deal
with temporally-based media such as video or audio. On the other hand, databases which handle temporal media tend
to focus on semantic or text-based queries as well as on locating information rather than analyzing it (e.g., Lenat and
Guha, 1994; Chakravarthy, 1994). In these types of databases, media are typically images or short clips with textual
captions or descriptions. Information is then located by semantic inferencing on these textual descriptions (e.g.,
Lenat and Guha, 1994). The drawback of this type of approach is that it does not take advantage of the temporal
and/or spatial characteristics inherent in the media. While some image databases allow users to search using spatial
information, such approaches have either not dealt with temporal media, or have focused on object extraction (e.g.,
Gevers and Smeulders, 1992). We distinguish our work from previous work in this area by using both temporal and
spatial characteristics1 of the media, as well as by addressing needs for both retrieval and analysis.

5 CONCLUSION

In this paper, we have presented a graphical query language for specifying relative temporal queries, including relative
temporal position and duration between video data annotations. The four query filters used for relative temporal
position enable users to specify any primitive temporal relationship as well as conceptual neighborhood
combinations of these primitives. For completeness, we have provided support for the specification of disjunctive
non- and multiple-neighborhoods through the introduction of a disjunctive operator. We have introduced the notion
of temporal diagrams and descriptions to enhance the clarity of the specified query. Lastly, we have supported the
reuse of redundant query specifications through user-created macros.

The primary contributions of this work include the graphical temporal query language for specifying relative
temporal queries and for facilitating temporal analysis (i.e., searching for temporal trends in video data), as well as a
transformation function for deriving temporal diagrams from endpoint relationships. In addition, we have discussed
how our work can be linked to existing work such as object extraction. Finally, our work can be generalized to
different media as well as different domains. By analyzing video through analysis of an annotation layer on top of
the video, we have designed an approach which can be applied to other dynamic media (e.g., animation). We have
also presented an approach which is not limited to the analysis of video data but one which can also be used to
analyze other genres of video such as movies, sports, etc.

The work presented in this paper is just one component of the design of an integrated environment for video
analysis. We are currently implementing our graphical temporal query language in a Windows-based multimedia pc
(MPC) environment. We are also finishing work on graphical query languages for specifying relative spatial and

1Due to space limitations in this paper, we only describe the temporal aspect of our proposed interface.

University of Michigan Technical Report Nov 1994 Hibino & Rundensteiner/Page 17

relative motion queries. We plan to run usability tests to evaluate the completeness, clarity, and efficiency of the
language for identifying temporal trends in the video data. We are in the process of developing a presentation
language to allow users to specify views and parameters for displaying retrieved results.

REFERENCES

Allen, J.F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11), 832-
843.

Ahlberg, C., Williamson, C., & Shneiderman, B. (1992). Dynamic Queries for Information Exploration: An
Implementation and Evaluation. CHI'92 Conference Proceedings, (pp. 619-626). : ACM Press.

Ahlberg, C., & Shneiderman, B. (1994). Visual Information Seeking: Tight Coupling of Dynamic Query Filters
with Starfield Displays. CHI'94 Conference Proceedings, (pp. 619-626). : ACM Press.

Chakravarthy, A.S. (1994). Toward Semantic Retrieval of Pictures and Video. AAAI’94 Workshop on Indexing
and Reuse in Multimedia Systems, 12-18.

Chu, W.W., Ieong, I.T., Taira, R.K., & Breant, C.M. (1992). A Temporal Evolutionary Object-Oriented Data
Model and Its Query Language for Medical Image Management. Proceedings of the 18th VLDB Conference,
(pp. 53-64): Very Large Data Base Endowment.

Chua, T.-S., Lim, S.-K., & Pung, H.-K. (1994). Content-Based Retrieval of Segmented Images. A C M
Multimedia’94 Proceedings: ACM Press.

Davis, M. (1994). Knowledge Representation for Video. Proceedings of the Twelfth National Conference on
Artificial Intelligence. (pp. 120-127): AAAI Press.

Dimitrova, N. & Golshani, F. (1994). Rx for Semantic Video Database Retrieval. ACM Multimedia’94
Proceedings: ACM Press.

Freksa, C. (1992). Temporal reasoning based on semi-intervals. Artificial Intelligence, 54(1992), 199-227.
Gevers, T. and Smeulders, A.W.M. (1992). Indexing of Images by Pictorial Information. Visual Database

Systems, II (E. Knuth and L.M. Wegner, Eds.), North Holland: Amsterdam, 93-100.
Hampapur, A., Weymouth, T., & Jain, R. (1994). Digital Video Segmentation. ACM Multimedia’94

Proceedings: ACM Press.
Harrison, B.L., Owen, R., & Baecker, R.M. (1994). Timelines: An Interactive System for the Collection of

Visualization of Temporal Data. Proceedings of Graphics Interface '94. Canadian Information Processing
Society.

Lenat, D. & Guha, R.V. (1994). Strongly Semantic Information Retrieval. AAAI’94 Workshop on Indexing and
Reuse in Multimedia Systems, 58-68.

Mackay, W. E. (1989). EVA: An experimental video annotator for symbolic analysis of video data. SIGCHI
Bulletin, 21(2), 68-71.

Roschelle, J., Pea, R., & Trigg, R. (1990). VIDEONOTER: A tool for exploratory analysis (Research Rep. No.
IRL90-0021). Palo Alto, CA: Institute for Research on Learning.

Snodgrass, R. (1987). The Temporal Query Language TQuel. ACM Transactions on Database Systems, 12(2),
247-298.

Weber, K. & Poon, A. (1994). Marquee: A Tool for Real-Time Video Logging. CHI'94 Conference Proceedings,
(pp. 58-64). : ACM Press.

