Design Tradeoffs in Implementing Real-Time Channels

on Bus-Based Multiprocessor Hosts

Atri Indiresan Ashish Mehra
Kang G. Shin

Real-time Computing Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan

Ann Arbor, Michigan 48109-2122
{atri,ashish,kgshin}Qeecs.umich.edu

Abstract

There are a growing number of real-time applications (e.g., real-time controls, and audio/video confer-
encing) that require certain quality-of-service (QoS) from the underlying communication subsystem. The
communication subsystem must support real-time communication services that can be used to provide the
required QoS of these applications, while providing reasonably good performance for best-effort traffic. In
this paper we explore the design tradeoffs involved in supporting real-time communication on bus-based
multiprocessor hosts using standard network hardware. These tradeoffs are examined by implementing
the concept of real-time channel, a paradigm for real-time communication services in packet-switched
networks.

We first present a hardware and software architecture facilitating real-time communication on bus-
based multiprocessor hosts. The main features of this architecture include a dedicated protocol processor,
a split-architecture for accessing real-time communication services, and decoupling of data transfer and
control in the communication protocol stack. The implications of network adapter characteristics for real-
time communication are considered and desirable adapter features derived. Techniques to circumvent
limitations in adapters not providing explicit support for real-time communication are presented. Support
for real-time communication necessitates that shared host resources such as bus bandwidth, protocol
processing bandwidth, and link bandwidth are consumed in a global order determined by the traffic
characteristics of the active real-time channels. We present data transfer optimizations, mechanisms
to schedule protocol processing, and link scheduling mechanisms that together achieve this goal. The
effectiveness of our real-time channel implementation is demonstrated through experiments while varying
traffic characteristics.

Key Words — Real-time communication, bus-based multiprocessors, network adapter, protocol process-

ing, CPU and link scheduling

The work reported in this paper was supported in part by the National Science Foundation under grant MIP—9203895 and
the Office of Naval Research under grant N00014-94-1-0229. Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not necessarily reflect the views of NSF or ONR.

1 Introduction

Emerging distributed applications such as medical imaging, distributed monitoring and control, and au-
dio/video conferencing, critically depend on the delivered performance or quality-of-service (QoS) of the
underlying communication subsystem. In particular, they require certain guarantees on performance param-
eters such as end-to-end delay, delay jitter, available bandwidth, and packet loss. For example, distributed
real-time systems must provide predictable end-to-end message delay, since unpredictable message latency
can adversely affect the timely execution of communicating tasks. The communication subsystem must
provide a set of real-time communication services that can satisfy the QoS requirements of these applica-
tions. Besides guaranteeing that the QoS requirements of applications are met, these services should allow
best-effort (non-real-time) traffic to coexist with real-time traffic. Though no guarantees are made about
the performance delivered to best-effort traffic, it is desirable to avoid unduly penalizing its performance in
the presence of real-time traffic.

The real-time channel model [1,2] provides a paradigm for real-time communication services in packet-
switched networks. In this model, an application requesting service must specify its traffic characteristics,
including the rate at which data is generated, and QoS requirements to the network. Since the network has
finite bandwidth, it must perform admission control to provide any kind of service guarantees; the network
computes the resources required and accepts the request if sufficient resources can be reserved for it. Once
a requested real-time channel has been established, the network’s policing and enforcement policies prevent
an application from consuming more network resources than reserved, so as not to affect the services offered
to other applications. A real-time channel provides delivery-delay guarantees for real-time traffic, and at the
same time, allows reasonably good performance for best-effort traffic.

This paper examines design tradeoffs involved in implementing real-time channels in (bus-based) mul-
tiprocessor hosts using standard adapter hardware for access to the network. Small-scale bus-based multi-
processor configurations are increasingly being employed in multimedia servers and workstations (e.g., SGI
Challenge XTI, Sun SPARCserver 1000). These end hosts typically have a small number of processors which
can individually access the network adapter across the main system bus. With multiple independent real-
time channels emanating from each processor, it becomes important to minimize the interference between
the traffic on different real-time channels, and to distinguish real-time traffic from best-effort traffic. This
necessitates that system resources such as bus bandwidth, protocol processing bandwidth, and network
bandwidth be consumed according to a (dynamic) global transmission/reception order as determined by the
QoS requirements and traffic load of the individual real-time channels.

First, we present a hardware and software architecture that realizes this goal by dedicating a processor for
protocol processing and link scheduling. The application programming interface (API) for accessing commu-
nication services is split between this protocol processor and the other (application) processors. Dedicating a
processor for protocol processing has also been proposed by other researchers in order to offload all protocol
processing from the application processors, freeing them from adapter handshake overheads and permitting
greater overlap between useful computation and communication processing. In addition to these benefits, a
dedicated protocol processor enables global coordination between the active real-time channels to schedule
protocol processing, link access and data transfer bandwidth. To ensure that protocol processing bandwidth
is consumed in a global transmission /reception order, the protocol processor provides priority-based schedul-
ing of protocol threads. Similarly, access to the link is regulated through link scheduling on the protocol
processor. Finally, we optimize the data transfer path such that there is no unnecessary data copying and
bus bandwidth on transmission is consumed in the link-access order determined by the link scheduler.

Second, we explore three aspects pertaining to the performance of real-time and best-effort traffic on our
hardware and software architecture. For this we use a VME bus-based multiprocessor as the end host, with
hosts connected by a network constructed from the Ancor CXT 250 crossbar switch [3] and CIM 250 network
adapters [4]. We highlight the performance implications of the design features and interface characteristics of
the network adapter, especially for real-time communication. These observations are used to motivate desir-
able features in the network adapter that support real-time communication, and hence the implementation
of real-time channels. For example, FIFO queueing in the network adapter exacerbates the (communication)

medium access latency while making it more unpredictable, and hence must be controlled. Other important
features include allowing the link scheduler to exercise fine-grain control over packet transmissions, and the
ability to efficiently examine packet headers and selectively discard received packets. Next, we consider the
software overheads of protocol processing and link scheduling on the (dedicated) protocol processor. With
no copying of data during protocol processing, protocol-processing and link-scheduling overheads are directly
proportional to the number of fragments and the per-fragment processing cost. Using the overheads as mo-
tivation, we propose CPU scheduling mechanisms to preserve QoS guarantees to various real-time channels.
Lastly, we study the effectiveness of the link scheduler in preserving QoS guarantees on individual channels
as well as servicing best-effort traffic under varying traffic loads.

The rest of this paper is organized as follows. Section 2 describes the hardware and software organization
of our experimentation platform, while Section 3 gives an overview of the real-time channel implementation
on this platform. The implications of network adapter characteristics, including data-transfer performance,
for real-time and best-effort traffic are discussed in Section 4, which also highlights desirable features in
the network adapter that facilitate real-time communication. Section 5 first describes the optimizations
we applied to minimize/eliminate redundant data copying such that bus bandwidth is consumed in the
global transmission order determined by the link scheduler. The protocol-processing and link-scheduling
overheads of our implementation are presented next, along with CPU scheduling mechanisms to preserve
QoS guarantees. Section 6 evaluates the implementation of the link scheduler controlling access to the
network. The evaluation focuses on the effectiveness with which the scheduler insulates real-time traffic
from best-effort traffic on the one hand, and traffic belonging to different real-time channels on the other.
Section 7 discusses other proposals for providing real-time communication services, and compares our real-
time channels service to other related approaches. We conclude in Section 8 with an analysis of the results
and suggest directions for future work.

2 The Experimentation Platform

In this section we describe the hardware and software architecture of our experimentation platform, which
is being developed as a part of HARTS [5]. The primary goal of HARTS is to investigate architectural and
operating system issues in distributed real-time computing.

2.1 Hardware

Each HARTS node (also referred to as end host) is a VME bus-based multiprocessor with 2-4 processors,
as shown in Figure 1. This multiprocessor configuration provides several benefits over uniprocessor configu-
rations. Many input/output devices and controllers are available for the popular VME bus. Each processor
can be dedicated to control a different device on the VME bus, enabling simultaneous control over the
active devices. The additional processors can also provide fault-tolerance at each node. Bus-based multipro-
cessor configurations are increasingly being used as multimedia servers and in desktop workstations. This
architecture, therefore, allows us to derive important implications for platforms likely to support real-time
communication.

We divide the available processors in each HARTS node into Application Processors (APs) and a Network
Processor (NP); applications execute on APs while communication protocols execute on the NP. Dedicating
a processor to control the VME bus-based communication devices has several advantages: the NP offloads
all communication processing from the APs, frees the APs from device handshake overheads, and permits
greater overlap between useful computation and communication processing'. Since the communication device
is located on the VME bus, any processor can interact with it; however, device handshake overhead is minimal
if done by a designated processor. More importantly, with real-time channels originating from multiple APs,
a dedicated NP ensures that the channels are serviced in a certain global (node-wide) order as determined

1 Communication processing in general includes clock synchronization, group communication, and real-time communication
services in addition to protocol processing.

)
)

‘ [HARTOS device driver

([e)
)

‘ [HARTOS device driver

[T

E
T l [HARTOS device driver] N
H Scalable e
E Point-to i < = To
-to-point : HARTS
R Interface DrivER i Nodes
N T e B R
e :
T Ancor CIM 250 < To
: Ancor
: CXT 250
Switch

communication subsystem
under study

HARTS Node

Figure 1: Architecture of each node/host

by their traffic parameters. Each processor is an Ironics IV-3207 card with a Motorola MC68040 CPU; the
NP has 16 MB of DRAM while the APs have 4 MB of DRAM.

In the current configuration, the HARTS interconnection network is constructed from the Ancor CXT 250
crossbar switch [3] and Ancor VME CIM 250 network adaptors [4], which implement the ANSI Fibre Channel
3.0 standard [6]. We use the CXT 250 crossbar switch to embed various partially-connected point-to-point
topologies for studying multi-hop communication. In addition to communication interface hardware, the
CIM has 8MB DRAM, independent DMA controllers for data movement, and an input/output processor
that provides support for Fibre Channel operations. Though the CIM has a general-purpose 1/O processor,
the on-board firmware is controlled by the manufacturer; the NP exercises control over the CIM only through
command/response FIFOs. The native interconnection network between HARTS nodes will be provided by
SPIDER [7], a custom VME bus-based network adapter now in the final stages of development. SPIDER
would allow construction of partially-connected point-to-point topologies with node degrees up to 4.

2.2 Software

HARTOS [8,9], the operating system running at each HARTS node, provides a uniform interface for appli-
cation programs to access kernel and network services, and supports real-time applications in a distributed
environment. Figure 1 highlights the main HARTOS components. The APs run the pSOS*™™ kernel [10]
while the NP runs a protocol stack based on the z-kernel [11]. Communication between the APs and the
NP is provided via the HARTOS API, a command/response interface that permits pSOST™ and z-kernel to
provide network services to applications.

AP Kernel: pSOST™ is a real-time multiprocessor OS kernel and serves as the executive for each AP.
Though pSOST™ can provide network services like TCP/IP that may be used for remote communication with
pSOST™ tasks on other HARTS nodes, these services are not real-time and hence not suited for this platform.
We could have implemented our real-time protocols in pSOST™ using pSOST™ sockets as the real-time
channel API, similar to the approach adopted by the Tenet group [12]. However, we would then be forced to
limit ourselves to uniprocessor configurations, with the accompanying process scheduling interference effects,
and the semantics and associated overheads of the socket API. More importantly, an expensive coordination
amongst the APs may be necessitated to determine the (node-wide) global transmission order. HARTOS
extends pSOST™ to operate in the multicomputer environment of HARTS. HARTOS provides a pSOSt™
device that reads/writes a command/response mailbox interface (HARTOS API) for services provided on
the NP, such as real-time communication and distributed name service. The HARTOS API is split between

pSOS+m HARTOS DEVICE DRIVER

HARTOS Protocol - Application Processor Interface

I I
Network Manager

(real-time channel)

Name Service

RPC Reliable Datagram
Clock
FRAG Synchronization
| |

HNET Protocol - Network Layer and Device Drivers

PHYSICAL LAYER

Figure 2: The z-kernel protocol stack in HARTOS.

the APs and the NP, with API stubs marshalling call parameters implemented on the AP and the interface
mailboxes implemented on the NP.

NP Kernel: The NP employs a derivative of the az-kernel [11] as the (communication) executive. Tt
employs a process-per-message model for protocol processing, in which a process or thread shepherds a
message through the protocol stack; this eliminates extraneous context switches encountered in the process-
per-protocol model [13]. A process-per-message model also allows protocol processing for each message to
be independently scheduled on the processor based on a variety of scheduling policies, as opposed to the
software-interrupt level processing in BSD 4.3 [14]; this improves the traffic insulation between different
real-time channels.

Figure 2 gives an overview of the z-kernel protocol stack implemented in HARTOS. The HARTOS
protocol interfaces with the HARTOS device driver on the APs to implement the HARTOS API. The Name
Service protocol provides facilities to register a name locally, and look up a name globally. Communication
protocols include standard support like remote procedure call (RPC), reliable datagrams and fragmentation.
The RPC and fragmentation protocols are modified versions of z-kernel’s CHAN and BLAST protocols,
respectively. Our implementation of the Clock Synchronization protocol uses Cristian’s probabilistic clock
synchronization algorithm [15], while the Network Manager protocol is the resource reservation protocol
for real-time channels; these two protocols together support real-time communication services. The HNET
protocol is an unreliable datagram service with addressing support for the underlying network. The HNET
layer includes device drivers for the communication devices in a HARTS node (for access to Ethernet or
CIM/CXT network or SPIDER-based network) and implements run-time packet scheduling for network
access.

2.3 Baseline System Measurements

Table 1 lists the baseline measurements on the NP, the VME bus, and the CIM. The memory bandwidth
was measured using the bcopy? operation, both within the NP and across the VME bus. The CIM has been
shown to deliver a maximum throughput of 6 MB/second only for very large (=% 3 MB) DMA transfers [16];
while the throughput we obtained for smaller packet sizes (< 16 KB) was similar to that obtained in [16],
we could only obtain a data transfer bandwidth of = 3 MB/second with 3 MB DMA transfers.

?beopy performs the transfer a word at a time, using programmed I/O. We designed the experiments carefully to minimize
cache effects and adjusted the measurements to account for call and loop overheads.

System Parameter Latency
context switching 20 ps
interrupt handling 28 ps
timer read (resolution) 22 (2) ps
NP PIO (4 KB bcopy) 350 ns per word
VME PIO (4 KB bcopy) 2040 ns per word
VME DMA (4 KB transfer - peak) | 100 ns per word
CIM DMA (2 KB transfer) 1250 ns per word
CIM DMA (4 KB transfer) 2250 ns per word

Table 1: Baseline system performance

3 Implementation of Real-Time Channels

In this section we describe the implementation of real-time channels in HARTOS. First, we describe the
application programming interface, next the required support for channel establishment, then the transfer of
data from the sending AP to the destination AP through the intermediate nodes. We discuss the optimiza-
tions applied to the transmission and reception paths through the z-kernel to minimize/eliminate data copies.
Finally, we present the implementation of the link scheduler that coordinates packet transmission/reception
and traffic enforcement at each node.

3.1 Real-Time Channel API

Applications create and use real-time channels through the real-time channel API, as shown in Table 2. The
receiving task of a real-time channel invokes rtc_init to create a local pSOST™ message queue for storing
incoming messages; the receiving task subsequently registers the queue in the name service so that the
sending task can locate it in order to create the real-time channel. The sending task establishes a real-time
channel by invoking rtc_create, specifying the traffic parameters for the message generation process and the
end-to-end delay bound desired on this channel. The traffic generation model is based on a linear bounded
arrival process [17,18], in which the arrival process has the following parameters: maximum message size
(Smar bytes), maximum message rate (Rpqr messages/second), and maximum burst size (Bp,qp messages).
In any time interval of length ¢, the number of messages generated may not exceed Bp,qp +1 - Rimar. Message
generation is bounded by the rate Rpqy, and its reciprocal, Iy, , is the minimum (logical) inter-generation
time between messages. The burst parameter B,,,; bounds the allowed short-term variation in message
generation, and partially determines the buffer space requirement of the real-time channel. Non-periodic
message generation can be represented in this model using an estimate of the worst-case inter-generation
time and the average rate of generation. To ensure that a real-time channel does not use more resources
than it reserved, this model defines the deadline guarantees by forcing a message inter-arrival time of L, .
This is achieved by defining the logical generation/arrival time, £(m), for a message m as:

f(mo) = to
Lm;) = maz{(l(m;-1)+ Imin), ti}.

where #; is the actual generation time of message m;. If d is the end-to-end delay bound for a channel, the
system guarantees delivery of message m; by £(m;) + d. The logical generation time, £(m), is the time m
would have arrived if the maximum message rate constraint was strictly obeyed.

The call to rtc_create returns a local channel identifier on successful creation of the real-time channel
and an error indication otherwise. Data transfer on an existing real-time channel i1s achieved by using the
rtc_send and rtc_recv calls. The task invoking rtc_send is blocked until the data has been transmitted into
the network; rtc_recv can be blocking or truly non-blocking. The sending task can tear down the real-time

Routines | Invoked By Function Performed

rtc_init receiving task | create local pSOST™ queue to receive messages

rtc_create | sending task create real-time channel with given parameters
to remote task (queue); return channel ID

rtc_send sending task send message on the specified real-time channel

rtc_recv receiving task | receive message from real-time message queue

rtc_close | sending task close specified real-time channel

Table 2: Routines constituting the real-time channel API

channel by invoking rtc_close with the local channel identifier; all the resources allocated to the channel
are released at this point. Our implementation splits the real-time channel API between the APs and the
NP; rtc_init and rtc_recv execute entirely on the AP running the receiving task while the rest of the calls
execute partly on the AP and partly on the NP. This allows serialization of channel establishment, data
transfer, and channel teardown on the NP, while allowing APs to exploit as much concurrency as possible.
The routines available for best-effort data transfer (not shown) include rdata send for transmission and
rdata recv for reception, with the same blocking semantics as rtc_send and rtc_recv, respectively.

3.2 Channel Establishment and Teardown

Upon receiving a request for a real-time channel, the network’s channel establishment procedure must reserve
adequate link bandwidth, buffer space, and protocol processing bandwidth from source to destination. This
involves selecting a suitable path between the sending and receiving nodes, checking if adequate network
resources are available on each node on the selected path, and reserving them along each such node. A
channel is considered established if the necessary resources have been reserved at each node in the selected
route, and the sum of link delays along the channel’s path is less than the application-specified end-to-end
delay bound.

Our implementation uses a distributed network manager comprising network manager protocols (NMPs)
running on each node in the network. The NMP provides channel management services to establish and
tear down real-time channels. Each NMP maintains only information about the real-time channels passing
through its node. Invocations of rtc_create transfer control to NMP, which must now determine if the
requested channel can be established or not. If so, NMP selects a route and reserves sufficient resources
along the route to accommodate the channel’s timing constraints. NMP uses the underlying RPC protocol
(see Figure 2) to implement channel management requests. The per-link data structures maintained by
the NMP on each node include a list of channels using the link and status information used in run-time
scheduling (see Section 3.4). Each channel in the list stores a unique network-wide channel identifier (a
<node_id, local_channel_id> tuple), traffic specification from the establishment request, the local link
delay bound, and the local buffer requirements.

Channel establishment occurs in two phases: the forward phase which propagates the establishment
request towards the destination, and the reverse phase which propagates the establishment reply back to
the source to commit or release resources at intermediate nodes. Figure 3 outlines the forward phase of
the channel establishment procedure. Given a particular source-destination route, channel establishment
is performed using a fixed-priority scheme (algorithm D_Order in [2]). We only consider static routes for
real-time channels since it is very difficult to provide any message-delivery delay guarantees for a channel
based on dynamic routing. Channel teardown is triggered by an rtc_close call. The NMP sends a teardown
request containing the channel identifier along the path of the channel. At each node along the path, all
reserved resources are freed and made available for other channels.

1. Select the next link along the source—destination route.

2. Use algorithm D_Order [2] to compute the worst-case delay at this link. Assign the channel the highest possible priority
that does not violate guarantees of existing channels. Also compute and reserve adequate buffer and processing resources.

3. Check if the link delay is less than the end-to-end delay. Reduce the end-to-end deadline by the link delay.
4. Relay the channel establishment request to the next node with the reduced deadline.

Figure 3: Channel establishment procedure — forward phase

3.3 Data Transfer

Once a real-time channel is successfully established, the application triggers data transfer on the channel
by sending a message using rtc_send. Data transfer occurs only from the source to sink since real-time
channels are unidirectional in nature. Moreover, the unreliable-datagram semantics of real-time channels
imply that data is transferred without retransmissions and acknowledgements. After the initial marshalling
of call parameters on the AP, control transfers to the NP which performs the protocol processing and
subsequent transmission of the packets belonging to this message. The transmitted packets are relayed by
each intermediate node into the network. Upon arrival at the destination node, the NP reconstructs the
message by reassembling the packets and deposits it into the appropriate receive queue on the destination
AP. The receiving task subsequently invokes rtc_recv to retrieve the message.

The HARTOS API on the NP initiates transmission protocol processing by firing up a protocol thread to
shepherd the message down the protocol stack to the network. The protocol thread is scheduled for execution
by the z-kernel thread scheduler and runs non-preemptively until completion of protocol processing. Protocol
processing of messages includes assignment of deadlines and encapsulation by the NMP, packetization by the
FRAG protocol, and network-level encapsulation by the HNET protocol. Each packet is then scheduled for
later transmission by the link scheduler. We have modified the message manipulation routines in z-kernel to
associate the original message deadline with each packet, enabling the link scheduler to correctly order the
transmission of packets into the network. The sending task is blocked until the data has been successfully
transmitted by the CIM. The transmission protocol thread exits after handing the last packet of the message
to the link scheduler; the AP unblocks the sending task when the NP indicates that the data has been
transmitted into the network.

Protocol processing is initiated by a protocol thread on the destination NP when the CIM announces
receipt of a packet. The received packet is shepherded upwards through the protocol stack by a protocol
thread after stripping the CIM header. All but the last packet of a message traverse up to the FRAG layer,
which strips the FRAG headers and queues the received packets for reassembly when the last packet arrives;
the thread shepherding the last packet continues non-preemptively through FRAG, NMP, and the HARTOS
API before delivering the message to the correct receive queue on the destination AP.

3.4 Run-Time Link Scheduler

Traffic management at each node involves run-time scheduling to order packet transmissions such that the
guarantees made to all established real-time channels passing through that node can be met. Traffic enforce-
ment is also a responsibility of run-time traffic management, which must take appropriate action when a
real-time channel violates its traffic specification. In general, the link scheduler must (a) maintain guarantees,
i.e., ensure all real-time packets to meet their deadline as long as they don’t violate their input specification,
(b) perform traffic policing, i.e., prevent channels that violate their traffic specifications from affecting the
performance of other well-behaved channels, and (¢) ensure fairness in the delay and throughput delivered
to best-effort traffic. The run-time link scheduler controls access to the outgoing link and determines the
order in which packets depart from the node. At the source NP the transmision protocol thread deposits the
packets of the outgoing message into link scheduler queues and exits, as explained earlier. At intermediate

nodes, the reception protocol thread relays the incoming packet to the link scheduler at the HNET layer3.
At destination nodes received packets bypass the link scheduler completely.

The link scheduler 1s implemented as a special scheduler thread that is created at system startup and
runs at the highest possible priority in the z-kernel; each link has its own scheduler thread. The link
scheduler must be invoked in two situations: (i) new packets are deposited into the scheduler queues, and
(ii) packets that had arrived early are now current. Situation (i) is handled by controlling the execution
of each scheduler with a scheduler semaphore; protocol threads depositing new packets in the scheduler
queues perform a V operation on this (counting) semaphore to trigger the execution of the scheduler. Since
it has the highest priority, the scheduler runs as soon as the currently executing protocol thread either
completes execution or blocks. Situation (ii) is handled by registering an event with the z-kernel to wake up
the scheduler at the correct time.

The link scheduler maintains three queues, namely, Queue 1, Queue 2, and Queue 3, in which outbound
packets are inserted by protocol threads [2]. Queue 1 contains current real-time packets (whose logical arrival
time is less than the current clock time), while Queue 3 contains real-time packets which have arrived early,
either because of bursty message generation or because they encountered smaller delays at upstream nodes.
Packets in Queue 3 are transfered to Queue 1 as they become current. Best-effort packets are inserted in
Queue 2; the scheduling algorithm improves best-effort performance by giving Queue 2 priority over Queue 3.
Protocol threads delivering real-time packets to the scheduler insert the packets into Queue 1 if they are
current and signal the scheduler before exiting. If the packets are early, they are inserted into Queue 3 and
an event is registered with the z-kernel to signal the scheduler when the packet at the head of Queue 3
is eligible for transmission; not signaling the scheduler immediately saves unnecessary context switches.
Protocol threads delivering best-effort traffic simply deposit the packets into Queue 2 before signalling the
scheduler. The scheduler semaphore’s count is incremented by one each time a packet is inserted into the
scheduler queues. Queue 1 and Queue 3 are implemented as priority heaps, with Queue 1 ordered by packet
link deadlines and Queue 3 ordered by the logical arrival time. Queue 2, on the other hand, is implemented
as a FIFO queue so that best-effort packets are transmitted in order of their arrival. Packets violating
traffic specifications can be buffered at the source node (effectively delaying them), or forwarded with their
deadlines relaxed so they will be buffered longer at downstream nodes, or simply dropped.

On waking up, the scheduler blocks on its associated semaphore pending further packet insertions. If it
has packets to transmit, it continues execution and does a P operation on the link’s write semaphore to obtain
access to the link and initiate packet transmission. The write semaphore is a counting semaphore associated
with each link and limits the number of outstanding packet transmissions; it is initialized to 2 as concluded
in Section 4.1. The scheduler blocks again if there are two outstanding packets awaiting transmission on
the CIM. Once it obtains access to the link, the scheduler first examines Queue 3 and transfers all packets
that have become current to Queue 1. It transmits the packet at the head of Queue 1 if it 1s non-empty;
else, 1t transmits the packet at the head of Queue 2. If Queue 1 and Queue 2 are both empty, and the packet
at the head of Queue 3 has a logical arrival time beyond the link horizon, the scheduler releases the link’s
write semaphore and registers an event with the z-kernel indicating that it be woken up when the head of
Queue 3 is eligible for transmission.

4 Influence of Network Adapter Characteristics

Transmission /reception performance is significantly affected by the design features and interface characteris-
tics of the network adapter. The characteristics of the interface exported by the adapter directly determine
the efficiency and flexibility with which data transfer to/from the network can be initiated and coordi-
nated; interface characteristics therefore have significant impact on supporting real-time communication.
An adapter’s interface characteristics are determined partially by design features such as support for DM A
and provision of large on-board memory. Using the CIM as an example, we discuss the effect of network

3Since we have a multicomputer platform, each node must also handle traffic passing through it. In general, though,
intermediate traffic would be handled by network gateways and/or switches.

adapter design features and interface characteristics on data transfer performance, medium access latency,
and packet handling on reception. Based on these insights, we highlight the desirable design features (hence
provided in SPIDER) to support real-time communication.

4.1 CIM Performance Characteristics and Implications

We performed several experiments using the CIM to determine its performance characteristics, namely, the
factors that affected data throughput and medium access latency (latency to access and use the network link).
Packet size for transmission/reception and the number of outstanding packet transmissions (referred to as
the pipeline depth) are two factors that significantly affect the performance of the CIM. In the experiments
performed, a test application running directly above the HNET layer on one NP sends over 12,000 packets
through the CIM to a peer application on another NP as fast as possible, while limiting the number of
outstanding packet transmissions; the experiment is repeated for different packet sizes. Figure 4(a) plots
the achieved throughput, and Figure 4(b) plots the medium access latency, as a function of packet size and
pipeline depth. The medium access latency measures the time between initiation of packet transmission by
the application to the completion of transmission.

With a single outstanding packet transmission (a pipeline depth of 1), throughput increases almost
linearly with packet size. For a pipeline depth of 2, the throughput is always higher than before but starts
to saturate beyond a packet size of 2K bytes. Pipeline depths of more than 2 do not provide any further
increase in throughput; instead, the saturation in throughput is more severe than before. These results
can be explained by considering the characteristics of the interface exported by the CIM. The interface
between the NP and the CIM is in the form of a command/response FIFO; packet transmission/reception
involves a complex, non-atomic sequence of five or more commands and responses. In the interrupt mode of
operation, each command from the NP generates an interrupt on the CIM while each response from the CIM
generates an interrupt on the NP. The handshake overhead of setting up transmission/reception therefore
degrades performance, resulting in poor utilization of the link when the pipeline depth is 1. When two packet
transmissions are pipelined, the commands/responses corresponding to different packets can be interleaved
and overlapped, achieving higher utilization of the link. Beyond a pipeline depth of 2, though, queueing
delays inside the CIM begin to dominate, eliminating any gains in throughput. For larger packets, the time
to DMA the packets to the CIM begins to dominate and hence the throughput diminishes, ultimately being
limited completely by the CIM’s DMA transfer bandwidth. Moreover, the transmission time also increases
with packet size. Note that the CIM achieves a rather low utilization of the available DM A bandwidth on
the VME bus (see Table 1 in Section 2.3)%.

Referring to Figure 4, the medium access latency using the CIM remains roughly constant for packet
sizes up to 2 KB; for larger packets the DMA overhead and the transmission time both increase, increasing
the medium access latency rapidly beyond a packet size of 4 KB. The latency increases monotonically with
pipeline depth since packets awaiting transmission experience higher queueing delays in the CIM. To further
understand the behavior of the CIM, we traced all the command/response interactions between the NP
and the CIM and measured the individual components of the medium access latency. The results (not
shown here) confirmed the trends observed in Figure 4 but also revealed substantial unpredictability in the
medium access latency. More specifically, the delay between initiating a DMA on the CIM and getting
the transmission-complete interrupt becomes highly unpredictable for packet sizes larger than 4 KB and
pipeline depths larger than 2. Both these effects are a direct consequence of FIFO queueing inside the
CIM; once a packet’s transfer to CIM memory has been initiated, its transmission cannot be preempted
or “stalled” to allow a more urgent packet to go through. If the adapter decouples packet transfer to the
adapter memory from transmission into the network, the NP can exercise fine-grain control over the order
of packet transmissions; this also helps bound the medium access latency.

An unrestricted pipeline could introduce unacceptable delay jitter by introducing traffic-dependent vari-
ations in medium access latency. Since real-time communication necessitates low, predictable medium access

4In all fairness to the manufacturer, we have learnt that the new version of the adapter has addressed some of these design
weaknesses.

24000

2 !
2 - g
Lo0a8 1~ pipeline = 1 P S
§ 0---0 p@pel?ne =2 y - - 21000 1
10241 -~ pipeline = 3 s : 1 g pipeline = 1 !
g --=+ pipeline = 4 /ff E - -1 pipeline = 2 1
= 5121 pipeline =5 - 1 218000 —-=" pipeline =3 e
- - - pipeline =6 // .] - pipeline = 4 |
2561 s — & ineline = I
ﬁ/ s p!pel!ne =5)
) 15000 - - pipeline =6 [
1281 b !
= & L
641~ e B 12000 L
F Sidd

- N / /]
% 9000 ST,
/

6000 +—

a4]

3000 +—
2 -

| | | | | | | | | | | | | | | | | | | |
0
16 32 64 128 256 512 1024 2048 4096 8192 16384 16 32 64 256 512 1024 2048 4096 8192 16384

packet length (bytes) packet length (bytes)

(a) Throughput (b) Medium access latency

Figure 4: Performance of Ancor CIM 250 network adapter

latency, the pipeline depth and packet size on the CIM must be limited for real-time traffic as well as best-
effort traffic. For example, an upper bound on pipeline depth is essential for jitter-sensitive applications like
clock synchronization [15] and real-time audio/video. Since the CIM does not distinguish best-effort traffic
from real-time traffic, the same pipeline depth and packet size must be used for both. In order to achieve the
highest possible throughput while keeping the medium access latency under reasonable bounds, we chose to
fix the pipeline depth at 2 and packet size at 2 KB; this provides good performance for a mix of real-time
and best-effort traffic.

4.2 Desirable Adapter Features

Several aspects of adapter design affect performance on packet reception. The received packet could be
in error (as indicated by the CIM) or it may have violated its deadline. Deadline violations could occur
under high communication load in statistical real-time channels employing resource overbooking to improve
utilization. Similarly, the received packet may have to be dropped because of potential buffer overflow.
The network adapter can facilitate intelligent packet handling by allowing the NP to inspect packet headers
efficiently and manage on-board packet buffers. For example, limited lookahead could be used to receive
the packets in order of importance (real-time over best-effort, shortest deadline first, etc.). The provision
of large on-board memory on the CIM and the ability to consume packets in a non-FIFO order determined
by the NP allows less-urgent inbound data to be temporarily staged on the NP while it consumes more
urgent data. Under deadline and/or buffer space violations, the NP may choose to drop the received packet.
However, a policy to discard packets cannot be implemented without consuming additional host resources if
the network adapter does not facilitate selective reception of packets and/or efficient reuse of its on-board
memory. By forcing the NP to consume each received packet, even if it will be dropped later, the CIM
design does not facilitate optimizations in which packets can be dropped on the adapter without wasting
bus bandwidth and processing resources in the host. Additionally, since the NP processes packet headers
while data can move directly to the destination devices, efficient examination of packet headers can improve
packet reception performance. With the CIM the only way the NP can examine packet headers without
consuming the packet is by reading a sufficiently large number of bytes at the beginning of the packet and
carefully handling any data bytes read; this incurs substantial overhead, both in reading the header bytes
correctly and setting up the data transfer to the destination device.

Accordingly, the adapter features we consider desirable for real-time communication on bus-based mul-

10

tiprocessor (and uniprocessor) hosts include:

e support for efficient network data transfer through a symmetric location within the host with respect to
the sources/sinks of data, simplified device interface, provision of large on-board memory to temporarily
stage inbound/outbound data, and support for transferring data via DMA to/from the processors and
other sources/sinks,

o full access to adapter memory for intelligent buffer allocation to inbound/outbound data, efficient
header inspection, and selective packet discard,

e enhanced predictability through bounded medium access latency and insulation between real-time and
best-effort traffic, and

e enhanced preemptability by decoupling data transfer to the adapter from the initiation of transmission.

We elaborate on these features using our design of SPIDER as a network adapter for real-time communication®.
SPIDER is also a VME bus-based design, has reasonably large and fast on-board memory (1 MB SRAM),
and provides DMA capabilities for moving data directly to/from SPIDER and other VME devices. Other
SPIDER features are discussed below.

Flexible buffer management: SPIDER’s on-board memory is directly accessible to the NP and is managed
as per the NP’s buffer management policies. SPIDER views its memory as a collection of memory pages
which are allocated on a per-packet basis by NP; the NP specifies the pages to use for transmission and
reception using page tags. On transmission these pages are filled with outgoing data from the source AP (or
device) via DMA before the corresponding packet is scheduled for transmission; on reception packet data
in the allocated pages is transferred to the destination AP (or device) via DMA, if the packet is accepted.
Two page sizes are supported for data transfer: 256-byte pages for headers and short packets, and 1K-byte
pages for long packets. The NP allocates contiguous pages to a packet’s data; this facilitates DMA transfer
of packet data in large chunks and improves the utilization of VME bus bandwidth.

Efficient header inspection and (selective) packet discard: Packet headers, which are placed on separate
256-byte pages, can be examined independently by the NP since it manages all SPIDER pages and has full
access to SPIDER’s memory. The ability to examine packet headers facilitates reception path optimizations
by allowing the NP to make intelligent decisions about the data before the data actually consumes transfer
bandwidth within the node. Since SPIDER’s on-board CRC unit flags errors on a per-packet basis, the NP
can defer handling of such invalid packets until a convenient time or drop the packet right away without
using any additional host resources; the buffer space thus freed can be reclaimed by simply reusing the
corresponding pages.

Intelligent handling of in-transit traffic: Since SPIDER integrates all the links at the node on a single board,
intermediate node traffic can be received and buffered in on-board pages, while the NP examines the headers
and schedules the packets for later transmission. Thus, intermediate node traffic need not consume any host
resources other than processing bandwidth on the NP. Note that, since the required header modifications
are typically minor, the NP can examine and modify header pages for in-transit traffic directly in SPIDER
memory; this avoids the movement of header pages between the NP and SPIDER across the VME bus and
eliminates expensive interrupt handling. Since it manages SPIDER’s memory, the NP can allocate buffers
to real-time channels intelligently by exploiting the access cost differential between buffers in NP memory
and those in SPIDER memory.

Simplified device interface: SPIDER exports a simpler control interface to the NP, reducing device handshake
overhead. Transmission and reception involves a minimum of two interrupts each (if operating SPIDER in
the interrupt mode), one indicating completion of DMA transfers and another indicating completion of
packet transmission or reception. The device can be programmed to generate additional per-page interrupts
or mask interrupts selectively in order to reduce the number of interrupts generated. No interrupts are
generated in the polled mode; in this mode the NP periodically examines status information in SPIDER.

5The design is in the final stages of development and we expect to fabricate the board in the near future.

11

Bounded medium access latency: To minimize the interference between real-time and best-effort traffic,
SPIDER provides virtual channels to partition the network into virtual networks, one for real-time and one for
best-effort; arbitration between these virtual channels on each link ensures fairness. Different considerations
can be applied to real-time traffic (delay-sensitive) and best-effort traffic (throughput-sensitive) to determine
the optimum packet size (and SPIDER’s page size) for each. In order to achieve low, predictable medium
access latency, the NP must exercise a finer grain of control over link access. This is achieved through
the provision of a “preemption point” during data transfer by breaking the coupling between the transfer
of data to SPIDER memory and the actual initiation of transmission by the NP. The NP can “schedule”
data transfers to/from SPIDER memory while maintaining a distinct schedule for packet transmissions
and receptions. Within SPIDER, the medium access latency per virtual channel (and hence per link) is
bounded; each virtual channel (link) is serviced within a certain worst-case time independent of the number
of contending virtual channels (links). To reduce the medium access latency further and make it more
predictable, FIFO queueing inside SPIDER 1is limited to a depth of six pages for each virtual channel.

5 Overheads of Protocol Processing

The overheads involved in protocol processing on the NP significantly impact the implementation of real-
time channels and the ability to support real-time communication in general. We consider two components
of these overheads: the intervening copies of data as it moves to/from the network and the execution of
protocols that shepherd data between the application and the network.

5.1 Data-Transfer Optimizations

The need to improve the delivered application-level throughput, especially in high-speed networking environ-
ments, has made transmission /reception path optimizations indispensable; these optimizations have received
significant attention in recent years [19-22]. The primary focus of these efforts has been to eliminate unnec-
essary copies of data as it moves between the application’s address space and the network through the OS
kernel. The unreliable nature of data transfer on real-time channels obviates the need for error detection
(checksumming) and recovery (retransmissions) mechanisms, making it possible to avoid unnecessary data
copying. In order to optimize data transfer on real-time channels, however, we must consider other aspects
besides improving the throughput delivered on each real-time channel. Since several real-time channels may
be active at a given time, the data transfer during transmission should be optimized such that (a) node bus
bandwidth is consumed as late as possible on the transmission path and only when absolutely necessary,
and (b) node bus bandwidth is consumed by outgoing packets in an interleaved fashion, in the order of
packet deadlines, as determined by the link scheduler’s transmission order. Thus, it is essential to optimize
data transfer, not just to minimize the incurred overhead for each real-time channel, but also to control the
interference amongst different real-time channels.

Copying the AP-resident data to the NP across the HARTOS API for protocol processing and subsequent
transmission results in FIFO consumption of bus bandwidth, overhead due to an extra copy, and reduced
bandwidth for other processors contending for the bus. This degrades the performance of a given real-time
channel and introduces interference between real-time channels. The extra copy can be avoided by moving
the entire data directly to the CIM, but this cannot be done before protocol processing and fragmentation
into packets. Besides, this approach still suffers from FIFO consumption of bus and adapter/link resources.
The absence of priority-based arbitration on the VME bus necessitates alternative mechanisms to ensure
that bus bandwidth is consumed in the global transmission order determined by the link scheduler. We
achieve this by having the protocol stack maintain remote references to the data being transmitted; data
transfer to the CIM via DMA is initiated in the device driver using these remote references. Since the link
scheduler determines the order in which packets are transmitted, data moves directly from the APs or other
devices to the CIM without any intervening data copies and in the global transmission order of the link
scheduler. Data transfer is thus decoupled from the associated control, which occurs between the AP and

12

NP through the HARTOS API on the one hand, and between the NP and the CIM on the other.

Note that, while we assume application data to be resident in physically-contiguous buffers on APs
or other VME bus devices, our optimization approach is applicable in general. The reception path can be
optimized similarly to move received data directly from the CIM to the appropriate AP or VME bus device via
DMA. Our implementation currently does not optimize the reception path, and there is an intervening copy
of data into the NP. Section 8 briefly highlights the ongoing effort to implement reception path optimizations
and support scatter-gather transfer of data.

5.2 Software Overheads and Protocol Thread Scheduling

With no data movement costs incurred during protocol processing on the NP, the overheads of fragmentation
by FRAG, encapsulation by HNET, and processing by the link scheduler and CIM device driver become
important. The fragmentation (and reassembly) overhead is incurred only at the source and destination
nodes while the HNET, scheduler and CIM driver overheads are incurred at all the nodes along the route.
For a given fragmentation size and with no data copy, the software overheads are directly proportional to
the number of fragments and are therefore higher for larger messages. With several real-time channels and
best-effort traffic competing for NP’s processing bandwidth, scheduling of protocol processing to consistently
maintain QoS guarantees is critical.

5.2.1 Fragmentation and Link Scheduling Overheads

Figure 5 plots the latency of protocol processing and link scheduling as a function of message size with a
null device, i.e., without the CIM. A test application running directly above the FRAG or HNET layer (as
applicable) on one NP sends a total of over 12,000 packets down the protocol stack, under limitation of the
pipeline depth. The pipeline depth is fixed at 2 and only transmission-side overheads are presented; the
fragment size for fragmentation is 2 KB.

With no fragmentation, the throughput and latency are independent of message size since no data is
copied within the protocol stack; in this case the message is processed as a single packet. The per-packet
processing time of the HNET layer, including insertion in the scheduler queues, is & 100us (curve labeled
without scheduler (no frag)). With the scheduler and CIM driver in the path, the per-packet processing
time increases to = 250us (curve labeled with scheduler (no frag)). Of the additional overhead of 150us,
about 60us is attributed to instruction cache misses due to context switching to the scheduler; the instructions
comprising the test application’s send loop remain in the cache when the scheduler i1s not invoked. The
actual penalty incurred during protocol processing will be lower since the (instruction) cache will improve
performance when processing multiple fragments between invocations of the scheduler. Since the scheduler
will always run immediately after the currently executing protocol thread, some cache misses will surely
occur if and when the thread resumes execution. The remaining difference is attributed to two context
switches, one timer read and the processing of packet queues by the scheduler, and transmit processing in
the CIM driver, including traversal of z-kernel’s message structure to correctly set up commands to the CIM.
Note that no transmission actually occurs on the CIM. The latency measured with the scheduler and driver
roughly corresponds to the processing overhead of an outbound packet at an intermediate node, once it has
been transferred to NP memory via DMA, and the corresponding protocol thread scheduled for execution;
this information can be used in the delay computation during channel establishment.

With FRAG included in the transmission path (curve labeled without scheduler (frag)), the latency
remains constant up to a message size of 2 KB since the fragment size is 2 KB and data is not copied within
the protocol stack. The FRAG protocol provides a fast path for short (1-fragment) messages and a separate,
relatively slow path for multi-fragment messages. A 4 KB message triggers fragmentation, resulting in a
significant jump in latency. The extra cost of traversing the slow path (& 400us) dominates the incremental
cost of generating additional fragments (& 90us); this explains the sudden drop and subsequent slow climb
in throughput. Performance again degrades with the scheduler in the transmission path (curve labeled

13

without scheduler (frag)
with scheduler (frag)
without scheduler (no frag)
with scheduler (no frag)

Latency (milliseconds)
&

S
L L L L L L L L

Ny

o
~
T

I i 1 T I i
64 128 256 512 1024 2048 4096 8192 16384
message length (bytes)

,4
5
o
8

Figure 5: Protocol processing performance with and without fragmentation (null device)

with scheduler (frag)), with a per-fragment scheduler processing overhead of & 200us. The degradation
increases with the number of fragments because of higher additional cost of fragmentation as well as an
increase in the processing done by the scheduler and the CIM driver.

5.2.2 Scheduling Protocol Threads

With several real-time channels and best-effort traffic active simultaneously, it is critical that protocol threads
be scheduled to consistently maintain QoS guarantees. The protocol-processing bandwidth must be con-
sumed in a global order consistent with the traffic parameters of the active channels. Straightforward FIFO
scheduling of protocol threads can introduce significant queueing delays, especially for large messages, as is
evident from Figure 5. Bursts of long messages on individual channels and sudden rise in activity on multiple
real-time channels only tend to exacerbate these delays. Early message arrivals due to bursts or violation
of traffic specification should be prevented from consuming processing bandwidth if the generated packets
would be dropped later in the link scheduler; this could be caused by insufficient packet buffer “slots,” where
the number of buffer slots available to a channel is determined by the maximum message size Sp,q, (and the
fragmentation size). The relative importance of protocol-processing overheads increases with reduction in
the medium access latency. The latency to obtain the CPU for protocol processing must be bounded while
utilizing the CPU as much as possible.

Our approach to protocol thread scheduling is based on slot occupancy-based control of thread state
(runnable or not), priority-based CPU allocation to runnable protocol threads, and preemption of executing
threads through voluntary release of the CPU. The main idea here is to allow a thread to compete for CPU
access only if the link scheduler can accommodate the packets generated by this thread, allocate the CPU
to the highest priority thread amongst the runnable threads, and define “safe” preemption points during
the execution of a protocol thread at which the CPU can be reallocated to a higher-priority thread. Safe
preemption points are points during protocol execution when preemption of the thread would not obstruct
the execution of other protocol threads and the thread can successfully resume execution at a later time.
The z-kernel uses a priority-based (thread) scheduler with 32 priority levels; the CPU is allocated to the
highest-priority runnable thread, while thread scheduling within a priority level is FIFO. We follow the
following policy for priority assignment to threads. The link scheduler thread is assigned the highest priority
for CPU access, while all protocol threads shepherding best-effort traffic are assigned the lowest priority.
Protocol threads shepherding real-time traffic are assigned the corresponding channel’s priority computed
during channel establishment, mapped to the remaining 30 priority levels in the z-kernel.

Since the link scheduler runs at the highest priority, it must relinquish the CPU for runnable protocol
threads from time to time. The write semaphore controlling access to the link ensures that the link scheduler
will be blocked after initiating the allowed number of packet transmissions (determined by the pipeline depth)
each time it is invoked. An executing protocol thread must relinquish the CPU if a higher-priority thread
becomes runnable or if the scheduler runs out of slots for this thread’s packets. Handing off the CPU to

14

740% L L L L 7 240 1 LI R R
g %
X - - o
<2048 1~ ——101 1K fragments 1 8
= —— 2K fragments 2 2101
'§71024 - —— 4K fragments £ o ——0 1K fragments
] g —— 2K fragments
£ s12f S 1801 —— 4K fragments
©
3
256 1
1501
1281
641 1201
321
9.01
161
81 — 6.01
4 -
301
21+ - —
1 | | | | | | | | | | 0.0 | | | | | |
16 32 64 128 256 512 1024 2048 4096 8192 16384 16 32 64 128 256 512 1024 2048 4096 8192 16384
message length (bytes) message length (bytes)
(a) Throughput (b) Latency

Figure 6: Protocol processing performance with fragmentation (with CIM)

a higher-priority thread is different from normal scheduling since the relinquishing thread must stay at the
head of its queue; this ensures that the CPU is allocated back to this thread once all the higher-priority
threads have relinquished the CPU. If the scheduler runs out of slots, the executing thread must block until
further notification of slot availability by the scheduler; when woken up the thread is inserted at the tail of the
ready queue at its corresponding priority level. The location and number of safe preemption points during
protocol processing can only be determined by exploring the tradeoff between the total amount of work
the thread will do (number of fragments and the per-fragment processing cost), the desired bound on CPU
access latency, and the overhead incurred due to thread preemption. Thread preemption overhead includes
the cost of additional context switches and cache misses, the cost of checking the need for preemption at
each preemption point, and the efficiency with which notification regarding slot availability can be exchanged
between the link scheduler and protocol threads. The exploration of these tradeoffs is a subject of ongoing
work.

5.3 End-to-End Performance

Figure 6 plots the end-to-end throughput ((a)) and latency ((b)) of message transfer between the NPs on two
nodes using the CIM, with fragmentation and link scheduling. Figure 6 can be directly compared to Figure 4
to study the effect of fragmentation and link scheduling on end-to-end performance. The effect of fragment
size (and hence the number of fragments/packets) is considered for different message sizes. For a given
fragment size, the achieved throughput remains roughly independent of message size once fragmentation has
set in. As the message size (and hence the number of fragments) increases, the latency to send the message
also increases due to higher processing and transmission delays, since each fragment has to be transmitted as
a separate packet. The incremental gain in throughput (or reduction in latency) reduces as the fragment size
increases from 1 KB to 2 KB, and from 2 KB to 4 KB. With larger fragments, a smaller number of fragments
need to be created and transmitted, reducing fragmentation and transmission overhead and increasing the
throughput. However, as fragments become larger, the transmission throughput is increasingly dominated
by the DMA bandwidth available to transfer the data to/from the CIM. Comparing Figure 4 and Figure 6,
for large messages (16 KB) fragmentation using 4 KB fragments reduces the achieved throughput from =
2.7 MB/second to ~ 1.2 MB/second.

15

6 Effectiveness of Link Access Scheduling

In this section we evaluate the effectiveness with which the link scheduler insulates real-time traffic from best-
effort traffic, and prevents ill-behaved channels (which violate their traffic specification) from affecting the
delay guarantees made to well-behaved channels. The experiments evaluate the effect of traffic load (real-
time and best-effort) on packet and message latencies, slot occupancy (queueing delays), and packet loss
rate. The performance of best-effort traffic is measured by message latency and throughput, while that for
real-time traffic is determined by whether or not all messages complete transmission by their deadlines. The
deadlines and latencies of real-time traffic are measured with respect to the logical arrival times of messages.
For best-effort traffic, latencies are measured with respect to actual arrival time. The slot occupancy (or
queueing delay) measures the actual time that an outgoing packet occupied a packet slot (equivalent to a

buffer) in the link scheduler.

6.1 Outline of Experiments

For the experiments the communication traffic is generated by four sources: a bursty best-effort “channel”, a
bursty real-time channel, and two periodic real-time channels. The tasks generating real-time traffic execute
on one AP, while the task generating best-effort traffic runs on a different AP. On the NP protocol processing
for real-time traffic was performed at a higher priority than that of best-effort traffic. This ensures that
under high best-effort load conditions real-time traffic gets sufficient protocol processing bandwidth. Besides
keeping the experiments simple, this set up also helps appreciate the need for CPU scheduling mechanisms
discussed in Section 5.2. Note that, since all real-time channels are given the same protocol processing
priority, bursty or misbehaving channels are expected to interfere with other well-behaved channels. Each
real-time channel generates 80 packets per second; the load generated by the best-effort source is varied from
80 to 480 packets per second (pps) in steps of 80. All the experiments were performed with a packet size of 2
KB and a pipeline depth of 2, while the message length was fixed at 8KB, i.e., messages consist of 4 packets.
The deadline for each real-time channel is set at 50 ms and the link horizon [2], which controls the degree
to which the scheduler is work-conserving, is set at 0 ms. Figure 6(a) shows that with a fragment size of 2
KB, the throughput for a single unconstrained source saturates at 1 MB/second, or 500 pps. Each traffic
source is allowed a maximum of 50 slots (packets) in the scheduler queues at any time. Packets overflowing
the scheduler queues are dropped; if a packet from any message is dropped, the remaining packets in the
message are dropped as well. However, packets already inserted in the scheduler queues do get transmitted.

6.2 Effects of best-effort traffic load on real-time traffic

Figure 7 shows the performance of well-behaved real-time channels under increasing best-effort load. Real-
time channels 1 and 3 carry periodic traffic while real-time channel 2 has a bursty source; each real-time
channel generates the same total amount of traffic. Channel 0 is best-effort with a bursty source which
increases its packet generation rate from 80 pps to 480 pps. Figure 7 (a) shows that the periodic and
bursty real-time channels have very similar average and worst-case performance that is independent of the
total offered load; all real-time messages are transmitted and no real-time packet is dropped. Best-effort
throughput increases with offered load until the system capacity is reached; subsequently, most additional
messages are dropped. Latencies also increased gradually with load, until the system reached saturation.
Figure 7 (b) shows how the behavior of bursty and periodic real-time sources differs. Messages from periodic
sources typically arrive near their logical arrival times, and are eligible for transmission soon after they
arrive. However, for the bursty real-time source on Channel 2) many messages arrive much earlier and are
not transmitted before their logical arrival times. This ensures that real-time traffic arriving early does not
adversely affect best-effort performance.

The experiment in Figure 8 is very similar to the previous one, except that a periodic real-time chan-
nel (Channel 3) generates traffic at twice its specified rate. While Figure 8 (a) looks almost identical to
Figure 7 (a), the excess packets on Channel 3 are dropped once the buffers available to Channel 3 are ex-

16

Dusssasaz | 1 T T f 1 T | — Dussasaz | 1 T T f 1 T | —
2 2

S —— _ BE channelO (average) S —— _ BE channelO (average)

916777216 1~ — $16777216 {— —
§ - - —_ BE channel 0 (worst) § - - —_ BE channel 0 (worst)

g 8388608 4— ——0 RT channel 1 (average) - g 8388608 4— ——0 RT channel 1 (average) -
E - - -0 RT channel 1 (worst) E - - -0 RT channel 1 (worst)

3 4194304 1— —— RT channel 2 (average) — 3 4194304 1— —— RT channel 2 (average) —
& - - - RT channel 2 (worst) & - - - RT channel 2 (worst)

& 2097152~ J— & 2097152~ J—

= RT channel 3 (average) N = RT channel 3 (average) N

- - -+ RT channel 3 (worst) - - -+ RT channel 3 (worst)
1048576 1— B 1048576 1— B

524288 1— —1 524288 1— —1

262144 +— —1 262144 +— —1

131072 - — 131072

65536 — — 65536 —

32768 — —1 32768 —

16384 1 e 16384 1 B

8192 — 8192 —

4096 I] ! ! !] ! !] 4096 I] ! ! ! ! ! !]
250 300 350 400 450 500 550 600 650 700 750 250 300 350 400 450 500 550 600 650 700 750

offered load (packets/sec) offered load (packets/sec)

(a) Message latency (b) Slot occupancy (queueing delay)
Figure 7: Well-behaved real-time channels with variable best-effort load

hausted. Note that, though real-time traffic is assigned a higher priority than best-effort traffic, increasing
the real-time load in this manner does not significantly affect the performance of best effort or real-time
traffic. In addition, the packets of Channel 3 that are delivered at all, are all delivered by their deadlines.
A comparison of Figure 8 (b) with Figure 7 (b) shows that queueing delays did not increase for best-effort
traffic, or the well-behaved channels; however, queueing delays shot up for Channel 3. Results of the same
experiment with a bursty misbehaving source are similar to the ones reported here.

6.3 Effects of burstiness and message size on delay guarantees

As seen from the results so far, bursty sources have a greater slot occupancy time (larger queueing delay)
than periodic sources. We repeated the experiments with message sizes from 4KB-32KB, while retaining
the same total loads. Since each slot in the scheduling queue corresponds to a packet, longer packet bursts
are obtained with bursts of longer messages. The probability of overflow in the scheduler queues increases
with an increase in the burstiness. Even though the average traffic generation rate did not exceed the traffic
specification, we observed some loss of real-time packets. The loss rate depended only on the behavior of
the bursty source and the effect of increase in total system load was minimal. However, since real-time
messages are processed at a higher priority, early real-time messages can use CPU bandwidth out of turn.
The high medium access latency with the CIM masks out some of this effect; however, the degradation will
be more pronounced with adapters providing relatively fast access to the network. The delay jitter reduces
with a reduction in the burstiness of the sources, highlighting the need for the CPU scheduling mechanisms
discussed in Section 5.2.

7 Related Work

While we have focused on design tradeoffs in implementing real-time channels, similar tradeoffs arise when
implementing real-time communication in general. Our implementation methodology is applicable to other
proposals for supporting guaranteed real-time communication in packet-switched networks. A detailed survey
of the proposed techniques can be found in [23]. The most notable proposals are Weighted Fair Queueing [24],
also known as Packet-by-Packet Generalized Processor Sharing [25], Stop-and-Go [26], Hierarchical Round-
Robin [27], and Rate-Controlled Static-Priority Queueing [28]. Proposals for predicted (or best-effort) real-
time communication include FIFO+ [29] and Hop-Laxity [30]. The Internet Engineering Task Force (TETF)

17

Dusssasaz | 1 T T f 1 T | — Dussasaz | 1 T T f 1 T | —
2 2

S —— _ BE channelO (average) S —— _ BE channelO (average)

916777216 1~ — $16777216 {— —
§ - - —_ BE channel 0 (worst) § - - —_ BE channel 0 (worst)

g 8388608 4— ——0 RT channel 1 (average) - g 8388608 4— ——0 RT channel 1 (average) -
E - - -0 RT channel 1 (worst) E - - -0 RT channel 1 (worst)

3 4194304 1— —— RT channel 2 (average) — 3 4194304 1— —— RT channel 2 (average) —
& - - - RT channel 2 (worst) & - - - RT channel 2 (worst)

& 2097152~ J— & 2097152~ J—

= RT channel 3 (average) N = RT channel 3 (average) N

- - -+ RT channel 3 (worst) -Z 27 RT chainek3.(worst). - - =~ - - S
1048576 1~ B 1048576 B

524288 1— —1 524288 1— —1

262144 +— —1 262144 +— —1

131072 P 1 131072

65536 1 7 - 65536 1
327681~ B 327681~

16384 1—

5 - 16384 1—

8192 — 8192 —

4096 I] ! ! !] ! !] 4096 I] ! ! ! ! ! !]
250 300 350 400 450 500 550 600 650 700 750 250 300 350 400 450 500 550 600 650 700 750

offered load (packets/sec) offered load (packets/sec)

(a) Message latency (b) Slot occupancy (queueing delay)
Figure 8: Ill-behaved real-time channels with variable best-effort load

is examining these issues in the context of providing integrated services on the Internet [31,32].

The Tenet real-time protocol suite [12] is an advanced implementation of real-time communication on
wide-area networks (WANs). This protocol suite comprises the RCAP channel administration protocol and
the RTMP/RTIP transport and network layer protocols, which implement unicast real-time channels in
UNIX®. The effectiveness of these protocols in providing and maintaining QoS guarantees has also been
demonstrated [33]. Since UNIX-based uniprocessor workstations is the implementation platform, the Tenet
approach uses the socket APT (hence incurring data copying costs) and does not consider issues arising in a
multiprocessor configuration. The problem of making protocol processing inside the host more predictable
is also not addressed. While their implementation uses standard network adapters, they do not consider the
impact of adapter characteristics on the ability to support real-time communication effectively.

Other protocols for resource reservation include the Session Reservation Protocol (SRP) and resource
ReSerVation Protocol (RSVP). The SRP [34] was proposed as a (compound) session establishment protocol
for TP networks as part of the DASH project [18,35]. Recently, the RSVP has been proposed for use in the
Internet [36]. While SRP is geared toward unicast sessions with performance guarantees, and is similar in
flavor to NMP, RSVP is geared more towards multi-point multiparty communication.

The issue of making protocol processing predictable within (uniprocessor) hosts has received attention
recently. The need for scheduling protocol processing at priority levels consistent with those of the commu-
nicating application was highlighted in [37] and some implementation strategies demonstrated in [38]. More
recently, processor capacity reserves in Real-Time Mach [39] have been combined with user-level protocol
processing [19] to make protocol processing inside hosts predictable [40]. Since we dedicate a processor for
communication processing, only protocol threads compete with each other for processing resources. We have
incorporated similar 1deas for priority-based protocol processing in our implementation to make per-channel
protocol processing more predictable.

8 Conclusion and Future Work

In this paper we have explored the design tradeoffs involved in supporting real-time communication on
bus-based multiprocessor hosts, which are increasingly being employed as multimedia servers and work-

6The Tenet group is currently developing Suite 2 of the protocols to support multi-party real-time communication.

18

stations. As the vehicle for this study, we implemented and evaluated real-time channels on the HARTS
experimentation platform.

Our main contributions are summarized as follows. We have presented a hardware and software archi-
tecture that features a dedicated protocol processor, a split-architecture for the application programming
interface used to access real-time communication services, and decoupling of data transfer and control in the
communication protocol stack. We have highlighted the implications of network adapter characteristics for
real-time communication; since most commercial network adapters have features similar to the one we stud-
ied, these implications are applicable in general. For adapter designs ill-suited for real-time communication,
we present techniques to handle undesirable features such as unrestricted FIFO queueing in order to bound
the medium access latency. After identifying desirable features of the network adapter, we have illustrated
how these features are realized in the custom network adapter being developed for the HARTS project. To
circumvent lack of hardware support for priority-based access to resources, we presented data transfer opti-
mizations, CPU and link scheduling mechanisms to limit interference between different real-time channels.
These techniques together ensure that shared host resources such as bus bandwidth, protocol processing
bandwidth, and link bandwidth are consumed in a global order determined by the traffic characteristics of
the active channels. Finally, we demonstrated the performance and effectiveness of our real-time channel
implementation through several experiments under varying traffic characteristics.

Besides exploring the tradeoffs involved in CPU scheduling of protocol threads, as identified in Sec-
tion 5.2, our future work focuses on data transfer optimizations on reception, using the CIM as well as
SPIDER. Optimizing the reception path requires modifications to link-layer headers and enhanced support
for buffer management on the APs and the NP. The necessary information in link-layer headers may in-
clude fragmentation size, message size, fragment number, and an identifier for efficient demultiplexing to the
receiving device or end point. Reception path optimizations are greatly facilitated by the use of a known,
fixed fragmentation size in the network and the alignment of data buffers on fragment boundaries; if the
fragmentation size is an integral multiple of 4-byte words, data buffers need only be word-aligned. In order
to deliver arriving data directly to the destination AP (or device), the NP must identify the destination
device and may need to manage buffers on behalf of the APs. Pre-registration of application buffers with
the NP and/or application buffer management by the NP may be required to DMA received data directly
from the CIM to the application’s address space. In this case, the remote references maintained by the
NP would correspond to logical addresses and must be translated into physical addresses for each received
packet. Finally, we are exploring the necessary support for scatter-gather transfer of data within the same
optimization framework.

References

[1] D. Ferrari and D. C. Verma, “A scheme for real-time channel establishment in wide-area networks,” IEEFE
Journal on Selected Areas in Communications, vol. SAC-8, no. 3, pp. 368-379, April 1990.

[2] D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-time communication in multihop networks,” IEEE Trans.
Parallel and Distributed Systems, vol. 5, no. 10, pp. 1044-1056, October 1994. An earlier version appeared in
the Proc. of the Int. Conf. on Distr. Comp. Sys., 1991.

[3] CXT 250 16 Port Switch Installer’s/User’s Manual, ANCOR Communications, Inc., 1993.
[4] VME CIM 250 Reference/User’s Manual, ANCOR Communications, Inc., 1992.

[5] K. G. Shin, “HARTS: A distributed real-time architecture,” IEEE Computer, vol. 24, no. 5, pp. 25-35, May
1991.

[6] Fibre Channel Physical and Signalling Interface (FC-PH), American National Standards Institute, rev. 3.0
edition, June 1992. Working draft.

[7] J. Dolter, S. Daniel, A. Mehra, J. Rexford, W. Feng, and K. Shin, “SPIDER: Flexible and efficient communication
support for point-to-point distributed systems,” in Proc. Int’l Conf. on Distributed Computing Systems, pp. 574—
580, June 1994.

[8] D. D. Kandlur, D. L. Kiskis, and K. G. Shin, “HARTOS: A distributed real-time operating system,” ACM
SIGOPS Operating Systems Review, vol. 23, no. 3, pp. 72-89, July 1989.

19

[9]
[10]
[11]

[12]

[13]

[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

32]

K. G. Shin, D. D. Kandlur, D. L. Kiskis, P. S. Dodd, H. A. Rosenberg, and A. Indiresan, “A distributed real-time
operating system,” IEFFE Software, pp. 58—68, September 1992.

pSOST /68K User’s Manual, Integrated Systems Inc., version 1.2 edition, September 1992. Document No.
KX68K-MAN.

N. C. Hutchinson and L. L. Peterson, “The a-Kernel: An architecture for implementing network protocols,”
IFEEE Trans. Software Engineering, vol. 17, no. 1, pp. 1-13, January 1991.

A. Banerjea, D. Ferrari, B. Mah, M. Moran, D. C. Verma, and H. Zhang, “The Tenet real-time protocol
suite: Design, implementation, and experiences,” Technical Report TR-94-059, International Computer Science
Institute, Berkeley, CA, November 1994.

D. C. Schmidt and T. Suda, “Transport system architecture services for high-performance communications
systems,” IFEFE Journal on Selected Areas in Communications, vol. 11, no. 4, pp. 489-506, May 1993.

S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman, The Design and Implementation of the
4.83BSD Uniz Operating System, Addison Wesley, May 1989.

F. Cristian, “Probabilistic clock synchronization,” Distributed Computing, vol. 4, no. 3, pp. 146-158, 1989.

M. Lin, J. Hsieh, D. H. C. Du, and J. A. MacDonald, “Performance of high-speed network I/O subsystems: Case
study of a fibre channel network,” Technical Report TR-94-25, Department of Computer Science, University of
Minnesota, 1994.

R. L. Cruz, A Calculus for Network Delay and a Note on Topologies of Interconnection Networks, PhD thesis,
University of Illinois at Urbana-Champaign, July 1987. available as technical report UILU-ENG-87-2246.

D. P. Anderson, S. Y. Tzou, R. Wahbe, R. Govindan, and M. Andrews, “Support for continuous media in the
DASH system,” in Proc. Int’l Conf. on Distributed Computing Systems, pp. 54—61, 1990.

C. Maeda and B. N. Bershad, “Protocol service decomposition for high-performance networking,” in Proc. ACM
Symp. on Operating Systems Principles, pp. 244-255, December 1993.

P. Druschel and L. L. Peterson, “Fbufs: A high-bandwidth cross-domain transfer facility,” in Proc. ACM Symp.
on Operating Systems Principles, pp. 189-202, December 1993.

P. Druschel, L. L. Peterson, and B. S. Davie, “Experiences with a high-speed network adaptor: A software
perspective,” in Proc. of ACM SIGCOMM, pp. 2-13, London, UK, October 1994.

A. Edwards, G. Watson, J. Lumley, D. Banks, C. Calamvokis, and C. Dalton, “User-space protocols deliver high
performance to applications on a low-cost Gb/s LAN,” in Proc. of ACM SIGCOMM, pp. 14-23, London, UK,
October 1994.

C. M. Aras, J. F. Kurose, D. S. Reeves, and H. Schulzrinne, “Real-time communication in packet-switched
networks,” Proceedings of the IEFE, vol. 82, no. 1, pp. 122-139, January 1994.

A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing algorthm,” Proc. of ACM
SIGCOMM, pp. 3-12, 1989.

A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow control in integrated services
networks — the single node case,” in IEEE INFOCOM, pp. 915-924, 1992.

S. J. Golestani, “A stop-and-go queueing framework for congestion management,” in Proc. SIGCOMM Sympo-
stum, pp. 8-18. ACM, September 1990.

C. R. Kalmanek, H. Kanakia, and S. Keshav, “Rate controlled servers for very high-speed networks,” in Proc.
GLOBECOM, December 1990.

H. Zhang and D. Ferrari, “Rate-controlled static-priority queueing,” in Proc. of IEEE INFOCOM, pp. 227-236,
June 1993.

D. D. Clark, S. Shenker, and L. Zhang, “Supporting real-time applications in an integrated services packet
network: Architecture and mechanism,” in Proc. of ACM SIGCOMM, pp. 14-26, 1992.

H. Schulzrinne, J. Kurose, and D. Towsley, “An evaluation of scheduling mechanisms for providing best-effort,
real-time communication in wide-area networks,” in IEEE INFOCOM, June 1994.

S. Shenker, D. D. Clark, and L. Zhang. A Service Model for an Integrated Services Internet. IETF working
draft, October 1993.

B. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture: an Overview. IETF
working draft, October 1993.

20

[33]

34]

[35]
[36]
[37]
[35]
[39]

[40]

A. Banerjea, E. W. Knightly, F. L. Templin, and H. Zhang, “Experiments with the Tenet real-time protocol
suite on the Sequoia 2000 wide area network,” in Proc. ACM Multimedia ’94, pp. 183-192, San Francisco, CA,
October 1994. Also Tech. Rept. TR-94-020, International Computer Science Institute, Berkeley, CA, April 1994.

D. P. Anderson, R. G. Herrtwich, and C. Schaefer, “SRP: A resource reservation protocol for guaranteed perfor-
mance communication in the internet,” Technical Report TR-90-006, International Computer Science Institute,
Berkeley, February 1990.

D. P. Anderson, “Metascheduling for continuous media,” ACM Trans. Computer Systems, vol. 11, no. 3, pp.
226-252, August 1993.

L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: A new resource ReSerVation Protocol,”
IFEE Network Magazine, pp. 8-18, September 1993.

D. P. Anderson, L. Delgrossi, and R. G. Herrtwich, “Structure and scheduling in real-time protocol implemen-
tations,” Technical Report TR-90-021, International Computer Science Institute, Berkeley, June 1990.

R. Govindan and D. P. Anderson, “Scheduling and [PC mechanisms for continuous media,” in Proc. ACM Symp.
on Operating Systems Principles, pp. 68—80, 1991.

C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves for multimedia operating systems,”
Computer Science Technical Report CMU-CS-93-157, Carnegie Mellon University, May 1993.

C. W. Mercer, J. Zelenka, and R. Rajkumar, “On predictable operating system protocol processing,” Technical
Report CMU-CS-94-165, Carnegie Mellon University, May 1994.

21

