Tailoring Routing and Switching Schemes to Application
Workloads in Multicomputer Networks

Wu-chang Feng, Jennifer Rexford, Stuart Daniel,
Ashish Mehra, and Kang Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122

Abstract

Achieving good overall performance in multicomputers requires matching application
communication characteristics with a suitable network design. In order to study the com-
plex interactions between router policies and communication workloads, we are building
SPIDER (Scalable Point-to-point Interface DrivER), an experimental router that imple-
ments various routing-switching combinations through microprogrammable routing engines.
By simulating a network of SPIDERs at the cycle level, we evaluate the performance of
several routing and switching schemes under a variety of traffic loads. These results show
that tuning network policies to application communication characteristics can significantly
improve multicomputer performance.

Keywords: Multicomputers, interconnection networks, routers, switching, routing

1 Introduction

Message-passing multicomputers have emerged as a cost-effective platform for exploiting con-
currency in a variety of applications. In these systems, fast message exchange enables efficient,
fine-grained cooperation between processing elements. Achieving good overall performance re-
quires matching application communication characteristics with a suitable network design. How-
ever, parallel applications impose a wide range of communication patterns on the underlying
interconnection network. Scientific computations [1,2], parallel databases, and real-time appli-
cations [3,4] generate distinct distributions for message lengths, interarrival times, and target
destination nodes.

Message lengths can vary depending on packetization policies as well as the type of com-
munication (e.g., data requests, data transfers, and acknowledgement messages), while message
interarrival times depend on task granularity and scheduling within the network. Finally, mes-
sage destination distributions depend on the mapping of communicating tasks across the nodes
in the network. This paper shows that tuning network policies to these diverse application char-
acteristics can significantly improve multicomputer performance. These network policies are
implemented in the router hardware that connects an individual processing node to the inter-
connection fabric and manages traffic flowing through the node en route to other destinations.

The work reported in this paper was supported in part by the National Science Foundation under Grant MIP-
9203895. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the view of the NSF.

It is difficult to design a router which performs well under all communication workloads. In
particular, these diverse communication patterns significantly impact the suitability of network
switching and routing schemes. The switching scheme affects communication performance by
determining what link and buffer resources a packet consumes at a given node in its route.
Traditional packet switching requires incoming packets to buffer completely before transmission
to a subsequent node can begin. In contrast, cut-through switching schemes, such as virtual cut-
through [5] and wormhole [6], try to forward an incoming packet directly to an idle output link.
If the outgoing link is busy, virtual cut-through switching buffers the packet, while a blocked
wormhole packet stalls pending access to the link.

The routing algorithm determines which links a packet traverses to reach its destination.
Oblivious routing generates a single, deterministic outgoing link for an incoming packet, whereas
adaptive schemes base the routing decision on prevailing network conditions. By considering
multiple outgoing links, adaptive algorithms can increase the likelihood of cut-through at inter-
mediate nodes and balance the traffic load in the network. These algorithms, however, may also
increase protocol processing overhead due to the possibility of out-of-order arrivals [7]. While
most oblivious routing algorithms generate only minimum-hop routes between the source and
destination nodes, some adaptive schemes consider nonminimal routes in the hope of circum-
venting network congestion or faulty links.

Given the unique characteristics of each routing and switching scheme, choosing different
schemes for each workload allows the network to accommodate diverse application characteris-
tics. Most existing routers, however, only support one routing-switching combination, limiting
the network’s ability to adapt to applications. This paper shows that flexible hardware support
for routing and switching enables multicomputer networks to effectively handle a variety of ap-
plications. In order to study the complex interactions between router polices and communication
workloads, we are building SPIDER (Scalable Point-to-point Interface DrivER), an experimen-
tal router that implements various routing-switching combinations through microprogrammable
routing engines [8]. Microprograms compute the routing-switching decision for each arriving
packet, depending on the packet’s header and prevailing network conditions.

The next section of the paper highlights application communication patterns and motivates
how flexible routing and switching can improve network performance. Section 3 describes SPI-
DER and discusses how it can tailor routing and switching schemes for a diverse set of parallel
applications. By simulating a network of SPIDERs at the cycle level, Section 4 evaluates the
performance of SPIDER. and the different routing-switching schemes under various application
workloads. Varying these low-level parameters required a flexible simulation environment for
evaluating multicomputer router designs [9]. Section 5 concludes the paper with a discussion of
future work on tailoring network policies to application characteristics.

2 Motivation

Parallel applications generate a wide range of communication workloads depending on the
application’s granularity and mapping across multiple nodes. Multi-user systems exacerbate
these effects since different applications may run simultaneously; these applications may execute
on different parts of the network or even time-share the same processing elements. Conse-
quently, communication characteristics such as message interarrival times, lengths, and target
destinations vary substantially on modern parallel machines, as discussed below.

Message/packet arrival: Earlier studies of multicomputer networks have typically modeled
message arrivals as a Poisson process, with exponentially-distributed interarrival times. This
assumption was made, in part, due to the analytical tractability of such models and the lack
of more realistic data. However, detailed measurements of multicomputer applications have
led to more sophisticated message generation models. In particular, these studies show that
applications typically generate bursty network traffic [1,2], due to multi-packet messages and
fine-grain handshaking between cooperating nodes. Similarly, multicast communication, for
barrier synchronization or global reduction operations, can spawn several copies of a single
message. These traffic models have significant impact on network evaluation, since Poissonian
arrival processes typically yield overly optimistic performance results.

Message/packet length: Message and packet lengths depend on several factors including
packet-size restrictions and the mixture of data and control messages. Although fixed-length
packets or exponentially-distributed lengths simplify analytic models, recent work shows that
real multicomputer applications typically generate bimodal packet-length distributions [1,2].
This occurs because inter-node communication often consists of large data transfers, coupled
with small request and acknowledgements packets. A router design can accommodate different
packet lengths by separating short and long packets onto different virtual channels [10,11]. As a
further optimization, the Segment Router Architecture [12] employs different switching schemes
based on packet length; long packets use wormhole switching to limit buffer-space requirements,
while short packets use virtual cut-through switching to reduce channel contention.

Message destination: Message destination distributions vary a great deal depending on the
network topology and the application’s mapping onto different processing elements. While many
analytical and simulation studies evaluate a uniform random distribution of destination nodes,
this pattern does not capture the communication locality or traffic non-uniformities that arise
in many applications. Hop-uniform traffic distributions can represent spheres of spatial local-
ity, but these still do not capture the communication structure of specific parallel algorithms
or applications. In particular, many scientific programs generate permutation patterns such as
matrix-transpose (dimension-reversal), bit-complement, and bit-reversal [13-16]. Other appli-
cation constructs, such as synchronization or multicast operations, may induce “hot-spots” of
heavily-utilized nodes and links [16-18]. Finally, dynamic models [1] can produce variation in
target destinations during the course of application execution.

3 SPIDER Architecture

With such diverse application characteristics, no single set of router policies performs best
under all conditions. SPIDER supports a broad spectrum of multicomputer applications through
flexible support for routing and switching. While this flexibility could be achieved through a
pure software router implementation, servicing multiple incoming and outgoing links entirely
in software would overwhelm a conventional processor. Instead, SPIDER implements software
control as close to the network as possible by dedicating a small custom routing engine to each
incoming link.

3.1 SPIDER Components

As shown in Figure 1, SPIDER manages bidirectional communication with up to four neigh-
boring nodes, with three virtual channels [19] on each unidirectional link. The programmable

Programmable Routing Controller

Routing
Engine

Buffer Memory Unit
Memory 4_»

-
(1 MByte) — NI RX =
[T
4\ (x3) <~
Memory Reservation
&] Status Unit
Time
Control Stamp
Interface Unit CRC
Control J/ Unit
| >
Tolfrom host (viaVME bus) — NI ';X ——
*3) I

Figure 1: SPIDER

routing controller (PRC), a 236-pin custom integrated circuit measuring 1.4 ¢m x 1.4 ¢m, is the
cornerstone of SPIDER [8,20]. The 12 PRC TXs control packet transmission, while the 4 mi-
croprogrammable routing engines coordinate packet reception. Each routing engine performs
low-level routing and switching operations for a single incoming link, with the three virtual
channels sharing the custom processor. The network interface (NI) performs the media access
and flow control on four pairs of AMD TAXI chips [21]; these TAXI transmitters and receivers
control the physical links, providing a low-cost fiber-optic communication fabric. The NI TXs
and NI RXs perform the necessary interleaving of virtual channels to and from the physical
links, on a word-by-word basis'.

SPIDER treats outbound virtual channels (NI TXs) as individually reservable resources,
allowing the device to support a variety of routing and switching schemes through flexible control
over channel allocation policies. The reservation status unit handles requests from arriving
packets to reserve or relinquish NI TXs, providing low-level support for both connection-oriented
and connectionless transfer on each virtual channel. An arriving packet can invoke a variety
of policies for selecting and reserving outbound channels. Upon receiving the header bytes
from the incoming channel, the routing engine decides whether to buffer, stall, forward, or drop
the packet, based on its microcode? and the packet’s routing header. A routing engine can
respond to network congestion by basing its routing decision on the reservation status of the
outgoing virtual channels. By reserving multiple NI TXs, the PRC can forward an incoming
packet to several output links simultaneously, allowing SPIDER to support efficient broadcast
and multicast algorithms.

The host controls channel reservations for any packet stored in the buffer memory by as-
signing the packet to a particular PRC TX. The host transmits a packet by feeding this PRC
TX with page tags that each include the address of an outgoing page and the number of words
on the page. Likewise, the host equips each NI RX with pointers to free pages in the memory,
for storing arriving packets. The control interface also provides read access to an event queue
that logs page-level activities on each channel. The host can influence a routing engine’s opera-

1To reduce the package size of the PRC, a pair of outgoing links shares a single set of pins; internally, the PRC
operates at 30 MHz, twice the link speed, to serve each outgoing link at its full rate.

2Each routing engine has a 256-instruction control store. Microprograms for typical routing-switching schemes
require about 60 to 70 instructions to implement.

tion at run time through notification FIFOs, addressable as part of SPIDER’s control interface.
These FIFOs provide bidirectional communication between a routing engine and the host. For
example, the host may wish to inform SPIDER about faulty links or memory usage at the local
node, so the routing engines can adapt their routing-switching decisions accordingly.

3.2 Basic Operation

To illustrate the interaction between the host, SPIDER, and the network, consider how a
message travels from the source node, cuts through an intermediate node, and arrives at the
destination node.

Transmission: When an application requests the host to transmit a message to another node,
the host disassembles the message into multiple packets, where a packet consists of one or more
(possibly non-contiguous) pages. Using the control interface, the host feeds page tags to the
appropriate PRC TX to initiate packet transmission. After reserving the NI TX, the PRC
TX fetches the 32-bit data words from each page. During this memory transfer, the PRC
transparently accumulates a 32-bit cyclic redundancy code (CRC) for error detection. After
sending the last data word of the packet, the PRC TX transmits a 32-bit timestamp, read from a
counter on the PRC, followed by the CRC; the timestamp values facilitate clock synchronization
and computation of end-to-end packet latencies. The NI TX transmits each of these words to
the TAXI transmitter a byte at a time; the TAXI device converts each byte into a string of bits
for transmission on the serial link.

Cut-through: Packet reception begins when data arrives at a TAXI receiver. The receiving NI
RX initially forwards data to its routing engine until it has accumulated enough header words
to make a routing decision for the packet. If the packet is destined for a subsequent node, the
routing engine can try to forward the packet directly to the next node by reserving an NI TX.
If the routing engine is able to establish a cut-through, the engine then sends the data it has
accumulated to that transmitter and configures the NI RX to forward subsequent data words
directly to the reserved NI TX, bypassing the routing engine entirely. When the packet has
cleared the node, the NI RX automatically reconfigures itself to forward the next packet header
to the routing engine.

Reception/Buffering: When SPIDER stores the packet at the local node, however, the routing
engine configures the NI RX to directly buffer the packet, reaccumulating the CRC as the data
words travel to the memory interface. SPIDER writes these words into pages in the buffer
memory and logs the arrival (and size) of each page in the PRC event queue. At the end of
the final page of the packet, SPIDER appends the packet with a receive timestamp and logs
a packet-arrival event indicating the outcome of the CRC check. If the packet has reached
its destination, the host reassembles the pages into a packet and the packets into a message.
Otherwise, the host schedules the packet for transmission to the subsequent node in its route.

3.3 Flexibility

SPIDER. enables a multicomputer network to tailor its routing-switching schemes to the
characteristics and requirements of parallel applications. Each routing engine includes an 8-
bit arithmetic logic unit (ALU) for manipulating routing headers. Packets can invoke different
routing and switching algorithms through conditional branches off packet header fields; this
provides more flexibility than a table-lookup scheme, since microprograms can parse a variety of

header formats. The routing engine can also base its routing-switching decisions on the incoming
virtual channel (NI RX) identifier, allowing SPIDER to implement different microprograms for
each virtual channel. This is useful for implementing deadlock-free wormhole routing algorithms
that differentiate between packets on different virtual channels [22].

In addition, SPIDER may partition traffic across different NI RXs with distinct network
policies. For example, time-constrained messages can use packet switching and static routing
for predictable performance, while best-effort packets improve their average latency through
cut-through switching and adaptive routing. Carrying these two types of traffic on different
virtual channels allows real-time communication to coexist with best-effort packets without
sacrificing the performance of either class [4,23]. Similarly, the router may separate short control

messages and long data packets onto different virtual channels, perhaps with different switching
policies [10-12].

SPIDER can also assign routing algorithms to improve end-to-end performance. Although
adaptive routing can reduce network latency, out-of-order packet arrivals can increase software
processing delays at the receiving node. Opportunities for adaptive routing depend on the net-
work topology and the distance a packet must travel to reach its destination. SPIDER can
balance the trade-off between network latency and depacketization overheads by implement-
ing adaptive routing only for single-packet messages or packets that must visit a large number
of intermediate nodes. For these messages, additional routing adaptivity may significantly re-
duce network latency, outweighing the cost of packet reordering. For messages traveling short
distances, SPIDER can impose static routing to eliminate out-of-order packet arrivals.

SPIDER’s flexibility allows multiple parallel applications to execute simultaneously, without
forcing all communication to adopt the same routing-switching policies. At run time, the system
may assign a new application to a set of processors and download the appropriate microcode
to the routing engines in each node. For example, one application may employ static wormhole
routing on a 4 X 4 submesh, while another application allocates a separate 6 X 8 submesh using
virtual cut-through switching with adaptive routing. Fach application may determine how to
allocate the virtual channels on each of its links, using the virtual channels to partition different
traffic classes or to add flexibility to deadlock-free routing algorithms. These options enhance
user control over the underlying interconnection network to improve application performance.

4 Performance Evaluation

SPIDER’s flexibility facilitates experimentation with different routing-switching schemes and
communication workloads. This enables comparisons between candidate router policies on a
common platform, in order to tune network parameters to application characteristics and per-
formance requirements.

4.1 PP-MESS-SIM

FEvaluating multicomputer network policies requires a flexible simulation environment. Im-
plemented in C++, pp-mess-sim (point-to-point message simulator) is an object-oriented discrete-
event simulation tool for evaluating multicomputer router architectures [9,20]. Besides provid-
ing a general framework for evaluating router architectures, pp-mess-sim includes a cycle-level
model of SPIDER. that captures the details of flow control, resource arbitration, and microcode

execution. Using a high-level specification language, the user can select the network topology,
internal router policies, and the traffic patterns generated by each node.

Communication patterns stem from a collection of independent “tasks,” each with its own

performance metrics and packet characteristics. These tasks are then mapped onto individual
nodes in the network to represent the communication behavior of concurrent applications. The
simulator derives packet lengths and interarrival times from a variety of stochastic processes;
similarly, tasks select packet destinations from various distributions to represent different ap-
plication constructs. The simulation environment includes all of the packet length, interarrival,
and target models discussed in Section 2. To evaluate a collection of routing-switching pairs,
pp-mess-sim associates each task with a particular routing algorithm and switching scheme on
a set of virtual channels. The simulator currently supports wormhole, virtual cut-through, and
packet switching, as well as hybrid schemes, each under a variety of routing algorithms.

4.2 Simulation Experiments

Although SPIDER supports a variety of network topologies and router policies, the simula-
tion studies focus on 64-byte packets traveling in an 8 x8 square mesh using minimal-path unicast
routing algorithms. Because other studies have shown how tailoring network policies to differ-
ent packet sizes can significantly improve application performance [10-12,24], our experiments
do not specifically address this issue. Instead, the simulations examine network performance as
routing, switching, network load, packet interarrival distributions, and destination node selection
vary.

The destination node patterns include uniform random traffic, as well as the matrix-transpose,
bit-complement, and bit-reversal permutations. In an 8 x 8 mesh, source node (¢, d) communi-
cates with destination node (d, ¢) for the matrix-transpose pattern and node (7 —¢, 7 —d) for the
bit-complement permutation. For the bit-reversal pattern, source node (¢, d) has identifier ¢+ 8d
and transmits to node j, where the binary representation of j is the reverse of ¢ + 8d. Although
these permutations alone do not capture the communication characteristics of all parallel appli-
cations, they allow the simulation experiments to evaluate routing and switching schemes under
a variety of different workloads.

Varying switching under static routing

In defining how packets flow through the network, the various switching schemes stress differ-
ent resources at intermediate nodes. Figure 2 shows average packet latency for wormhole, virtual
cut-through, and packet switching under two different traffic patterns. Packets employ static
dimension-ordered routing using one virtual channel on each physical link. As expected, vir-
tual cut-through switching consistently outperforms packet switching, since virtual cut-through
traffic often avoids buffering delay at intermediate nodes. At low loads, wormhole switching
performs extremely well for both communication patterns.

However, the relative performance of virtual cut-through and wormhole switching varies
significantly between Figure 2(a) and 2(b). Under the traditional uniform random traffic pat-
tern, the two switching schemes exhibit comparable performance at low loads, as shown in
Figure 2(a). However, network contention limits wormhole throughput at higher loads; similar
trends occurred for bit-complement traffic. By removing blocked packets from the network, vir-
tual cut-through and packet switching consume network bandwidth proportional to the offered

3000.0 — 3000.0
P?"Cket Switched G—=© Packet Switched
G—-H1 Virtual Cut-Through .
Wormhole G—-=8 Virtual Cut-Through
&——<> Wormhole
m m
Q Q
;é 2000.0 - B ;é 2000.0 - B
2y)
c c
Q Q
T T
- -
() ()
g g
S 1000.0 + 1 S 1000.0 + 1
> >
e e
0.0 L L L 0.0 - L L
0.0000 0.0005 0.0010 0.0015 0.00000 0.00020 0.00040 0.00060 0.00080
Applied load per node (packets/cycle) Applied load per node (packets/cycle)
(a) Uniform random traffic (b) Matrix transpose traffic

Figure 2: Comparison of switching schemes under dimension-ordered routing

load. In contrast, a blocked wormhole packet stalls in the network until its outgoing channel
becomes available; this stalled packet may then block other traffic destined for different output
links. At higher loads, this effect enables packet switching to outperform wormhole switching,
even though packet switching introduces buffering delay at each hop in a packet’s route.

Despite channel contention, wormhole switching excels for the matrix-transpose permutation,
as shown in Figure 2(b); similar trends occurred for bit-reversal traffic. This effect occurs because
matrix-transpose traffic, coupled with dimension-ordered routing, limits harmful contention be-
tween packets heading to different parts of the network. In a square mesh, the matrix-transpose
permutation requires node (¢, d) to communicate with node (d, ¢). With dimension-ordered rout-
ing, each packet starting on row d proceeds in the z-direction to node (d,d), before traveling in
the y-direction to reach the destination node. As a result, source nodes in row d inject packets
that use the same row and column links. Although a blocked wormhole packet may still restrict
other traffic from entering a node, this traffic must ultimately traverse the same links as the
stalled packet.

Buffering the blocked packet cannot alleviate this contention; in fact, virtual cut-through
switching achieves a slightly lower peak throughput than wormhole switching, due to bandwidth
limitations at the PRC memory interface. Neither wormhole nor virtual cut-through switching
performs best in all situations. Supporting both schemes enables SPIDER to tune its switching
policies to application characteristics and performance requirements.

Hybrid switching under static routing

Hybrid switching schemes attempt to balance the performance trade-offs between virtual
cut-through and wormhole switching by combining the salient features of both approaches.
Wormbhole switching can achieve low end-to-end latency, but stalled packets can block access
to network channels and reduce network throughput. Virtual cut-through switching alleviates

0.0020

G—-=8 Virtual Cut-Through G—-=8 Virtual Cut-Through
&——< Wormhole i A—A Hybrid
2000.0 F A—2A Hybrid] %
& @ 0.0015 1
Q
3 3
g g
) g
] 2 0.0010 - 1
© —
- [
@ 1000.0 - 1 2
® 54
5 o
= =
< 2 0.0005 [4
g
<
0.0 L L L L 0.0000 L L L
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Applied load per node (packets/cycle) Applied load per node (packets/cycle)
(a) Average latency (b) In-transit traffic load

Figure 3: Performance of hybrid switching for bit-complement traffic

this contention by buffering blocked packets, at the cost of consuming memory resources at
intermediate nodes. A hybrid switching scheme dynamically combines wormhole and virtual
cut-through switching, balancing the use of network and memory resources for “storing” blocked
packets [25].

Figure 3 shows the performance of a hybrid algorithm that prevents blocked packets from
stalling more than two virtual channels. The SPIDER routing engines implement this algorithm
by inspecting an additional packet header field, used to record the number of channel reservations
the packet holds. The algorithm changes from wormhole to virtual cut-through switching if the
packet has traveled two or more hops without buffering. Whenever a routing engine establishes
a cut-through for a packet, it increments the header field before forwarding the routing header
to the next node in the route; the field is reset to zero whenever the packet buffers at an
intermediate node.

As shown in Figure 3(a), selectively buffering blocked packets improves the achievable
throughput over wormhole switching for bit-complement traffic; these trends held for uniform
random traffic as well. Virtual cut-through switching achieves lower latency than both hybrid
and wormhole switching, at the expense of additional memory usage, as shown in Figure 3(b).
This graph plots the average packet memory demands for in-transit traffic under virtual cut-
through and hybrid switching; wormhole switching does not consume any packet buffers at
intermediate nodes. At high loads, virtual cut-through switching uses more than three times
more memory resources than the hybrid scheme, since the hybrid algorithm allows packets to
buffer at most once every three hops.

To further reduce memory requirements, SPIDER can also implement hybrid algorithms
that base switching decisions on buffer utilization. In particular, the routing engines could force
blocked packets to stall whenever the buffer memory is full, similar to the buffered wormhole
scheme implemented in IBM’s Vulcan switch [26]. The routing engines’ notification FIFOs, de-
scribed in Section 3, allow the host to inform SPIDER about memory availability. For additional
flexibility, the routing engines can base their switching decisions on both memory and channel

G—O VC Dimension Ordered 2000.0 - G—=© VC Dimension Ordered B
G—-H& VC MinPath E—=+ VC MinPath
[&—<VC MinPath Diagpnal 1 ©——< VC MinPath Diagonal
2000.0
m m
Q Q
9 [&]
g g
2y)
g 5
s & 10000 f]
- -
@ 1000.0 -])
o &
g &
z >
< z
0.0 | | | | | | 0.0 . .)
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0000 0.0004 0.0008 0.0012 0.0016
Applied load per node (packets/cycle) Applied load per node (packets/cycle)
(a) Bit-reversal traffic (b) Uniform random traffic

Figure 4: Comparison of virtual cut-through routing algorithms

utilization, reserving a portion of the buffer memory for blocked packets that hold multiple
virtual channels.

Varying routing under bit-reversal and uniform random traffic

Application workloads impact routing algorithm performance by determining the distribution
of traffic in the network. Tailoring the routing algorithm to specific communication patterns can
reduce packet latency and increase the achievable network throughput. Figure 4 shows average
packet latency for three different minimal-path routing algorithms using virtual cut-through
switching. As shown in Figure 4(a), the bit-reversal permutation generates non-uniform traffic
that limits the performance of static routing algorithms; some links remain completely idle,
while other links experience heavy traffic load.

The minimal-path adaptive algorithm tries to circumvent network congestion by considering
an alternate output link along a shortest path. This reduces packet latency and extends the
achievable throughput by balancing traffic load across the network links. The router can further
improve performance by favoring outgoing links that provide more future routing options [27].
The minimal diagonal algorithm in Figure 4(a) favors the z-direction whenever a packet has
fewer remaining hops in the y-direction, and vice versa; this aggressive approach increases the
number of two-choice nodes in a packet’s route, allowing traffic to avoid more congested nodes
and links.

Although diagonal routing reduces latency for bit-reversal traffic, Figure 4(b) suggests that
increased adaptivity does not always improve communication performance. Uniform random
traffic generates a balanced network load, so static routing algorithms typically perform fairly
well. In fact, dimension-ordered routing outperforms diagonal routing in Figure 4(b). In
dimension-ordered routing, a packet entering a node in one direction generally exits the node
traveling in the same direction; this reduces the likelihood that packets from different incoming

10

2000.0 - G—© WH Dimension Ordered 1 G—6 WH Dimension Ordered
G——¢ WH MinPath G—+& WH MinPath
2 g 20000 | :
[} [}
5 5
z [y
5 5
s 1000.0 - B T
| |
S S
g g 10000 | 1
[} [}
> >
I z
00 \ \ \ \ \ 00 \ \ \ \
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Applied load per node (packets/cycle) Applied load per node (packets/cycle)
(a) Poisson arrival process (b) Bursty arrival process

Figure 5: Comparison of wormhole routing algorithms under bit-complement traffic

links contend for the same output port [28].

In contrast, adaptive algorithms often allow packets to alternate dimensions, possibly block-
ing other arriving traffic [16]. Adaptively changing dimensions may also increase congestion in
the center of the mesh, as evidenced by the early saturation of the diagonal routing plot in
Figure 4(b). Homogeneous networks, such as wrapped meshes or tori, do not exhibit this effect.

Varying routing and arrival process under bit-complement traffic

Adaptive routing algorithms can improve network performance by making profitable rout-
ing decisions based on local information. However, these local decisions can increase network
congestion for some communication patterns, as shown in Figure 5. The graphs show average
latency for wormhole switching under both dimension-ordered and adaptive routing; virtual
cut-through experiments showed the same qualitative trends. The adaptive routing algorithm is
a fully-adaptive minimal routing scheme that requires two virtual channels per link to prevent
network deadlocks [29]; in these experiments, both routing algorithms employ a pair of virtual
channels to enable fair performance comparisons. The dimension-ordered routing algorithm uses
the extra virtual channel to reduce contention between packets traveling on the same link [16, 19].

In Figure 5(a), static routing consistently outperforms adaptive routing, especially at high
loads. In an 8 x 8 square mesh, the bit-complement permutation requires source node (¢, d) to
communicate with node (7 — ¢,7 — d). As a result, all packets must eventually cross both the
middle row and the middle column of the mesh to reach their destinations, irrespective of the
routing algorithm. Dimension-ordered routing tends to avoid the center of the network, where
the middle row and column meet, by exhausting the z-direction before routing a packet in the
y-direction. In contrast, adaptive algorithms may try to avoid the heavily-congested middle
column (or row) by routing packets to more lightly-loaded rows (or columns); this ultimately
pushes traffic closer to the congested center of the network, increasing end-to-end latency. A

11

local decision at one node causes a packet to travel a lightly-loaded link into a more congested
region.

In addition, extra routing flexibility allows source nodes to inject more packets, further in-
creasing contention at the middle of the network. Hence, in some situations, restricted routing
flexibility can effectively limit the overuse of network resources [30]. However, this effect varies
with the network load and the underlying traffic pattern, as shown in Figure 5(b). This experi-
ment considers bursty traffic, in contrast to the traditional Poissonian packet arrival process in
Figure 5(a). The source nodes generate bursty traffic using a two-stage normal distribution of
packet interarrivals [1]. Packet interarrivals stem from two independent normal distributions,
with different means; sources randomly select 80% of interarrivals from the distribution with
the small mean.

In Figure 5(b), the applied traffic load (z-axis) changes by varying the large mean, keeping
the small mean fixed at 100 cycles. This generates relatively small packet interarrival times
within a burst to capture the transmission of a multi-packet message or a handful of related
messages. I'igures 5(a) and (b) exhibit similar trends at high loads, but bursty traffic limits the
effectiveness of static routing at low network loads since packets in a burst are queued up while
previous packets are being sent. The adaptive algorithm helps dissipate bursts by capitalizing
on multiple paths between each source and destination, thus reducing the queueing delay at the
sending node. With such variations in performance across different communication workloads,
SPIDER can adapt to its operating environment by selecting an appropriate routing-switching
combination.

5 Conclusion

These experiments have shown that, for a range of communication workloads, it is useful
to support multiple routing and switching policies in the interconnection network. Although
these experiments have used synthetic target and interarrival distributions, real communication
workloads should also exhibit similar performance effects. Since it is hard to predict how these
workloads interact with router architectures, we have implemented SPIDER with a substantial
amount of flexibility. Although the costs of such flexibility may sometimes outweigh the perfor-
mance benefits [31], SPIDER can be used to evaluate a wide spectrum of network policies, from
which a subset of the most useful schemes could then be efficiently implemented in subsequent
router designs.

For example, an implementation of hybrid switching may prove useful if a router design has
limited buffer space or cannot provide enough virtual channels to sufficiently alleviate packet
contention. Similarly, a router design could incorporate a small library of routing algorithms
and header formats, in lieu of microprogrammable routing engines, to support a handful of the
most useful options in hardware. Further study of communication traces and real application
workloads should guide the selection of the most beneficial network policies.

We are currently testing the SPIDER design and preparing the PRC chip for fabrication.
The completed SPIDER boards will form the basis of a custom interconnection network for
a collection of VME-based processing nodes. This platform will enable the benchmarking of
routing and switching schemes for a diverse set of multicomputer applications. Using these
results, we will also examine software mechanisms for exercising router flexibility to improve
application performance.

12

References

[1] J.-M. Hsu and P. Banerjee, “Performance measurement and trace driven simulation of par-
allel CAD and numeric applications on a hypercube multicomputer,” IEFFE Trans. Parallel
and Distributed Systems, vol. 3, pp. 451-464, July 1992.

[2] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina, “Architectural requirements of
parallel scientific applications with explicit communication,” in Proc. Int’l Symposium on
Computer Architecture, pp. 2-13, May 1993.

[3] J.-P. Liand M. W. Mutka, “Priority based real-time communication for large scale wormhole
networks,” in Proc. International Parallel Processing Symposium, pp. 433-438, April 1994.

[4] J. Rexford and K. G. Shin, “Support for multiple classes of traffic in multicomputer routers,”
in Proc. Parallel Computer Routing and Communication Workshop, pp. 116-130, May 1994.

[5] P. Kermani and L. Kleinrock, “Virtual cut-through: A new computer communication
switching technique,” Computer Networks, vol. 3, pp. 267-286, September 1979.

[6] W. J. Dally and C. L. Seitz, “The torus routing chip,” Journal of Distributed Computing,
vol. 1, no. 3, pp. 187-196, 1986.

[7] V. Karamcheti and A. A. Chien, “Do faster routers imply faster communication?,” in Proc.
Parallel Computer Routing and Communication Workshop, pp. 1-15, June 1994.

[8] J. Dolter, S. Daniel, A. Mehra, J. Rexford, W. Feng, and K. Shin, “SPIDER: Flexible
and efficient communication support for point-to-point distributed systems,” in Proc. Int’l
Conf. on Distributed Computing Systems, pp. 574-580, June 1994.

[9] J. Rexford, J. Dolter, W. Feng, and K. G. Shin, “PP-MESS-SIM: A simulator for evaluating
multicomputer interconnection networks,” in Proc. Annual Stmulation Symposium, pp. 84—
93, April 1995.

[10] J. H. Kim and A. A. Chien, “Evaluation of wormhole routed networks under hybrid traffic
loads,” in Proc. Hawaii Int’l Conf. on System Sciences, pp. 276-285, January 1993.

[11] W. Feng, J. Rexford, A. Mehra, S. Daniel, J. Dolter, and K. Shin, “Architectural support
for managing communication in point-to-point distributed systems,” Tech. Rep. CSE-TR-
197-94, University of Michigan, March 1994.

[12] S. Konstantinidou, “Segment router: A novel router design for parallel computers,” in
Symposium on Parallel Algorithms and Architectures, June 1994.

[13] S. Chittor and R. Enbody, “Performance evaluation of mesh-connected wormhole-

routed networks for interprocessor communication in multicomputers,” in Supercomputing,
pp. 647-656, November 1990.

[14] J. H. Kim and A. A. Chien, “An evaluation of planar-adaptive routing (PAR),” in Proc.
International Symposium on Parallel and Distributed Processing, 1992.

[15] W. Dally and H. Aoki, “Deadlock-free adaptive routing in multicomputer networks using
virtual channels,” IEFFE Trans. Parallel and Distributed Systems, vol. 4, pp. 466-475, April
1993.

13

[16] S. Ramany and D. Eager, “The interaction between virtual channel flow control and adap-
tive routing in wormhole networks,” in Proc. International Conference on Supercomputing,
pp- 136-145, July 1994.

[17] S. Dandamudi and D. Eager, “Hot-spot contention in binary hypercube networks,” IFFFE
Trans. Computers, vol. 41, pp. 239-244, February 1992.

[18] R. Boppana and S. Chalasani, “A comparison of adaptive wormhole routing algorithms,”
in Proc. Int’l Symposium on Computer Architecture, pp. 351-360, 1993.

[19] W. Dally, “Virtual-channel flow control,” IFEFE Trans. Parallel and Distributed Systems,
vol. 3, pp. 194-205, March 1992.

[20] J. Dolter, A Programmable Routing Controller Supporting Multi-mode Routing and Switch-
ing in Distributed Real-Time Systems. PhD thesis, University of Michigan, September
1993.

[21] Advanced Micro Devices, 901 Thompson Place, P.O. Box 3453, Sunnyvale CA 94088-3453,
Am79168/Am79169 TAXI-275 Technical Manual, ban-0.1m-1/93/0 17490a ed.

[22] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in multiprocessor interconnec-
tion networks,” IFEF Trans. Computers, vol. C-36, no. 5, pp. 547-553, May 1987.

[23] J. Rexford, J. Dolter, and K. G. Shin, “Hardware support for controlled interaction of
guaranteed and best-effort communication,” in Proc. Workshop on Parallel and Distributed
Real-Time Systems, (Cancun, Mexico), pp. 188-193, April 1994.

[24] J. H. Kim and A. A. Chien, “The impact of packetization in wormhole-routed networks,”
in Proc. Parallel Architectures and Languages, Furope, 1993.

[25] K. G. Shin and S. Daniel, “Analysis and implementation of hybrid switching.” to appear
in Proc. International Symposium on Computer Architecture, June 1995.

[26] C. B. Stunkel, D. G. Shea, B. Abali, M. M. Denneau, P. H. Hochschild, D. J. Joseph, B. J.
Nathanson, M. Tsao, and P. R. Varker, “Architecture and implementation of Vulcan,” in
Proc. International Parallel Processing Symposium, pp. 268-274, April 1994.

[27] H. G. Badr and S. Podar, “An optimal shortest-path routing policy for network computers
with regular mesh-connected topologies,” IEFE Trans. Computers, vol. C-38, pp. 1362—
1370, October 1989.

[28] A. Agarwal, “Limits on interconnection network performance,” IFEFE Trans. Parallel and
Distributed Systems, vol. 2, pp. 398-412, October 1991.

[29] J. Duato, “A new theory of deadlock-free adaptive routing in wormhole networks,” IFEFE
Trans. Parallel and Distributed Systems, pp. 1320-1331, December 1993.

[30] F. Hady and D. Smitley, “Adaptive vs. non-adaptive routing: An application driven case
study,” Tech. Rep. SRC-TR-93-099, Supercomputing Research Center, Bowie, Maryland,
March 1993.

[31] A. A. Chien, “A cost and speed model for k-ary n-cube wormhole routers,” in Proc. Hot
Interconnects, August 1993.

14

