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Abstract: Memory is currently a second-class citizen of the storage hierarchy because of its vulnerability
to power failures and software crashes. Designers have traditionally sacrificed either reliability or perfor-
mance when using memory as a cache for disks; our goal is to do away with this tradeoff by making mem-
ory as reliable as disks. The Rio (RAM I/O) project at Michigan is modifying the Digital Unix (formerly
OSF/1) kernel to protect the file cache from operating system crashes. If successful, making memory as
reliable as disks will 1) improve file cache performance to that of a pure write-back scheme by eliminating
all reliability-caused writes to disk; 2) improve reliability to that of a write-through scheme by making
memory a reliable place to store files long term; and 3) simplify applications such as file systems and data-
bases by eliminating write-back daemons and complex commit and checkpointing protocols.

1 Introduction
As processors continue to double in speed every year or two, a system’s storage hierarchy becomes

increasingly important to the system’s overall performance. Storage hierarchies combine random-access
memory, magnetic disk, and possibly optical disk and magnetic tape to try to achieve the performance of
the fastest level (memory) at the cost per bit of the cheapest level. Because disks and tapes are not improv-
ing in performance nearly as fast as processors are, an increasing fraction of accesses must be satisfied in
main memory for the storage system to keep pace with processor performance.

Unfortunately, memory’s unreliability limits the fraction of accesses it can satisfy without needing to
go to disk. Because systems assume that memory is not a reliable storage area, they must do one of several
things when writing to memory:
1. Sacrifice performance by writing new data immediately through to disk (or some other reliable storage

medium). Systems that require durability for all writes, such as transaction processing systems, choose
this option.

2. Sacrifice reliability by storing data in memory until capacity forces the data to disk. This is only possi-
ble for storing temporary files, since other files are too precious to take this kind of reliability risk with
them.

3. Compromise by writing data to disk after a fixed delay, typically 30 seconds [Ousterhout85]. This is
commonly done on systems that can tolerate the loss of recently-written data, such as many Unix sys-
tems. Unfortunately, 1/3 to 2/3 of newly written data lives longer than 30 seconds [Baker91, Hart-
man93], so a large fraction of writes must eventually be written through to disk. A longer delay can
decrease disk traffic due to writes, but only at the cost of lower reliability.

In addition to hurting performance and reliability, the assumed unreliability of memory increases sys-
tem complexity for applications such as main-memory databases, file systems, and transaction processing
systems [Rahm92]. Much of the research in main-memory databases deals with checkpointing and recov-
ering data in case the system crashes [GM92, Eich87]. File systems must obey complex ordering con-
straints when forcing metadata to disk to ensure file system consistency [Ganger94]. The unreliability of
memory and the slow speed of disk accesses slows the commit speed of transactions and forces other opti-
mizations such as group commit in applications such as transaction processing and distributed message
logging [DeWitt84, Copeland89].

The assumed unreliability of memory also increases cost by a small amount. Since data must eventu-
ally be stored on disk, the file cache can only serve as acopy of disk data. For example, the total amount of
data that can be stored using a 1000 MB disk and a 100 MB file cache is 1000 MB, not 1100 MB.

An attractive solution to all these problems is to enable memory to store files as reliably as disks store
them [Copeland89]. This would allow the reliability of write-through with the performance of a pure write-
back scheme, substantially simplify system design for a variety of applications, and moderately increase
usable capacity by allowing the use of non-inclusive caching schemes.
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Figure 1 demonstrates the potential performance improvement of this approach. It compares the per-
formance of the Digital Unix V3.0 operating system with and without reliability-induced writes. The hard-
ware platform is a DEC 3000/600 with 128 MB of memory, and the workload is to repeatedly write and re-
write a file of varying size in 1 MB units for five minutes. The performance with reliability writes is limited
to disk speeds, while the modified kernel without reliability writes allows files that fit in memory to be
accessed at memory speeds.

This paper explores the idea of reliable file caches1—being able to store files in main memory as reli-
ably as storing them on disk. The two main factors limiting the reliability of memory are power outages
and software corruption. Options for protecting memory against power outages include uninterruptible
power supplies and switching to an inherently non-volatile memory technology such as Flash RAM
[Wu94]. This paper focuses on protecting memory against software-induced corruption, which can account
for 2/3 of all system outages [Gray90].

2 Why Is Memory Less Reliable Than Disks?
If someone surveyed system administrators and asked them if they would trust the contents of mem-

ory after a system crash, most of them would likely give a resounding “no!”. This intuition is backed by
field studies of MVS and Guardian (Tandem’s operating system), which show that between 1/4 to 1/2 of all
software-induced system crashes could corrupt memory [Sullivan91, Lee93]. It is not yet clear how often
these crashes corrupt the file cache; we are conducting experiments to measure this.

Memory is vulnerable to software corruption because writes to memory invoke no protocols and
hence are not scrutinized by any error checking—a simple store instruction by any kernel function can

1.  By file cache we include any area of memory that caches files, such as the Unix buffer cache, or the virtual mem-
ory system for operating systems that map files into memory. We also include any mapping information necessary to
find and interpret the contents of files in memory.

Figure 1: Performance with and without Reliability-Induced Writes. Dramatically better
performance is possible if memory is made as reliable as disks, because no extra writes to disk need
be done to keep the disk copy up to date. These measurements were taken on a DEC 3000/600
running Digital Unix V3.0. Data for the “no reliability writes” case was taken by modifying the
Digital Unix kernel. The workload for this graph was repeatedly writing an entire file in 1 MB units.
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change any data in memory. Consequently, it is easy for a random software error, such as following a bad
pointer, to corrupt the contents of memory [Baker92a]. Since any operating system module can access
memory, ensuring that no memory corruption can occur is a daunting task.

On the other hand, most users assume the contents of disk are intact after a system crash. Users trust
the disk because the process of writing to the disk uses complex protocols, and a system crash is unlikely to
mimic these protocols. Writing to a disk involves error checking at many levels, including the user-kernel
library interface, the device driver, and the I/O controller. It is hence unlikely for a software error to corrupt
the contents of disk because many types of errors will be caught by the strict interface.

Of course, a malicious or pathological kernel bug can always navigate through arbitrarily complex
protocols, both for disk interfaces and memory interfaces, so the probability of corruption can never be
zero. We are concerned only with lowering the probability that a non-malicious bug will corrupt memory,
so that the overall reliability of the file cache is made as high as that of disk.

3 A Reliable File Cache
A disk is protected from software errors by its interface—to change its contents, the system must go

through the disk device driver (or closely imitate it). We believe memory can be protected from software
errors in much the same way by strictly controlling the way memory can be written [Baker92b]. To accom-
plish this protection, we propose adding amemory device driver to check for errors and prevent software
errors from corrupting memory. The memory device driver is the only module in the operating system
allowed to change files in memory—any write to the file cache that does not use the memory device driver
should cause an exception. The main question then is the protection mechanism: how does the system
cause an exception when other modules try to change the file cache without using the memory device
driver?

 Ideally, the protection mechanism would have the following characteristics:
• Lightweight: the protection mechanism should add little or no overhead to file cache accesses: it should

not need to be invoked on memory reads [Needham83] and should have minimal overhead on writes.
• Enforced: it should be extremely unlikely that a non-malicious kernel function could accidentally

bypass the protection mechanism. The vast majority of errors should be trapped.
• Simple: the protection mechanism should require little change to the existing system. In particular,

avoiding custom hardware would enable us to modify the system more quickly and make our results
more widely applicable.

3.1 Protecting the File Cache from Unauthorized Stores
At first glance, the virtual memory protection of a system seems ideally suited to protect the file cache

from unauthorized stores [Copeland89]. By keeping the write-permission bits in the page table entries
turned off for the file cache pages, the system will cause most unauthorized stores to encounter a protection
violation. To write a page, the memory device driver enables the write-permission bit in the page table,
writes the page, then disables writes to the page. The only time a file cache page is vulnerable to an unau-
thorized store is while it is being written by the memory device driver, and disks have the same vulnerabil-
ity, since the disk sector being written during a system crash can be corrupted. The memory device driver
can check for corruption during this window verifying the data after the write is completed.

Unfortunately, many systems allow certain kernel accesses to bypass the virtual memory protection
mechanism and directly access physical memory [Kane92, Sites92]. For example, addresses in the DEC
Alpha processor with the two most significant bits equal to 102 are called KSEG addresses and bypass the
TLB.2 To protect against these physical addresses, we modify the kernel object code, inserting a check
before every kernel store (this is called code patching in [Wahbe93]). If the address is a physical address,
the system checks to make sure the address is not in the file cache, or that the file cache has explicitly reg-
istered the address as writable.3

2.  It may be possible to configure the system to disallow physical addresses, but this presents other difficulties
because the system uses physical addresses to start the virtual memory system, access I/O devices, and manipulate the
page tables.
3.  It is possible to use this check on every store in place of virtual memory protection, but this forces a full check for
both physical and non-physical addresses. The combination of virtual memory protection and code patching allows
most stores to be checked quickly; only physical addresses need a full check. We are currently measuring the perfor-
mance of both alternatives.
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The check before every kernel store sometimes calls a procedure. If the stack pointer were corrupted,
the act of calling a procedure could itself corrupt the file cache. To prevent this, we check the stack pointer
whenever it is modified. Checking the stack pointer obviates the need to check stores that use the stack
pointer to form an address [Wahbe93]. Since this includes all stores to local variables, this significantly
lowers the number of stores that need to be checked. There are many other ways to lower the overhead of
this check. For example, functions such as bcopy modify sequential blocks of data; these blocks could be
checked once rather than checking every individual store.

Digital Unix stores file data in two distinct buffers. Directories, symbolic links, inodes, and super-
blocks are stored in the traditional Unix buffer cache [Leffler89], while regular files are stored in the Uni-
fied Buffer Cache (UBC). Both these buffers need to be protected, but the method of protection differs. The
buffer cache, which is usually only a few megabytes, is stored in virtual memory, so we use virtual mem-
ory protection and code patching to protect it. The UBC, which contains the bulk of the data, is accessed
using physical addresses to avoid paging out the file cache (the virtual memory system and the UBC
dynamically trade off pages depending on system workload). Because it is stored in physical memory, no
virtual pages point to UBC pages, and virtual memory protection is not needed. We thus protect the UBC
by solely using code patching.

The verdict is still out on whether the protection mechanism described here (VM memory protection
plus code patching) meets our goals of being lightweight, enforced, and simple, though we are optimistic
that it does. Code patching has slowed overall performance by only 10%, and we think that adding VM
protection will not significantly affect performance. We are conducting studies to measure effective
enforcement against random errors. Code patching has been relatively simple to implement, and the VM
protection should also be straightforward. See Section 5 for more details on current status.

3.2 Warm Reboot
The protection scheme described above protects the file cache from being corrupted during system

crashes. When the system is rebooted, it must read the file cache contents present in physical memory and
update the file system with the data present in memory before the crash. We call this process a warm
reboot. Because system crashes are (hopefully) infrequent, our first priority in designing the warm reboot is
ease of implementation, rather than reboot speed.

Two issues that arise when doing a warm reboot are 1) what additional data should the system main-
tain during normal operation and 2) when in the reboot process should the system restore the file cache
contents.

Maintaining additional data during normal operation makes it easier to find, identify, and restore the
file cache contents in memory during the warm reboot. Without additional data, the system would need to
analyze a series of data structures, such as internal file cache lists and page tables, and all these intermedi-
ate data structures would need to be protected. Instead of understanding and protecting all intermediate
data structures, we keep and protect a separate area of memory, which we call theregistry, that contains all
essential pieces of information needed to find, identify, and restore files in memory. For each buffer in the
UBC, we note the physical memory address, file id (device number and inode number), file offset, and
size.4 Registry information changes relatively infrequently during normal operation, so the overhead of
maintaining it is low. It is also quite small; only 32 bytes of information are needed for each 8 KB file
cache page.

The second issue is when to restore the file cache contents during reboot. One method is to modify the
virtual memory and the UBC bootup code to restore the file cache contents instead of starting the system
with an empty file cache. This method presents several difficulties. First, it requires an intimate under-
standing of the boot process. Second, the process must be done very early in the boot sequence so that the
memory contents remain intact, but restoring the file cache is very difficult without a fully functional sys-
tem. The file cache would need to be restored before the file system is up and running, for example.

To avoid these difficulties, we perform the warm reboot in two steps. Very early in the boot, we dump
all of physical memory to the swap partition on disk. This saves the contents of the file cache and registry
from before the crash. After the system is completely booted, we analyze the memory dump and restore the
file cache using normal system calls such as open and write.

4.  Rather than a logical identification such as file id and offset, we could store a physical location, such as disk block
number. Storing this low-level information would allow the system to directly update the disk upon reboot, but it
seems dangerous to bypass the file system when restoring data.
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3.3 Memory-Mapped Files
Our protection scheme forces all writes to the file cache to go through the memory device driver. This

protocol assumes writes to the file cache explicitly invoke kernel routines, which in turn call the memory
device driver. Memory-mapped files, on the other hand, allow the user to do implicit I/O. The user first
issues a command (such as mmap) to map a file into the user’s virtual address space. The user can then
execute normal loads and stores to those addresses. Because the user does not invoke explicit I/O functions
for each store, there is no opportunity for the kernel to call the memory device driver, so these stores will
cause protection violations. Even if it were possible to call the memory device driver on every store, the
overhead would be prohibitive.

A possible solution is to create a new copy for each file cache page the user modifies (using copy-on-
write). The user is then free to modify the copy. The original page remains part of the protected file cache,
but the copy is not protected, so individual stores to the copy would not be considered reliable. The reli-
able, original page can be updated periodically (or upon msync) from the unreliable, memory-mapped page
to make the changes permanent. This preserves the original reliability semantics of memory-mapped files
without needing to write pages back to disk. However, it is not as reliable as explicit I/O, where each write
is immediately safe.

3.4 Caveats
Perfect reliability is not possible for either memory or disks, since a software error in the kernel could

accidentally mimic a memory or disk device driver. Our goal is simply to make the probability of corrupt-
ing memory as low as the probability of corrupting disk. That said, it is helpful to examine some of the
errors that could corrupt memory by bypassing the combination of virtual memory protection and code
patching.

The first and most obvious error that can bypass our protection scheme is an error in the file system or
memory device driver. An equivalent problem exists for disk, so this does not detract from our goal of
making memory as reliable as disk.

Double errors can also bypass our protection scheme. For example, a routine could first corrupt a
pointer, then branch around the checking code directly to the store instruction. Or a routine could corrupt
the page table (either by changing the permission bit for the buffer cache, or by mapping the UBC into a
virtual address), then corrupt the file cache by writing to the corrupted entry.

4 Alternative Protection Schemes
Our first prototype combines virtual memory protection and code patching to protect the file cache

from unauthorized writes, but there are other protection mechanisms as well [Copeland89].The following
paragraphs discuss three alternative protection mechanisms and how well each mechanism meets the three
goals of being lightweight, enforced, and simple.

One way to protect memory from software crashes is to restructure how memory is connected to the
system so that it looks like a disk. This is a complete change to the memory interface—instead of perform-
ing load/stores to memory, the operating system performs disk I/Os to memory, which is then called a
solid-state disk. The operating system views and accesses a solid-state disk in exactly the same way as a
magnetic disk. Theoretically then, a solid-state disk should be as immune to software errors as magnetic
disks are. Besides providing good enforcement, solid-state disks require no software changes; the memory
device driver can be exactly the same as a disk device driver.

The weakness of solid-state disks is performance. The hardware and software interfaces used to
access disks were designed with the long latencies of mechanical devices in mind, so they tend to be
slower than those designed for random-access, solid-state memories. For example, overhead on a SCSI
access can be as high as 1 ms. This is inconsequential compared to a 10-20 ms disk access, but it is huge
compared to a 100 ns memory latency. Forming I/O control blocks, using memory-mapped registers to
issue I/Os, and always dealing with sectors is fine for accessing devices with mechanical latencies, but it is
inappropriate for random-access memories. In addition, both reads and writes are forced to go through the
device driver. We would like to improve memory’s reliability without losing the ability to access memory
randomly.

Using redundancy can be used to protect memory in much the same way as with redundant disk arrays
[Patterson88, Chen94]. Instead of trapping illegal accesses, this method allows a file cache page to survive
some amount of corruption. For example, the system could store two copies of each file cache page or use
lower-overhead error-correction such as Hamming codes. By placing different copies in different memory
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regions, we can make it less likely that a system crash would corrupt all copies of the page. However, this
method will not protect memory against serious system crashes, which could potentially corrupt all of
memory. In addition, redundancy lowers effective memory capacity and slows performance for writes.

A third approach is to modify the memory controller so that it can disallow writes to certain pages.
One simple way to implement this is for the controller to store a write-permission bit for each memory
page and map the write-permission bits into the processor’s address space. As in the virtual memory pro-
tection scheme, file cache pages are kept write-protected. When the memory device driver wishes to write
to the page, it temporarily unlocks the page, performs the write, then re-locks it. This scheme is identical to
using the virtual memory system’s page tables, but unlike a page table, the kernel cannot bypass it. Modi-
fying the memory controller provides good protection and low overhead, but it does require custom hard-
ware.

5 Status
The Rio (RAM I/O) project is currently implementing a reliable file cache on DEC Alpha worksta-

tions running Digital Unix V3.0. This section describes the status of our implementation at the time of this
writing.

We use the ATOM code-modification system [Eustace95, Srivastava94] to check kernel stores to the
UBC and buffer cache. For the UBC, VM protection is not needed because the UBC is stored in physical
memory and cannot be accessed using virtual addresses. Thus the protection system for the UBC is nearly
complete. The current system counts the number of stores to the UBC rather than raising a protection vio-
lation; this will be changed when the memory device driver is running. Checking kernel stores increases
the running time of the Andrew benchmark [Howard88] by 10%. We do not check the stack pointer in Dig-
ital Unix because the stack pointer cannot be a physical address.5

Warm reboot is up and running. It successfully restores the UBC data present before the crash. One
potential difficulty is that the default firmware initializes the entire memory during reboot. Fortunately, a
simple console variable prevents this initialization. We are currently modifying the registry and warm
reboot to save the buffer cache data.

In order to detect corruption, we store the checksum for each buffer in the UBC and buffer cache. This
checksum is computed whenever a buffer in the file cache is modified (for example, by the ufs_write sys-
tem call). On reboot, the system compares each buffer’s contents with its checksum to detect any corrup-
tion. We are currently injecting memory faults to crash the operating system and measure how often
crashes corrupt the file cache, both with and without our protection mechanisms.

We have not yet implemented VM protection for the buffer cache, the memory device driver, or mem-
ory-mapped files.

6 Related Work
Nearly all modern file systems use a file/buffer cache to speed up disk accesses [Nelson88, Leffler89].

Many have a memory file system that stores a complete, though temporary, file system in memory [McKu-
sick90]. To our knowledge, however, the only file system that attempts to make its files reliable while in
memory is Phoenix [Gait90]. Phoenix keeps two versions of an in-memory file system. One of these ver-
sions is kept write-protected; the other version is unprotected and evolves from the write-protected one via
copy-on-write. At periodic checkpoints, the system write-protects the unprotected version and the deletes
obsolete pages in the original version. Rio differs from Phoenix in several ways: 1) Phoenix does not
ensure the reliability of every write; instead, writes are only made permanent at periodic checkpoints; 2)
Phoenix keeps multiple copies of modified pages, while Rio keeps only one copy; 3) Rio makes the file
cache reliable and hence automatically deals with file systems larger than the main-memory. We plan on
measuring the effective reliability of the virtual-memory protection used in Rio and Phoenix.

Several projects attempt to protect certain information from failures. The Harp file system protects a
log of recent modifications by replicating it in volatile, battery-backed memory across several server nodes
[Liskov91]. The recovery box keeps special system state in a region of memory accessed only through a
rigid interface [Baker92b]. No attempt is made to prevent other functions from accidentally modifying the
recovery box, although the system detects corruption by maintaining checksums. [Horn91] describes an

5.  After the initial bootstrap, the stack pointer is a virtual address. In Digital Unix, the stack pointer is modified only
by small increments, and these increments can not change it to a physical address without first causing a memory
exception.
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implementation of stable memory that uses dual memory banks. Hardware block copies between the two
banks periodically checkpoint the memory image, but it is unclear what prevents a processor from corrupt-
ing the stable image.

General mechanisms may be used to help protect memory from software faults. [Needham83] sug-
gests changing a machine’s microcode to check certain conditions when writing a memory word; the con-
dition they suggest is that a certain register has been pre-loaded with the memory word’s previous content.
This is similar to modifying the memory controller to enforce protection, as are Johnson’s and Wahbe’s
suggestions for various hardware mechanisms to trap the updates of certain memory locations [Johnson82,
Wahbe92]. Finally, object code modification has been suggested as a way to provide data breakpoints
[Kessler90, Wahbe92] and fault isolation between software modules [Wahbe93].

Other projects seek to improve the reliability of memory against hardware faults such as power out-
ages and board failures. eNVy implements a memory board based on flash RAM, which is non-volatile
[Wu94]. eNVy uses copy-on-write, page remapping, and a small, battery-backed, SRAM buffer to hide
flash RAM’s slow writes and bulk erases. The Durable Memory RS/6000 uses batteries, replicated proces-
sors, memory ECC, and alternate paths to tolerate a wide variety of hardware failures [Abbott94].

Finally, several papers have examined the performance advantages and management of reliable mem-
ory [Copeland89, Baker92a, Biswas93, Akyurek95].

7 Conclusions
Memory is currently a second-class citizen of the storage hierarchy because of its unreliability against

software crashes and power loss. Designers have traditionally sacrificed reliability or performance when
using memory as a cache for disks; our goal is to do away with this tradeoff by making memory as reliable
as disks. We have described how Rio protects memory from software crashes by forcing every file cache
update to go through a memory device driver. This enforcement is done with a combination of virtual
memory protection and code patching to check every kernel store.

If successful, making memory as reliable as disks will:
• improve file cache performance to that of a pure write-back scheme by eliminating all reliability-caused

writes to disk;
• improve reliability to that of a write-through scheme by making memory a reliable place to store files

long term;
• simplify applications such as file systems and databases by eliminating write-back daemons and com-

plex commit and checkpointing protocols.
Imagine how much easier it would be to design a system if you could assume that your data was safe

as soon as it reached memory!
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