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Abstract

Design applications typicallyequire radically varied views of shedl design data, rangingdm
highly compact hierarhical design artifacts to flat and unfolded struesirBecause cuent OODB
view technology is not capable ofopiding this equisite variety ofapresentations, we adess this
problem by poviding special-purpose support for manipulating and querying hebreal structues.
Our object model lays the foundation for the implementation of meta-clasge®d to support hier-
archical set operations. For example, the algebra defined over the data model allows the implicit
unfolding of hierachical sets, pviding users with a (virtual) flattened and unfolded view ofeshar
data without the penalty of having to maintaéplicated data. It thus forms the basis for powerful
extensions to the view capabilities of the OODB view system Multi@ur query operators can be
used to derive unmaterialized, unfolded, and updatable views folded hierachical sets. These
views ae updatable using two types of update operations, narimetontext and out-of-context
updates. For this purpose, weegent an algorithm to optimally perform in-context updates on an
unfolded view via selective unfolding. Irder to evaluate the advantages and limitations of apter-
ating thiough such complex hierghical and flattened views of design data, we alesgmt empirical
performance esults comparing queries on implicitly and explicitly unfolded hariaal sets.
Keywords. Hierarchical Data, Hierarchical Object-Orienteiews, Data Tansformations, Hierarchical Set
Algebra, Folded Design Data.
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1 Introduction and Motivation

_ Mativation. Object-Oriented Databas€®ODBSs) are often chosen to support the needs of advanced applica-
tions for manufacturing, ECAD, ,MCAD and design, because they support the modelling of complex data
[7,11,18]. Although integrated software tools benefit from these database services, such as versioning and access
control, these tools often manipulatefeliént representations of shared data. In design applications, for example,

a design entry tool manipulates hierarchical design data. On the other hand, a design analysis tool may require an
unfolded and flattened structure. For the tools to cooperate in an integrated environment, the data and operations
on the data must be translated or transformed for each tool. Even with current integration standards [8] the burden
of transforming design data betweerfetiént formats is frequently the responsibility of a designated translation

tool. Sometimes tool developers are ¢jearrwith the resdponS|b|I|ty to transtorm the data. Either approach results

in ad-hocsystems that do not support incremental update of shared and transformed data.
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Figure 1: Database Views Supporting Interoperability under Complex Hierarchical Transformations

OODB Views. Database views have been suggested as a means to reduftettheceired to restructure data
shared by mtegrated applications [21,10]. Flfgure 1 illustrates the database view system that provides custom
restructuring obase datéanto a specifidderivedformat required by each of the tools in the system. Our OODB
view system, MultiVew, [22] provides ariew definition languagé/DL) based upon a generic object algebra that
is capable of restructuring data for each tool in the system. As such, it automates the transformation of data
between the central format and the tool sPecmc formats. In addition, the system provides the services necessary to
maintain consistency between the central and materialized derived data [15]iéMutiB8ures the correctness of
data transformations and reduces undesired coupling between |nte%rated tools. As a consequerie®, fépHtiV
resents a powerful enabling technology for integrating design tools that has the potential of increasing the produc-
tivity of tool developers and mte%rators. Howeveurrent OODB view system technology (including the
MultiView system) is not yet capable of performing complex data transformations, such as the comﬁutaUpn of
closure, the traversal of paths, or the flattening of hierarchical graph structures [1,5,13,26]. Because the abl|lt?/ to
support complex transformations on hierarchical data is important for achievinginteroperabilitiy of design tools,
in this paper we extend the underlying database system with the data model, algebra, operations, and update
semantics necessary to perform optimized queries and updates on hierarchically structured data.

Hierarchical Views. Hierarchical descriptions are compact because they re-use portions of the data in the form
of abstractions As an illustrative example, consider the description of a 64-bit integer adder that is constructed
solely of two primitive elements — a single bit full addeX)(Bnd a 4-bit carrK unit (CU) (Figure 2). In the figure,
each lage design object has a border pattern and shape that matches the interface abstraction associated with the
design object, e.g. the 64-bit adder contains four instances of the 16-bit adder abstraction. The final design repre-
sentation consists of @aplicit occurrences of the 1-bit addewen though the design description contains only 4
instances of the 1-bit adder abstraction.

| #11 | | #12 | | #13 | | #14 |
64-Bit Adder

] O ]

16-bit Adder
€ € €D €
4-bit Adder

Full Adder (FA) Carry Unit (CU)
Figure 2: A Folded Hierarchical Representation of a 64-bit Adder.
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This hierarchical descri'eltion is compact, and consequently easier to maintain and manipulate than an equiva-
lent unfolded description. Many complex and powerful operations can be performedicergtsf on hierarchi-
cal structures [16]. The disparity the design size and the representation size suggests that there are numerous
opportunities to improve the performance of queries on the hierarchical descriptierp@ét to gain the follow-
ing advantages when emPonin hierarchical representations: ) )
» Because the size of the description is logarithmic in the size of the design, many fewer disk accesses are
required to fetch a hierarchical description from disk than would be for an unfolded design.
» Many queries posed on a folded representation can be answered more efficiently than would be possible on
the unfolded data structure, such as: “How many Full Adders occur in this design?”.
e The “concentration” of data into a folded structure permits radical changes to the design with a single
operation. For example, in Figure 2, a change to the full adder structure can impact every bit of the 64-bit
adder.

The ubiquitous nature of hierarchical structures and their advantages in retrieval and query performance as well as
powerful update capabilities suggests that an OODB system should provide support for the hierarchical design
representations suitable for the software tools and users.

Problem Description and Our Approach. De[%pite the clear advantages to using a hierarchical structure,
some design tools must perform operations omitieldedor flattened(or both) data that is based upon a folded,
hierarchical description [)2_7]. The Roal of this paPer is to support such tools by providing the database support
required to perform unfolding and flattening transformationdicitly, through a systematically derived, unmate-
rialized database vigwather than the more commonly employed method of performing an ad-hoc translation on
the design. The resulting solution shields the tool developer and integrator from problems of data replication that
complicates data consistency maintenance and inhibits the data exchange between tools. Our approach simplifies
software tool integration by permitting tools in the environment to operate on their preferinastirepresenta-
tions, while thebaserepresentations are under the care of a central data manager

Although the implicit unfolding of hierarchical structures can save enormous space and query processing time,
the later stages in the design process often require an explicitly unfolded design. Unfolding provides the designer
with the capability to distinguish between the small variations in initially identical design objectsofse an
in-context unfolding algorithm that permits the design objects to ‘gB’Xeln a controlled fashion, while still
maintaining many of the &fiencies of the folded representation. This support called “selective unfolding”
defines the necessary algorithms to store and transparently access the selectively unfolded portions of a design.

Experiments. To validate the performance gains for implicitly unfoldin% hierarchical structures we conduct
experiments to measure access time required for aggregatlon queries on both folded and unfolded sets. The results
of our initial experimentation verify the dramatidigkncy, both in time and space, of queries on implicitly
unfolded sets. They also indicate the importance of choosing a good clustering strategy for folded sets.

Contribution. It is the goal of this research to provide the database services essential for supporting the
implicit unfolding of hierarchical sets.oTthis end, we have developed an object model for hierarchical sets,
including an algebra of operations that permits query optimization and the definition of updatable unfolded views.
The new meta-classes, operations, and query operators will be integrated as base classes intoidve MultiV
ooDB vgv(\j/ system to increase itSegftiveness as an integration tool for applications requiring hierarchically
structured data.

Structure of this Paper. We begin with an overview of concepts for folded and unfolded structures in Section
2. In Section 3, we describe the object-oriented model upon which our hierarchical object model is based. Section
4 describes our object model for representing and manipulating hierarchical sets. Algebraic operators that exploit
the implicit unfolding within our model are presented in Section 5, with update operations presented in Section 6.
A performance evaluation of the proposed structures and operations is presented in Seetideseridé related
work in Section 8, and conclude Iin Section 9.

2 Folded and Unfolded Hierarchical Structures

In this section, we introduce the concepts of folded/unfolded and hierarchical/flat structures commonly used in
design applicationdMe construct design objects by compoginignitivesdrawn from dibrary. Primitives may
be grouped together to form more complex design objabtstractions of these more complex design objects

are used to compose new design objects, which are saigntthe abstractions. Figure 3 indicates tvens-
abstraction-ofrelationships between the complex design objects (16 and 4 bit adders) and the primitives of the
design. This figure closely parallels the relationships shown in Figure 2. Note that the presence of four ef the four
bit adders in the design is represented tg/ the 16-bit addeng four abstractions of the fobit adder rather

than by having four copies of the febit adder in the design. Even though the design descrlptlon.onl?_/ contains a
single copy of a foubit addey we say that the design has foecurrencesot the fourbit adder that arenpli

citly
defined by the relationships in the owns-abstraction-of (OAQO) DAG.

1. Inthe ECAD communitythese are often referred tolaterface InstancesThe terms are both similar to andfeiient enough from
the instance described in the OO model to cause confus®aviitl potential confusion by using the term Abstraction.
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Figure 3: Folded, Hierarchical DAG Representing a 16-bit Adder.

A design description can be characterizetiiagarchical andfolded (Figure 3). It is hierarchical if the OAO
DAG representing the description has a height greater than one. The description is called folded because each
design object may own more than one abstraction of the same design object.

Figure 4: Unfolded Hierarchical Design (Tree).

We can unfold a design by creating a unique replica of the design object associated with each abstraction.
Because of the replicated design objects, the unfolded design has space explicitly allocated for each occurrence of
an object in the design 1(F|gure 4). This is important if for instance we need to maintain desing data with each
unfolded design object. The description remains hierarchical after unfolding, because the height of the design tree
resulting from an unfolding operation is the same as the height of the folded design DAG.
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Figure 5: Unfolded Flattened Design

A folded design can be flattened by removing all of the intermediate objects in the hierarchical description and
retaining only the root and the leaves of the folded tree. This is practical because, in many cases, hierarchical ele-
ments are merely artifacts that make it possible to fold a desigtisfinguish between the edges in the flattened

DAG, we attach unique labels derived from each path in the original hierarchical and folded DAG. The resultant
unfolded and flattened design is illustrated in Figure 5.
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Figure 6: Folded and Flattened Design

The folded and flattened design can be a convenient form for certain design and analysis tools that do not
require personalized primitives. This is because the layers of hierarchy in the design are hidden from the design
tool, making the compact, folded design more easily accessible (Figure 6). o
~Note that the distinction between primitive entities in a flattened and folded design is made by way of a path
identifier on each edge of the folded, flattened DAG (Figures 5 and 6). Each distinct path in the folded DAG cor-
responds to a uniquEecurrenceof a design object within the design. ) S

_The four views of hierarchical design data presented in this section are suitddremt#pplications and to
different times in the design cyclealile 1 compares the forms, their characteristics, and describes when they are
most likely to be used.

Table 1: Forms of Design Data and their Uses.

Folded Unfolded
Hierarchical » Used early in design cycle. » Used later in the design cycle.

e Used by tools that do not need ¢ Used by tools needing both
access to distinct primitives, e.q., hierarchy and distinct primitives,
design entry tools. e.g., hierarchical placement tool.

* Most compact representation. ¢ Least compact representation.

¢ Primitive elements are identical. ¢ Primitive elements may all be

distinct.
Flattened ¢ Used early in design cycle. ¢ Used later in design cycle.

» Used by tools requiring removal of < Used by tools requiring no hierarchly
hierarchy, but not requiring and distinct primitives, e.g
distinction between primitives, e.d., simulators.
early design rule checkers. » Large representation.

« Compact representation. ¢ Primitive elements may all be

¢ Primitive elements are identical. distinct.

3 Object-Oriented Data M odel

The foundational elements in this work are an object-oriented data model [1, 25, 26] augmented with system
classes that support operations on hierarchical sets. In this section we briefly review the object-oriented terminol-
ogy we utilize in the remainder of this paper

Classes in the model are arranged in a generalization hierarchy permitting multiple inheritance. Subclasses
inherit the type characteristics of their superclasses. Objects of a class soagtitatecanywhere that objects of
alsgplerclﬁss could otherwise be used. The classes that comprise the generalization hierarchy combine to form the
global schema

Objects have attributes that are encapsulated. Domains of attributes are either primitive built-in types or refer-
ences to other objects. Attributes are accessible using the dot (.) apergiemeral the (.) operator invokes a
method of the same name as the attribute, returning an object that represents the value of the attribute. For an
objecta with an attributename a.nameaccesses the value of the attribute. It is assumed that a method is invoked
to compute the attribute. Several invocations of the (.) operator may be used to access data along an attribute path
§|.e., a.name.lengthnvokes thenamemethod on the objeet and then théength method on the object returned

rom thenamemethod.).

Objects have a unique identifier associated with them. It can be used for comparison when trying to determine
if two references to an object are to the same ol§pdects can be compared for eglluality using two distinct com-
parisons. The 7 operator determines if two references are to the same object. The = operator determines if all of
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two objects’ attributes arg=

A class may define prototypeinstance from which copies are made when instances of the class are created.
An instance created from a prototype inherits both the type and the values from the prototype instance. All
instances made from a prototype are initially =rimtt=4 to the originating prototype.

A viewin our model is a virtual class [22], defined and named bK a query operabas@alassedll virtual
classes are automatically integrated into the global schema by the view s%/stem. For the purposes of this work,
views are nomaterialized We say we can update an unmaterialized view if updates made to the view can be
unambiguously propagated to the associated base classes [26].

Because objects and classesiam®spectivethey both have methods to determine if a particular attribute or if
a specified operation is valid for the class or object. For a given oldeacdta functior, for examplep.accepts(f)
determines if the method (or predicdté valid for the object.

4 Hi er Set Concepts. The M odel

The representation of folded sets requires a means to specify the nesting af getp The representation
compact, this nesting is accomplished using an instance ofibsteictionrather than a copy of the set itself. In )
the simplest case, the abstraction is simply a reference or painter to the set, but there may also be data stored with
the abstraction to distinguish it from others. &nsure the acyclic properties of the OAO DAG, we impose con-
straints on the nesting of sets.

In the following sections class names aptpear in a bold, typewriter font, for example thd elaSet is so
indicated. When we refer to the class itself, we will always refer to it alditeSet class. Vé will refer to
instances of the class &fs er Set instances, instances b er Set , or justHi er Set s. We set of instance
names, such asider, using a normal-weight sans-serif font.

4.1 TheMeta-Data Classes

The meta-classes for modeling hierarchical sets are shown in Figure 7 usin% OMT notafioh R4lass
Primtive, whose instances are maintained hyi &r ar y instance represents the primitives in the sat. W
build hierarchical sets by inserting instances derived from the Alestsr into a multi-set, an instance of the
HSet class. The insertion ofRr i mAbst r indicates nesting of Bri mi t i ve instance within afSet , while

HierSet
owns ordered
et owns
. multi-set

abstraction-of

abstrdction-of

Library | Primitive

set-of

Figure 7: OMT Diagram of the System Classes Supporting Hierarchical Sets.

anHSet Abst r instance indicates that &%et is nested within anothéiSet . An instance of the clas$ er -
Set maintains constraints upon operations on the instances ld6éteclass.

A Hi er Set manages an ordered collectionH8et instances. It sequences tHget s, and imposes a non-
circularity constraint on the comABositionIfBet sintoHi er Set s. For every instance of &%et , there is a cor-
responding instance of thdSet Abst r class. This instance serves as the prototP/pe for all bietr Abstr s
associated with the sankSet . When aHi er Set creates afHSet instance, it also creates a corresponding
HSet Abst r prototype for thédSet . For simplicity we limit the construction dfli er Set s to be from the bot-
tom-up, howeverthe top-down construction could be supported with some additions to the system classes.

TheHierSet Model
Definition 1. A Hi er Set H is an ordered set éfSet instancesy, namely:
H = [hy, hy, ...,hj, ey (1)

Most of the constraints on the constructiorHber Set s are actually imposed on the construction of member

2. OMT, the Object Modelingdchnique is one of several popular object-oriented design methodologies that include graphical mod-
eling languages specifically tailored for object-oriented design.

6 of 19



HSet s. As shown in Figure 8, diSet h; is a multiset constrained to contain two types of elements. The first
kind of element is an instance of HBet abstraction(HSet Abst r). Each instance oHSet Abst r is associ-

ated with only onéiSet via theabstraction-ofrelationship® The second kind of element, ipamitive abstrac-
tion (Pri mAbstr). ThePri mAbst r relates viabstraction-ofto aPri m t i ve instance stored inla br ary
instanceHSet Abst r in anHSet represents the nesting of lHBet associated with thidSet Abst r.

For example, for the 16 bit adder design shown in Figure 3, we havidi #eSet Adder defined as

Adder = [hy;=Al6,h; = A4]. TheHSet A16 is defined af\16 = {af“, a2A4, a§4, a4A4, agu} , indicat-
ing the nesting o&4 within anA16 four times and nesting ofGU primitive within theHSet . Figure 8 shows the

OMT instance diagram for thdi er Set Adder. _ _ _ _
To prevent infinitely nesteHSet s we number eadHSet h, with a unique topological numbkrand define

the following constraint.

Definition 2. For anHSet h, containing abstractiona} , each related to theSet h; via the absaction-of
relationship, the following condition holds:

Dal ((a¥ 0 h) - j>k). )

For ourAdder example, the constraint prevents the nesting eflérnwithin anA4, or anA4 within itself, because
Al6 has a smaller topological index théam

Additionally, the constraint permits the designation ofH&et as the root of &ii er Set as follows:

Definition 3. In aH er Set H, there exists ahy such that n#iSet in H contains arHSet Abst r aihO.We
designatdig as theroot, and access it via thd er Set methodH.root().

For the Adder exampl@16 is the root of thédi er Set Adder. We impose an additional constraint on the con-
struction of aHi er Set to assure that it is well-formed. The constraint assures that all retiSieed are ele-
ments of théHi er Set .

Definition 4. For aHi er Set H defined as in Definition 1, we have:
OhDa" ( (' Oh, Oh OH) - b OH). 3)

The Adder example meets this requirement becadss a member of theél er Set . Figure 8 shows the
resulting OMT instance diagram for ofdder example. The diagram shows tbensrelationship associating
HSet s with their elements and tladstraction-ofrelationship associating eagbst r to itsHSet or Pri mi -
ti ve. If we combine the owns and the abstraction-of relationship into a single relationshipeaigdbstrac-
tion-of, we can use the derived relationship to construatires-abstraction-ofOAO) DAG. The OAO DAG for
the Adder is illustrated in Figure 3.

(HSetAbstr) -
Abstr#6 (PrimAbstr)
Abstr#l
(HSetAbstr) i
owns Abstr#7 abstraction-o (PrimAbstr) )
(HSet) owns Abstr#2 abstraction-of
A6 { (HSey (Primitive)
(HSetAbstr) _\\i/_ { FA
Abstr#8 (PrimAbstr)
Abstr#3
. (PrimAbstr)
Abstr#4
(PrimAbstr) abstraction-of [ (Primitive) -
Abstr#10 CuU (PrimAbstr)
Abstr#5

abstraction-of

Figure 8: OMT Instance Diagram for the 16-bit Adder portion of the HierSet Adder.

0o

(HSetAbstr)
Abstr#9

3. The association of adSet Abst r with differentHSet alternatives is called the configuration problene. &sume in our current
model that a configuration has already been selected.
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Definition 5. The owns-abstraction-ofOAO) DAG G = (N, E) of aHi er Set H = [hy, hy, ...,hj, e ]
as defined in Definition 1 and a collection of nobleand edgek that satisfy the following conditions:

a. There is a root node,h
b. For everyh; in H, there is a node iN labelledh;.

c. For everya:j in h; there is a uniguewns-abstraction-oédge Iabelledi:j in E fromh; tohy.
d. For eachPri mAbst r aﬁ in all h;, there is a single leaf nogen N.

e. For everyPri mAbst r aﬁ in h;, there is a uniquewns-abstraction-oédge inE from h; to p.

Figure 3 shows OAO DAG for thd er Set representing a 16-bit Adder design. The DAG includes\iite
andA4 HSet s as well as the FullAddeFA) and Carry UnitQU) Pri ni ti ves. The OAO DAG has important
properties that permit us to define two new concephsextandoccurrence
Definition 6. An occurrenceis an object O formed by a uniquedpath in the OAO DAG from an object S to an
object D. An occurrence inherits the type of both the %ath and the object D that ends the path. We define the
methodsourceto return S, the methatkstto return the object D, and the mettemshtexito return the path in
the occurrence associated with the parent of D in the OAO DAG.
Referring to the instance diagram illustrated in Figure 8, we see tHatitmeA\bst r Abstr#5 is on several paths
that originate at the roétSet A16. One of the four occurrences (occurrence 9.5) in whiigir#5 participates is
shaded in the unfolded/flattened design illustrated in Figure 5.
Definitiofng. A ContextC for an occurrence O inHi er Set is the path from the root of t& er Set to the
parent of O.
The context is so named because it provides a context in which sibling objects in the OAO DAG may be related
via simple relationships in thiei er Set . For example, the context for the occurrence corresponding to the
shadedCu in Figure 5 Is 9. This context information, coupled with the identity oAtist r instance, comprises
an occurrence in the implicitly unfoldéd er Set .

4.2 Propertiesof Hier Sets

h  h h h h,

Lemmal. ForHierSet H = [hy hy, ... h;, ... h] rooted atSet hy = {a; La,?azta,’ .., an'”}, ev-

ery HSet h; is the root of & er Set consisting ofh, and allHSet s reachable fronh, via the transitive
J

J ]
application of thewns-abstraction-oproperty.

Proof: This follows from the properties of a DAG as well as the preservation of properties (2) and (3)
of Hi er Set s. It can be shown using a proof by contradiction on property (2).

i
To support the definition of the Flatten operatee define the multiset union, denotedw , as preserving both
Irnembership and duplicate counts. Multiset union meets conditions (4) and (5) for the multi-sets A and B as fol-
ows:

Dx((xDADxDB)_.xD(AﬁiB)). (4)

If we define a functiomdupcount (S, X) that returns the number of times the element x occurs within the multiset
S, we can express the multiset union as preserving counts with the following condition:

i
Ox (dupcount (A, X) + dupcount (B, X) = dupcount(Arﬁ B, x)). (5)
Definition 8. We define the overloaded operatiglattenon aHi er Set H with the following recurrence:
O {x} it (xclass) = Prinitive)
N i
Flatten(x) = [] "EZLN Flatten(i.abstraction-of)  if (x.class) = HSet ) (6)
Bl [1'xowns
] Flatten (x.root() ) if (x.class() = Hi er Set )
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5 An Algebrafor the Hier Sets M odel

Although there are apparent time and space advantages to usingHio&te®et s to represent lge, regular
structures, there are often times when the structure described lgy et is best viewed in its unfolded splen-
dor. In fact, it is common for applications to require a view of hierarchical/folded data as if it were flat/unfolded
(see Section 2). For example, the 64-bit adder structure illustrated in Figure 2 might be subjected to queries such
as: "How many full-adder cells does this design contain?” and “What is the total size of all cells in the design?”.
Although these kinds of queries are most easily posed to a flattened and unfolded representation, the cost to
explicitly unfold and flatten a design can be prohibitive. For this reason, we provide query operators that support
the querying of hierarchical and folded structures as if they were unfolded and flattened.

In this section, we describe an object algebraHfagr Set s [22,25,26]. Unlike previously proposed object
algebras, our operators are unique in that they provide implicit flattening and unfold#ihgrdbet s and are
essential to query optimization in the presence of hieraviayare motivated by the following goals:

» Development of query operators that provide the appearance of operating on unfolded/flattened sets, but have

the necessary capabilities to perform the queries on folded/hierarchical structures.

» The need to identify algebraic identities that will enable the development of query optimizations for
hierarchical structures.

5.1 Query Operatorson Hi er Set s

_In this section, we present the algebraic operators defingd &rSet s. In general, any of the operations
with names beginning in “H” taketd er Set as an agument. As a shorthand notation, they may takeleat
h as an ajument, when they are interpreted to mean Fiher Set rooted at théiSet h”.

Unfold

The Unfold operation is the basis for defining most of the algebraic operations Fre¢h8et class. Unfold

returns a set of all occurrences ifliger Set . This consists of all paths in the OAO DAG originating from the

root. Recall that the OAO DAG consists onlyHBet s andPri ni t i ves at the vertices and that every occur-

rence inherits the type of both the path and the final vertex in the path. Because of this, the set returned from the
Unfold operation can be treated just as if it consistadSeft s andPr i mi ti ves. Unfold for aHi er Set H is

formally defined as:

Unfold(H) = { o] (oisanoccurrence) [ (o.source() = H.root()) }. (7
Select

Select returns a set of objestom a seSfor which the predicatg is both valid and true. Treecepts(method
establishes the validity ofas a method or predicate.

Slect(S g) = {9 (sO9S) Og.accepts(s) q(s)} - (8)
H Select

The HSelect operator finds all paths that are reachable frobl #1eSet H starting at the root and ending at an
HSet orPrim tive s, such that|(s) We define HSelect in terms of the Select operation and the Unfold opera-
tion.

HSdlect(H, q) = Sdlect(Unfold(H), ). (9)

To retrieve a set of alA occurrences in thedder design, we ask for all elements in tHeer Set that have the
name “FullAdder”.

Full-Adders = HSelect(Adder, Av v.name = “FullAdder”).
This returns a set of all occurrences of full adders in the implicitly unfolded design. BecaBseé Ithé¢ i ve
class has aame()method, this query operation returns 64 occurrences, each endingFwitram ti ve.
Image

Image applies a function to each element of a set, creating a set of new objects comprised of the return value from
each function application. Only elements in theSsktr which the functiorf is valid are considered by Image.
Invalid elements are discarded. For theSsand the functio, we define Image as:

Image(S ) = {f(s) | (saccepts(H O (sOd9) )} . (20)

The functionf may accept the set itself as aguament. This permits a more expressive composition of nested
operations, namely

Image(Y,f) = {f(s, 9| (SY) Osaccepts( O (sOY)} . (12)
This form of Image permits the binding of the set Y to the secajuhent off. Because the functidrmay com-

pute a set, the resulting multiset may be a nested set. For example, to construct a set composed of sets of elements
that all have the same name, we can express this as:

NameGroups = Image(Y, As,S Select(S, AX X.name == s.name)).
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If Y ={A, B, B, A, C, A}, containing objects with single letter names, tkemeGroups takes on the value:
NameGroups = {{A,A,A}, {B,B}, {B,B}, {A A A}, {C}, {AAA}L

Hlmage
The Himage operator is the Image operator over an implicitly unfélded Set . It is defined as:
Himage(H, f) = Image(Unfold(H), f). (12)
To obtain a set of all of the sizes of the occurrences of Iprimitive cells iutlee design we can apply the func-
tion A, which invokes the size method of thgumnent, to all occurrences:
Sizes = Himage(Adder, Al i.size).
The result is a set of the sizes of all occurrences iadher for which the size method is valid.

Reduce
Reduce applies a binary operatgrrepeatedly to each elemesof a setSand an accumulated value in order to
produce a single value. Defined procedurally have:
Reduce(S, op) {
accum = identity(op);
foreach (s in S) accum = accum op s;
return accum;

Reduce does not consider objects for which the reduction operator is not valid, namely:
Reduce(S, op) = Reduce(Select(S, oplsvalid), op) (23)
Our definition requires the following conditions are met: ] . . .
» op must be a binary operator and must be associative, since ordering of the set is arbitrary.
» The domain o6 must be closed undep. This makes it possible to accumulate a value.
« op must have an identity value, for example, identity(addition)=0, identity(multiplication)=1.
For convenience, we name commonly used reductions on a set of n@niseng the + operator:

Count(S) = Reduce(Image(S, 1), +). (14)

We count the objects ii by applying the constant functidn which returns the value 1 for each element in the
set. Recalling the definition of Image from Equatidnwe require that all objects accept constant functions.

Sum(S) = Reduce(S +) = ;i . (15)

For example, to compute the total size of all primitive cells in the adder design, assuming that each primitive ele-
ment has &ize()method that returns a numeric value, we compute the sum over the size of the primitive ele-
ments:

Size(Adder)=Sum(Image(HSelect(Adder, As s.isPrimitive), Ai i.size)).

HReduce

The HReduce operator ap(;nlies a reduction using the operatortheH er Set H. We define the HReduce
operator using the Unfold and Reduce operators as follows:

HReduce(H, op) = Reduce(Unfold(S), op). (16)

DupEliminate
This operator is used to eliminate the duplicates from a multiset. This is particularly important when the set
property depends upon the type of equality used to define uniqueness. A set defingdawithesuniqueness cri-

terion can have elements that are value-equal (=), and thus with respect to the = comparison, the set is a multiset.
Since the notion of duplicate is completely dependent upon the notion of edqbalibperator requires that the
Iémfd of equality be specified in the operation [23}. dbtain sets of uniqgue names from temeGroups set
efine
UnigNames=DupEliminate  _(Image(Y, As,S Select(S, AX X.name == s.name))).

If Y={A, B, B, A, C, A}, representing objects with the single letter names as listed in the seatnitigames
assumes the value:
UnigNames = {{A,A,A},{B,B},{C}}.
Note that because Image creates unique objects with new identities, DupEligpiwatdd not have elimi-
nated any elements from the set returned by Image.
Project

The Project operator permits the specification of multiple functions on a set. The values returned form a new
object with'the attribute names specified in the operBtoject is defined by:

Project(S { (a;, f;) (a5 f,), ... (8, f)}) = {[aj &, ..,a ]| & =f(9),s0S}. a7
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In this definition, the [] operator creates an object with the specified attribute names. The fudetiermfines
the value of the attributg d&or example, we create a histogram setUisifNames using Project to record the
name and the number of occurrences for each name.
Histogram = Project(UnigNames,{(count, As Count(s)),
(name, As DupEliminate  _(s))}.
This returns a set of new objects each with a count and name attribute as follows:
Histogram = {[count:3,name:A], [count:2,name:B], [count:1,name:C]}.

HProject

Similarly to HReduce, HProject can be defined by extending project to operate on implicitly ukioéted
Set s. HProject is defined as:

HProject(H, p) = Project(Unfold(H), p). (18)

5.2 Query Optimizations

Because folded structures have a built-in means for identifying duplicate subﬁaths, we can systematically fac-
tor out multlplﬁ/ occurring subpaths and recombine them in a mficeeef mannerln this section, we present an
optimization that can be applied to aggregation queries that obey the distributive pfapetiis explanation we
will consider the implementation of the query:

Area(Adder) = Reduce(HImage(Adder, area), +)

We assume that for the 16-bit adder design illustrated by the OAO DAG in Figure 3, both primitive library ele-
ments have an area attribute that reveals the area of the component. For the purposes of this exangrkea the
is 7 and thecU has an area of 13. . ) ) )

This operation clearly could be carried out by enumerating all paths in the OAO DAG and totalling the area
attributes for all paths ending in primitives. Howewis can result in redundant computation as many paths
have common subpaths that could otherwise be systematicatigan@&ur approach to optimize this query is to
factor out common subpaths and use multiplication to combine them in the reduction.

First we factor out the duplicates inld8et in order to compute the frequency of commonly nested elements
in the currentiSet . We group the elements together that are equal (=) using the Group operator defined as:

G = Group(X) = DupEliminate —-(Image(X, As,S Select(S, AX X =8)))
The Histogram operator determines frequency counts for elements in the groups formed by the Group operator
Histogram(G)=Project(G, { <count, As Count(s)>,

<id, As DupEliminate _(s)>}.
This creates the tuple object consisting of the number of times each distinct abstraction is represented in the
HSet X. For the Adder this corresponds to a set of the form:
Histogram(Group(A16)) = {<count:4,id:A4>,<count:1,id:CU>}
Duplicates have been removed, so this has tleetedf prunin% all duplicate sub-paths from the operation.
Next we define a function Distribute that will be used to apply the optimization of distributing multiplication over
addition. Distribute takes an instance of the Histogram object as defined in the project operation above and com-
putes the frequency count times the value returned from a recursive call to Reduce. Figure 9 shows the values for
the Group, Histogram, and Distribute operators along with the data on which they are applied.
Distribute(j) = j.count * Reduce(j.id.abstraction-of, +)
By using the Image operatave can apply the Distribute function to the results of the Histogram operation.
Area(A16) = Reduce(lImage(Histogram(Group(A16)), Distribute),+)

Group(A16) = { {A4,A4,A4,A4}, {CU}, {A4,A4,A4 A4}, ...
Hist(G(A16)) = { <4,A4>, <1,CU>}

6
Area(Al16) =1 * CU.size + 4 * Area(A4)
10
5 = * i + * I
1 G 9 4 Area(A4) =1 * CU.size + 4 * FA.size
Area(A16) = 177

Figure 9: Application of Distributive Optimization to Area(A16)

This optimization uses the distributive property to improve query performance in folded structures and can be
applied using anY pair of operators for which the distributive property holds. This applies to reduction on the addi-
tion operatarthe logical or olgeratoand the parallel path operat®hese operators have distributive counterparts
in multiplication, logical AND, and the serial path operator (concatenation), respectively
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6 Updateson Hier Sets

In addition to querying implicitly unfolded and flattened structures, we also need to perform update or deletion
operations. W classify these updates into two categones:of-context updatesndin-context updateQOut-of-
context updates correspond to operations onH8et s directly They are called out-of-context updates because
updates directly téiSet s apply to all occurrences in the implicitly unfolded set, rather than to a specific object in
a specific context. For example, these kinds of operations are common in design applications when the user of the
data wants to make changes to the entire hierarchical structure. The most common out-of-context updates are the
removal or insertion oAbst r s from HSet s. Additionally the attribute values BiSet Abst r instances may be
changed. If a single attribute is changed out-of-contextfet@f all of the paths in the implicitly unfolded struc-
ture that contain the attribute. In-context updates, on the other hand, are updates to the implicitly unfolded/flat-
tened view of thédi er Set . They are, in a sense, updates to data that does not exist exjtigitytext updates
are so called because thefeet only a specific path (in a specific context) in the OAO DAG.

We take advantage of function overloading to disambiguate between out-of-context and in-context updates. In-
context updates take occurrences gsiments, out-of-context operations taMest r s as aguments. It is this
difference in the gument types that determines the type of operation performed.

6.1 Out-of-Context Update Operations

Out-of-context updates are subject to constraints because they may result in the violation of constraints éi.e.,
non-cycle constraint) imposed upon tfieer Set . In general, the operations described in this section are rejecte
if they result in the violation of the badit er Set constraints.

Delete

The deletion of albst r from a particulaHSet corresponds to the deletion of a single edge in the OAO DAG.
Many occurrences from the unfolded must be removed as a vssittr s are deleted from afSet using the
HSet methoddelete() To delete arbst r afrom theHSet hy:

h,.delete(a). 19)

Even though the deletion of a singlest r corresponds to the removal of one edge in the OAO DAG, the opera-
tion may remove a entire sub—DAG from the design. For example an out-of-context update that removes a single
FA Pri mAbst r from theHSet A4 in Figure 2 removes folAs from the unfolded design.

Insert

Similarly, inserting amAbst r into anHSet corresponds to adding an edge into the OAO DAG. This again has
far-reaching consequences and may result in the addition of many occurrences into the Hinfal®ed |, since
an entire sub—DAG can be connected intoHher Set using the following operation.

hy.insert(a). (20)
The insertion of an abstraction into ldBet is subject to the non-circularity constraint imposed upotittes -
Set (see Equation 2). For example, the insertion ok4abstraction into theiSet A4 would not be permitted,
gut the insertion of aA4 abstraction into tha16 results in the addition of four new occurrencesA into the
esign.

M odify

Modifications to the membership bfSet s can be accomplished with a deletion and insertion. Howéver

HSet s in aH er Set may also have other modifiable attributes that are used by software tools requiring hierar-
chical information. Updates to theldSet attributes do not cause to?ological changes to the OAO DAG, but they
still can efect many occurrences in the unfolded set. For example, we may attackaattribute to arHSet

such a®\4 in Figure 2. This property then applies to all occurrences dfidee .

6.2 In-Context Update Operations

To make views defined ddi er Set s updatable, we define the semantics of updates on implicitly unfolded
Hi er Set s. For simplicity and clarifywe specify uEdate semantics in terms of operations on the OAO DAG.
Because there is a definitive mapping between the instance graph and the OAO DAG, operations on the OAO
DAG are unambiguous.

Delete

Deleting a single occurrence from the design corresponds to removing a single path from the OAO DAG. In
order to perform the delete operation, topological changes must be made to the OAO DAG. In propagating the
update we strive to impact the DAG as little as possible. An occurgigkeemoved using three basic steps.

1. Identify the critical section of the DAG that must be removed or changed.
2. Remove all paths that begin withsouce()
3. Reconstruct all paths that begin wélhsouce() excluding elements @ on the critical section.
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Delete(D : 0aoDAG, c : oaoPath)
int top = index of oaoPathNode closest to root with indegree > 1
int btm = index of oaoPathNode closest to leaf with outdegree > 1
if (top > btm) then
/I only one path between c[btm].node and c[top].node, and it
/I it can be removed without disturbing other paths. (Figure 11)
D.deleteEdge(c[btm+1].edge to c[top].edge)
D.deleteNode(c[btm].node to c[top].node if disconn. from DAG)
else
/I record the parent of the split node in p
/I remove edge in the path at the split point (Figure 12(b))
p = c[top-1].node;
D.deleteEdge(c[top].edge);
/I “split” each node between top and btm inclusive
for (i=top; i<=btm; i++)
newnode = D.cloneNode(c[i].node); // add copy to DAG
/I clone all but the corresponding edge in the path being removed
D.deleteEdge(from newnode to cfi].node);
D.addEdge(from p to newnode);
p = newnode;
end for
end if

Figure 10: Algorithm to Delete a Single Occurrence.

The al1gorithm shown in Fi?ure 10 demonstrates the steps required to accomplish the deletion of a single occur-
rence from an implicitly unfoldeti er Set . It first finds the top and bottom of the critical section of the DAG.

The index number of these two vertices are stored in the variaplesdbtm, respectively The first case the
algorithm addresses is when the branching points in the DAG result in the valpe ofm. This means that the
path to be removed contains a subpath that is not shared by any other occurrence. This case is illustrated in Figure
11, in which only the “critical portion” between them andtop markers is removed from the DAG. Removing

only the critical portion of the DAG is didient because it does nofexdt any other occurrence path and because

it removes the desired path from the DAG.

0 btm=0

" top > btm (delete path)

2

3 top=3

4 ©

Figure 11: Removal of path <abcde> in DAG where top > btm

The sequence of frames illustrated in Figure 12 shows the operations required for removing a single path
<abcde> from a DAG whetop < btm. The figure shows the removal of all paths starting with the vertex (a) and
the systematic reconstruction of all paths beginning with (a) but do not contain the occurrence path <abcde>. This
reconstruction corresponds to the creation of copies (versions with small modifications in terms ébwhich
they own) of all design objects between thigandbtm markers.

0
1 top=1
2
3 btm =3

(a) (d)
¢original edge ¢occurrence to del + new edge © vertex ® new vertex

. top andbtm are located by traversing the path from the root and from the leaf.

. First edge in path is removed. ) .

Element b is cloned and the deleted edge is restored to pointto b.

. Element c is cloned glncludmg its edge to h% and an edge from b to c is added.

. Element d is cloned (including its edge to h) and an edge from c to d is added.
Costs of Queries and Updates in HierSets

Figure 12: Removal of path <abcde>in DAG where top < btm.

oY eNeNog )
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Insertion

The insertion of an occurrence in the implicitly unfolded design is similar in complexity to the deletion operation.
A more simple method is to add the path directly to the DAG by attaching it to the root. A more complex method
attemptd to find a “closest fit” path éo that the inserted path can be folded into the existing DAG) and add the
p?tﬂ aEtR%appropnate point in the DAG. For our approach we simply add the new path by attaching it to the root
of the .

Update

An in-context update corresponds to the creation of a new version of the modified object in the folded DAG. T
accomplish this quate, we delete the occurrence and then add another with the new attribute value. For example,
to change an attribute value on the occurrence <abcde> as shown in Figure 12(a), we perform a deletion as shown,
and then add another version of elememtith the new attribute value. Because the update algorithm knows
where the deletion occurred, it knows the “closest fit" point to insert themedified elemeng. The resulting

OAO DAG is shown in Figure 13.

Figure 13: Result of an Update to Occurrence <abcde>.

While complex updates to occurrences may require topological changes to the OAO DAG, it may be ﬁossible
(and practical) to update parameterized values inPthem ti ves that apply to a single occurrence in the
Hi er Set . This capability is not fully developed in our current model, but we plan to include it in future work.

7 Performance Evaluation

To evaluate the cost of query operations I ar Set , we specify our model of the disk paging system, as
well as the Parameters that characterizeHher Set s. For our evaluation, we measure the cost in terms of disk
accesses of queries on both the foldiedr Set and the flattened and unfoldeider Set .

7.1 Disk Model

We model the persistent storage of Hieer Set as a sequence of fixed size pageB bfjtes each on disk.
The storage system bief has a capacity ¢f pages. Pages are replaced in théebwfsing an LRU replacement
policy. We assume an object table that fits into main memory and provides constant time to identify the location
(page) of an object, given its object identifithe time to read data already in the cach¢tisne units. © read a
page that is not in the cache requires M time units._ ) . )

ata can be clustered onto the disk in severtdraifit ways. W consider &li er Set that is clustered onto a

disk using either depth-first or breadth-first clustering schemes. In depth-first/breadth-first cludtetres,
Absc_g rsandPrimtives are assigned to disk pages based upon a depth-first/breadth-first traversal of the OAO
DAG.

7.2 Characteristics of the Hier Set

Sizes of the objects that compriskiger Set are designated in bytes as follows: _
b, : The size of abst r instancePri mAbst r andHSet Abst r instances are the same size.

by, : The size of aiSet instance (minus the size of Abst r instances).

b, : The size of &ri m ti ve instance.

'I% determine performance properties of folded and unfdtiled Set s for various queries, we identify char-
acteristics of the OAO DAG that may influence the performance of operations.

b
Notation:

height=2 @
@ HSet c density = d = avg(a+b,c,d)
d local reuse =r; = avg(a,b,c,d)
&L ?Osvdngse_gbstr_of) @ number of paths = p = a*c + b*d

Figure 14: OAO DAG Characteristics from the Performance Model
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Density (d)

The densityd of aHi er Set is the average number of ed%es in the OAO DAG that ori?inate fromHSath

This average fanout or branching factor corresponds to the complexity of each level of the design. For our evalu-
ation, we consider OAO DAGs that have the same number of edges originating frokiSeacin theHi er -

Set . For the DAG illustrated in Figure 14 the density is determined by the computatioravg(a + b, c, d).

L ocal Reuse Factor (r))

This factor measures how often a spedifiet references the sankdSet or Priniti ve. We compute the
local reuse factor, for a specifiddSet by computing the average number of edges between every piteb$
for which at least one edge exists. Inidher Set illustrated in Figure 14, the local reuse factor is determined by
computing:r; = avg(a, b, ¢, d).
We consider the local reuse factor because we expect a high reuse to improve performance due to caching

behavior When arHSet retrieves all of its owns-abstraction-of relationships, a high local reuse factor in a folded
Hi er Set can reduce the cost to retrieve only the unique ones.

Height of OAO DAG (h)

We determine the heightby calculating the longest path from the root oftther Set to any of the primitives.

We consider the height of the DAG as indicating how deeply nested a hierarchical description is. Because of the
multiplicative factor o at each level, the height contributes exponentially to the size of the design. The height of
the OAO DAG in Figure 14 is 2.

Number of Pathsin the OAO DAG (p)

The number of paths in the OAO DAG are determined by many characteristics of the DAG, including the re-use
factor, the densityand the height of the DAG. The following recursive function determines the number of paths in
aHi er Set . A trace of the definition shows that it performs a depth-first enumeration of all of the paths in the
DA(IS originating from the root and ending at a primitive. Each time the traversal ends a path it adds one to the
total.

B p(x.root()) if (x.class = HierSet)
O p(i) if (x.class = HSet)
px) = O i 0 Xowns (21)
B p(x.abstraction-of)  if (x.class = HSetAbstr )
0 1 if (x.class = Primitive)

7.3 Performance Experiments

In this section, we Ipresent the costs to perform query operatidfiseoibet s in either folded or unfolded and
flattened form. Recall that the reduce operation permits the application of a single operator cumulatively over the
entireH er Set . We consider aggregation queries and operations that return a single value for two reasons.

1. Because of the absence of other relationships in our current model, we are limited to traversals of the design
by traversing thewns-abstraction-oDAG.

2. Queries that return single values offer a more realistic evaluation of the implicit unfolding of hierarchical
sets. This is because operations that return entire designs must explicitly perform unfolding to return the
unfolded values.

In keeping with other examples presented earlier in this paygeevaluate the performance associated with
answering the following query operation to compute the total power dissipation for a design represented by the
Hi er Set H. Assuming that eadAri m ti ve in theLi br ary has an integer attribuppwer we express this
query as:

Reduce(HImage(H, As s.power),+). (22)

7.3.1 The Effect of DAG Density on Aggregation Query Performance

For this evaluation, we construdit er Set s characterized by diérent densities and measure the cost to do the
power dissipation query operation on thieer Set . The density measures the branching factor in the DAG, and
we see the multiplicative fefcts of the branching factor on the retrieval cost of the desigrse#/ similar shapes
for many confl%uratlpns of the DAG, with the unfolded cost growing quadratiealtithe folded cost growing
linearly as the DAG is more dense. Figure 15(b) shows sjroiideven more dramatic tifences when the sizes
of the two representations are compared.
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Figure 15: Retrieval Performance (a) and Disk Usage (b) for Folded and Unfolded Data.

7.3.2 Effect of Query Optimization on Retrieval Costs

In this e>(<fer_iment, we again measured retrieval performance on the power dissipation query for an unfolded
and folded designs of varying densithis time, howevemwe exploited the distributive optimization for a folded
design that we presented’in Section 5.2.

SFEQS%trievaI Costs vs OAO DAG Density (Distrib. Optimization)
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£ 2500 B=2000H=0M=1
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Figure 16: Retrieval Performance for Unfolded and Optimized Folded

We see in Figure 16 that the distributive optimization possible for reduction operations makes the retrieval cost
very insensitive to changes in the DAG den note that the %Ptimization shows dramatically improved per-
formance across a broad range of parameters. Although we did not verify this with an exhaustive set of experi-
ments, we believe that the distributive optimization, because it eliminates the traversal of paths multiple times,
renders the query performance insensitive to the size of the cache.

7.3.3 Effect of DAG Height on Retrieval Costs

We measured the retrieval cost for both unfolded and folded DAGs of varying heights in this test. o

Figure 17 illustrates the exponential growth of the unfolded design as the height of the DAG increases. This is
consistent with the relationship between the size of folded and unfolded desgns. It is important to note, though
that in electrical design applications for example, the height of the design DAG is rarely more than 5, so we may

not achieve as dramatic a performance gain as the graph suggests.

7.3.4 Effect of Relative Sizes of Abstractions and Primitives on Retrieval Performance

For this experiment, we determined the retrieval time on folded and unfolded data while the relative sizes of
Abstr (by) andPri m tives (k) were varied. hremained fixed while Jvaried from 25 to 2000 bytes.

The size ofPri mi ti ves is assumed to be substantiallygarthanAbst r s, otherwise there would be little
incentive to construct a hierarchical and folded representation. Therefore, for most practical applications, the
sytem operates in the region to the right side of the plots. Note, for example, that to the right in Figure 18 the
folded representation clearly outperforms the unfolded. Even Atilit r instances as lge as thePri m -
ti ves, the folded reFresentation performs well. Howedine Abst r instance is much lger, the performance
degrades substantiallyhis efect is observable in many tifent configurations, with the crossover point deter-
mined by how much of the folded design fits in the disk cache. Note faeedifcrossover points when 50 per-
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Retrieval Costs vs Height of OAO DAG

1800

16009 Parameters
214000  Disk: P=5,B=2000H=0M=1
£12000 * Sizesh,=200,b,=200,b,=500
1 » DAG Characteristics;¥2,d=4 ’
$10000
O
T 8000
]
= 6000 i}
4

so00  UnEglded o

2000 o

£ 2 g

Omé ® 10

5 6 7 8
Height of OAO DAG (h)
Figure 17: Retrieval Cost For Unfolded Design is Exponential in DAG Height.
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Figure 18: Retrieval Performance for Relative Sizes of b, and b,.

cent (Figure 18a) and 20 percent (Figure 18b) of the folded design fits in the cache.
7.3.5 Effect of Clustering on Retrieval Performance

For this experiment, we measured the performance for traversing the folded design in a breadth-first order for
an ideal clustering (breadth-first), and a depth-first clusteriegvafied the size of the disk cache for the tests.

The plot of Figure 19 shows thdeft on query performance of having a clustering ordésreéifit from the tra-
versal order as the proportion of tHeer Set that fits in the cache is varied. Breadth-First clustering performs
very well when 40 to 50 percent of thiBet fits in the cache. The poorer Depth-First clustering requires a much
higher (70 percent) fit before it sees comparable performance gains. This clearly demonstrates the need for clus-
tering strategies that are compatible with the traversal algorithms [4].

7.3.6 Experimental Summary

Our initial experiments indicate that aggregation queries have thedpotential to be dramatically faster on folded
than on unfolded structures. The substantially smaller size of folded structures reduces disk access costs from
guadratic and exponential time in DAG characteristics to linear time. Furthermore, we have quantified the trade-

off of the abstraction size and the primitive size. Our experiments also demonstrate the importance of clustering

algorithms to the performance of queries on folded structures.

8 Related Work

Related work falls mainly into three distinct categories. The first is work on domain specific constructs for
databases, the second is work on database views, and the third is research specifically related to electrical CAD.

Recent research in databases for specific domains has suggested that additions to data models and query lan-
guages may be appropriate to enhance teetafeness of the databases [2, 9]. In fact, it has been proposed to
conter first-class citizenship to new entities such as paths [9], or hyperwalks [2]. Paths are an important part of our
model, but they exist primarily to represent the occurrence of unfolded objects. Our work suggests extensions to
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Figure 19: Breadth-First Traversal Costs for Different Clustering

the data model through the introduction of new meta-data classes that can béegsedlgin domains requir-
ing hierarchically structured sets.

~ Earlier work in OODB database views has established data models, object algebras, update policies and mate-
rialization strategies, all motivated by the desire to provide either real or virtual restructuring of data for database
applications [5,1,26]. Most current work on OODB views studies traditional OO %ueB/ languages similar to SQL
rather than employing query extensions for complex views. SimilaeyMultiMew OODB view system [22]

currently employs an object-preserving allgebra as a query .Ian%uage for view defintioreglel the more com-

plex restructuring employed In design tools, such as flattening hierarchical graphs and deriving transitive relation-
ships, we are extending Muligv with more powerful view operators [13]. The work presented in this paper
continues this ébrt of extending Multi\lew with complex transformation support. _ )

In addition to extending the object algebra to su?ﬁprt more powerful transformations, we are addressing the
problems of how to make these views updatable. This is an important topic for view mechanisms that has for
Instance been studied by Scholl et. al. for object-preserving algebra views [26]. For our implicitly unfolded data,
the update problem is how to propagate the updates from objects which only exist implicitly to the base data. In
this paperwe solved this problem by transforming updates on the implicitly unfolded structure into updates on
paths in the folded design DAG. . o . .
~ Work on the HS system [19] describes an API capable of implicitly flattening netlist data. Updates to the
implicitly flattened data are limited, and require a re-initialization of the database. Addititmalyork does not
present a data model and query operations capable of defining implicitly unfolded views.

Research on hierarchical attribute grammars PZ] presented incremental update schemes to propagte changes

from a folded representation to an explicitly unfolded representation. Our work also propagates updates from the
unfolded to the folded representation as well as savmg the space that is otherwise wasted on an explicit unfolding
of the data (see Section 7.3.1). The FICOM system [3] maintains complex constraints across various abstraction
domains, but also requires that the two distinct representations are stored sepamtigtem addresses update
propagation in both directions, but the same problems of space and performance overhead remain.
_ Recent research in enabling, techn0I09 for electronic design frameworks has focused on information model-
ling of folded and unfolded de5|%n [6,8,2 ]YThese models are used to define APIs, to develop data structure ?en—
erators, or to formalize the exchange of data between systems. In general, the work on information modelling
does not present how a data manager in the database system can provide support for implicit unfolding of data.

9 Conclusions

We achieved an ichortant step toward improving interoperability of design tools that operate on hierarchical
data that is folded and unfolded. In this paper have presented new meta-data classes appropriate fdi-the ef
cient representation and quggylng of folded, hierarchical sets. Included in our model are operations that can be
efficiently performed on thedd er Set s by fully exploiting the constrained characteristics of the model. W
have presented algebraic operators that enable the imPIicit unfolldintr; and flattening of hierarchical sets, and have
shown an algorithm capable of propagating updates from the implicitly unfolded view to the folded view via
“selective unfolding”. Additionallywe have presented opportunities for query optimization for performing aggre-
ation queries on hierarchical sets. Finalg have conducted experiments that validate the dramatic impact that
the folded representation has on retrieval performance and on disk storage utilization, as well as demonstrate
some of the issues that we must consider while continuing our work.
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