
by

CSE-TR-

Timing Analysis of Digital Systems with Gated Clocks

David Van Campenhout and Trevor Mudge

CSE-TR-257-95
August 1995

THE UNIVERSITY OF MICHIGAN
Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science
Ann Arbor, Michigan 48109-2122
USA

Timing Analysis of Digital Systems with Gated Clocks

David Van Campenhout and Trevor Mudge

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, Michigan 48109-2122

August 1995

Abstract

The SMO model for analyzing the temporal behavior of general synchronous sys-
tems has proven to be very effective. This paper extends the model to systems in
which the clock signals can be gated (conditional). We describe a method for veri-
fying the timing of such systems. Our approach hinges on the use of information
about design intent in the analysis to obtain good accuracy. Ingredients for a timing
verification tool that allows designers to take advantage of gated clocks are devel-
oped. The system is partitioned into datapath and control sections. The datapath is
analyzed using the conditional delay model. Gated clocks allow multi-cycle behav-
ior. Symbolic finite state machine traversal techniques are employed for checking
the validity of multi-cycle paths.

CSE-TR-CSE-TR-257-95: Timing Analysis of Digital Systems with Gated Clocks 1

1 Introduction

1.1 Static timing analysis

There are two main approaches for verifying the temporal behavior of circuits: 1) simulation-based timing analysis,

and 2) static timing analysis. Approaches based on simulation, often termed dynamic timing analysis, have the advan-

tage of being able to handle a wider variety of circuits. They can also take into account the full functional behavior of

the circuit. Their main disadvantage is the incompleteness of the analysis. To obtain a reasonable coverage of the com-

plete circuit behavior, a very large number of simulations are necessary. Static timing analyzers try to overcome this

limitation. Static timing analyzers abstract some details of the temporal behavior of a circuit. This allows them to con-

sider all behaviors of the circuit at once. In practice, a superset of the real circuit behavior is considered, resulting in a

conservative (pessimistic) analysis. For example, false paths are usually not accounted for. Static timing analyzers are

also more restrictive in the variety of circuits that can be analyzed. Early static timing analysers were limited to fully

synchronous circuits without any clock skew.

A comprehensive model for analyzing synchronous systems was proposed by Sakallah, Mudge and Okulotun [1].

The model has been extended to handle clock skew. But, the model assumes that all synchronizers are clocked by a mul-

tiphase clocking system in which all clocks have the same periodicity. This paper extends this model to handle gated

clocks.

1.2 SMO model

The SMO model assumes a multiphase clocking system. All phases have a common clock period. During that clock

period, each phase makes exactly one rising and one falling transition. The circuit is modeled by a network of synchro-

nizers (either level-sensitive latches, or edge-triggered flip-flops). The synchronizers are connected by arcs correspond-

ing to the combinational logic. The arcs are labeled with the minimum and maximum delay through the logic. The

synchronizers are characterized by their setup and hold times, their clock phase, and their clock skew. For clock sched-

ule verification, the variables in the SMO model are the minimum and maximum arrival time of signals at the input of

the synchronizers, and the minimum and maximum departure time of signals at the output of the synchronizers. For

clock schedule optimization, the clock period and the event times of the rising and falling transition of each phase are

variable as well. The relationship between these variables combined with the setup and hold constraints of the latches

constitute a set of constraints that can be relaxed to linear constraints. The verification problem can be solved by con-

straint relaxation. The optimization problem was originally tackled by linear programming. However, Szymanski [2]

proposed a more efficient approach. First the minimum cycle time set by the loops is computed. Subsequently all rele-

vant constraints with respect to that cycle time are generated. The resulting linear program is much smaller in size.

1.3 Gated clocks

In some systems the signals clocking the synchronizers are not directly generated by a central source. Derived clocks

(gated clocks or secondary clocks) are formed by combining a primary clock signal with a local control signal. Typi-

cally the primary clock is AND-ed with the control signal. Hence the clock can be selectively disabled. Advantages for

this design approach include the ability to save power, the flexibility to implement some logic efficiently and also the

CSE-TR-CSE-TR-257-95: Timing Analysis of Digital Systems with Gated Clocks 2

ability to create multi-cycle paths. Signals propagating along multi-cycle paths are allowed several clock cycles, before

the result is captured in the output latch along the path. The presence of such paths would be normally reported as vio-

lations in the SMO model. In this report we propose a method to deal correctly with gated clocks and multi-cycle paths.

2 Previous work

Ishii [3] describes methods for retiming systems that contain precharged circuit structures and/or gated clock signals.

He derives a set of constraints which all take the form of inequalities between the delay of a path and the length of a

time interval which is bounded by a pair of clock edges. He notes that these inequatities are not significantly different

from those obtained during the analysis of regular purely synchronous systems. This analysis does not consider multi-

cycle paths, and circuits exhibiting multi-cycle paths do not comply with Ishii’s definition of proper operation. No func-

tional analysis is performed.

Kawarabayashi et al. [4] consider CPU-like circuits which are partitioned into a datapath and a controller. A rather

restrictive datapath model is used. The combinational logic between the latches is partitioned in subblocks intercon-

nected by multiplexors. These multiplexors, as well as the signals gating the clocks are steered by the controller. The

controller does not contain any gated clocks. A state transition graph of the controller is extracted directly from the

netlist. The state transition graph is traced to determine the number of clock cycles available for datapath signals to

propagate along paths between two consecutive latches.

Gupta et al. [5] consider the problem of multi-cycle paths in microprocessor-based designs. They construct a com-

posite state-transition graph (CSTG). The circuit state is defined by output signal values on each synchronizer at any

time. This definition of state allows them to handle very general circuit behaviors, e.g. no predefined clock schedule is

required. Each timing check, which specifies a minimum separation between two events, is verified by tracing the

CSTG (tracing through time) and tracing the network (tracing through space). To benefit from the incremental nature of

the design process, the constraints are derived symbolically. The symbolic delay parameters are substituted for numeri-

cal values at the end. The approach is limited to circuits with a relatively small CSTG.

Our work begins with the assumption that high-level design information is available. High-level design knowledge is

used to partition the circuit into a datapath and a controller section. Combinational datapath sections are analyzed using

an approach similar to [8]. Our datapath model is more general than the multiplexer-based datapath model used in [4].

The controller is transformed into a classical synchronous machine without any gated clocks. Symbolic state traversal

techniques, following the approach of [12], are used to verify the conditions governing the validity of multi-cycle paths.

This paper is organized as follows. Section 3 motivates the use of gated clocks, discusses some topologies using

gated clocks, and states conditions for proper operation of gated clocks. Our analysis methodology is discussed in the

next section. These techniques are illustrated with an example in Section 5. Concluding remarks follow in the last sec-

tion.

3 Gated Clocks

3.1 Motivations for Designing with Gated Clocks

Gated clocks can be used to reduce power consumption. In CMOS circuits, the static power consumption is generally

CSE-TR-CSE-TR-257-95: Timing Analysis of Digital Systems with Gated Clocks 3

negligible compared to the dynamic power consumption: most of the power dissipation is due to the switching of circuit

nodes. In synchronous systems, even though the circuit is idle, the clock signals are always switching, causing signifi-

cant power dissipation. This can be reduced by blocking the clock signals before they reach the synchronizers during

those times that the circuit is idle. This can be achieved by gating the clock signals, i.e., the primary clocks are AND-ed

with control signals, thus forming secondary clocks, which steer the synchronizers.

A second motivation for using gated clocks is the creation of multi-cycle combinational operation. Under multi-cycle

operation, combinational blocks are given a time budget of several clock cycles to produce results. This is achieved by

holding the synchronizers which constitute the inputs of the combinational block. A multi-cycle operation mode may be

the preferred design style for complex functional units which are used infrequently. Due to the infrequent use, there is

no point in pipelining the unit. Not only do pipeline latches consume a non-negligible amount of real estate, but the

setup and hold time of these latches and the propagation delay through them may even increase the latency of the unit.

In a non-pipelined approach without gated clocks, the complexity of the unit may result in the unit setting the maximum

clock frequency. Clearly, multi-cycle operation provides a solution for such cases. One may note that wave-pipelining

can be employed as well. However, in that case, the combinational block has to be designed with special care, so as to

avoid collisions between separate waves. In this paper, we will not consider wave-pipelined structures in our analysis.

Finally, gated clocks can lead to a more compact physical design. The use of gated clocks allow certain functions to

be implemented in a very area-efficient manner. A 32-bit register which has to retain its content for some cycles, and

clock in new values in other cycles can be implemented with a multiplexer which selects either the new value or the

present value. The same funcitonality can be accomplished by gating the clock of the register with the same control sig-

nal.

Many designers avoid gated clocks in their designs for two important reasons. First, gating the clocks introduce extra

skew between the signals clocking the synchronizers. In high frequency designs, the skew may pose an insurmountable

problem. In any case, correct operation of the circuit has to be verified carefully. Second, present static timing verifica-

tion tools are not able to deal with designs containing gated clocks properly. Therefore designers often have to rely on

simulations. Although this approach offers the greatest flexibility as to the variety and detail of circuits which can be

treated, it suffers from the major drawback of being incomplete. Simulation based approaches are not able to exhaus-

tively verify the complete circuit behavior for circuits of any non-trivial size.

One of the goals of this work is to allow safe design of systems with gated clocks, so that the advantages of gated

clocks can be exploited.

3.2 Circuit Structures and Regimes of Operation Using Gated Clocks

Consider a section of a circuit comprising a latch feeding a block of combinational logic and a latch being fed by that

combinational logic. Depending on the characteristics of the clock signals steering the input and the output latch, four

regimes of operation can be distinguished.

3.2.1 Input latch gated, output latch gated

This type of structure is typically used to achieve multi-cycle behavior. The input latches are gated in order to hold

the values of these latches for a certain number of clock cycles. The output latches are gated as well. The relationship

CSE-TR-CSE-TR-257-95: Timing Analysis of Digital Systems with Gated Clocks 4

between the two gating functions is such that the output latch samples its inputs only after the input latch has been hold-

ing its value for a certain number of clock cycles. Consequently, the combinational logic between these latches has mul-

tiple clock cycles to propagate signals.

3.2.2 Input latch gated, output latch not gated

Although the output latch operates on every clock, multi-cycle operation is still possible in this type of circuit. In

contrast to the previous case, the output synchronizer will sample the output of the combinational logic even when the

combinational logic is not ready with its computation. Thus, meaningless values will be latched in the output latch. In

the overall design, the values held by the output latches are don’t cares in the cycles immediately following the latching

of the input latches. Conventional timing verifiers would signal timing violations. This illustrates the necessity to incor-

porate high level information in timing verification.

3.2.3 Input latch not gated, output latch gated

In this configuration, the purpose of the gated clock of the output latch is to provide a cheap way of squashing

unwanted or erroneous data.

3.2.4 Input latch not gated, output latch not gated

This is the classical topology in purely synchronous systems. Multi-cycle behavior is still possible, if wave-pipelin-

ing is allowed, but requires very careful design of the combinational blocks between the latches.

 Note that the configuration where both the input and the output latches have their clocks gated is the most general, as

all four modes of operation can be realized by this configuration.

3.3 Secondary Clock Generation: Conditions for Proper Operation

In this section we define what we mean by well-formed secondary clocks. Primary clocks enable latches during one

interval of the clock cycle, and disable these latches during the complementary interval. For secondary clocks we

require that during a clock cycle the secondary clock must either disable the latch for the whole clock cycle, or it must

enable the latch during one interval of the cycle and disable the latch during the complementary interval. Moreover, we

demand that all events on a secondary clock are triggered by events on a single primary clock. This definition implies

that a secondary clock signal must be free of glitches. This can be assured by 1)allowing only a single path from that

secondary clock to the primary clock that it is derived from, and 2) requiring that the side-inputs on that single path are

stable between the enabling trigger event of the primary clock, and the next disabling event of the primary clock. It also

follows from the definition that for a positive (negative) level sensitive latch clocked by a secondary clock, the second-

ary clock signal must be functionally an AND (OR) of some control signals and either a primary clock, or the inverse of

a primary clock. The actual implementation of the network generating the secondary clock may not look like an AND

(OR) gate, but the functional property can be easily checked as follows. Let be a secondary clock derived

from the primary clock , where is a vector of state variables and primary inputs. Let and be the cofactors of

with respect to and respectively. Then, for a positive (negative) level sensitive latch clocked by , either

ψ f φ q,()=

φ q f φ f φ ψ

φ φ ψ f φ 0=

CSE-TR-CSE-TR-257-95: Timing Analysis of Digital Systems with Gated Clocks 5

(), or (). In [4] the same functional constraint is imposed on secondary clocks, but the dual for neg-

ative level sensitive latches was omitted. Moreover, that paper doesn’t mention the topological constraint that there be

only a single path from the secondary clock to the primary clock. Without this constraint, it is very hard to verify that

the secondary clock is indeed glitch-free.

4 Analysis Tools and Methodology

4.1 Datapath Model

In classical static timing analysis, the circuit is abstracted to a directed graph. The nodes of this graph correspond to

the synchronizers in the circuit, and the arcs represent combinational logic connecting two corresponding synchroniz-

ers. The arcs are labeled with the minimum and maximum delay between the synchronizers corresponding to the start-

ing point and end points of the arc. These delays can be obtained in various ways. A simple topological analysis can be

used to provide the delays. Alternatively, paths can be verified using the floating-mode sensitization criterion.

Circuits exhibiting multi-cycle operation require a more sophisticated model for performing static timing analysis. In

case different functional units with different delays share the same input and output synchronizers, it is necessary to dif-

ferentiate among them. The activation of the functional units is orchestrated by the controller. High level information is

used to indicate the appropriate control signals. The delay through the combinational block is expressed as a function of

these control signals. This approach is very similar to the hierarchical timing analyzer described in [8]. For each pair of

connected synchronizers, two sets of tuples are computed. Each tuple in the first set gives the maximum delay from the

first synchronizer to the other, and under which settings of the control signals that maximum delay is exhibited. Simi-

larly, the second set contains minimum delays. This model is more flexible and can handle a wider variety of circuits

than the simple mux-model described in [4].

4.2 Transformations on the Controller: The Mux Transform

For functional analysis, as described in the next section, it is necessary to extract the finite state machine underlying

the circuit. The presence of gated clocks complicates that extraction, but typically the gated clocks that occur in the con-

troller are not used to establish multi-cycle paths. In such cases the circuit can be transformed into a circuit without

gated clocks which is equivalent as far as timing and functionality is concerned. This so-called mux transform is illus-

trated in Figure 1. After the transformation, the extraction of the underlying state machine is trivial. One may note that

this mux transform could be applied to the complete circuit (both datapath and controller). Subsequently, a classic static

timing analyzer could be used to verify the timing. However, in that case such a timing analyzer would report multi-

cycle paths as violations, or alternatively the analyzer would have to remove sequential false paths from the circuit. The

first alternative is undesirable whereas the other option is not viable for non-trivial circuits.

f φ 0= f φ 0= f φ 0=

CSE-TR-CSE-TR-257-95: Timing Analysis of Digital Systems with Gated Clocks 6

.

4.3 Symbolic State Transition Graph Traversal

Many problems pertaining to sequential machines involve traversing the state transition graph of a finite state

machine. For example, in formal verification, temporal properties of sequential machines are checked [11]. In another

example, some approaches to test pattern generation for sequential machines [10] rely on the computation of the set of

all reachable states from the reset state. In early work, the state transition graph of the machine was built explicitly.

However, as the number of synchronizers increases, the size of the state transition graph increases drastically. State tra-

versal techniques which are basically enumerating all states in the graph are therefore not practical for non-trivial

machines. Implicit traversal methods [12] exploit the fact that for the above mentioned applications, states exhibiting a

certain property do not need to be treated individually but rather as a group. The key idea behind these methods is to

represent a subset of the n-dimensional boolean space by a boolean function. This so-called characteristic function indi-

cates for every point of the n-dimensional space whether it belongs to the subset, or not. The manipulation of subsets

can then be reduced to the manipulation of boolean functions. For instance, the characteristic function of the intersec-

tion of two subsets is given by the logical AND of the characteristic functions corresponding to those two subsets.

Using binary decision diagrams [6] to represent the boolean functions, these operations can be performed fairly effi-

ciently.

For the purpose of this work, we compute the set of all reachable states in the state transition graph corresponding to

a certain finite state machine. A generic algorithm is shown in Figure 2. The next-state functionsf are constructed from

the netlist. The computation of the set of all reachable states reduces to a fixed point calculation of an iterative process.

During each iteration, the set of currently reachable states is augmented with the states reachable from the states which

where newly discovered in the previous iteration. The process is repeated until no more new states are discovered. The

image operator gives the set of next-states given a transition function and a set of states.

S = {reset state}
newStates = S
while (newStates) {

NS = image(f, newStates)
newStates = NS - S;
S = S U NS;
}

Figure 2: Computation of reachable states

φs

Figure 1: Mux transform

⇔ 0
1

φs

D Q D Q

CSE-TR-CSE-TR-257-95: Timing Analysis of Digital Systems with Gated Clocks 7

4.4 Methodology

1. Specification of the circuit. The specification of the circuit includes: a netlist, and input-output delays annotating

each gate. Latches are characterized by their setup and hold time. Furthermore, additional high-level information

is included: 1) a partition of the latches into either datapath or control, 2) identification of control signals of interest.

2. Abstraction of the circuit. This step involves computing the minimum and maximum combinational delays

between a pair of latches. In case the drain latch depends on a control signal of interest, the condition delay model

is applied as indicated in Section 4.1. In case the combinational delay between a pair of latches exceeds the

proposed clock cycle, multi-cycle operation is assumed, and the minimum cycle budget is inferred.

3. Analysis of the network generating the gated clocks. The functional and topological requirements for gated clocks

are checked as described in Section 3.3. Constraints originating from the side-inputs along the path between a

secondary clock and the primary clock it is derived from are generated.

4. FSM analysis. A reachability analysis on the finite state machines of interest is performed. First gated clocks are

removed from the machine using the mux transform. The next-state functions are constructed. This is followed by

symbolic state transition graph traversal.

5. Verification of the properties governing multi-cycle behavior.The conditions on the control signals defining the

gated clocks, and other control signals are verified. These conditions guarantee that there are indeed as many clock

cycles available for multi-cycle operation as inferred in step 2.

6. Static timing verification using constraint relaxation.The SMO constraints are adjusted for multi-cycle operation

with the cycle budget verified in step 5, and the SMO constraints are augmented with the constraints generated in

step 3. The system of constraints is solved using constraint relaxation.

5 Example

In this section the methodology outlined above is illustrated with an example. The circuit under consideration is

shown in Figure 3. For simplicity transport delays are assumed. Unlabeled combinational circuit elements have a unit

delay. The datapath fragment contains two functional units with very different delays. The longest delay through the

multiplier is 23 time units. The adder executes in 4 time units. Both functional units share the same destination latch

through a multiplexer. Assuming multiplication is relatively infrequent, it might be appropriate not to pipeline that unit,

thus saving the cost of the extra latches. Instead, the multiplier is operated in a multi-cycle mode. Whenever a multipli-

cation is needed, the data input latches are not clocked with new values, until the present data has had time to propagate

through the multiplier. Similarly, the destination register is not clocked until the result is stable. If the destination regis-

ter were to be clocked unconditionally, it is likely that it would contain unpredictable values in some cycles.

The select signal of the multiplexer and the signals gating the clocks are generated by a small finite state machine.

This controller ensures that when the multiplier is selected, the input data latches do not change for two cycles such that

the signals have time to propagate through the multiplier. The state machine has one primary input, which indicates

whether the next operation to be executed is a multiplication. The state diagram of the controller is shown in Figure 4.

Note that in our method we never build the state diagram explicitly.

We now apply our methodology to the circuit.

CSE-TR-CSE-TR-257-95: Timing Analysis of Digital Systems with Gated Clocks 8

1. Specification of the circuit. The latches are partitioned into datapath and control latches. Latches

belong to the datapath partition; latches are part of the control partition. The signal

is marked as a control signal of interest.

2. Abstraction of the circuit. Using a delay calculator based on conditional arithmetic [8], the minimum and

maximum delays through the combinational blocks are computed. The delays are expressed as a function of the

control signals of interest, i.e. . Note that when , the longest path through the combinational logic is 24,

whereas it is only 5 when . Hence multi-cycle operation can be inferred. Since the clock cycle is 10 time

units, at least 2 extra cycles are required. The abstraction of the datapath using the conditional delay model is

shown in Figure 5. For clarity, only maximum delays are indicated.

3. Analysis of the network generating the gated clocks. A functional and a topological analysis of the combinational

circuits generating the gated clocks is performed. In the example, those networks are single AND-gates. They do

satisfy the criteria for well-formed gated clocks. Also, a temporal analysis is performed. Constraints on the arrival

times of the side-inputs are generated: has to be stable from the rising edge of until the next falling edge of

, and , has to be stable from the rising edge of until the falling edge of .

4. FSM analysis. Any gated clocks present in the controller are removed by performing the mux-transform.

Subsequently, the next state functions of the FSM of the controller are extracted. The set of reachable states is

computed. Expressions of the gated clocks and the control signals(M, L, S), as a function of the state variables of

the finite state machine are constructed.

Next state functions:

Output functions:

where indicates that the signal is shifted over one phase to the future with respect to the frame of reference.

5. Verification of the properties governing multi-cycle behavior. The property that needs verification is that when the

multiplier is selected, the input data latches do not change for two cycles such that the signals have time to

propagate through the multiplier. Formally this can be stated as:

∀ ,∀ : ∃ such that :

where is the set of all reachable states.
Proof: Let , and

Using the next state equations:

∃ : , and

Now, expressing both sides of the implication as a function of:

, and

, and

LA LB LZ, ,{ }

LQ11 LQ12 LQ21 LQ22, , ,{ } M

M M 1=

M 0=

S φ2

φ2 L φ1 φ1

Q1 q1 q2⋅ q1 OP⋅+=

Q2 q1=

L q2@ 0.5=

M q2=

S q1=

@ 0.5

s ℜ∈ t ℜ∈ OP 0 1,{ }∈ Q t OP,() s= M s() S s()⋅ L s() L t()⋅⇒
ℜ

s s1 s2,()= t t1 t2,()=

OP 0 1,{ }∈ s1 t1 t2⋅ t1 OP⋅+= s2 t1=

t

M s() S s()⋅ t1 t1 t2⋅ t1 OP⋅+()⋅=

L s() t1= L t() t2=

CSE-TR-CSE-TR-257-95: Timing Analysis of Digital Systems with Gated Clocks 9

Thus: ∀ ,∀ : ❑

All these expression are computed using OBDDs which allows easy application of the quantification operators.

Now we have verified that at least two cycles are available. Consequently the paths in the graph can be annotated

as multi-cycle paths, taking two cycles. The abstraction of the complete circuit for static timing analysis is shown

in Figure 6. Note that arcs corresponding to multi-cycle paths are labeled with a # followed by the number of cycles

available.

6. Verification using constraint relaxation. Constraints corresponding to the network shown in Figure 6 are

generated, and the network is verified using constraint relaxation [7].

6 Conclusion

We proposed a methodology for verifying the temporal behavior of synchronous circuits containing gated clocks.

The circuit is partitioned in a datapath and controller sections. The combinational logic in the datapath is abstracted

using the conditional delay model and high level design information about control signals of interest. Secondary clocks

are identified and a well-formedness property is checked. When the combinational delay connecting two latches

exceeds the given clock cycle, that path is assumed to be a multi-cycle path. This hypothesis is checked by examining

relationships between the (secondary) clocks enabling the latch pair. State transition graph traversal techniques are

employed on a restricted finite state machine. The multi-cycle information is incorporated in the subsequent static tim-

ing analysis.

References

[1] K. Sakallah, T. Mudge, O. Olukotun, “checkTc and minTc: Timing verification and optimal clocking of synchronous digital
circuits,” in ICCAD-90 Digest of Technical Papers, pp. 552-555, Nov. 1990.

[2] T. Szymanski, “Computing optimal clock schedules,” in Proc. of the 29th Design Automation Conference, pp. 399-404, 1992.

[3] A. Ishii, “Retiming gated-clocks and precharged circuit structures,” in ICCAD-93 Digest of Technical Papers, pp. 300-307,
1993

[4] M. Kawarabayashi, N. Shenoy and A. Sangiovanni-Vincentelli, “A verification technique for gated clock,” in Proc. of the 30th
Design Automation Conference, pp. 123-127, 1993.

[5] A. Gupta and D. Siewiorek, “Automated multi-cycle symbolic timing verification of microprocessor-based designs,” in Proc.
of the 31st Design Automation Conference, pp. 113-119, 1994.

[6] R. Bryant, “Graph-based Algorithms for Boolean Function Manipulation,” IEEE Trans. Computer, Vol. C-35, No. 8, August
1986, pp. 677-691.

[7] T. Burks, K. Sakallah and T. Mudge, “Critical paths in circuits with level-sensitive latches,” IEEE Trans. VLSI Systems, Vol. 3,
No. 2, pp. 273-291, June 1995.

[8] H. Yalcin, J. Hayes, “Hierarchical timing analysis using conditional delays,” in ICCAD-95 Digest of Technical Papers, to
appear, 1995.

[9] P. McGeer, R. Brayton,Integrating Functional and Temporal Domains in Logic Design, Kluwer Academic, 1991.

[10] A. Ghosh,Sequential Logic Testing and Verification, Kluwer Academic 1992.

[11] J. Burch, et al., “Sequential circuit verification using symbolic model checking,” in Proc. of the 27th Design Automation
Conference, pp. 46-51, 1990.

[12] H. Touati, et al., “Implicit state enumeration of finite state machines using BDD’s,” in ICCAD-90 Digest of Technical Papers,
pp. 130-133, 1990.

OP 0 1,{ }∈ t ℜ∈ t1 t1 t2⋅ t1 OP⋅+()⋅ t1 t2⋅⇒

CSE-TR-CSE-TR-257-95: Timing Analysis of Digital Systems with Gated Clocks 10

φ1

1
0

φ2

φ2

φ2

φ1

φ1

OP

A

Z

M SL

q1

q2

multiplier: ∆=23

adder

φ1

φ2

0 1 5

6 10

Q1

Q2

Datapath

controller

ψ2ψ1

∆=4

Figure 3: Example circuit

B

LA

LB

LZ

LQ1_2 LQ1_1

LQ2_2 LQ2_1

Gates:∆=1

S0 S1 S2 S3

!OP

OP

OP !OP

outputs: LMS

010

100 101 011

State encoding

State q1 q2

S0 11

S1 01

S2 00

S3 10

Figure 4: State diagram

CSE-TR-CSE-TR-257-95: Timing Analysis of Digital Systems with Gated Clocks 11

ψ2

ψ1

ψ1

((24,Μ), (5,!Μ))

((24,Μ), (5,!Μ))

Figure 5: Conditional delay model of datapath

5

24#2

5

24#2

2

0 0

2

3

0

φ2 φ2

ψ2

ψ1

ψ1

φ1 φ1

Figure 6: Bubble diagram

φ1

φ2

0 1 5

6 10

ψ1

ψ2

6

1

2

7

