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Preface

In Summer 1994 our research group started a project for studying scientific applications
performance on message-passing multi-computers. The objectives of this project included
developing techniques for porting scientific applications to message-passing multi-computers,
and developing techniques for performance estimation, evaluation, and improvement. The
initial test case was porting a large commercial finite-element method application for car
crash simulation to the IBM SP2. This application was originally written for a scalar unipro-
cessor and then ported and tuned for parallel vector supercomputer with shared memory.
Now that we have completed this porting we are in a position to use this application to
carry out a wide range of experiments to test different techniques and ideas for achieving
the project objectives. This report focuses on the development of a series of performance
models, together with some examples of using these models, which provide a basis for these
experiments and for future porting and tuning efforts on message-passing systems in general,
and the IBM SP2 in particular.

We have realized the need to develop models for characterizing the performance of the
different aspects of a message-passing computer. The performance models should be able
to predict execution time given the high-level source code of a scientific application. Such
models are useful to explain the achieved performance and to help in selecting appropriate
techniques and where to apply them for performance improvement and tuning.

The achieved performance of a message-passing application depends on the application
itself, the guidance provided by the programmer, the quality of the compiler used to generate
the object code, the computational performance of the processors, the performance of the
memory hierarchy, and the performance of the interconnection network.

In this report we present the results of some of our efforts in developing performance
models for the IBM SP1 and the IBM SP2. These efforts started in the Summer of 1994,
with a directed study to develop models for the IBM SP1 and the IBM SP2 communication
performance using the MPL message-passing library. Since that time we have refined these
models, and developed models for some other computers and message-passing libraries.

Since February 1995 we have been developing models for the computational performance
of the IBM SP2 processor nodes and their memory hierarchy. Parts of the material presented
in this report were also used as term projects for the EECS 570, EECS 587, and EECS 598
courses.

This report is organized in 6 chapters. After the introductory chapter 1, chapter 2
presents the development of the communication performance models for the SP1 and the
SP2 using the MPL message-passing library. Chapter 3 shows an example of how the SP2
communication performance models are used in performance evaluation and improvement.
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The performance of six broadcast algorithms are evaluated and a methodology for developing
an efficient broadcast algorithm is presented. Chapter 4 presents the communication perfor-
mance models for the IBM SP2 and the Convex SPP-1000 using the PVM message-passing
library, and compares their performance based on the communication performance models.
Chapter 5 presents the models for the SP2 processor nodes, namely a Machine-Application
Performance Bound Model. Some test cases are presented to illustrate the use of this model
to obtain computational performance evaluation and improvement. Chapter 6 concludes this
report by summarizing what has been achieved and outlining our plans for future work.



Chapter 1

Introduction

In this introductory chapter we specify the problems addressed in this report, we outline our
approach for modeling the communication performance of a message-passing multi-computer,
we outline our approach for modeling the computation performance of the processor nodes,
and we describe how these models are integrated to model the overall performance of a
message-passing multi-computer.

1.1 Problem Statement

A Distributed-Memory Multi-computer consists of multiple processor nodes interconnected by
a message-passing nelwork. Each processor node is an autonomous computer consisting of a
central processing unit (CPU), memory, communication interface adapter, and, for at least
some nodes, mass storage and 1/0 devices.

Figure 1.1 shows a general model for a message-passing multi-computer. The Intercon-
nection Network provides the communication channels through which the processor nodes
exchange data and coordinate their work in solving a parallel application. Different types
of Interconnection Networks vary in topology and throughput. Hypercubes and Multistage
Interconnection Networks, MINs, are two of the commonly used topologies. The Communi-
cation Adapter provides the interface between the processor node and the Interconnection

Processor Node | Processor Node
110 CPU Memory | | 110 CPU Memory
eeeo
Communication Adapter Communication Adapter

Interconnection Network

Figure 1.1: Model of a message-passing multi-computer
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Network. Some simple Communication Adapters are directly controlled by the CPU, more
sophisticated adapters do communication processing, error checking and correction, and di-
rect memory access, DMA. The number of communication links in each Communication
Adapter depends on the topology of the Interconnection Network. MINs usually have one
communication link per processor node, and hypercubes have log, p communication links,
where p is the number of processor nodes.

The performance of a multi-computer is a function of the performance of the processor
node components and the Interconnection Network. The objective of this report is to develop
models that characterize the performance of the different aspects of a multi-computer to
facilitate the following activities:-

e Explain the achieved performance of message-passing applications.
e Develop efficient message-passing applications.

e Compare the performance of different multi-computers and application code imple-
mentations.

The models should estimate the execution time of a message-passing application given
its high-level source code. Such models are the most useful for engineers who are involved in
writing and tuning message-passing applications. Their utility results from two factors. First,
the problem of estimating the execution time of a message-passing application for a range of
problem sizes becomes an analytical problem of evaluating the performance models. Second,
selecting the best performance algorithms and implementation techniques can be done with
some confidence at an early stage when a draft of the source code becomes available for the
different implementations.

1.2 Communication Modeling

Estimating the time needed to carry out a communication process in a message-passing multi-
computer is a complex problem. The communication time depends on the characteristics of
the processor nodes and the Interconnection Network, the used message-passing library, the
communication pattern, the message size, the number of processor nodes, and the distance
between the processor nodes.

Our approach in developing communication performance models is to model the perfor-
mance of a set of common communication patterns. This set contains the basic commu-
nication patterns, and is selected in such a way that the complex communication patterns
can be constructed from these basic patterns. Hence the time of a complex communication
pattern is estimated by summing the times of its basic components. The set of the basic
communication patterns include Point-to-point, Exchange, One-to-many, Many-to-one, and
Many-to-many.

To develop performance models for the basic communication patterns we develop pro-
grams to perform and time these patterns. Each program is run for varying message lengths
and varying number of processors. The timing data gathered from executing these programs
is analyzed, and, using curve-fitting techniques, we develop formulas that give the time as a
function of the message length and the number of processors.
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In the SP1 and the SP2, the communication latencies vary by only a few percent as the
distance between the processor nodes is varied. Although we have characterized the distance
effect on the SP1 and the SP2 communication times, we do not include the distance in their
communication models for simplicity.

1.3 Computation Modeling

Our approach for modeling the computation performance of the processor nodes is through
using a Machine-Application Performance Bound (MA Bound) [1, 2, 3, 4]. The MA Bound of
an application is an upper bound for the performance that can be achieved for the application
on a certain machine. The MA Bound is found by counting the essential operations in the
application. The operations are then classified according to the functional unit(s) that will
be involved in their execution. After summing up the instructions that will be executed by
each functional unit, and assuming a perfect instruction schedule, we find the time that each
functional unit will be busy in executing its share of instructions. The MA time is simply
the time of the busiest functional unit in each region of the code.

Although the measured time is usually larger than the MA time, experience has shown
that the gap can be reduced by better quality compilers, hand coding, or modeling more
aspects of the machine.

In this report we develop the MA Bound model for the IBM POWER?2 processor which
is used in the IBM SP2. This development is done by identifying the POWER2 functional
units that affect the performance of scientific applications, and developing a model for each
functional unit to translate the number of instructions into time. The memory hierarchy
performance is part of the MA Bound. The memory hierarchy is considered as one of the
functional units, and is responsible for executing the load and store operations. To model
the memory functional unit we use techniques to measure its effective access time, and we
develop methods for estimating the number of essential cache misses of an application.

1.4 Model Integration

The execution time of a message-passing application depends on the computation time and
the communication time. The multi-computers that use the main CPU for communication
processing and data transfer, as in the IBM SP2, do not provide overlap for the computa-
tion time and communication time. So in this case the execution time is the sum of the
computation and communication times.

In our approach for modeling the performance of the SP1 and the SP2 we find an appli-
cation execution time by summing the computation time and the communication time. A
lower bound on the computation time is found by counting the essential operations in the
high-level source code and using the MA Bound model. The communication time is found by
identifying the explicit calls to the message-passing library routines in the high-level source
code, relating these calls to the basic communication patterns, and using the communication
performance models.
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Chapter 2

Communication Modeling

2.1 Introduction

In order to write efficient message-passing applications, programmers need good performance
models for wide variety of communication patterns. There isn’t enough work on developing
performance models for message-passing routines. The available models either do not cover
all the important communication patterns, or do not give information that is directly usable
by a programmer tuning a message-passing application.

Most of the work in developing performance models for message passing multi-computers
is centered around benchmarks. The NAS Parallel Benchmarks (NPB) [5] are developed to
study the performance of parallel supercomputers. These benchmarks consist of five parallel
kernels and three simulated application benchmarks. Together they mimic the computation
and data movement characteristics of large scale computational fluid dynamics applications.
Another benchmark suite is the PARKBENCH [6], this suite contains low level benchmarks
for measuring basic computer characteristics, kernel benchmarks to test typical scientific
subroutines, and compact applications to test complete problems.

Benchmarks like NPB are useful for comparing different machines, but they do not sepa-
rate computation performance from communication performance. PARKBENCH has bench-
marks for some of the communication patterns like the benchmark for the point-to-point
communication, but it does not contain benchmarks for the other important communication
patterns.

We have developed experiments to measure the time of the basic communication patterns
on the IBM SP1 and the IBM SP2 using the MPL message-passing library. These commu-
nication patterns are common in message-passing applications, and the other more com-
plex communication patterns are constructed from them. We have developed experiments
for timing Point-to-point, Exchange, One-to-many, Many-to-one, Many-to-many, Broadcast,
and Combine. Also we have studied the Synchronization time on these multi-computers.
The gathered data from these experiments were used to develop performance models for
these types of communication patterns, and to compare the performance of the two multi-
computers.

For each experiment, we have prepared a FORTRAN program that calls the MPL
message-passing routines. Each program performs one communication pattern many times,
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and reports the minimum time, the average time, and the standard deviation. These pro-
grams are executed on a varying number of processors (p) with varying message lengths

All the experiments were carried out on an exclusively reserved machine; where there are
no processes for other users. The measured data have low standard deviation; the measured
standard deviation divided by the measured time is usually only a few percent.

Section 2.2 describes the IBM SP1 and SP2. The following sections describe the experi-
ments used to study the different communication patterns, show the measured data, analyze
it, and develop the performance models. Finally, section 2.11 states the conclusions of this
chapter.

2.2 IBM SP1 and SP2

The IBM Scalable POWERparallel Systems SP1 and SP2 connect RISC System /6000 proces-
sors via the communication subsystem [7]. This subsystem is based upon a low latency high
bandwidth switching network called the High Performance Switch. The SP1 systems offer
switch connectivity from 8 to 64 POWER nodes, the SP2 systems offer switch connectivity
from 4 to 128 POWER or POWER2 nodes [8].

The SP1/SP2 networks are bidirectional multistage interconnection networks (MIN’s).
In a bidirectional MIN each communication link comprises two channels which carry data
in opposite directions. MIN’s are capable of scaling bisection bandwidth linearly with the
number of nodes while maintaining a fixed number of communication ports per switching
element.

The bidirectional MIN is constructed from 4-way to 4-way bidirectional switch elements.
The switching elements-physically 8 input, 8 output devices- are wired as bidirectional 4-
way to 4-way elements, see figure 2.1. Each switching element can forward packets from any
input port to any output port as directed by the packet’s route information.

Each node of an SP1/SP2 is incorporated into a logical frame, which encompasses up to
16 nodes connected to one side of a switch board. The switch board has two stages, each
stage has four switch elements, the first stage is connected to the processor nodes, and the
second stage is used to connect with other frames.

Nodes send messages to other nodes by breaking messages into packets and injecting these
packets into the network. Each packet contains route information examined by switching
elements to forward the packet correctly to its destination. The smallest unit on which flow
control is performed is called a flit, which is one byte in the SP1/SP2 Switch. The width
of the data transmitted by an output port is also one byte. Fach packet has one length flit
followed by one or more route flits then data flits; packet length is at most 255 flits.

The Switch flow control method is buffered wormhole routing, each flit of a packet is
advanced to the appropriate output port as soon as it arrives at a switching element input
port. When the head of a packet is blocked, the flits are buffered in place. As soon as the
output port is free, packet transfer resumes.

An SP1/SP2 system is composed of frames containing up to 16 processors and one switch
board assembly that implements the two stage network building block. The switching ele-
ment of the board is the Vulcan switch chip [9]. The Switch operates at 40 MHz, providing



2.2. IBM SP1 AND SP2 7

PO == ==
Pl <= ==
P2 == ==
P == ==
P4 == ==
P5 == ==
P6 == ==
Pl == ==
P8 == ==
PO == ==
PI0 <= ==
Pl1 = ==
P12 < ==
PI3 <= ==
P4 <= ==
Pl5 <= ==

Figure 2.1: An SP1/SP2 logical frame—a 16 node bidirectional MIN

peak bandwidth of 40 megabytes per second over both byte-wide channels of each commu-
nication link.

The Vulcan switch chip contains 8 receiver modules and 8 transmitter modules, an un-
buffered crossbar, and the central queue. All ports are one flit (one byte) wide. In the
absence of contention, packet flits incur 5 cycles of latency cutting through the chip via the
crossbar path.

In SP1 system, processor nodes are attached to the switching elements of the network
via Communication Adapters.

In SP2 system, processor nodes are attached to the switching elements of the network
via Enhanced Communication Adapters. This adapter incorporates an Intel i860 XR 64-bit
microprocessor, 2KB input FIFO, 2KB output FIFO, and two DMA engines. The adapter
carries communications coprocessing, data checking, and DMA between the Micro Channel
and the two FIFO'’s.

The SP1 system used for these experiments has 32 POWER nodes operating at 62.5
MHz, with 32 KB instruction cache and 32 KB data cache.

The SP2 system used for these experiments has 32 POWER2 Thin nodes operating at
66.7 MHz, with 32 KB instruction cache and 64 KB data cache.

The IBM SP2 supports three message passing libraries, MPL [10], PMVe [11], and MPL.
PVMe is IBM’s implementation of the popular PVM [12] on SP2, the current version is
3.2.6. The IBM PVMe is compatible with PVM, but its internal structure is different. The
IBM PVMe does not interface directly with the TCP/IP to perform data communication
between processors. Instead, it interfaces with the Communication Subsystem (CSS); the
communication software that runs on the High Performance Switch.

SP1/SP2 can be configured without the High Performance Switch, in this case commu-
nication is carried out using the Internet Protocol (ip) over slower interconnects like the

Ethernet and FDDI networks.
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2.3 Point-to-Point Communication

Th Point-to-point communication experiment is intended to measure the basic communica-
tion properties of a message-passing computer. In this experiment a message is sent from
processor A to processor B. Processor B receives the message and immediately returns it
back to processor A. The time of the complete trip is divided by two to get the Point-to-point
Communication time.

Figure 2.2 shows the minimum Point-to-point communication time on the SP1, the SP2,
and the SP2 when using the Internet Protocol (ip) over the Ethernet network.

The latency of short messages is 43 microseconds for the SP1, and 47 microseconds
for the SP2. The transfer rate of large messages reaches 35.1 MBytes/sec in the SP2 (see
figure 2.3), and it is only about 8.7 MBytes in the SP1. The transfer rate is found by dividing
the message length by the minimum communication time. The latency of short messages for
the SP2 using the Internet Protocol (ip) is 506 microseconds, and the transfer rate of large
messages is 1.08 MBytes/sec.

Table 2.1 summarizes this data for the three cases, it gives the asymptotic latency in
microseconds for small messages, and the transfer rate in MBytes/sec for large messages (1

MByte).

H Configuration ‘ Latency ‘ Transfer Rate H

IBM SP1 13 8.7
IBM SP2 A7 35.1
IBM SP2 (ip) 506 1.03

Table 2.1: Latency and Transfer Rate for Point-to-point Communication
More detailed experiments were done to find out more about the Point-to-point com-
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Figure 2.2: Point-to-point and Exchange Communication Times
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Figure 2.3: Point-to-point and Exchange Transfer Rates

munication time characteristics. The experiment described above was repeated for every
message length in the range form 0 to 2000 bytes, the results are shown in figure 2.4. This
experiment was repeated twice, the first time with two nodes from the same frame (Near
nodes), and the second time with two nodes from different frames (Far nodes).

The results show that Point-to-point communication time is about 1 to 3 microseconds
longer when the communication is done between far nodes. One can notice that there are
discontinuities in the communication time at periodic sizes of the message length due to
packetization. The discontinuities are at 217 4+ 232¢ Bytes; where ¢ € {0,1,2,...}

The Point-to-point communication time often can be expressed by a few simple param-
eters [13]; ro, is the asymptolic transfer rate in MBytes/sec, and g is the asymplotic zero
message length latency in microseconds. The time (in microseconds) for Point-to-point com-
munication as a function of n, T,,(n), is given by the following equation:-

n
Tpp(n) =lo+ —

Too

For small messages, the setup time ¢y is dominant, while for large messages the transfer time
governed by r., is dominant. The transfer rate, r(n), is found by the following equation:-

After measuring the Point-to-point communication time for different configurations, we
have observed that there is no single set of r,, and ¢y that cover a wide range of n. This
suggests splitting the n domain into regions, where each region has its own set of r., and 7.
The resulting values for r., and ty are shown below.
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40

20

1000 1500 2000
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Figure 2.4: Point-to-point Communication time for the SP2, the effects of Packetization and
Distance

SP1

The following are the parameters and regions for the Point-to-point Communication time on
the SP1 using the MPL message-passing library.

43 n < 217
to = H8 217 <n < 8KB
228 n > 8KB

5.56 n <217
Teo =< 1.39 217 <n < 8KB
8.70 n > 8KB

The boundary between the first and second regions is due to the limit on the maximum

packet length (255 flits).

SP2

The following are the parameters and regions for the Point-to-point Communication time on
the SP2 using the MPL message-passing library.

47 n < 217

55 217 < n < 2048

74 2048 < n < 64KB
399 n > 64KB
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23.5 n < 217
_ ] 2256 217 <n <2048
"o =\ 29.3 2048 < n < 64KB
36.2 n > 64KB

The boundary between the second and the third regions is due to the size of the com-
munication adapter’s FIFO buffer (2 KBytes). Although the SP2 has slightly longer latency
than the SP1, its transfer rate is about 4 times higher.

SP2 (ip)

The following are the parameters and regions for the Point-to-point Communication time on
the SP2 using the MPL message-passing library with the Internet Protocol over the Ethernet.

o[ 199 n < 64KB
7 ) 746 n > 64KB

[ 1.06 n < 64KB
=1 1.08 n > 64KB

These parameters show clearly that the High Performance Switch has lower latency and
its transfer rate is about 36 times higher than the Ethernet network.

2.4 Exchange Communication

This experiment is intended to measure the performance of the processor when it is using
its communication link in both directions simultaneously. In this experiment we have two
processors, each processor sends a message to the other processor and receives the message
sent to it. The time needed to complete receiving one message and sending one message is
the Exchange Communication time.

Figure 2.2 shows the minimum Exchange communication time on the SP2. Figure 2.3
shows the transfer rate for the Exchange communication. The transfer rate is found by
dividing the message length by one half the minimum Exchange communication time. The
transfer rate, r(n), is found by the following equation:-

where

n
Teazch(n) =19+ —

Feo
The Exchange time for small messages is 41 microseconds, and the transfer rate for 1
MByte messages is 41.2 MBytes/sec.
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The following are the parameters and regions for Exchange Communication time on the
SP2 using the MPL message-passing library.

40 n < 4KB
to=< —52 4KB <n < 16KB
167 n > 16KB

28.4 n < 4KB
rew =14 16.2 4KB <n <16KB
20.7 n > 16KB

When using the communication link in both directions in the Exchange communication
we get about 17% higher transfer rate than when using it in one direction only as in the
Point-to-point communication.

2.5 One-to-many Communication

This experiment is intended to measure the outbound performance of a message-passing
computer. The sender processor sends p different messages to p different processors. The
time taken by the sender processor to finish sending these messages is the One-to-many
Communication time.

Figure 2.5 shows the average One-to-many communication time on the SP1 and the SP2.
This data shows that the One-to-many Communication time is proportional to n and p, and
the SP2 times are better than the SP1 times.

In One-to-many communication there are two variables, the message length, n, and the
number of destination processors, p. So the models for this communication pattern are

100000 SP1 Model ==
P1 measured time to 1
Dl 'n« 2

[S o
P1-measured-time-t +
SP1 measured time to 4 O
SP1 measured time to 8 x
SP1 measured time to.16...2
SP2 Model -----
SP2 measured timeto 1 x
P2 measured timet0 2 ¢
SP2 measured time to 4+
SP2-measured-time-to-8--&
X

SP2 measured time to 16

10000

1000

Time (Microsecond)

S I I

16 64 256 1K
Message Length (Byte)

4K 16K 64K

Figure 2.5: One-to-many Communication Time
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functions of n and p, Ty, (n, p). In order to have models that are natural and simple, we use
the following model:-

Ty (1, p) = tim(p) + mMim(p)n

Here t1,,(p) gives the setup time for p messages, and m1,,,(p) gives the transfer time per byte
to p destinations. The following are the models for the two systems.

SP1

The model for the One-to-many Communication time on the SP1 using the MPL. message-
passing library is:-

Tim(n,p) = (=94 28p) 4+ (0.114p)n

Figure 2.5 shows the model and the measured data.

SP2

The model for the One-to-many Communication time on the SP2 using the MPL. message-
passing library is:-

Tim(n,p) = (=5.5 4 15.5p) + (0.031p)n

Figure 2.5 shows the model and the measured data. The model shows a loose fit for small
p at n about 1/2 KBytes. Nevertheless; the model can be made more accurate by splitting
it into more regions as in the Point-to-point communication model. The SP2 transfer time
is about 1/3 the SP1 transfer time.

2.6 Many-to-one Communication

This experiment is intended to measure the inbound performance of a message-passing com-
puter. The receiver processor receives p different messages from p different processors. The
time taken by the receiver processor to finish receiving these messages is the Many-to-one
Communication time. Figure 2.6 shows the average Many-to-one communication time on
the SP1 and the SP2, the SP2 times are better than the SP1 times.

In Many-to-one communication there are two variables, the message length, n, and the
number of destination processors, p. So the models for this communication pattern are
functions of n and p, T,,1(n,p). In order to have models that are natural and simple, we use
the following model:-

Tra(n,p) = tmi(p) + Tma(p)n

Here t,,1(p) gives the setup time for p messages, and m,,1(p) gives the transfer time per byte
from p sources. The following are the models for the two systems.

SP1

The model for the Many-to-one Communication time on the SP1 using the MPL, message-
passing library is:-

Toi(n, p) = (=26 4+ 40/p + 7.6p) + (0.128 4 0.161 log p)n
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Figure 2.6: Many-to-one Communication Time

SP2

The model for the Many-to-one Communication time on the SP2 using the MPL, message-
passing library is:-

Tmi(n,p) = (34 13.3p) + (0.0285p)n

2.7 Many-to-many Communication

This experiment is intended to measure the total saturation bandwidth of a message-passing
computer, and to find how this bandwidth scales with the number of processors. In this
experiment each processor sends different messages of length n to the other p—1 processors,
and receives p — 1 messages. The time needed by a processor to send and receive its share of
messages is the Many-to-many Communication time. Figure 2.7 shows the average Many-
to-many communication time for SP1 and SP2.

In Many-to-many communication there are two variables, the message length, n, and the
number of processors participating in this communication pattern, p. So the models for this
communication pattern are functions of n and p, T,m(n,p). In order to have models that
are natural and simple, we use the following model:-

T (75 9) = L (p) + T (p)10

Here ¢, (p) gives the setup time for sending p — 1 messages and receiving p — 1 messages,
and 7, (p) gives the transfer time per byte with p — 1 nodes. The following are the models
for the two systems.
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SP1

The model for the Many-to-many Communication time on the SP1 using the MPL message-
passing library is:-

Tom(n,p) = (59 + 58(p — 2)) 4 (0.231 + 0.280(p — 2))n

SP2

The model for the Many-to-many Communication time on the SP2 using the MPL message-
passing library is:-

T (n,p) = (43 +40(p — 2) + (0.057 + 0.062(p — 2))n

The SP2 has smaller setup time and about one fifth the SP1’s transfer time.

2.8 Broadcast

This experiment is intended to measure the Broadcast performance of a message-passing
computer. The sender processor sends the same message to p different processors. The
time taken by the sender processor to finish sending these messages is the Broadcast time.
Figure 2.8 shows the average Broadcast time on the SP1 and the SP2.

In Broadcast communication there are two variables, the message length, n, and the
number of destination processors, p. So the models for this communication pattern are
functions of n and p, Tp.(n, p). In order to have models that are natural and simple, we use
the following model:-

Tye(n, p) = tye(p) + moe(p)n
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Here t;.(p) gives the setup time for p destinations, and m,.(p) gives the transfer time per byte
to p destinations. The following are the models for the two systems.

SP1

The model for the Broadcast time on the SP1 using the MPL message-passing library is:

Ty(np) = | (21+25D) + (0117 +0.118D)a n < 4KB
bl P) = (48p + 1.2p%) + (0.115 4 0.139D — 0.02D%)n n > 4KB

where D = [log, p]|.

SP2

The model for the Broadcast time on the SP2 using the MPL message-passing library is:-

Ty(m.p) = { (96 14D) + (0:0083 1 0.015D)n 0 < 217
bl P) =0 (64 12D) + (0.025 +0.026D)n - n > 217

where D = [log, p|.

2.9 Combine

This experiment is intended to measure the Combine performance of a message-passing
computer. In Combine a reduction operation is applied on message data from, and the
result 1s sent to, all participating processors. Figure 2.9 shows the average Combine time on
the SP1 and the SP2. The reduction operation used in this experiment is double precision
summation.
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In Combine communication there are two variables, the message length, n, and the
number of participating processors, p. So the models for this communication pattern are

functions of n and p, Tp.(n, p). In order to have models that are natural and simple, we use
the following model:-

Ta(n,p) = ta(p) + ma(p)n

Here t4(p) gives the setup time for p processors, and m(p) gives the combine time per
byte for p processors. The following are the models for the two systems.

SP1

The model for the Combine time on the SP1 using the MPL message-passing library is:-

(9.5 +82D) + (0.40D)n n < 217
Tw(n,p) ={ (12+112D) + (0.30D)n 217 <n < 4KB
(160 + 162p) + (—0.23 + 0.43v/D)n  n > 4KB

where D = [log, p].

SP2

The model for the Combine time on the SP2 using the MPL message-passing library is:-

(97D) + (0.11D)n n < 217
Ta(n,p) =< (114D) 4 (0.12D)n 217 <n < 2KB
(=50 +191D) + (0.09D)n n > 2KB

where D = [log, p|.
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2.10 Synchronization

This experiment measures the time to execute a barrier synchronization routine as a function
of the number of processors taking part in the barrier.

Figure 2.10 shows the average Synchronization time for the two configurations. The SP1
and the SP2 times using the MPL message-passing library are similar.
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Figure 2.10: Synchronization Time

The model for the Synchronization time gives the time as function of the number of
processors, p, involved in the synchronization barrier, Ty..(p).

The data for the SP1 and the SP2 are similar and can be represented by the following
model:-

Tyyne(p) = 84log, p

This model implies an efficient implementation of the barrier, such good performance can
be accomplished when the barrier is implemented using a binary tree method.

2.11 Conclusions

We have developed experiments to measure the communication performance on the IBM SP1
and the SP2. Each experiment is running and timing a program that do one communication
pattern many times. The results of running these experiments enabled us to develop models
for the common communication patterns. These models give the time of a communication
pattern as functions of the message length, n, and the number of processors, p. The accuracy
of these models is better than 8%, which is adequate for estimating execution times and
tuning a message-passing application.
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We have shown that it is possible to model the time of wide range of communication
patterns by the following equation:-

Tcomm(nyp) = tcomm(p) + 7Tcom'm,(p)n

where teomm(p) s the setup time, and 7oop,, (p) is the transfer time per byte.

The communication performance of the SP2 is better than that of the SP1. In Point-
to-point communication the SP2 latency for short messages is a little bit longer than the
SP1 latency, but the SP2 transfer rate for long messages is four times the SP1 transfer
rate. In One-to-many communication the SP2 has shorter setup time and one fourth the
transfer time. In Many-to-one communication the superiority of the SP2 is not as impressive.
In Many-to-many communication the SP2 has shorter setup time and one fifth the transfer
time. The SP1 and SP2 use efficient algorithms for implementing the Broadcast and Combine
communications, and the SP2 performance is better than the SP1 performance. The two
systems have similar Synchronization time.

These models are useful for programmers and engineers involved in writing high perfor-
mance message-passing applications. We have successfully used these models to analyze and
tune a Finite Element Application [4]. And we have used them to study the performance of
six broadcast algorithms (see chapter 3).

These models can also be used to do comparisons between MPP’s. We were able to
conclude interesting results (see chapter 4) by developing performance models for the PVM

message-passing library on the IBM SP2 and the Convex SPP-1000 [14].
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Chapter 3

Broadcast Algorithms

3.1 Introduction

In message-passing applications, collective communication patterns can be time consuming.
In this chapter we present a study for six broadcast algorithms implemented on the IBM SP2.
The objective of this study is to find out the relative performance of these algorithms. This
objective is achieved by developing a performance model for each algorithm. The developed
models give the broadcast time as a function of the message length, n, and the number of
participating processors, p. Given certain n and p these models can be evaluated to find
out which algorithm has the best performance. We also give explanations for the relative
performance of these algorithms according to the characteristics of the SP2 interconnection
subsystem.

The IBM SP2 is a message-passing multi-computer, it uses an interconnection network
that has a bisection bandwidth that scales linearly with the number of nodes, while main-
taining a low communication latency. The broadcast algorithms presented in this chapter
vary in complexity, and are chosen to exploit the SP2 interconnection network capabilities.

The algorithms are implemented by writing short FORTRAN programs using the MPL
message-passing library routines. Each program calls a broadcast routine many times, and
reports the minimum time, the average time, and the standard deviation. The measured time
is the time needed to complete the broadcast operation globally; beginning at the start of
the first activity by the sender and ending at the end of the last reception. To find this time
experimentally, the broadcast is repeated p times. Processor 0 starts broadcasting, followed
by the processor that receives the last, and so on until all the processors have broadcasted.
The time for these p broadcasts is measured and divided by p to get the wanted broadcast
lime.

In the following sections we describe each of the six broadcast algorithms, describe their
implementation on the SP2, present the measured timing data, develop their performance
models, and explain the achieved performance. In section 3.8 we present a comparison for
the performance of the six algorithms, finally, section 3.9 states the chapter conclusions.
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3.2 MPL Broadcast (bc)

This algorithm simply calls the mp_bcast routine which is one of the MPL collective com-
munication routines, these routines are optimized for doing collective communication. The
mp_bcast is a blocking communication in which all the processors remain busy until the
broadcast is completed. The implementation of this algorithm is straightforward; all the
participating processors call the mp_bcast routine, the variable source specifies the sender
processor, and the other processors become the receivers. The pseudo-code for this algorithm
is as follows:-

begin
call mp_bcast(buf, length, source, allgrp)
end

Figure 3.1 shows the measured be minimum broadcast times for wide range of message
lengths and varying number of processors. Roughly speaking, the be broadcast time is
proportional to n and log, p.

IBM implemented the mp_bcast routine using a recursive doubling algorithm that uses
low-level primitive sends and receives. Given the measured timing data for this routine and
using curve-fitting techniques we found that the following equation gives a good estimate for
the be broadcast time:-

nlog, p

o0

the(n,p) =23 + 27log, p +
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Figure 3.1: MPL Broadcast Time
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3.3 One-to-many Broadcast (1m)

This is a naive algorithm, the sender sends to each of the other processors in turn, so it
uses one communication link at each iteration. The pseudo-code for this algorithm is shown
below, the sender processor calls the mp_send routine p-1 times to send the message to the

p-1 receiver processors, and every receiver processor calls the mp_brecv routine to receive the
message.

begin
if (my_proc .eq. source) then
do j=1, nprocs-1
dest = mod(my_proc+j, nprocs)
call mp_send(buf, length, dest, msgtype, msgidl)

end do
else

call mp_brecv(buf, length, source, msgtype, msgid2)
end if

end

Figure 3.2 shows the measured 1m minimum broadcast times for wide range of message
lengths and varying number of processors. Roughly speaking, the 1m broadcast time is
proportional to n and p.

The broadcast time of this algorithm can be constructed by using the basic communica-
tion models that were developed in chapter 2. The 1m broadcast time equals the time for
the sender to do p — 2 sends plus the time of the last Point-to-point communication, it is
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approximated by the following equation:-

tlm(n,p) = Tlm(n,p - 2) + Tpp(n)

3.4 Recursive Doubling Broadcast (rd)

This algorithm was introduced for hypercube multi-computers [15], it has [log, p]| stages, in
stage 7 processors 0,1,...,2° — 1 send to processors 2¢,2° +1,...,2"*! — 1. The pseudo-code
for this algorithm is as follows:

begin
dim = int(lg(nprocs-1)) + 1
me = mod(my_proc+nprocs-source, nprocs)
do 1=0, dim-1
if (me .1t. 2%%i) then
dest = me + 2%*i
if (dest .1t. nprocs) then
dest = mod(dest+source, nprocs)
call mp_bsend(buf, length, dest, msgtype, msgidl)
end if
else
if (me .ge. 2*%*%i .and. me .1lt. 2%2%%i) then
to = mod(me-2**i+source, nprocs)
call mp_brecv(buf, length, to, msgtype, msgid2)
end if
end if
end do
end

Figure 3.3 shows the measured rd minimum broadcast times for wide range of message
lengths and varying number of processors. Roughly speaking, the rd broadcast time is
proportional to n and log, p.

In this algorithm the longest path has [log, p| hops of Point-to-point communication, so
the broadcast time can be approximated by the following equation:-

trd(n7 p) = Hogz pW Tpp(n)

3.5 Pipelined Recursive Doubling Broadcast (prd)

This algorithm is similar to the Recursive Doubling Broadcast, but in prd the message is
broken into smaller parts, and the routine is repeated until all the parts are broadcasted. By
doing experiments with different part sizes, we found that an 8 KBytes part size gives the
best performance.
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Figure 3.4 shows the measured prd minimum broadcast times for wide range of message
lengths and varying number of processors. The measured broadcast times are a little bit
higher than the rd broadcast times.

The SP2 communication links are bidirectional, so an SP2 node is capable of receiving
and sending at the same time. In Point-to-point communication a link is used in one direction
at a time, leading to r., about 35 MBytes/sec. With bidirectional communication we can
achieve higher transfer rates. Figure 2.3 shows that we can get about 41 MBytes/sec transfer
rate in the Exchange communication which uses bidirectional communication.
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The prd broadcast time is higher than the rd broadcast time because it fails to exploits
this feature effectively due to the fact that a node receives 1 part and sends 6(log, p) parts,
and the gain in the partial usage of bidirectional communication does not compensate for the
overhead of splitting the message into smaller parts. The broadcast time for this algorithm
is approximated by the following equation:-

n

tora(n, p) = (8192)[10g2pw7¥p(8192)

3.6 Binary Tree Broadcast (bt)

In this algorithm the processors are arranged in a logical binary tree, each processor receives
from its parent (if it has one) and sends to its children (if it has any). The pseudo-code for
this algorithm is as follows:-

begin
levels = int(lg(nprocs))
me = mod(my_proc+nprocs-source, nprocs)
mylevel = int(lg(me+1))
lc = 2*me + 1
rc = 2*me + 2
p = int((me-1)/2)
if (me .ne. 0) then
to = mod(p+source, nprocs)
call mp_brecv(buf, length, to, msgtype, msgid2)
end if
if (1c .1t. mnprocs) then
dest = mod(lc+source, nprocs)
call mp_bsend(buf, length, dest, msgtype, msgidl)
end if
if (rc .1t. mnprocs) then
dest = mod(rc+source, nprocs)
call mp_bsend(buf, length, dest, msgtype, msgidl)
end if

end

Figure 3.5 shows the measured bt minimum broadcast times for wide range of message
lengths and varying number of processors. Roughly speaking, the bt broadcast time is
proportional to n and log, p.

In this algorithm there are |log, p| levels, a node receives from its parent, sends to its
left child, then sends to its right child, the longest path is the one along the rightmost path,
hence the broadcast time of this algorithm can be given by the following equation:-

toe(n, p) = |logy p[{Tim(n, 1) + Tpp(n)}

One advantage of this algorithm is that a node needs to do at most 1 receive and 2 sends,
resulting in a limited involvement in the broadcast process.
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3.7 Pipelined Binary Tree Broadcast (pbt)

This algorithm is similar to the Binary Tree Broadcast, but in pbt the message is broken
into smaller parts, and the routine is repeated until all the parts are broadcasted. By doing
experiments with different part sizes, we found that an 8 KBytes part size gives the best
performance.

Figure 3.6 shows the measured pbt minimum broadcast times for wide range of message
lengths and varying number of processors. The measured broadcast times are similar to the
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rd broadcast times, but there is an improvement for n > 8KB.

The time of this algorithm is the time needed to transfer n/8192 parts in a Point-to-point
communication plus the time taken for the last part to travel through the length of the tree,
hence the time can be approximated by the following equation:-

bypi(n,p) = {(gr55) = 13 T1m (8192, 2) + [log, p| {11, (8192, 1) + T,(8192)}

n
8192
3.8 Comparison

Figures 3.7, 3.8, and 3.9 show comparisons for the performance of the six broadcast algo-
rithms on the SP2. Figure 3.7 shows the broadcast times for short message (16 Bytes),
figure 3.8 shows the broadcast times for medium message (8 KBytes), and figure 3.9 shows
the broadcast times for long message (1 MByte). For n < 8192 the performance of prd is
similar to rd, and the performance of pbt is similar to bt. In addition to the broadcast
times of the six algorithms, the figures show the busy time of the sender processor in bt.
The bt sender busy time is shown in order to highlight the bt feature where the processors
are less involved in the broadcast operation, notice how the bt sender time is constant for
three or more processors.

All the figures show that bec has the lowest broadcast time almost in all » and p ranges.
The general shape of the be time curve is similar to rd curve for short and medium messages,
and is similar to the pbt curve for long messages. The marginal superiority of be over rd for
short and medium messages, and its marginal superiority over pbt for long messages can be
attributed to the fact that it is implemented using lower level constructs, and better usage
of the communication buffers.

For short messages the rd and bt broadcast times are similar, and are higher than the
broadcast time of 1m when the number of processors is less than 12. This is because the
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sender communication adapter in 1m is usually not saturated for short messages, so it can
fire several short messages to several destinations fast. Contrast to rd and bt, in 1m there
is no dependence on the one-way trip time before starting a new send.

For medium messages the communication adapter in 1m becomes saturated and 1m has
the worst performance. rd is better than bt because it uses more communications links
simultaneously.

For long messages, 1m remains the worst and rd remains better than bt. prd does not
have better performance than rd because the overhead of sending many small parts is bigger
than the gain of using bidirectional links. But pbt does has better performance than bt, it
even has better performance than rd when the number of processors is bigger than 8.

3.9 Conclusions

In this chapter we have presented six broadcast algorithms, developed their performance
models, analyzed the achieved performance, and given explanations.

We have observed that depending on n and p, one of {1m, rd, or pbt} is optimal. This
suggests that the developed models can be used by a hyper-algorithm that contains these
three algorithm and finds (during run time) which is the optimal algorithm and use it.

This approach of modeling the communication times of different algorithms can be used
for tuning and optimizing other time-consuming communication problems, such as the col-
lective communication patterns with medium and large messages.

The MPL broadcast routine, mp_bcast, is very efficient, it should be used whenever
possible. But when there is a need for partial broadcast (to subset of the processors), then
one of the above three routines can be used. Also if we are concerned about the time the
processors spend in the broadcast operation then we might consider using bt.

The analysis done in this chapter can guide in implementing efficient broadcast algorithms
for message-passing libraries that do not have collective communication routines, like the
PVM message-passing library.



Chapter 4

PVM Comparison

4.1 Introduction

PVM is a popular message-passing library, it is available on many multicomputer systems.
PVM stands for Parallel Virtual Machine [12]. Tt is a software package that allows heteroge-
neous network of parallel and serial computers to appear as a single concurrent computational
resource (a virtual machine). PVM consists of two parts: a Daemon process, and a User
Library that contains routines for initiating processes on other machines, for communication
between processes, and for changing the configuration of the virtual machine. The daemon
coordinates between the tasks on the virtual machine.

In this chapter we develop performance models for the main communication patterns
for the PVM message-passing library on the IBM SP2 (a Distributed Memory MPP) and
the Convex SPP-1000 (a Shared Memory MPP). We also make a comparison between the
communication performance of the two systems, and explain the achieved performance by
the organization of the two systems.

We have developed experiments to measure the communication times on the IBM SP2
and the Convex SPP-1000 using the PVM message-passing library. Each experiment is
timing a simple FORTRAN loop that do one communication pattern many times. We have
studied the following communication patterns: Point-to-point, One-to-many, Many-to-many,
and Broadcast. Also we have studied the Synchronization time. The gathered data from
these experiments were used to develop the performance models, and to compare between
the performance of the two systems.

A program written to carry out one of the timing experiments calls a routine that do a
communication pattern many times, and reports the minimum time, the average time, and
the standard deviation. Fach program is executed on varying number of processors, p, and
varying message lengths, n.

Section 4.2 describes the Convex SPP-1000 and its PVM implementation. The following
sections describe the experiments for communication patterns, present the measured data,
develop the performance models, and do comparisons for the performance of the two systems.
Finally, section 4.9 states the conclusions of this chapter.
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4.2 Convex SPP-1000

An SPP-1000 system (also called the Convex Exemplar) consists of 1 to 16 Hypernodes [14].
Each hypernode contains 4 Functional Blocks, each functional block contains 1 or 2 HP
PA-RISC 7100 processors, memory, and some control devices, see figures 4.1 and 4.2. The
functional blocks communicate across the hypernodes via four CTI (Convex Toroidal Inter-
connect) rings.

The CPUs have direct access to their own combined instruction and data cache, the
size of this cache is 1 MByte and is located one clock away from the CPU, it is “direct-to-
virtual-memory” mapped. The CPUs of the functional block communicate with the rest of
the machine through the CPU agent. The Memory has two banks, that can be configured
into three logical sections, hypernode local, subcomplex global, and interconnect cache (for
holding copies of any off-hypernode data referenced the hypernode processors). The Convex
Coherent Memory Controller (CCMC) provides the interface between the memory and the
rest of the machine.

On the Exemplar systems, processes run on virtual machines called subcomplexes, which
are arbitrary collections of processors.

Physical memory pages are interleaved across the memory banks in each functional block
by interconnect cache lines. Contiguous interconnect cache lines are assigned in round robin
fashion, first to the even bank, then to the odd. A processor cache line is 32 bytes wide,
whereas the interconnect cache lines are 64 bytes wide, containing a pair of processor cache
lines.

The Convex SPP-1000 supports ConvexPVM message-passing library, in this PVM im-
plementation the data transfer is done through a shared buffer pool and lock primitives in
the memory refered to as the Shared Memory Interconnect (SMI). Messages between two
nodes use direct routing, while messages destined for another host go to the ConvexPVM
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Figure 4.1: Convex Exemplar Hypernodes
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daemon for further routing, the ConvexPVM daemon should be running on one of the SPP-
1000 processors. Intra-node communication between PVM clients and/or the daemon is
done through the shared buffer. Inter-node communication between PVM tasks is done via
a kernel CTI messaging library. Communication between a ConvexPVM client and a remote
PVM daemon is done via the FDDI.

Our system has 4 hypernodes, with a total of 32 CPUs, and each hypernode is configured
in a different subcomplex. However, this system is new and unstable and its configuration
keeps changing. When the experiments described in this chapter were carried out, the CTI
messaging was not working, so our experiments were possible only on a single hypernode for
a maximum of 8 CPU’s.

4.3 Point-to-point Communication

This experiment is intended to measure the basic communication properties of a message-
passing computer. A message is sent from processor A to processor B. Processor B receives
the message and immediately returns it back to processor A. The time of the complete trip
is divided by two to get the Point-to-point Communication time.

Figure 4.3 shows the minimum Point-to-point communication time for the following three
configurations:-

1. The IBM SP2 using the MPL message-passing library.
2. The IBM SP2 using the PVMe message-passing library.
3. The Convex SPP-1000 using the ConvexPVM message-passing library.

In the SP2 with MPL the latency for short messages is 43 microseconds, and the transfer
rate for large messages reaches 35.1 MBytes/sec (see figure 4.4). With PVM, the IBM SP2
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Figure 4.3: Point-to-point Communication Time

H Configuration ‘ Latency ‘ Transfer Rate H
IBM SP2/MPL 47 35.1
IBM SP2/PVMe 104 17.7
Convex SPP-1000 74 10.1

Table 4.1: Latency and Transfer Rate for Point-to-point Communication

has 104 microseconds latency, and the Convex SPP-1000 has 74 microseconds. The transfer
rate for large messages in the SP2 is higher (17.7 MBytes/sec) than the SPP-1000 (10.1
MBytes/sec). In the SP2 the latency of short messages with PVMe is more than twice the
latency with MPL, and the transfer rate with PVMe is about one half the MPL transfer
rate. Since the SPP-1000 has shorter latency, it has better performance for short messages,
but because it has lower transfer rate, its performance become worse starting after n=>512
as shown in figure 4.3.

Table 4.1 summarizes the data for the three configurations, it gives the asymptotic latency
in microseconds for small messages, and the transfer rate in MBytes/sec for large messages

(1 Mbyte).

In cheater 2 we have shown that the Point-to-point communication can be approximated
by the following equation:-

n
Top(n) = to + —

o0

In the following analysis we give the values for r., and #y and the ranges where these
parameters are valid.



4.3. POINT-TO-POINT COMMUNICATION 35

40

SP2/MPL ——
SP2/PVMe —+--
35 SPP=1000/PVM 7
30
o)
Q
kg 25
Q
=
[}
=3
o 20
¢
2 " s o
1%}
E 15 o
= %
% I A ..
10 e S
S s
/’* .
5 -
e
e
0 = oo
16 64 256 1K 4K 16K 64K 256K M

Message Length (Byte)

Figure 4.4: Point-to-point Transfer Rate

SP2/PVMe

The following are the parameters and regions for Point-to-point Communication time on the
SP2 using the PVMe message-passing library.

. 104 n <217
7 ) 120 n > 217

[ 159 n<217
Feo =3 17.8 n > 217

The boundary between the first and second regions is due to the limit on the maximum
packet length (255 flits). One can observe an abrupt change for messages with n about 32
KBytes. Such changes can be attributed to changes in the message handling mechanisms of
the message-passing library routines.

SP-1000/ConvexPVM

The following are the parameters and regions for Point-to-point Communication time on the
SPP-1000 using the ConvexPVM message-passing library.

o 74 n <512
7] 136 512 < n < 64KB

[ 6.44 n <512
= 7\ 1238 512 < n < 64KB
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For n > 64KB the simple model does not work, using curve-fitting techniques we found
that the following equation approximates the Point-to-point communication time in this
range:-

T,(n) = ﬁ —7.18vn

Note the decrease in the transfer rate for n > 64KB as shown in figure 4.4, this behavior
is due to the operating system interrupts that occur every 10 milliseconds.

4.4 One-to-many Communication

This experiment is intended to measure the outbound performance of a message-passing
computer. The sender processor sends p different messages to p different processors. The
time taken by the sender processor to finish sending these messages is the One-to-many
Communication time.

Figure 4.5 shows the minimum One-to-many communication time on the SP2 using PVMe
and on the SPP-1000 using ConvexPVM. This data shows that the One-to-many Commu-
nication time is proportional to n and p. The SP2 time has sudden increase at n = 16KB.
The SP2 time is better than the SPP-1000 time for short and medium messages, and the
SPP-1000 time is better than the SP2 time for long messages.

In One-to-many communication there are two variables, the message length, n, and the
number of destination processors, p. So the models for this communication pattern are
functions of n and p, Ty, (n, p). In order to have models that are natural and simple, we use
the following model:-

Tim(n, p) = tim(p) + mim(p)n

Here t1,,(p) gives the setup time for p messages, and m1,,,(p) gives the transfer time per byte
to p destinations. The following are the models for the two systems.
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Figure 4.5: One-to-many Communication Time
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SP2/PVMe

The model for the One-to-many Communication time on the SP2 using the PVMe message-
passing library is:-

Ti(n,p) = (84 32p) + (& —0.012)n n < S8KB
bl P) =0 (163p — 285) + (-2)n  n > 8KB

211)

Figure 4.5 shows the model and the measured data.

SPP-1000/ConvexPVM

The model for the One-to-many Communication time on the SPP-1000 using the Convex-
PVM message-passing library is:-

(23 + 36p) + (Z5)n n < 512
Typ(n, p) = (33 +64p) + (Z —0.008)n 512 < n < 64KB
2 _ (3.9 4 3.3p)v/n n > 64KB

Figure 4.5 shows the model and the measured data.

4.5 Many-to-one Communication

This test is usually intended to measure the inbound performance of a message-passing
computer. The receiver processor receives p different messages from p different processors.
The time taken by the receiver processor to finish receiving these messages is the Many-to-one
Communication time.

This test is hard to implement accurately because the messages should be ready for
reception at the receiver side at the moment the receiver starts to receive, also we need to
separate the reception time from the wait and travel times.

4.6 Many-to-many Communication

This experiment is intended to measure the total saturation bandwidth of a message-passing
computer, and to find how this bandwidth scales with the number of processors. In this
experiment each processor sends different messages of length n to the other p—1 processors,
and receives p — 1 messages. The time needed by a processor to send and receive its share
of messages is the Many-to-many Communication time.

Figure 4.6 shows the average Many-to-many communication time on the SP2 using PVMe
and on the SPP-1000 using ConvexPVM. This data shows that the SP2 has good scalability,
and the SPP-1000 has a dramatic increase in the time when the number of processors becomes
6 or more. The SPP-1000 times are generally better for short messages and few processors.

In Many-to-many communication there are two variables, the message length, n, and the
number of processors participating in this communication pattern, p. So the models for this
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communication pattern are functions of n and p, T,m(n,p). In order to have models that
are natural and simple, we use the following model:-

T (15 9) = L (p) + T (p)10

Here ., (p) gives the setup time for sending p — 1 messages and receiving p — 1 messages,
and 7., (p) gives the transfer time per byte with p — 1 nodes. The following are the models
for the two systems.

SP2/PVMe

The model for the Many-to-many Communication time on the SP2 using the PV Me message-
passing library is:-

T (n,p) = 600 4 n/5.12 for p=3
mm 1, P) = (300 + 750(p — 2)) + (0.072 + %)n otherwise

Figure 4.6 shows the model and the measured data, note that we are using one model
for all n, this is a good approximation, and even better models can be accomplished when
having different parameters for different n regions as in the previous sections.

SPP-1000/ConvexPVM

The model for the Many-to-many Communication time on the SPP-1000 using the Convex-
PVM message-passing library is:-

o [ (100 +85(p —2)) + (g )n p <4
T (n,p) = { Unscalable p >4
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Figure 4.6 shows the application of this model to the data for p less than 5. This data
shows the problem in the scalability of the SPP-1000 in the Many-to-many communication.
When the number of processors is increased from 4 to 8, the latency for short messages
increases by a factor of 128. This implies that there is a congestion on the Shared Memory
Interconnect.

4.7 Broadcast

This experiment is intended to measure the broadcast performance of a message-passing
computer. The sender processor sends the same message to p different processors. The time
taken by the sender processor to finish sending these messages is the Broadcast time.

Figure 4.7 shows the minimum broadcast time on the SP2 using PVMe and on the
SPP-1000 using ConvexPVM. This data shows that the Broadcast Communication time is
proportional to n and p on the SP2 and proportional to n only on the SPP-1000. The SP2
time is similar to its time in the One-to-many Communication. The SPP-1000 time seems
to has less dependence on the number of processors.

In Broadcast communication there are two variables, the message length, n, and the
number of destination processors, p. So the models for this communication pattern are
functions of n and p, Tp.(n, p). In order to have models that are natural and simple, we use
the following model:-

The(n,p) = tpe(p) + moe(p)n

Here Ty.(p) gives the setup time for p destinations, and m.(p) gives the transfer time per
byte to p destinations. The following are the models for the two systems.
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SP2/PVMe

The measured data for the Broadcast is very similar to the One-to-many communication
data, so the models are similar. This implies that in the PVMe implementation there is no
special handling for Broadcast.

SPP-1000/ConvexPVM

The model for the Broadcast Communication time on the SPP-1000 using the ConvexPVM
message-passing library is:-

n
Tye(n,p) = (52 + 8.4p) + 23

Figure 4.7 shows the model and the measured data, note that we are using one model
for all n, this is a good approximation, and even better models can be accomplished when
having different parameters for different n regions as in the previous sections. The model
shown implies that in the ConvexPVM implementation the data is copied to the SMI shared
buffer pool once, and the p destination processors are notified.

4.8 Synchronization

This experiment measures the time to execute a barrier synchronization routine while varying
the number of processors taking part in this barrier.

Figure 4.8 shows the minimum Synchronization time for the three configurations listed in
section 4.3. The SPP-1000 time is the smallest but tends to increase sharply as p increases.
The SP2 time using the MPL message-passing library is much smaller than its time when
using the PVMe message-passing library.
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Figure 4.8: Synchronization Time
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The model for the Synchronization time gives the time as function of the number of
processors, p, involved in the Synchronization, Tyy,.(p).
The data for the SP2 using MPL can be approximated by the following model:-

Tsyne (P) = 84log, p

This model implies an efficient implementation of the barrier, such good performance can
be accomplished when the barrier is implemented using a binary tree method.

The synchronization time for the SP2 using PVMe can be represented by the following
model:-

Tsync(p) = 1470 + 377log, p

Although the log, p factor implies an efficient algorithm (like the binary tree method), but
the constants are very large. We don’t think that there is a fundamental reason for these
large constants, this is just a bad implementation.

For the Convex SPP-1000 using ConvexPVM, the following model fits its Synchronization
time:-

Tsyne(p) = 39 + 0.465p°

Here we see bad algorithm (due to the p® factor), but the small constants make this time
better than the SP2 times. Nevertheless, the extension of this curve for p larger than 8
(see figure 4.8) raises a big concern about the scalability of the Synchronization time on the

Convex SPP-1000.

4.9 Conclusions

In this chapter we have developed experiments to measure the communication performance
of the IBM SP2 and the Convex SPP-1000 using the PVM message-passing library. We have
developed models for the common communication patterns, these models give the time of a
communication pattern as a function of the message length and the number of processors.

Some of the models presented in this chapter can be refined to get better accuracy by
having more distinct n regions. Also, there is a need to develop appropriate experiments for
measuring the Many-to-one communication time.

The comparisons between the communication performance of the two systems, as pre-
sented in this chapter, show that the two systems have close performance. This is an inter-
esting result, because people usually expect that a distributed-memory machine like the SP2
to have higher communication time than a shared-memory machine like the SPP-1000.

We can draw the following conclusions about the communication performance of the two
systems:-

e In Point-to-point communication, the SP2 has bigger latency and higher transfer rate.

¢ in One-to-many communication, the SP2 has better performance for small and medium
messages.

e In situations where there are heavy communication, the SPP-1000 shows bad perfor-
mance.
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e The Broadcast time in the SPP-1000 is generally less than the time in the SP2, and
this time does not increase much when p is increased.

e SPP-1000 has low Synchronization time for small number of processors.



Chapter 5

Modeling the Node Performance

The IBM POWER2 processor has multiple execution units, its instruction cache unit can
fetch 8 instructions and issue six instructions per cycle, and it has an effective bandwidth
of four double-words per cycle between the cache and the floating-point registers (a double-
word is 8 bytes). Yet many scientific applications achieve less than 20% of the POWER2
peak performance.

This chapter tries to explain the achieved performance, and to recommend methods for
performance improvement. The chapter presents a Machine-Application Performance Bound
Model that takes into consideration the micro-architecture of the POWER2 processor and
its memory hierarchy. This model is used to characterize the achieved performance of some
test cases, to identify the problems that limited the achieved performance, and to guide in
the performance improvement effort.

5.1 Introduction

The IBM RISC System /6000 processors use powerful RISC instructions and wide issue to
achieve higher performance. The latest generation of these processors, the POWER2 series,
has gone several steps forward in this direction. The POWER?2 processors have new in-
structions that do square roots and instructions for loading or storing between two adjacent
floating-point registers and two consecutive memory locations in one cycle.

The POWER2 processors are used in high-end workstations, servers, and in the IBM
SP2. With their ability to execute four floating-point instructions per cycle, the POWER2
processors are gaining popularity for scientific applications. In many situations this promised
performance is not attainable, and many scientific applications end up running on a small
fraction of this peak performance.

Scientific applications are characterized by their intensive use of floating-point operations
in loop dominated constructs. This chapter is a humble contribution to identify the problems
that limit the achieved performance to a fraction of the peak performance. And to build
methodology for improving the performance. In this chapter the Machine-Application Bound
model is developed for the POWER2 processor and is extended to include the effect of the
memory hierarchy. This model is the tool used for identifying the performance limiting
problems and performance improvement.

43
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This chapter uses experiments and analyses for reaching its targets. The experiments were
done on one processor node of an IBM SP2. This processor node (Thin node) is a POWER2
processor with a 64 KByte data cache, a 32 KByte instruction cache, a 256 MByte main
memory, and runs on a 67.7 MHz clock. The node runs the AIX 3.2.5 operating system.
The test programs are written in FORTRAN and compiled by the IBM AIX XI. FORTRAN
Compiler/6000.

This chapter is organized in 8 sections. After this introductory section, section 5.2 de-
scribes the organization and micro-architecture of the POWER?2 processor. Section 5.3 de-
velops the Machine-Application Bound model for the POWER2 processor, then section 5.4
extends on it by giving more details for modeling the memory hierarchy performance. In
section 5.5 we present and analyze the measured performance of some test cases, then in
section 5.6 we give explanations for the performance. Section 5.7 develops a methodology for
performance improvement. Conclusions drawn from this study are presented in section 5.8.

5.2 The IBM POWER2 RISC System /6000

The IBM POWER2 RISC System/6000 processor [8] is the second generation of IBM’s im-
plementation of the POWER Instruction Set Architecture, it was introduced in late 1993.
The first generation, the POWER processor, was introduced in 1990. The POWER2 pro-
cessor is a super-scalar of higher degree, has bigger caches, faster clock rate, wider busses,
and more functional units.

The POWER2 processor philosophy of achieving higher performance is through using
more powerful instructions and wider issue, while giving the clock rate a secondary degree
of importance.

Figure 5.1 shows the block diagram of the POWER2 processor, the processor is a multi-
chip module that contains 8 chips, partitioned in the following units:-

Multichip module
Instruction reload bus
ICU Processor bus
(PBUS) Note: Each line represents
Instruction [ [ a32-bit bus
d|spatch [
bus
System 1/0O (SIO) bus
I DCU || Dcu I DCU || DCU
l l
Memory data

busF,J_T{ ﬂ X|‘o ><|‘o
YL CY L L

Figure 5.1: The IBM POWER2 RISC System /6000
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e Instruction Cache Unit (ICU) [16], this unit contains the instruction cache, it prefetches
the instructions form the cache and places them in the instruction buffers. The ICU
control logic decodes the instructions in the buffers, executes the branch and condition-
register instructions and dispatches the remaining instructions to the FXU and FPU.
The ICU can fetch eight instructions per cycle form the I-cache. It can dispatch six
instructions per cycle: two internally and four externally to the FXU and FPU.

e Fixed-Point Unit (FXU) [17], performs all storage references, integer arithmetic, and
logical operations. The FXU contains the general-purpose registers, two fixed-point
execution units, the data cache directory, and the data TLB. The two execution units
enable the FXU to execute a total of two instructions per cycle.

e Floating-Point Unit (FPU) [18], includes the floating-point registers (FPRs) and two
double-precision execution units. The two units allow it to execute two floating-point
instructions per cycle. The FPU supports the compound multiply-add instruction,
where an execution unit performs two operations with the same latency as a single
multiply or add instruction. The two units enable the FPU to execute 2 double-
precision multiply/add instructions every cycle, resulting in up to 4 floating-point
operations per cycle. Some POWERZ2 models have dual quad-word interface to the
data cache supporting the dual FPU execution units, dual units and quad-word storage
references can load up to 4 FPRs per cycle. Thin nodes has dual double-word interface
and can load up to 2 FPRs per cycle.

e Data Cache Unit (DCU) [17], is a four-way set-associative dual-ported D-cache that
consists of four identical chips. The four data cache chips generate two single-word
data buses to the FXU, two quad-word buses to the FPU (two double-word buses in
the Thin node), a 4-word instruction reload bus to the ICU, and a 2-word System I/0O
(SIO) bus to the I/O subsystem for DMA data.

e Storage Control Unit (SCU) [17], handles the main memory references for I-cache and
D-cache misses. When a data cache miss occurs, the FXU arbitrates for the processor
bus (PBUS). After the FXU places the cache miss request on the PBUS, the SCU
accepts the request and generates the corresponding memory control signals to start
a memory operation. The returning data arrive at the DCU, which places the data
in the D-Cache. When an instruction cache miss occurs, the ICU arbitrates for the
PBUS. After the ICU places the cache miss request on the PBUS, the SCU accepts
the request and generates the corresponding memory control signals to start a memory
operation. The returning data arrive at the DCU, which forwards the data to the ICU
on the instruction reload bus.

5.3 Machine-Application Bound Model

The Machine-Application (MA) Bound [1, 2, 3, 4] gives an upper bound on the perfor-
mance that can be achieved on a certain machine for a certain application. The measured
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performance, P, on the other hand, can be represented by:

easured’

p Floating-Point Operations

measured —

Measured Execution Time

The MA Performance Bound, Pyra, can be found from the Clock Rate (f), and the MA

Clocks Per Float bound (CPF).
Pra = CPT

The CPF is the number of processor cycles, {;, need to execute one iteration of a loop, or
one pass of a program segment, divided by the number of essential floating-point operations
in this loop or program segment. The number of essential floating-point operations equal the
sum of the add operations, f,, multiply operations, f,,, two times the number of multiply
operations that can be combined with following add operations, f,.,, four times the number
of divide operations, f4,, and four times the number of square root operations, f,. Divide
and square root operations are weighted by a factor of four to reflect their complexity with
respect to adds and multiplies (this is a common practice in scientific benchmarks [19]).

CPF =1/(fa+ fou + 2fma + 4 faiv + 4 foqrt)

The number of processor cycles, #;, equals the time of the slowest (busiest) functional
unit. The POWER2 is modeled as five independent functional units, each with lower bound
time: floating-point unit, ¢y, fixed-point unit, ¢s,, instruction issue unit, {;, memory unit,
t,n, and dependence pseudo-unit, ¢;. The bound for each functional unit is calculated as a
function of the number of essential operations found in the high-level source code that must
be performed by that functional unit. The bound assumes that each functional unit needs
to execute only these essential operations, and that it can execute them at its peak rate.

tl = max (tfl,tf;mtm)ti?td)

The number of essential floating-point loads, [, equals the number of distinct values
that appear on the right hand side of a high level code statement before they appear on
the left hand side. The number of essential floating-point stores, sy, equals the number of
distinct values that appear on the left hand side of a high level code statement that are
not temporary values. For POWER2 models that have quadword bus to the D-cache, the
number of loads and stores should be divided by two if the access stride equals one, this is
because it is possible to employ quadword load and store instructions that do two floating-
point loads or stores in one cycle. The following equation gives the bound for the FPU; the
number of loads, stores, and arithmetic operations are all divided by two because the FPU
has two execution pipelines for loads, two for stores, and two for arithmetic operations. The
divide operation requires the FPU for 17 cycles and the square root operation require 27
cycles.

ty =max(l51/2,511/2,(fa+ fou + Frma + 17 fai + 27 fsqre) [2)

The bound for the FXU models its impact on floating-point operations. An address
calculation is required for each floating-point memory operation. The FXU can perform two
address calculations and translations per cycle.

tie = (L1 + s51)/2
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The memory unit bound is a function of two factors; the performance of main memory
accesses on cache misses, and the performance of the D-cache on cache hits.

tm = max ((load miss time + store miss time), ({s1Less + s£15:5£)/2)

The first term in the above equation reflects the fact that there is only one port between
the D-cache and the main memory, so misses can be served one a time. The second term
reflects the fact that there are two ports between the FPU and the D-cache. In this term
the number of loads are multiplied by the effective load time, L.s¢, and the number of stores
are multiplied by the effective store time, S.ss (see section 5.4 for a discussion on how to
find the effective access times). Note that the second term models the case when there is
low miss rates, and assumes single outstanding cache miss at anytime. So while the memory
services the miss, the other data cache port continues to service a single memory access per
cycle.

The bound for the issue unit is specified by the ICU dispatch width. The ICU can
dispatch 4 instructions per cycle to the FXU and FPU.

ti = (f'l —I_fm —I_fma —I'fdiv +fsqrt+lfl+3f[)/4

The loop-carried dependence pseudo-unit models the performance of loops with a recur-
rence. This bound is found by summing the latencies of the longest path in the dependency
graph. The latency is 1 cycle for floating-point adds and multiplies, 2 for multiply-adds, 17
for divides, and 27 for square roots.

ty = Total latency of loop-carried dependence

5.4 Memory Hierarchy Model

For a memory system of n levels the Effective Access Time, Ty, is:

Toyp=>_ fit:
=1

where f; is the Access Frequency for level i, and ¢; is the Access Time for that level. Given
the hit ratios, h, or the miss ratios, m, then

fi = (1=h)(1—=hy)---(1—hi—1)h;

= myimg---m—1(1 —m;)

All POWER2 models have primary cache, some models have secondary cache. Also if we
ignore page faults (ms = 0) we get the following model:

Teff = (1 - ml)tl + m1(1 — mz)tz + mimyts

The POWER2 processor used in our experiments does not has a secondary cache, so
my = 1 and the Effective Access Time becomes:

T ff = (1 — ml)tl + m1t3

€
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Experimental evidence showed that the Effective Access Time for loads is different than
that of stores, so we have one formula for the Effective Load Time and one for the Effective
Store Time:

Lo = (1 — ma)ty + myts

Seff - (1 - mls)tls + Mmiglse

Our experiments showed that t1; = t15, = 1, {3 = 16.3, and 55 = 22.0 (see subsection 5.4.1
for a description of these experiments), hence:

Leg =1+ 15.3my
S = 1+ 21.0my,

e
For the purpose of developing a bound model, we only consider Essential misses, which
are Compulsory misses, MComp: and Capacity misses, M(aps SO the miss rate can be found
by:
MComp T MCap
Number of Essential Accesses

m =
Compulsory misses equal the number of blocks in the Working Set, B, hence:
B

MComp =

Capacity misses depend on the number of Working Set blocks, B, number of Cache
Blocks, €', Cache Degree of Associativity, A, and Access Pattern, D. Assuming linear access
pattern, as is often found in loops, a lower bound on the capacity misses can be calculated
as follows:

0 B<C
map = Boea €< B<C(1+D/A) (5.1)
B B> C(1+ D/A)

Here D is the Degree of Freedom in the access pattern which equals the number of distinct
arrays in the working set, it is restricted to be between 1 and A. Equation 5.1 reflects the
fact that the number of cache misses depends on the working set size relative to the cache
size resulting in three distinct regions of behavior. See subsection 5.4.1 for more details on
these regions, and see subsection 5.4.2 for more details on the estimation of the cache misses.

5.4.1 Finding the Memory Access Parameters

This subsection describes the experiments [20] used to characterize the behavior of the
POWER2 memory system. Two experiments were done, the results are shown in figures 5.2
and 5.3. These figures show the time per access operation in clock cycles. The first experi-
ment is timing a load kernel, in which the inner loop contains statements that load an array
elements, the array size is varied between 1-128 KBytes, and the experiment is repeated for
strides 1, 2, 4, 8, and 16.

The second experiment is timing a store kernel, in which the inner loop contains state-
ments that store in an array, the array size is varied between 1-128 KBytes, and the experi-
ment is repeated for strides 1, 2, 4, 8, and 16.

The two figures show three regions:-
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1. Hit Region; where the array size is smaller than the cache size, and every access is a
hit. This region is supposed to be constant, but the high time for small array sizes is
due to the loop overhead which has less effect for larger arrays.

2. Transition Region; where some of the accesses are hits and others are misses. The width
of this region equals the cache size divided by the degree of the cache associativity.

3. Miss Region; where the array size is big enough that every access to a new cache block
1S a miss.

From these graphs we get the following information:-

1. The cache size is 64 KBytes; the Transition region starts at 64 KBytes.

2. The degree of the cache associativity is 4; the width of the transition region is 16
KBytes (64/(80-64)=4).

3. The cache block is 8 double-words (64 bytes); the performance of stride 8 is similar to
the performance of stride 16 implying that with stride 8 or more every access is to a
new cache block.

4. At the Hit Region the access time is 1/2 cycle, since we have two cache ports, then the
time for one port is 1 cycle; and ¢1; = 15 = 1.

5. At the Miss region the load miss time is 16.3 cycles, and the store miss time is 22.0
cycles; hence t3; = 16.3, and t3, = 22.0.

5.4.2 Estimating Cache Misses

This subsection is intended to outline a recipe for estimating a lower bound on the cache
misses, this bound is needed to find the MA bound of an application. As explained in sec-
tion 5.4, we need to estimate compulsory and capacity misses, our means for this estimation
is by looking at the application high-level source code. This approach assumes that the com-
piler will not do algorithmic changes to the application, like loop blocking, loop movement,
or loop interchange.

This approach is suitable for loop dominated code, and it assumes that the arrays are
accessed linearly, i.e. in any loop an array is accessed with a constant stride. The misses
estimated by the methods introduced here can be used as lower bound for loops with non-
linear access patterns if the access density is constant over all the array elements.

Estimating the compulsory misses is easy, the number of compulsory load misses equals
the number of the array blocks that are used but not modified by the application. The
number of compulsory store misses equals the number of the array blocks that are modified
by the application.

Estimating the capacity misses can be done for the two cases capacity misses occur:-

e The application has an outer-most loop that iterates over the application’s loop struc-
ture, in this case the working set is the sum of the array blocks and we can directly
use equation 5.1. The number of the estimated cache misses should be split into load
misses and store misses using the ratio of modified and read-only elements.
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e The application has more than one loop structure that uses the same array, in this
case we need to look at the loop’s code and to estimate the cache status before it, if
it is not possible to estimate the cache status at the beginning of this loop, then we
can make an optimistic assumption that the cache holds the data needed by this loop.
Then we find the size of the working set, use equation 1 to find the misses, and finally
subtract the misses that could not happen because of the previous cache status.

5.5 How much are we getting?

Sections 5.3 and 5.4 have developed the MA model for the POWER2. This model gives an
upper bound on the performance that can be achieved for a certain application. This section
tries to answer the question of how much of this bound is achievable. This is done by a case
study of a commercial application (FEMC) [4] that uses the finite element method, and of
the Livermore kernels [19].

5.5.1 Finite Element Method Application (FEMC)

Some FEMC key routines were studied using the performance models developed in this
chapter, the results of the analysis for two routines are presented here. The two routines
(routine A and routine B) take considerable percentage of the total application execution
time, they contain complex computations over many arrays. Routine A updates the node
forces from element forces. Routine B finds the global kinetic energy of the nodes and
elements.

The results of these analyses are listed in table 5.1. The table shows the percentage of the
measured performance relative to the MA performance bound. These results show that for
a well written application, we are getting less than one half of the MA bound performance.

H Routine H Pmeasured H

A 35%
B 47%

Table 5.1: FEMC Percentage of Achieved Performance

5.5.2 Livermore Kernels

The MA bound model was applied to the first 12 Livermore kernels, table 5.2 shows the
analysis for these kernels.

The table shows the number of essential operations per one loop iteration, the number
of clocks needed by each of the four functional units to execute one loop iteration, the
maximum of these times ¢;, the CPF, and the MA performance. The table shows that the
MA performance ranges between 60 to 267 MFLOPS. All these kernels fit in the cache, and
the table shows that they are either limited by the number of ports to the cache, or by the
floating-point execution units (bold numbers are the performance limiting bounds).
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Table 5.2: POWER2 MA Bounds for LFK

To find out the performance that is achieved for these kernels, we have compiled and
executed the kernels using different compiler options. Three experiments were done for
three different compiler options:-

1. No Optimization (No); in this experiment the compiler did not used any optimization.

2. Basic Optimization (-O); here the compiler performed the basic optimization tech-
niques like: common expression elimination, code motion, strength reduction, constant
propagation, global register allocation, and instruction scheduling.

3. Advanced Optimization (-O3); here the compiler performed the optimization tech-
niques of the -O level, and also performed more aggressive optimization techniques
that might change the answers.

The results of these experiments are listed in table 5.3 and presented graphically in
figure 5.4. The table shows the percentage of the measured performance relative to the MA
performance bound.

We can draw the following conclusions from the results of these experiments:-

e The compiler generates bad object code that achieves only 5%-20% of the MA bound
when no optimization is used. Hence using this compilation is only justifiable during
the development time when correctness is the main issue.

e With the basic optimization the compiler generates code that achieves about 23%-79%
of the MA bound.

e With the advanced optimization the compiler generates code that achieves about 25%-

91% of the MA bound.

e Using advanced optimization should be done selectively since it might generate code
that is worse than the one generated by the basic optimization, for Kernels 1, 2, 4, and
7 the advanced optimization did worse than the basic optimization.
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Figure 5.4: Livermore Kernels Performance

e Even with the advanced optimization, the average achieved performance is only 52%
of the MA bound. This is a low percentage because Livermore kernels are compact
loops, and usually they achieve better performance than real applications.

5.6 Why is it this low?

This section tries to identify the reasons for achieving only a fraction of the MA bound. First
let us have another look at the FEMC. Figure 5.5 shows the MA bound time normalized to
the measured execution time for routines A and B, it also shows the MA bound time when
assuming that we have perfect cache and there are no cache misses (MA-PC).

This figure shows that the new MA with memory hierarchy model developed in this
chapter does better job than previous models that did not took the memory hierarchy effects
into consideration; this is obvious when we observe that the MA-PC model only explains
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Figure 5.5: Performance of two FEMC routines

10% of the execution time for routine A, and 8% of the execution time for routine B. On the
other hand, the new model explains 35% and 47% of the execution time.

After studying the source code and the object code generated by the compiler for the
case-study programs used in this chapter, we have identified the following main reasons for
getting only a fraction of the performance bound:-

Bad Schedule The compilerin many cases fails to generate code that exploits the POWER2
functional parallelism. This is the case for some of Livermore Kernels like 1, 3, and 12.

Cache Misses In cases where the working set does not fit in the cache, like FEMC routine
A and routine B, the cache misses can largely lower the performance. Note that the
model gives a lower bound for the essential misses, it takes into consideration the
compulsory and capacity misses only. Other misses like the conflict misses are in many
cases avoidable by proper array allocation in the memory space with respect to the
cache boundaries.

Register Spill Sometimes, especially for complex loops, the compiler fails to generate a
register allocation without spill, this was found in LFK 8.

Redundant Instructions In many cases the compiler generates redundant load instruc-
tions. This happens when it does not recognize that some elements loaded in one
iteration are used in the next iteration.

5.7 What can we do to make it higher?

There are many techniques that were developed by different researchers to improve the per-
formance of scientific applications. In this section we start by listing some of the techniques
that are likely to give good results on the POWER2, then we show how the insights gained
from the MA model can guide in performance tuning. Finally, we demonstrate an example
of applying the MA model to a tuned kernel.

The following is a list of some of the performance improving techniques that gave good

results on the POWER2:-

Loop Unrolling This is the technique that proved to be most useful in improving the
performance of Livermore Kernels on POWER2. It yields codes that make better
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exploitation of the POWER2 functional parallelism, and it reduces or eliminates the
effect of control overheads.

Algorithmic Prefetching [21] This technique can be applied in POWER2 processor be-
cause it has two cache ports. This technique is useful in hiding load miss latency. In
the POWER2 processor this can be done by using one cache port to make references
for data that is needed in the next iteration, this port will probably stall due to cache
misses. The second port, on the other hand, can keep accessing the prefetched data
used by the current iteration.

Locality Improvement Techniques These are wide range of techniques that can be used
to decrease the number of cache misses. Some of these techniques are Loop Interchange,
Loop Blocking, and Loop Merging.

Software Pipelining This technique enables generating code schedules that make better
usage of the POWER2 functional units.

The best thing about the MA bound is that it tells you how far you are from the optimum
performance for the given application. This knowledge will put you in one of the following
two situations:-

1. When the achieved performance is a small fraction of the MA bound, then you know
that there is plenty of room for improvement. In this case it is a good idea to invest
time in figuring out why this is happening, and work on making things better by using
some of the techniques listed above.

2. When the achieved performance is only a little bit smaller than the MA bound, then
you know that there is only little room for improving the application performance .
In this case you either accept what you are getting, go on improving the code as in 1

above, or make use of the MA bound insights to change the application to get better
MA bound.

When you accomplish the MA bound then the only thing you can do is to change the
application in order to get new better MA bound. To do this you should examine the
functional unit which has limited the MA bound, and try to come up with a modification
for the application so that this unit has a reduced load without increasing the load of other
functional units. This study has identified that usually one of the following determines the
MA bound:-

1. The number of floating-point operations, as in LFK 1, 7, and 8. Here the only thing
that can be done is to come up with a new algorithm that has less number of floating-
point operations.

2. The number of memory references, as in the rest of the Livermore Kernels. Here one
might consider changing the application to ensure that the access stride is one, this
will enable the compiler to generate quadword load and store instructions, thus doing
two memory accesses by one instruction in one cycle.
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Figure 5.6: Performance of Tuned LFK 3

3. The number of cache misses, as in the FEMC routines. In this case the Locality
Improvement Techniques can be used.

Near the end of this chapter, we would like to show one example of the power of the MA
bound model developed in this chapter. The example is Livermore Kernel 3, this is a dot
product kernel for two arrays. This kernel has achieved only 53.3% of the MA bound by
using the advanced compiler optimization level. By unrolling the main loop of this kernel
three times we were able to get 100% of the MA bound.

Figure 5.6 shows three curves as a function of the sum of the two arrays. The first curve
is the measured CPF for the tuned code. The second curve is the MA CPF. And the third
curve is the MA CPF assuming perfect cache with no cache misses. This figure illustrates
that the MA model developed in this chapter is better than the older models for calculating
an upper bound for the performance.

5.8 Conclusions

In this chapter we have developed a Machine-Application Bound model for the IBM POWER2
that models its micro-architecture and its memory hierarchy. We have presented experiments
for finding the parameters needed to characterize the memory hierarchy performance, and
developed a methodology for estimating the essential cache misses given the high-level source
code of a scientific applications.

The test cases used in this chapter showed example applications that achieve a fraction of
the MA bound performance. We have identified that bad instruction schedules, cache misses,
register spill, and redundant instructions are the main problems that limit the performance.

We have outlined a methodology for performance improvement guided by the insights
gained from the MA bound model. This methodology relies on finding the percentage of
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achieved performance and identifying the functional unit that limited the MA bound, and
using this information to suggest the performance improvement technique that is most likely

to give good results.
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Chapter 6

Conclusions

The performance models developed and presented in this report for message-passing multi-
computers provide an estimation of an application execution time by inspecting its high-level
source code. In the SP1 and the SP2, the execution time equals the sum of the computation
time and the communication time.

We have identified the factors that affect the communication time on a multi-computer,
and we have shown how this time is found by summing the times of the basic commu-
nication patterns. In this report, we have presented our techniques for timing the basic
communication patterns, and our techniques for developing models that give the time of a
communication pattern as a function of the message length and the number of processors.
Throughout our development of the communication models, we modeled the communication
time in two components; setup time and transfer time:-

Tcomm(nap) — tcomm(p) + 7Tcomm(p)n

We have observed that splitting the communication time into these two components gives
simple equations.

By studying the performance of several broadcast algorithms, we have demonstrated how
the communication models are used to find the communication times. We have shown how
these models are used to select the best algorithm and to develop an efficient broadcast
algorithm that has optimum performance for a wide range of message lengths and number
of processors.

We have also demonstrated how the communication models are used to do performance
comparison between different computers that support the message-passing paradigm. Devel-
oping these communication performance models for different multi-computers reveals many
aspects of their relative performance.

To model the computation performance of the processor nodes, we developed a Machine-
Application Performance Bound model for the POWER?2 processor. The MA Bound models
gives a lower bound for an application execution time as a function of the design parameters
of the POWER2 micro-architecture and memory hierarchy.

By analyzing some test cases, we have demonstrated how the MA Bound model is used
to explain the achieved performance. And we have discussed how this model can guide the
effort of tuning the computational performance of an application.

39
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We have applied the computation and communication performance models to some of
the FEMC routines [4], and we have seen that the modeled time ranges between 25% and
80% of the measured time. We have strong reasons to believe that the following are some of
the factors that contribute to the difference between the modeled and measured times:-

1. load imbalance due to unbalanced domain decomposition and operating system inter-
rupts,

2. compiler inefficiencies in generating optimum instruction schedules and in eliminating
redundancies, and

3. unmodeled cache misses, since our approach for estimating the essential cache misses
only gives a lower bound estimation for the essential cache misses, and does not estimate
some cache misses in complex situations.

We plan to enhance our models to include the effects of load imbalance, and enhance our
techniques for estimating the number of essential cache misses.

The MPI [22] message-passing library is widely accepted as the standard library for writ-
ing message-passing applications. It is becoming available for many multi-computer systems,
and is becoming regarded as the message-passing library of choice for writing portable ap-
plications. We are looking forward to developing communication performance models for
this library on the SP2, and to using these models to gain insights regarding its relative
performance with respect to other available message-passing libraries.

Next, we plan to demonstrate the power of these models in performance tuning by carry-
ing out case study of some of the NAS Parallel Benchmark Kernels. We hope that through
techniques similar to the ones presented in chapters 3 and 5 will be able to develop efficient
implementations of these kernels.
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