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Abstract

We present a systematic study of signapgagation conditions (PCs) startingdm a gnerl wave-
form model. W develop a number of specific waveform models based on how closeipdlid actual
signal behavigrand show that thyeform a well-defined hiarchy. For each model, we derive PCs based
on fundamental cause-andexft behaviar\We then construct a lattice of all known PCs thateals the
relationships among them. This lattice also enables us to derive semandepotentially useful PCs.
Experimental esults ae ptesented tovaluate the accucy of the ppposed PCs.

1 Intr oduction

Various propagtion conditions (PCs) or sensitization criteri@ébeen proposed in the literature to
determine whether a signal prop#ign path is sensitized. Aek aspect of PCs is the assumeal/@form
model, which specifies when andasignals actually change. While more detailegt@form models cap-
ture the actual signal behiar more accurate)ytheir algorithmic implementations arewkr. Most «ist-
ing methods assume a simplevaform model because the delay computation problem is kardveth
simple models. Floating mode [4], fatrample, is a wveform model where only the latesteat on gery
circuit node, namely the node becoming stable, is considered.allme of the node until it stabilizes is
assumed to be unkwo. Transition mode [6], on the other hand, considers all possiblgson internal
nodes, while the primary inputs are restricted to a singleteAnother important aspect of PCs is the role
of causality Event propagtion is causal in that awent at the output of a circuit module occurs as a result
of an input gent.

Static sensitization [1] and the Brand-lyangondition [2] were the earliest PCs proposed in the lit-
erature. The were follaved by mamg others including viability [10], floating mode sensitization [4], and
the loose criterion [4,5]. Heever, most studies of these PCs do not consider the underlyangfavm
model or the causality principlicitly. The analysis tends to be ad hoc or algorithvedtiand does
not reflect hw events actually propage. Not surprisinglyfor example, it vas found that static sensitiza-
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tion can underestimate the circuit delay [4,10]. Although the relationships between some of theePCs ha
been established [4,5,11,15], yheave not been studied in a uniformayy and their gerall relationships
are fr from clear

In this paperwe attempt to deré propagtion conditions in a systematiawstarting from a general
waveform model. W& develop a number of specific models based on blmsely thg match actual signal
behaior, and shw that the form a well-defined hierarghFor each vaveform model, we dere propag-
tion conditions based on causalitye then construct a lattice of PCs thateads the relationships among
them. This lattice also enables us toenaev and potentially useful PCs. Finallye presentx@erimen-
tal results towaluate the accurgof the proposed PCs.

2 Calculation of Propagation Conditions

A combinational logic circuit is composed of moduleatég, multiplgers, decoders, etc.) which are
assumed to k& knavn internal delays. The modules are #dkby delay-free interconnections which,
along with the circuis primary input-output terminals, define the ciraugtignal nodes. @&n an input
stimulus to the circuit, the nodes of the circuit ugdesome changesv@nts). The entire set of/ents
occurring at a circuit node constitutes itaveform. Figure 1 shes some \aveform examples. Eents at
the primary inputs propage through the circuit, are delayed by the modules, @ttally reach the pri-
mary outputs. Depending on circuit structureergs may propage through dferent paths, and hence
may eperience diierent delays. Somerents may be filtered out because of othnes. The delays of
the circuit are determined by theeats propaagting through it. Therefore, in order to find the circuit delays
accuratelyit is important to kne how the &ents propaate.

The condition (predicate) under which aret propagtes from an input of a module to an outpat
is called the propadion condition (PC) and denoted kyy, in this paperConsider the AND ate shan
in Fig. 1. The PQ},, for the &ent on input occurring at timeti is (ti p] ti) O (tis ti), since inpuy is
required to hee a non-controllingalue 1. Clearlythe entire \aveform ofy must be knan in order to find
whether the went onx can propagte. W& call the logic-leel behaior that considers each sigreaéntire
waveform theW0 waveform modeair theexact model. Tming analysis using the WOaweform model is
complicated for &rious reasons. First, since arbitrary numbervehts can occur on circuit nodes, the
storage of thesevents can be a problem. zelas et al. [8] g an &ample where the numbevants in
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Figure 1: Event propagation through a 2-input AND gate.



the circuit is &ponential in the circuit size. SecolC calculation becomes difficult due to the potentially
high number of conditions relating event tim&hus, simulation-lie methods such as that of [6,8] must
often be emplged in practice. Compkedelay models such as the min-max delay model further complicate
the analysis.
Several types of approximations can be used to simplify the timing analysis problem:
» Restricting the waveform model. A subset of all possible events is considered. For example, floating
mode[4] considers only the last event on every circuit node.
» Restricting the delay model. For example, if a module has many input-output path delays, one can
consider only the maximum delay.
» Simplifying the calculation of PCs. An example is the “conditionless” case where all events are
assumed to propagate; this is classical topological analysis.
The abee approximation methods are not independentieher. For instance, if the aweform model is
restricted, PC calculation will be restricted as well.

We note that the circuit delay obtained by approximate methodsdstiammate as opposed to the
exact walue, because of the information loss during approximation. In timing analysis, an estimate of the
circuit delay greater than thgact one (anwerestimate) is generally acceptablewdeer, an estimate less
than the egact one (an underestimate) is unacceptable, because a clock period based on an underestimated
delay can lead to incorrect circuit operation. An underestimatiee vs often referred to as “incorrect” in
the literature. Osrestimation, on the other hand, is “safe” and only results in a circuit operating more
slowly than necessaryherefore, while a good estimate of the delay must not be incorrect, it should be as
close to thexact \alue as possible.

In the process of deting approximate aeform models and their associated PCs, we willange
of a special “smoothing” operator [10]. Lfdbe a function of ariablesx,, x,, ..., X,,. Thesmoothing oper-
ator S f is defined as

SXif = in + in
where fXi = f(x, =1 and f,(i = f(x; = 0). The smoothing operator can beended to multiple ari-
ables. LetU = {x; ,%,...,x } beasubsetof;, X, ..., X,. Then,@ilgiz...%ikf = %ilmxikf = §,f.
The order in which the operator is applied to tagables ofU is not important sincéSXiSXjf = ijSXif .
The smoothing operator captures pessimism in theaisitpway. The functionS; f is true if the original
functionf is true for ag combination of the ariables inU. We male use of the folling property from

[11] to relate diferent PCs:
s,fOf 1)
3 Approximate Waveform Models

Our first approximation to the WO model of timing is to restrict sigraake¥orms to their first and last
events. The remainingvents occurring between theseotare ignored, and it is assumed that adue (0,
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Figure 2: Waveform for a node x under the W1 model.

1, X, etc.) can appear between the first and lasttedimes. & call this vaveform modeW1 or thefirst-
and-last-e@ent(FALE) model. Figure 2 depicts a typicabveform under the W1 model. The initial and the
final stable alues of a signal for nodeare represented by and X, respectiely. The times of the earliest
and the latestvents reaching nodeare, respeately, a, andA, . This waveform model is also adopted by
[14] and the compiled-code simulatorvei[13].

To handle constant signals (neeats), we associate witlvexy signalx a special predicat€, that
indicates whether it is changing or constad{: = 1 (true) if x is changing, and€C, = 0 (false) other-
wise. Clearlyif the initial and final stablealues are diérent,C, is necessarily. We male the assump-
tion that if C, = 0, thena, = «» andA, = —. Thus,we hee C, = a,<A,.

Calculating PCs for the W1 model & fsimpler than for the WO model describedvehdiavever, in
order not to underestimate the circuit delagssimistic assumptions must be madganding the interal
of uncertaintywhich is shaded in Fig. 2. In particylare hae to assume that pevent whose propag
tion depends on thealues of the signal during this intahdoes propaae. This assumption can result in
an overestimate of the circuit delay since somergs may actually be bloe#l by certain alues of the sig-
nal.

In the case of restrictedameform models, one can enumerate all possible inpu¢farms to calcu-
late PCs. W illustrate this for a 2-input ANDage with inputs< andy, outputz and zero delayOther gte
types are analyzed similarbjlso, a non-zero delay just shifts the outpat/@form.) Leth\)g1 represent
the PC for the lastvent on inpui to reach the outp&t i.e., the sensitization condition for the path from
to z. We introduce three useful predicates to relate ¥hatdimes ok andy:

Ex = Acs A (xstabilizes earlier thay),
Ly = Ay A, (xstabilizes later thay),

Vi = a,s A (x stabilizes aftey starts to destabilize),

Figure 3 shwrs w;’él in the form of a truth table for all combinationsxgiX y, andY, where juxtaposition
represents the logical AND operation. The inpateforms for tvo entries of the table are stwin Fig. 3.

For the input combinatiox = 0, X = 0,y = 0,Y = 0, q;ﬁil is E,V,C,, that is, the tw intenals must
overlap, inputx must not be constant 0 and must stabilize earlier yhar the input combination
Xx=0X=1y=1Y=1, l]J\)gl is L, that is, inpuk must stabilize aftey.

The PCLlegl for pathy - zis derived similarly The latesteent timeA\ZNl for the output, which is
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Figure 3: Truth table for the PC wz\él for path x - zin a 2-input AND gate.

the delay up ta, can be devied from the PCHJX\Q and w\}f\él as follavs.

w1 w1l w1
A = max(lpxz ¢ Ax1 quz ¢ Ay) (2)

Z

where the AND-lile operator ¢” is defined as

[l . w1
w1 o if g, =0
ljJXZ * AX = D i W1
%AX if Y, =1
Equation (2) follevs from the &ct that the went on the sensitized input(s) proptes to the output and
determines the delait is possible that more than one input is sensitized, in whichq:r\g%eand wﬂl are

both1. The max operator tak care of this situation by choosing the lateshe

Although the W1 model is significantly simpler than the WO model, it still may not be simple enough
for delay calculations in Ige circuits. The P@Xﬁl shavn in Fig. 3, for @ample, is computationally com-
plex. In order to process circuits with thousandsatkg, we need to further simplify this modek Wt
consider tw types of approximation, both of which agiat the same aveform model:

 Ignoring the initial values,

 Ignoring all the events but the last one.
The waveform model resulting from these simplifications is calledf2emodebnd is depicted in Fig. 4.
It is known in the literature aBoating modeand vas introduced by Chen and Du [4]. In this paper
consider ignoring the initialalues, and dere PCs accordinglyit can be easily sl that the other
approximation method yields the same PCs and latest &me (delay).

We obtain the P(DJY(ZZ for the W2 model from the P(]JX\Q1 for the W1 model by smoothing out the
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Figure 4. Waveform for a node x under the W2 (floating-mode) model.
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Figure 5: (&) The PC wz\éz; (b) the latest e vent time A\ZN2 under the W2 model.

initial valuesa, anda, . This is shwn in Fig. 5(a). The ne PC qJXZZ exactly matches the conditions for
floating mode gien in [4], thus confirming our analysiEhe same operation can also be applied to the lat-
est @ent time (deIay)A\\ZN1 to derve A\ZN2 =5 yA\ZNl, the latesteent time for the W2 model. Figure 5(b)
shaws the truth table foA\ZNZ.

Next, we go one step further and smooth out the latestteéimesA, and A,. Hence, we are left
only with the final (stable)aluesX andY. We arrve at a model which is “static” in the sense that all
dynamic signal behdor is lost. W call this vaveform modelwW3 Although the notion of anvent is
absent from the W3 model, we treat sensitized paths (with respect to this modeihgsahbsatract wents
whose occurrence times are the length of the paths.

The chJ‘X’Vf for the W3 model is dered by smoothingd, and A from wrf. The terms imolving
A, andA, areE, andL,. So,
Sa, AyEX = SAX’Ay(AXs A) =1, andSAX’ AyLX = Sp, Ay(AysAX) =1.
Substituting thesealues intajs.y, we obtain the P@,. = Sh, quJX\f shawn in Fig. 6. It is interesting
to note that the PQJX\f is not the usual static sensitizatioondition, which is based on the D-algorithm
used in test generation It is kmo in the literature astatic co-sensitizatioand vas introduced by De-
das et al. [7]. Also shun in the figure arepx\;3 and the latest (abstractyent time A\ZN3 derived using

Equation (2). HereA, and A are the maximum length of the sensitized paths ending at ixpuntdy,

AW3
w3 w3 7
LI'I)(Z Y llJyZ Y X Y O 1
1 xXN—2 1 0maxA, A)| A
o 1 1 o 1 0
10 1 1 1 1 1 A max(A,, A,)

() (b)

Figure 6: (a) The PCs l]J\)g3 and w\ff’; (b) the latest event time A\ZN3 under the W3 model.
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Figure 7: Summary of waveform models and their PCs.

respectiely. Thus,A\ZN3 is the maximum sensitized path length up to the output of the Al g

The last simplification is to smooth out the remainiagables, which are the finahlesX andY.
We call the resulting aweform modelW4. The PCljJ\)g4 under the W4 model is equal 19 since
w\;\f = SX’YUJ\QQG)(X, Y) = 1, which means thatvery esent propagtes without ay condition. The latest
event timeA\ZN4 is maxA,, Ay) , I.e., the longest topological path delay up to the output of the AME& g
Thus, delay calculation for this model is e@lént to topological delay analysis.

A summary of the aweform models introduced sarfand their PCs is stva in Fig. 7. Model com-
plexity decreases as one was from the WO model to W4. The pessimism of the PCs increases in the same
direction, since approximation implies pessimism. $imoothing elation between these aveform mod-
els as well as between PCs is denoted-byFor example, denoting the PCs corresponding to tvave-
form modelsP andQ by w” and w®, respectiely, if P - Q (W° - w?), then modeR (PC w°) is
obtained by smoothing out from mode(PC lpp) some of its ariables.

The folloving two results are the direct consequences of thgdimg analysis.

Theorem 1:Let P andQ be two waveform models such th& - Q. An event that propagates unékealso
propagates in undey.
Theorem 2:Let P andQ be two waveform models such th& - Q. Let the circuit delay undd? be d"
and that unde® be d?. Thend®>d".

From Theorem 2, we ha d"<d" <dV?<dV < dV, Therefore, delay computation under
models W1 through W4 is safe. Delay estimates get looser as ees fram WO to W4.
4 Lattice of Propagation Conditions

The PCs in Fig. 7 can be augmented with others proposed in the literature to illustrate the relation-
ships among the kmm PCs. V€ must first gpress all the PCs in terms of our notatioor Brevity, we
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Figure 8: The viability conditions and the corresponding output delay.

only consider here viability [10], static sensitization [1] and the loose criterion [4, 5]. Other proposed PCs
include the PC proposed by Perremans, Claesen and DeMan [12], the VIPER condition [3], the Brand-
lyengar condition [2], and the Duen-Ghanta condition [9], which can all be treated similarly

A widely-studied PC isiability [10, 11] which assumes the W2weform model. Consider a 2-input
AND gate with inputs< andy and outpuk. Under viability an @ent on inpui propagtes to the outputif

» The stable valu¥ (latest event time) of inpytis non-controlling, or

» The stable valu¥ is controlling, but the event on inputs earlier than that on inpuyt

VIA . L VIA .
«z » the abwe conditions translate intp,,” = E, +Y for a 2-input

Denoting the PC for path - z by
. VIA VIA . VIA VIA
AND gate. Figure 8 stves the PCs),, anquyZ and the latestvent time (delay)A, . Note thatA,
is the same aA\ZNZ, the delay under the W2 model (floating mode), which confirmsque results [4,5].
Similarly, the PCQJ;S for the loose criterion [4, 5] can be shoto be XE, + Y. Further as in the
case of viabilitythe latesteent time (deIay)D\;O for the loose criterion is the same as that under the W2

model. W also note that the condition used by VIPER [3] is\edeint to the loose criterion.

Like our W3 model, static sensitization only deals with final stadli@es. It has been sho that
static sensitization can underestimate [10] as wellvarestimate [6,15]. W will also shav now that this
is true. The PCs for a 2-input ANIag under static sensitization apéSZTA =Y, LIJ)S,IA

showvn in Fig. 9(a). As Fig. 9(b) illustrates, the delay for the input combina¢dén= 00 is undefined and

= X, which are

is represented byco . This is the source of the underestimation problem with static sensitization.

All the PCSUJY(\Q for pathx - z of a 2-input AND @te discussed sarfare summarized in Fig. 10 in
the form of a lattice. & redefine— to represent theovering relation, that is,qJP - qJQ now means
qJP U qJQ, which is looser than the pieus definition based on smoothing. Thereme elements in the

STA
STA STA
ll»’xz '-IJyz AZ Y 0 1
Y Y
X0 1 Y0 1
g o 1 0 0 0 0 -~ Ax
1 0 1 1 1 1 1 A maxA,, A)

(@) (b)

Figure 9: The static sensitization conditions and the corresponding output delay.
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Figure 10: The lattice of PCs for a 2-input AND gate .

lattice areLIJ\)g4 (the topological PC), which propaigs gery event, and thewull PC qJD = 0 which does
not allov ary event to propagte. The PC1|JW0 is the ideal one which gks the ract circuit delaydwo.
Both Theorems 1 and 2 hold for thevedng relation - also since their basis Equation (1) is satisfied.
Thus, ifL|JP - lIJQ for two PCsP andQ with corresponding circuit delayi;P and dQ, respectiely, then
we hae d” <d®.
The entire set of PCs appearing Fig. 10 canWdeti into two groups:
« Those abovep)". in the lattice, that is, any R@for which*'® - ¢?, and hencel® = d"°. These
PCs are correct according to the special definition of correctness given earlier.
* Those belowp\)go. Obviously, for such a PQ, qJWO - LIJQ does not hold and® < d"° is possible.

These PCs are thus incorrect.
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Figure 11: The conditions and the output delay for the ne w PCs: (a) S1, (b) S2.

The lattice is quite useful invaluating the correctness and tightness of the P@sed&ample, it is
immediate that static sensitization can underestimate the circuit tiéhalg being correct, the closer to
qJWO (the PC for the WO aveform model), the tighter the PC. All the relationships among the PCs that
can be established from the lattice of Fig. 10 confirmipusly published results [5, 11, 15]. Additionally

we have the follaving new result.

Theorem 3: When static sensitization does not underestimate, its estimate is equal to or better than that of
the W2 mode(floating mode)

With the help of the preceding analysis, one can findara potentially useful propation PCs. Of
particular interest are those that only deal with final staligeg, lile static sensitization and W3 (static
co-sensitization). W hare come up with tew such PCs that we call S1 and S2ythee shan in Fig. 11
along with their corresponding output delays computed according to Equation (2). As the Yigale &1
and S2 are a combination of static sensitization and W3 (static co-sensitization), and hence blend the safety
of W3 and the tightness of static sensitization. While S1 imposes static sensitization gn$2doiposes
static sensitization on input Both S1 and S2 are correct in thatythever underestimate the circuit delay
Their tightness is between those of W3 and W2.

While S1 and S2 can be used indually, we also propose the follang additional PC calledafe
staticthat males use of both. It is defined as falfor ary 2-input ate:

Safe static propagion condition: IfA, <A, , then use S1, otherwise use S2
whereA, andA, are the longest topological delays to inpugsdy, respectiely. We note that safe static
is different from the PC used in [16], which is aglént to floating mode. The idea behind safe static is to
impose static sensitization, which has tighter conditions, on the input whose topological delay is longer
This reduces the probability of the longer path being reported true when it is aclsalyid this respect,
safe static is similar to the DueM-Ghanta [9] condition, which impres on the Brand-lyemag [2] condi-

tion with the help of topological delays [11].
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5 Experimental Results

To evaluate the tightness of the proposed PCs S1, S2 and safe stativgvpetiarmed xperiments
with the timing analysis program TAlescribed in [17]. CRis a symbolic timing analyzer and can com-
pute a circuis delays and associated conditions undgrR@. The delay estimates of S1, S2 and safe
static along with those of W4 (topological), W3 (static co-sensitization), W2 (floating), and static sensiti-
zation are shan in Tablel for the ISCAS-85 benchmark circuits, carry-skip adders, and sxanepées
from [7].

As mentioned before, the estimates of S1, S2 and safe static are between those of W2 anth&/3. F
ISCAS-85 benchmark circuits, S1 and S2 yield the same delagsias W2»eept for c1908, where their
estimate is equal to the longest topological ddtay carry-skip adders, S1 and S2 report the longest topo-
logical path delayThe delay estimates of static sensitization for cla.16 and te2i@?e less than those of
W2, which indicates the possibility of underestimation for static sensitization. The estimates of S1 and S2
are safe, as shum in the table. The estimates of safe static arg good; thg are the same as those of W2
for all the examples gcept two cases, where safe staticecestimates by only 1 (tau9&g and 2
(tau92&?2). These results shothat safe static is quite tight, especially consideringdhethat it ignores
dynamic signal behaor.

Finally, we male the follaving obserations rgarding the computation times. As oneves from
W4 to W2, the computation times increase,xg®eted. Under a specificameform model, diierent PCs
can significantly change computation times, depending on the method and implementation. In our case,

Table 1: Comparison of dela ys for PCs S1,S2, and saf e static with those f or W4 (topological), W3
(static co-sensitization), W2 (floating), and static sensitization.

Cir cuit \{[\éi)_(lgggij't Vgggsetsgg S1 S2 Safe static (flo\{avtizng) Static sens.
c432 17 17 17 17 17 17 17
c499 11 11 11 11 11 11 11
c880 24 24 24 24 24 24 24
cl1355 24 24 24 24 24 24 24
c1908 40 40 40 40 37 37 37
c2670 32 30 30 30 30 30 30
¢3540 47 46 46 46 46 46 46
c5315 49 47 47 47 47 47 47
c7552 43 42 42 42 42 42 42
csa.32.2 97 97 97 97 38 38 38
csa.64.4 161 161 161 161 46 46 46
csa.128.8 289 289 289 289 62 62 62
cla.16 34 34 34 34 34 34 33
tau92al 27 27 27 26 25 24 24
tau92e2 93 62 55 46 44 42 41

11



however, we hae obsered that the CPU times for W3 (static co-sensitization), S1, S2 and safe static are
very close to each othdfrom this, we conclude that safe static has the best aglmmaputation time
trade-of under the W3 model.
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