Characterizing Shared Memory and Communication
Performance: A Case Study of the Convex SPP-1000*

Gheith A. Abandah Edward S. Davidson
Advanced Computer Architecture Laboratory, Department of EECS
University of Michigan
1301 Beal Avenue, Ann Arbor, M| 48109-2122
TEL: (313) 936-2917, FAX: (313) 763-4617
gabandah,davidson@eecs.umich.edu

January 8, 1996

Keywords. Shared-memory Multiprocessor, SPP-1000, Memory Performance, Communication
Performance, and Performance Evaluation.

Abstract

Theabjectiveof thispaper isto develop model sthat characterizethe memory and communi-
cation performance of shared-memory multiprocessorswhichiscrucia for developing efficient
parallel applications for them. The Convex SPP-1000, a modern scalable distributed-memory
multi processor that supports the shared-memory programming paradigm, is used throughout as
acasestudy. The paper evaluates and models four aspects of SPP—1000 performance: schedul-
ing, local-memory, shared-memory, and synchronization. Our evaluation and modeling arein-
tended to supply useful information for application and compiler development.

1 Introduction

A distributed-memory multiprocessor is a scalable shared-memory parallel processor that uses a
high-bandwidth, low-latency interconnection network to connect processing nodes which contain
processors and memory [1]. The interconnection network provides the communication channels
through which nodes exchange data and coordinate their work in solving a parallel application.
Different types of interconnection networks vary in throughput, number of communication links
per node, and topology. Mesh, ring, and multistage interconnection network (MIN) arethree of the
commonly used topologies[2, 3, 4, 5].

*The University of Michigan Center for Parallel Computing, site of the SPP—1000, is partially funded by NSF grant
CDA-92-14296.

Multiprocessor Node
CPU XX CPU

' ' !

Lo | [vem| |RmC |

Y
To Interconnection Network

Figure 1: A multiprocessor node.

In a distributed-memory multiprocessor, the physical memory is distributed among the nodes
but forms one global address space. A node is essentially a symmetric multiprocessor with a bus,
or crossbar, interconnecting one or more processors, local memory, a remote memory controller
(RMC), and optionaly I/O. All or alarge fraction of the node memory is shared so that processors
from remote nodes can access it, though with a higher latency than the local access latency. The
RMC handles internode memory access using point-to-point transactions. The RMC may have an
Interconnect Cache (1C), asin the Convex SPP-1000, to reduce remote-memory accesses by copy-
ing referenced remote data into the IC and thus enabling future accesses of the referenced remote
datato be handled locally from the |C. The RM C usually maintains cache coherence using awrite-
invalidate, distributed directory-based protocol.

In addition to supporting the message-passing programming paradigm, multi processors support
the shared-memory programming paradigm. Although the latter model is simpler for devel oping
parallel applications, programmers need to give specia attention to data partitioning among pro-
cessors in order to get good scalability. A parallel application with heavy remote access can run
faster if its data can be rearranged to decrease remote accesses.

The achieved performance of a paralel application is a function of the application itself, the
performance of the parallel computer, and the compiler and supporting librariesused. More specif-
ically, the performance of a parallel computer is a function of its components. operating system,
processors, memory subsystem, and communication subsystem. Our objective isto model the dif-
ferent aspects of a parallel computer’s performance to enable estimating the execution time of an
application given its high-level source code. This characterization would supply information that
is useful for development and tuning of parallel applications and compilers.

In this paper, we present an experimental methodology and use it to characterize the SPP-1000
scheduling, memory, communication, and synchronization performance. The rest of this Section
gives an overview of the SPP-1000. Section 2 characterizes the scheduling overhead of the paral-
lel environment in managing processor alocation for parallel tasks. Section 3 presents a charac-
terization of data cache and local-memory performance. Shared-memory performanceistreatedin
Section 4, synchronization overhead in Section 5 and conclusions are presented in Section 6.

The experiments of this paper were carried out on the University of Michigan Center for Paral-
lel Computing (CPC) SPP-1000 which has 4 Hypernodeswith atotal of 32 CPUs. All experiments
were carried out during exclusive reservation (no processes running for other users). Table 1 sum-
marizes the configuration of the nodes evaluated in this paper.

Feature | SPP-1000data ||

Number of processors 32 in 4 Hypernodes
Processor PA7100 @ 100 MHz
Instruction cache/processor (KB) 1024

Data cache/processor (KB) 1024

Main memory (MB) 1024
Memory bus (Bits) 32
Interconnect Cache (MB) 128 per Hypernode
OSversion SPP-UX 3.1.134
Fortran compiler Convex FC 9.3

Table 1: Node configuration.

Convex SPP-1000

The Convex Exemplar SPP-1000 consists of 1 to 16 Hypernodes [6]. Each Hypernode contains
4 Functional Blocks and an |/O Interface interconnected by a 5-port crossbar, rather than a busto
achieve higher throughput. Each Functional Block contains2 Hewlett-Packard PA-RISC 7100 pro-
cessors, Memory, and some control devices (see Figures 2 and 3). The Functional Blocks commu-
nicate across the Hypernodes viafour CTI (Coherent Toroidal Interconnect) Rings.

The CTI supports an extended version of the Scalable Coherent Interface (SCI) standard [7].
The CTI supports global memory accesses by providing or invalidating one cache linein response
to aglobal memory access. Each CTI Ringisapair of unidirectional links with apeak transfer rate
of 600 MB/sec for each link.

Each processor has direct accessto itsinstruction and data caches which are direct-mapped and
virtually-addressed. The processor pair of the Functional Block share one CPU Agent to commu-
nicate with the rest of the machine. The Memory has two physical banks that are configured into
three logical sections, Hypernode Local, Subcomplex Global, and Interconnect Cache (I1C).

I1 1 I1 1

J \ J \ J \ Hypernode 0
1 I

‘ 5{Poft Crossbiar 1/0 Interface

} Functional :

Blocks .

4

Hypernode n
(n<16)

Four CTI Rings

Figure 2. Convex SPP-1000 Hypernodes.

Bank 0 I Bank 1 Functional Block
HyEemode
ocal
Smanoier| [cooes
Global
Interconnect
Ca(‘:he CPU CPU
e Memory T T
CTI CPU
Interf. [** CCMC < ------------~ > Agent

Crossbar Port

Figure 3: Convex Exemplar Functional Block.

The Hypernode Local sectionisused for thread and Hypernode private data. On the SPP-1000,
processes run on virtual machines called Subcomplexes, which are arbitrary collections of proces-
sors. The Subcomplex Global section is used for shared-data and might be interleaved across the
Subcomplex Hypernodes. ThelCisused for holding copiesof shared datathat isreferenced by the
Hypernode processors but has home addresses in the Subcomplex Global memory of other Hyper-
nodes.

Physical memory pages are 8-way interleaved by |1C lines across the Memory banks of the four
Functional Blocks of each Hypernode. Consecutive IC lines are assigned in round robin fashion,
first to the four even banks, then to the four odd banks. A processor cache line is 32 Bytes wide,
whereasan IC line is 64 Bytes wide, containing apair of processor cache lines.

The Convex Coherent Memory Controller (CCMC) providestheinterface between the Memory
and the rest of the machine. When a processor has a cache line miss, its Agent generates amemory
request to one of the four CCM Cs associated with the processor’s Hypernode. The CCM C accesses
its Memory if it has avalid copy (in any of the three sections) and contacts other Agentsif their
processors have a cached copy. Otherwise it contacts aremote CCMC for service through its CTI
Ring.

The SPP-1000 supports the shared-memory programming model. Its Fortran and C compil-
ers can automatically parallelize ssmple loops. The compilers feature some directives that enable
programmersto assist in parallelizing moredifficult loopsand to exploit task parallelism. The SPP-
1000 aso supportsthe PVM [8] and MPI [9] message-passing libraries.

2 Scheduling Overhead

The scheduling time isthe time needed by the parallel environment to start and finish parallel tasks
on p processors. Thistime may include the overhead of allocating processors for the parallel task,
distributing the task executable code, starting the task on the processors, and freeing the allocated
processors at the task completion. In this section, we present the overhead of two aspects of SPP—
1000 scheduling: static scheduling and parallel-loop scheduling.

Measured Data ro—
7 2+022%p —

P
o

SSO Time (Seconds)
D

0 4 8 12 16 20 24
Number of processors

Figure 4: Static Scheduling Overhead.

The Static Scheduling Overhead (SSO) isfor scheduling afixed number of processorsthat does
not change during run time. It isincurred once and is significant for short programs. To evaluate
this overhead, we run a simple program on a varying number of processors where each processor
printsitstask id. Measuring the execution wall timeis agood approximation for the SSO. Figure 4
shows the range and average of the SSO for 10 runs.

Using curve fitting, the SSO in seconds can be roughly approximated by:

SSO(p) = 1.2 4 0.22p

Compared with multicomputers [10], the SPP-1000 has relatively short SSO. The SPP-1000
advantage stemsfrom having one operating system image with central control that swiftly alocates
and starts parallel tasks. Moreover, multiple processors can share the same executable binaries.

The Convex Fortran and C parallelizing compilers enable paralelizing loops. During program
execution, processor 0 isawaysactive and other available processors become active when entering
aparallel loop. When processor O is ready to enter a parallel loop, it activates the other processors
and they become idle once again at the parallel-loop completion. The overhead of processor acti-
vation and deactivation for aparallel loop is the Parallel-Loop Scheduling Overhead (PLSO).

To evaluate this overhead, we time a parallel 1oop that has one call to a subroutine consisting
simply of areturn statement (Null Subroutine). The loop is run many times and the average time

350

Measured average ©
B
200 14.3*p 5

250

200

150

100

PLSO Time (Microseconds)
<

50

0

0 4 8 12 16 20 24
Number of processors

Figure 5: SPP-1000 Parallel-loop Scheduling Overhead.

5

for avarying number of processorsis shownin Figure 5. The PLSO is approximately proportional
to the number of processors and has sudden increases when the additional processor isfrom a new
Hypernode. Using curve fitting, the PL SO can be roughly approximated by:

PLSO(p) = 14.3p

3 Local-memory Performance

We have used L oad/Storekernels[11, 12, 13] to characterize the performance of the local-memory.
Figure 6 shows the average time per access operation for SPP—1000 processor. The Load kernel
is aseria program with an inner loop that loads double-precision (8 Bytes) 1-dimensional array
elements into the floating-point registers. The array size is varied from 1 KBytes to 3 times the
data cache size. The experiment is repeated for strides 1, 2, 4, ..., S, and 2S; where 2S is the first
stride with the same time per load as the previous stride. One cache line thus contains S elements
and resultsare shown for strides 1 through S. For the Store kernel the load instructions are replaced
with stores. The Figure shows three regions:

1. Hit Region, wherethearray sizeissmaller than the cache size, and every accessisahit taking
Th time.

2. Transition Region, where some of the accesses are hits and others are misses taking 7t aver-
age time per reference which is afunction of the stride. The width of this region equals the
cache size divided by the degree of the cache associativity.

3. Miss Region, where the array size is big enough that every access to a new cache lineis a
miss taking 7y, average time per reference which is afunction of the stride.

From these simple kernels and graphs we get the information shown in Table 2 for the SPP—
1000. The Memory Load and Store Bandwidths are found by dividing the number of bytesin one
double-precision element by the stride 1 accesstime in the Miss Region.

Tw for strides4 or higher isshownin Table 2. T\, for strides 1 and 2 can be approximated as a
function of the stride 4 time which is purely a miss time since there is one reference per line. For

80

Store -----
Load — Stride 4

70

60

50

40

30

20

Average time per reference (Cycles)

10

0

0 512 1024 1536 2048 2560 3072
Array size (KB)

Figure 6: Accesstimefor varying strides.

[Feature [SPP-1000 |

Cachesize (C) inKB 1024
Cache Associativity (A) 1

Cache Line size in Bytes (Elements) 32(4)
Load Hit time (7T) in cycles (nsec) 1(10)
Store Hit time (THs) in cycles (nsec) 2(20)

Load Misstime (7)) in cycles (nsec) || 55.4(554)
Store Misstime (Tjg) in cycles (nsec) | 63.3(633)
Memory Load Bandwidth (MB/sec) 52
Memory Store Bandwidth (MB/sec) 50

Table 2: Local-memory performance.

store, Ty isthetime for stride 4 divided by the number of stores per miss (4 for stride 1 and 2 for
stride 2). For load, the trailing edge effect must be taken into consideration. On aload miss, the
line elements arrive one per two cycles (the one word wide memory bus takes 2 cyclesto transfer
a double-word element). Hence, T) for stride 1 is one fourth the sum of stride 4 time and the bus
transfer timefor 3 elements (2 x 3), and 7, for stride 2 is one half the sum of stride 4 time and the
bus transfer time to get the third element in the cacheline (4 x 1).

The access timein the Transition Region (77) can be found as a function of 7 and 7}, for the
corresponding stride, namely

Ty x (resident lines) + Ty x (nonresident lines)
total lines

Ty =

Figure 7 illustrates T for a cache with size ' and associativity A. For an array of size W,
the segment W — (' shown to theright of the A cache setsis the excess segment. When the array
is accessed repetitively, assuming LRU replacement strategy, the resident lines are proportional to
A(CJ/A — (W — ()) and the nonresident lines are proportional to (A + 1)(W — C'). Hencefor a
given cache system, 77 isgiven by the following non-linear function of W:

0—A$—0)+TM) (A+1)V(VW—0)

NotethatTT:THatW: CandTT:TM aw = C(1+1/A).

. w c
C/A
CIA- (W C)

MW Miss
L] Hit

Tt =TH x

Figure 7: Cache missesin the Transition Region.

4 Shared-memory Performance

In SPP-1000 programs when a data structure is declared as shared, then multiple processors can
accessit directly at run-time. Since the SPP-1000 employs caching in the processor datacache and
the Interconnect Cache to reduce the average access latency, there can be more than one copy of a
dataitem. The SPP-1000 uses the Scalable Coherent Interface protocol to ensure that a processor
aways seesthe latest update of a dataitem.

SCI uses write-invalidate, write-back coherence protocol where multiple processors can have
a copy of adataitem for read access. When a processor writes into a data item, al other copies
areinvalidated. So subsequent reads must get the current copy from the writer’s cache. When a
processor needs to replace a written cache line, it writes back the cache line to the memory. The
SPP-1000 keeps track of who has copies of acache line using distributed linked-list directories.

Inthis Section we present our eval uation methodol ogy and results on SPP-1000 shared-memory
performance. Subsection 4.1 evaluates the Interconnect Cache performance; 4.2 evaluates shared-
memory performance when 2 processors interact in a producer-consumer access pattern; 4.3 eval-
uates the overhead of maintaining coherence when multiple processors are involved in shared-data
access.

4.1 Interconnect Cache Performance

ThelInterconnect Cache (1C) isadedicated section of theHypernodeMemory. ThelC sizeisconfig-
urable by the system administrator, and is selected to achieve the best performance for applications
that are frequently executed.

The IC in each Hypernode exploits locality of reference for the remote shared-memory data
(shared data with a home memory location in some other Hypernode). Whenever remote shared-
memory datais referenced by aprocessor, if thereisamissin the processor’s data cache, followed
by amissin the Hypernode's IC, a64-byte IC lineisretrieved over the CTI through its home Hy-
pernode. ThislineisstoredinthelC, and the referenced 32-byte portionisstored in the processor’s
data cache. Hence additional referencesto this line that miss in the data cache can be satisfied lo-
cally from the IC until thislineisreplaced or invalidated due to an update by aremote Hypernode.

To evaluate the performance of the IC, we used an experiment similar to the one used for eval-
uating the local-memory performance. We have used a program that is run on two processorsfrom
distinct Hypernodes. The first processor allocates an array of some size and initializesit. The sec-
ond processor keeps accessing this array repetitively form top to bottom with some stride. Figure 8
shows the average latency of the second processor for load and store with avariety of stridesas a
function of the array size.

For array sizesup through 128 M B, the array fitsin the |C and we get accesstimes similar to the
local-memory accesstimes as reported in Section 3. For larger arrays, we enter atransition region
that is 128 MB wide indicating that the IC is direct mapped. For array sizes larger than 256 MB,
no part of the array remains in the cache between two iterations, so every accessto anew IC line
generates an IC missthat is satisfied from the remote Hypernode.

When we go from stride 1 to stride 8, the average latency increases due to the increase in the
number of misses per access. For stride 8 or larger, every accessis amiss. Our experiments have
shown that the maximum latency is for stride 32, because in addition to the fact that every access
isamiss, fewer CTI Ringsare used resulting in CTI congestion; strides up through 8 use 4 Rings,

8

550

Load, stride 1 —-
500 Load, stride.2..==
Load, stride 4 ==
450 Load, stride 8
Load, stride 16 =
400 |-Load, stride 32 =
Store, stride 1 -o
350 Store, stride 2 - +:-
Store, stride 4 -8}~ 7[
iy
*

b

) S —

K- KKK KKK

K
% A-AA A A AB-A-
3 g
R R R R
A x = 58
=R
BT oo e s
fﬁ,»r/——+-+r+~—~+—+~+~
=$ 8"

300 Store, stride 8 -x:-
Store, stride 16 -2:-
250 |-Store, stride 32 -x:-

200

Latency (cycles)

Y O IR
) i Z\Xﬁx&jx_

[BRI Bz P S e R

150

100

i

4
5 b

50

1 :

o
>+ 3
T
o+

TITRTITSTTSTST

o+ |

0 64 128 256 320 384

192
Array size (MB)

Figure 8: Interconnect Cache performance.

stride 16 uses 2 Rings, and strides of 32 or more use 1 Ring. No noticeable increase in the average
latency was observed beyond stride 32.

Peak transfer rate between aremote memory and aprocessor ismeasured by the stride 1 average
latency in the Miss Region (8 Bytes divided by the latency). Thisrateis 15 MB/sec for loads and
21 MB/sec for stores. Remote store is faster than remote load because the CTI protocol simply
sends the addresswith the new datafor stores, but sendsthe address and waitsfor the response data
for loads.

4.2 Shared Read/Write Perfor mance

In this subsection we present our resultsfor eval uating the shared-memory performance on the SPP—
1000 when 2 processors interact in a producer-consumer access pattern for shared data. For this
purpose we use a program that has the following pseudo-code:

shared Al N|

repeat <
proc O wites into Al] with stride S
wait _barrier()
proc 1 reads fromA[] wth stride S
wait _barrier()

Thisprogram isrun on two processorsand the outer loop is repeated many times. Thisprogram
simulates the case when one processor produces data and another processor consumesit. For an N
element array with stride S, in each iteration Processor O does NV/.S write accesses and Processor 1
does N/S read accesses. N is selected such that the array fits in the processor data cache. The
time spent in doing these accesses is measured for the two processors and divided by the number
of accesses to get the average access time. The time of Processor O is the Write-after-read (WAR)
accesstime, shownin Figure9. Thetimeof Processor 1 isthe Read-after-write (RAW) accesstime,
shown in Figure 10.

When Processor 1 writes into the array instead of reading, we get a third access pattern with
Write-after-write (WAW) access time, shown in Figure 11. Thisis aless common access pattern,

9

700

Far WAR/
Near WAR/

Cached or not -—
Cached or not -B--

Stride

Figure 9: Write-after-read access time.

600

3 500

o

>

g

@ 400

[0

o

o

< 300

[

o

[

£ 200

£
100
0
700
600

3 500

o

>

g

@ 400

[0

o

o

< 300

[

o

[

£ 200

£

Far RA

/Cached —-—
Far RAW —+--

Near RA'

ear RAW

NiCached -

Stride

16

32

Figure 10: Read-after-write accesstime.

10

700

Far WAW/Cached —-—
Far WAW ----
600 Near WAW/Cached &+~

ear WAW

500

400

300

Time per Access (cycles)

Stride

Figure 11: Write-after-write access time.

Type | Distance | Cached Stride
1] 2] 4] 8| 16| 32
WAR | Near No 18| 35| 70| 70| 70| 70
Yes 18| 35| 70| 70| 70| 69
Far No 105 | 199 | 332 | 539 | 580 | 667
Yes 105 | 199 | 333 | 539 | 580 | 667
RAW | Near No 16| 29| 60| 60| 61| 61
Yes 34| 67132 132|134 | 138
Far No 55| 118 | 234 | 369 | 404 | 406
Yes 70 | 148 | 300 | 457 | 494 | 493
WAW | Near No 17| 31| 61| 61| 61| 62
Yes 31| 61| 116 | 115 | 115 | 122
Far No 78 | 146 | 249 | 408 | 420 | 467
Yes 93 | 177 | 309 | 497 | 505 | 557

Table 3: Producer-consumer access timein cycles.

but may occur in false-sharing situations where two processors write into two different variables
that happen to be located in the same cacheline. Thethree accesstimesare summarizedin Table 3.

For thefourth access pattern, Read-after-read (RAR), each processor acquiresacopy of the data.
Hence we get access times similar to the local-memory access times when the two processors are
from the same Hypernode or when the array sizefitsin the Interconnect Cache. Otherwise, we get
access times similar to the load times as reported in Subsection 4.1.

For the first three access patterns, the access time depends on the access stride, the distance
between the two processors, and whether the datais cached in the other processor’s cache. Since
the array fitsin the data cache, it is cached whenever a processor accessesit. To measure the not-
cached case, we add to the program code to flush the cache just before the barrier. In genera, the
accesstimeincreasesasthe strideincreasesdueto theincreasein the number of misses per reference
or the decreasein thenumber of CTl Ringsused. The accesstimewhen the two processorsarefrom
different Hypernodes (Far) isfrom 2 to 10 times|larger than the accesstime when the two processors
are from the same Hypernode (Near).

11

Distance | Cached Latency Transfer Rate
in microseconds | in MB/sec

Near No 1.3 23.5
Yes 2.0 15.4
Far No 9.1 5.0
Yes 10.0 4.6

Table 4: Shared-memory point-to-point communication performance.

In WAR, the accesstimeis higher than the | C store time due to the need to invalidate the copy
in the remote Hypernode |C (Far access). It is higher than the local store time due to the need to
invalidate the copy in the Hypernode Memory (Near access). Thisinvalidation time is the same
regardless of whether the datais in the other processor’s cache.

In RAW, aread access is done to the local memory (Near access) or the remote memory (Far
access). When the memory has avalid copy, the read access is satisfied from the memory. Other-
wise, when the datais invalid, then the current copy is in the cache of the other processor. In the
latter case the read accessis satisfied from the other processor cache with a higher latency.

The WAW access is similar to the RAW access and starts by reading the current copy with in-
validation. Once the dataisin the processor’s cache, it is updated.

The WAR and RAW access times can be used to find the shared-memory point-to-point com-
munication latency and transfer rate. The latency is the sum of WAR and RAW access times for
stride 8. The transfer rate is 8 Bytes divided by the sum of WAR and RAW access times for stride
1. These derived parameters are shown in Table 4. For the cached case, Far communication has
about 5 times the Near communication latency with about one third the transfer rate.

4.3 Coherency Overhead

In this subsection we present the eval uation resultsfor the shared-memory performance on the SPP—
1000 when 2 or more processors perform read and write accessesto shared data. The main objective
here isto evaluate the coherency overhead as afunction of the number of processorsinvolvedina
shared-memory access. For this purpose we use a program that has the following pseudo-code:

shared Al N|
repeat <
proc O wites into Al] with stride S
wai t _barrier()
foreach proc # 0 {
begincritical _section
read fromA[] with stride S
endcritical section

}

wai t _barrier()

Thisprogramisrun on varying number of processorsand itsloop isrepeated many times. This
program simulates the case when one processor produces data and other processors consumeit. In

12

1000
Stride 32
900 e —
800 :
Stride 16

iy -
S 100 V—
o i
> 600 i Stride 8
2 ﬁa—a———z 3
= 500 i
g i bIl’I!]i/E
= 400 I -
=} .
‘_>° 300 Stride 2
£ [/m G —B—E

200 Stride 1

100 =

0 BE—F—8—+F
0 4 8 12 16 20 24

Number of processors

Figure 12: Invalidation time as a function of sharing processors.

400
[Stride 8 5—
Stride 4 -&r--
350 Stride 2 -8--
Stride 1 -2
300 / \ l \
m 250
[
g 200
o i i
£ i N
F 150 f4 fik
4 o ol
100 o [
50 L 1 em : o= =
Upag8ew 0600l 00608088
B-a @8 B-g8-8 -85 8-E-0-8
0
0 4 8 12 16 20 24

Number of processors

Figure 13: Read time for the n-th processor.

this program Processor O does V/ .S write accesses per iteration, and each of the other processorsdo
N/S read accesses per iteration inside a critical section. Notice that no more than one processor is
activeinthecritical sectionat any time so thereadsaretotally ordered. Thetime spent indoingthese
accesses is measured for each processor and divided by the number of accessesto get the average
access time. The time of Processor 0 is the Invalidation time, shown in Figure 12 as a function
of the total number of processors. The other processors' time depends on the order in which the
processors enter the critical section. Figure 13 shows the read time as a function of the processor
read order for experiments with 24 processors.

The Invalidation time increases with increasing stride for the same reasons as described in Sub-
section 4.1. Invalidation depends on the number of Hypernodesthat the processors span, and isthe
fastest within one Hypernode (8 or fewer processors). In general, the Invalidation time increases
in steps, it remains amost constant when the new processor is from the same Hypernode, and in-
creaseswhen the new processor isfrom anew Hypernode. Invalidationtimefor stride 8 jumpsfrom
74 cyclesfor 8 processorsof one Hypernodeto 575 cyclesfor 9 processors of two Hypernodes and,
opposed to other strides, it does not increase for three Hypernodes.

The first processor to read from the writer’s cache causes the memory to get updated as a side
effect. The second processor’s read time is thus less since it is satisfied from the local-memory.
Thisisalso true for processors 3 through 7. The read time is higher for processor 8 since the data
is not in its Hypernode and must be provided remotely. When processors 9 through 15 read, they

13

Type Stride

1 \ 2 \ 4 \ 8
Firstread || 34| 67 | 133 | 134
Localread || 15| 29| 55| 55
Far read 56 | 111 | 220 | 377

Table 5: Read time for shared datain cycles.

find the data in their Hypernode's IC and their read time is similar to processors 2 through 7. This
sequence repeats for each Hypernode. Table 5 summarizes these read times.

5 Synchronization Time

In ashared-memory multiprocessor explicit synchronization subroutinesare frequently used. A call
to asynchronization routineis often needed between code segments that access shared data. When
a processor reads shared data that is modified by another processor a synchronization call before
the read is needed to ensure that some other processor has completed its update.

The SPP-1000 has several synchronization subroutines, the commonly used subroutines are
WAI T_BARRI ERand CPS_BARRI ER. We have done experimentsto eval uate the overhead of these
two subroutines where we measured the time to call a subroutine when all the processors enter the
barrier simultaneously. Thisexperiment wasimplemented by making every processor call the sub-
routinefor many iterations. We have found that the two subroutineshave similar performance. Fig-
ure 14 shows the average WAl T_BARRI ER synchronization time for a varying number of proces-
Sors.

Thistime shoots up to more than 1500 microsecondsfor 8 processorsimplying high contention
for the synchronization variables. For 9 or more processors, the processors are spread over two or
more Hypernodes with less contention, but the synchronization time increases steadily. Thistime
can be approximated by:

Twnc(p) = 7 1p2

4500

Measured average O
* Ao L
4000 741p72 V

3500 /

3000

2500 O

2000

Time (Microseconds)

1500 @

1000 0

500 il

0 leegwnnt

0 4 8 12 16 20 24 28 32
Number of processors

Figure 14: Synchronization time.

14

Clearly, an inefficient implementation of the barrier was used yielding large synchronization over-
head when more than 7 processors are being synchronized.

6 Conclusions

In this paper we have presented an experimental method for systematically measuring the mem-
ory and communication performance of a distributed-memory multiprocessor and then modeling
it analytically via simple curve fitting. We illustrated this method by carrying out a case study of
four aspects of the Convex SPP-1000 performance: scheduling, local-memory, shared-memory,
and synchronization.

The scheduling overhead of the SPP-1000 is directly proportional to the number of processors
and is relatively small. The parallel-loop scheduling overhead is aso proportional to the number
of processors and takes 14.3 microseconds to schedule each additional processor. Since the PLSO
isin the order of hundreds of microseconds for tens of processors, it might not be rewarding to
parallelize a short loop. For a serial loop that takes 7, microseconds, parallelizing it with perfect
load balance givesaparallel 1oop that takes 7/ p + PLSO(p) microseconds. Hence aloop can have
afaster parallel versionif 7, > 14.3p/(1 — 1/p).

For local-memory access, the SPP-1000 processors depend on their large data caches, that are
1 cycle away for loads, to reduce the cache miss rates. The local-memory bandwidth is only about
50 MB/sec due to the small cacheline (32 Bytes), long misstime (55.4 cycles) and narrow memory
bus (32 Bits).

Our methodology for characterizing the shared-memory performance of the SPP-1000 reveals
that the IC misstimeis410 cycles, i.e. 7.4timeslonger than amiss satisfied from thelocal memory.
Each CTI Ring has a peak transfer rate of 600 MB/sec. However the coherence protocol limits
the actual load transfer rate between a remote memory and a processor to 15 MB/sec (only 2.5%
of the peak). The remote shared-memory point-to-point transfer rate is limited to 5.0 MB/sec in
a producer-consumer situation. The big difference between near and far access performance, as
presented in this paper, sheds light on the performance gains that can be achieved by localizing the
data structures of SPP—1000 applications.

The implementation of the synchronization barrier subroutines for the SPP—1000 is inefficient
and better algorithms are available [14].

We suggest that the methodol ogy presented in this paper can be applied to other shared-memory
multiprocessors and that the resulting characterization is useful for devel oping and tuning shared-
memory applications and compilers. We have shown that the corresponding characterization of
message-passing multicomputer communication performance [10, 15] can also be systematically
carried out.

References

[1] K. Hwang, Advanced computer architecture: parallelism, scalability, programmability.
McGraw-Hill, 1993.

[2] D.Lenoski etal., “The Stanford DASH Multiprocessor,” Computer, vol. 25, pp. 6379, Mar.
1992.

15

[3] J.Kuskinetal., “The Stanford FLASH Multiprocessor,” in International Symposiumon Com-
puter Architecture, pp. 302—313, 1994.

[4] E.Boydand E. Davidson, “ Communication in the KSR1 MPP: performance eval uation using
synthetic workload experiments,” in International Conference on Supercomputing, pp. 166—
175, 1994.

[5] T. Agerwaaet al., “ SP2 system architecture,” IBM Systems Journal, vol. 34, no. 2, pp. 152—
184, 1995.

[6] Convex Computer Corporation, P.O. Box 833851, Richardson, TX 75083-3851, Convex Ex-
emplar Programming Guide, x3.0.0.2 ed., June 1994.

[7] “Scalable Coherent Interface (SCI).” ANSI/IEEE Std 1596, 1992.

[8] A.Geistetal., PVYM 3 User’'s Guide and Reference Manual. Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37831, Sept. 1994. ORNL/TM-12187.

[9] E. Andersonet al., “MPI: amessage-passing interface standard,” Technical Report, Message
Passing Interface Forum, May 1994.

[10] G. Abandah and E. Davidson, “Modeling the communication performance of the IBM SP2,”
in 10th International Parallel Processing symposium (IPPS 96), (Honolulu, Hawaii), April
1996.

[11] K. Gallivan, D. Gannon, W. Jalby, A. Malony, and H. Wijshoff, “Experimentally character-
izing the behavior of multiprocessor memory systems. A case study,” |EEE Trans. Software
Engineering, vol. 16, pp. 216—223, Feb. 1990.

[12] W. H. Mangione-Smith, T. P. Shih, S. G. Abraham, and E. S. Davidson, “Approaching a
machine-application bound in delivered performance on scientific code,” |EEE Proceedings,
vol. 81, pp. 1166-1178, Aug. 1993.

[13] R. Saavedra, R. Gaines, and M. Carlton, “Micro benchmark analysis of the KSR1,” in Super-
computing, pp. 202-213, 1993.

[14] J. Mdlor-Crummey and M. Scott, “Algorithms for scalable synchronization on shared-
memory multiprocessors,” ACM Transactionson Computer Systems, vol. 9, no. 1, pp. 21-65,
1991.

[15] G.A.AbandahandE. S. Davidson, “Modeling computation and communication performance
of theIBM SP2,” Technical Report CSE-TR-258-95, University of Michigan, Rm. 3402, 1301
Beal Ave., Ann Arbor, M1 48109, May 1995.

16

