
Getting More Information into File Names January 18, 1996 1

Getting More Information into File Names

Michael McClennen and Stuart Sechrest
Software Systems Research Laboratory

the University of Michigan

Abstract: Hierarchical naming, while deeply embedded in our conception of file
systems, is a rather weak tool for storing information about files and their
relationships. A consequence is that users of today’s file systems frequently have
trouble locating files. We describe a system in which a standard directory tree is
extended by allowing names to contain auxiliary components representing
descriptive attributes rather than directory names. This system allows files to be
characterized more extensively, and lets users choose among multiple
organizational structures for their stored information. A prototype has been
implemented by means of a new vnode layer under SunOS 4.1.3.

1. Intr oduction

“Where is that file? I know I saved a copy of that announcement, six months ago. What
did I name that figure? Why did I put that link there? Which version is that?” Despite the
powerful capabilities of modern workstations, frustrated users ask themselves such
questions many times each week. As disk size and processor speed increase, people take
advantage of them to store ever more extensive collections of information. A single logical
file system can easily span hundreds of hosts, and hold gigabytes of information gleaned
from a worldwide network. The contents are likely to be quite heterogeneous, ranging
from source code to love letters, from executables to graphics, encoded in a wide variety
of formats.

In the midst of this explosion of information, our tools for organizing the contents of
file systems are woefully inadequate. Most Unix users depend on utilities that are nearly
20 years old, designed for a far simpler world where file systems were small and contained
little more than source code and executables. Files, especially non-textual ones, have very
little associated information that could aid in retrieving them.

In fact, the very foundation of our concept of file systems, the hierarchical directory
tree, puts severe limitations on the ability of users to characterize their files. Encoding
descriptive information about files in long path names can hinder retrieval as much as aid
it. Although people have come up with clever hacks over the years to get around these
limitations, there is much to be gained by relaxing our strict reliance on hierarchical
structures.

A system that provides extended facilities for characterizing files would not only solve
many of the frustrating problems with misplaced data, but would provide a base on which
other information management tools could be implemented in an integrated way.
Examples range from configuration-management systems to WWW servers to content-
based indexers for text and images.

The standard directory-tree system of file naming can, in fact, be generalized to allow
much greater flexibility , while preserving its innate advantages. We can allow the path
names of files to contain additional components that represent descriptive attributes rather

2 January 18, 1996 Getting More Information into File Names

than directories. These auxiliary components can be optionally left out when a name is
used, and can commute with one other. They are available for use when needed, to search
for files or to select groups of files with similar properties.

This paper describes the design and implementation of such a system under SunOS
4.1.3. We have implemented a new vnode layer to intercept name creation and resolution
calls, while relying on the existing file system for storage. The necessary modifications to
the kernel are quite straightforward, and should be easy to port to almost any Unix-based
operating system that uses the vnode interface. The extension produces minimal changes
to the application-level file system interface, so that most application programs can run
without change. Tools that are aware of the new structure can provide an enriched user
environment. We currently have under development a set of tools for file system browsing
and manipulation, to give users full access to the expanded possibilities for data
characterization and retrieval.

The next two sections of this paper discuss the problem in more detail, including
historical attempts to solve it and a description of our own approach. Sections 4 and 5
describe the implementation of our prototype file system, and 6 presents our conclusions
from the work so far.

2. Points of view

The problem of characterizing and organizing information stored in file systems is not
new. Over the past few years, several groups of researchers have implemented systems
under Unix whose purpose is to increase the amount of descriptive metadata that can be
stored and made available through file names. These systems have focused on different
kinds of metadata and on different situations of use. Our own goal is two-fold: to develop
an abstract framework by which to understand the problem, and to build a system that
focuses on providing services to humans using the file system. This paper describes our
progress on the second of these goals.

2.1 Previous work

Gifford et. al. [GJS*91] provide the most general treatment of this problem up to now.
TheirSemantic File System is an experiment in the characterization of files based upon
their contents. Under this system, a database is used to associate arbitrary collections of
attribute/value pairs with files. The directory tree used to generate path names is
augmented by “virtual directories” which list the available attributes and, beneath these, a
second level listing values. Automatic filter programs scan the contents of files as they are
stored, assigning values to the relevant attributes.

The basic premise of this work is the same as ours: that the file system name space can
be usefully augmented to hold additional descriptive metadata. The limitations of the
project come across in two ways. First, that the system is oriented heavily toward the
automatic extraction of file attributes. Little or no facility is provided for users or for
processes not associated with the system. For this reason, the SFS is not well suited as a
base upon which to develop interactive tools. The set of available attributes is defined
globally by those who write extraction tools, rather than locally by the people who store
files. This system provides one particular enhancement to the standard directory tree, but
does not explore the entire space of possible constructs. Further, on the implementation

Getting More Information into File Names January 18, 1996 3

level, their system works strictly through a special-purpose NFS file server. This would
make it cumbersome to use in many environments, and limits the extent to which it can be
integrated with other kinds of file systems. Our system, by contrast, sits in the vnode layer
and can be configured to work with any underlying file system.

A different approach to the problem is taken by systems that introduceviewpathing or
union directories ([KK90], [Hen90], and [Pik89]). This refers to the construction of chains
of directories such that files from subsequent directories “show through” to the top one.
The result is to separate path names used for retrieval from those used for management.
This allows the real names of files to contain more information, without complicating the
view provided for retrieval. This work provides valuable insight into the ways in which
filesystem semantics can be extended, and could be easily integrated with our own work.

Other examples of systems that demonstrate novel ways of organizing file metadata
are theInversion File System [Ols93], which by using a relational database to support a file
system allows general queries on file metadata, and theProperty-List Directory System
[Mog86] which applies a global set of attribute names to a hierarchical directory structure.

2.2 Our view of the problem

The basic goal of any scheme for file naming is to facilitate two tasks: the
characterization of files by storing descriptive information as metadata, and theirretrieval
by querying that stored information. Consider, then, the act of choosing a path name for a
new file in a strictly hierarchical name space (such as a Unix directory tree). The choice of
each component in the file’s name indicates some property of that file that may be relevant
for later retrieval. From another point of view, the name of each directory typically
represents some property common to all of the files in that subtree.

In the best of all possible worlds, the set of directories in a file system would
correspond 1-1 with the set of file properties that we want to use for retrieval. In that case,
we could find all of the files with a given property simply by listing the appropriate
directory. Unfortunately, this is often impossible for two reasons. First, you cannot map
logically independent attributes to the nodes of a tree. One property must always be made
superior to the other, or they cannot be allowed to overlap. As a result, such properties will
either be mapped to multiple nodes or left out entirely. Second, every component in a file’s
name must be replayed, in one particular order, to retrieve the file. Thus, we have the
situation that the better characterized a file is, the harder it is to retrieve. This is exactly the
opposite of what one would want.

As an example of this phenomenon, consider archiving e-mail messages by saving
them to Unix files. The most obvious technique, to classify by subject and also by author,
is impossible because these attributes are independent. Even if we limit ourselves to
classifying by subject, file names become either too long to be wieldy or too short to be
anything but cryptic. As another example, many people have difficulty organizing files that
are common to more then one project (such as figures, bibliographies, and data files). If
one tries to associate these files directly with each different project to which they are
relevant, one has to deal with either separate copies, multiple hard links, or symbolic links
(each of which can have unpleasant side effects regarding data management and
consistency). If the common files are put into a separate directory, one is then unable to
easily retrieve all of the files relevant to a given project.

4 January 18, 1996 Getting More Information into File Names

Historically, in the case of Unix file systems, the most popular technique used to
overcome these difficulties is the ‘grep’ program, which scans text files looking for strings
matching a given regular expression. This utility of this program rests on the fact that
throughout most of the history of Unix the vast majority of interesting files consisted
solely of ASCII text. Now that this is no longer the case, ‘grep’ is not the panacea it might
once have been.

In general, there are many situations in which the actual contents of a document are
not sufficient to characterize it in a manner meaningful to a particular user. For this reason,
the ability to associate descriptive metadata with stored files will always be crucial to
successful information organization. Although auxiliary tools will always be able to aid in
locating files, the most universal means of associating descriptive information with Unix
files is to keep such information in the file system itself. This can be done in two ways:
either by building functionality into the operating system, as was done by [KK90],
[Hen90], and [Mog86], or by providing file servers that run at the user level as did
[GJS*91] and [Ols93]. We have chosen the former technique, with the aim of making
efficient use of existing file systems for the actual storage of data and metadata.

3. The Multi-structur ed approach to information system design

Although this paper focuses on Unix file systems, the aim of our research is not simply
to provide another method of storing information about files. In fact, the problems
described above are not limited to file systems. Similar difficulties plague users of
databases, world-wide-web sites, and other systems for the interactive storage and
retrieval of information.

Each kind of information system imposes its own requirements on the ways in which
stored documents (i.e., discrete pieces of information) can be arranged. In a concrete
sense, different systems use different data structures to associate metadata with
documents. File systems use trees, the world-wide-web uses a directed graph, and
relational databases use tables.

Each of these different data structures has both positive and negative consequences for
the activities of characterization and retrieval. As we have seen, the tree structure sharply
limits the amount of metadata that can be associated with each document. On the other
hand, it allows for convenient traversal of the attribute space and is simple for users to
work with. Retrieval from a tree is accomplished by an iterative process that involves at
most choosing from a limited number of options at each level.

By contrast, a relational database can be used to associate arbitrary amounts of
metadata with a given collection of objects. The price is that retrieval becomes much more
complicated. To retrieve objects from such a database, one must use a complicated query
language. There is no easy way to traverse the attribute space, and no way at all to
establish relationships among different attributes.

The crux of the matter is that no one organizational structure works well for all
possible collections of information. Given a set of documents and a set of attributes
describing them, there is an exponentially large number of ways of arranging these
attributes into a data structure that can be used by a retrieval system. The “best” choice
depends upon many variables: among others, the nature of the documents and the

Getting More Information into File Names January 18, 1996 5

relationships among them, the preferences of the person who is organizing the collection,
and the search strategies likely to be used by retrievers.

To revisit our earlier examples: when storing files that are described by many
independent attributes, it makes sense to allow any combination of terms to be attached to
a given document and to allow users to execute broad queries. Mail messages and
experimental data sets, for example, could be described this way. The resulting structure is
organizationally similar to a database table, with the columns or fields corresponding to
the attributes available to describe files. On the other hand, when using attributes that nest,
such as project-name, sub-project, module, and so on, a tree structure will likely work
best. Here, the advantages of tree traversal are not offset by any difficulties in trying to
represent independent attributes.

Within most large collections of files, even those stored by a single person, there will
be situations in which each of these structures makes sense. It is likely that most users will
wish to define some attributes that fit well in a hierarchy and some that do not. A hybrid
model, in which these structures can coexist and even be mixed, will provide maximum
flexibility .

Whereas conventional information system designs start with a primary data structure
and attempt to apply this structure to as many situations as possible, we take the opposite
tack. We believe that designers must pay much greater attention to the nature of the
information to be stored and to the range of organizational strategies that users are likely
to employ. If users are to have the ability to choose from more than one organizational
structure, this choice must be explicitly designed into the system. This is what we call the
multi-structured approach to information system design.

4. Design of a prototype multi-structur ed file system for Unix

The principal goal of our prototype system is to extend standard Unix file systems to
allow the inclusion of arbitrary metadata in file names. This will allow users to pursue a
variety of organizational strategies within a single file system. At the same time, we have
taken care to minimize perturbation of the application-level filesystem interface. Our file
system can be mounted as part of the standard working environment, and users can take
advantage of its new functionality while making use of existing software.

Under our system, the names of files and directories can contain auxiliary components
that do not represent Unix directories. We provide the following elements which can be
used to organize stored information:

• The conventional structure of directories, links, and symbolic links remains available,
and links to directories are still constrained to form a tree.

• Users are able to define additional descriptive attributes. These attributes, which we call
tags, can be associated with links to files or directories. Any number of tags can be
associated with a given link. Tags do not determine name uniqueness, so they may be
omitted at will when a path name is used. They can be used to associate descriptive
metadata with files and directories, and to select files based on this information.

• Users are also able to define attributes for name distinction, which we callselectors.
Like tags, these selectors are associated with links. Unlike tags, they do determine
name uniqueness. Two links are allowed to have identical names if they are associated

6 January 18, 1996 Getting More Information into File Names

with different collections of selectors and neither of these collections is a subset of the
other. Selectors can be used to distinguish multiple versions of the same file, or to parti-
tion a set of files into distinct classes (see Figure 1).

We meet our goal of minimal perturbation by ensuring the following:

• Any existing directory tree continues to be valid under our new system. Users are free
to eschew tags and selectors when they create new links, duplicating the behavior of a
conventional file system.

• The syntax of file names and the basic rules regarding absolute and relative path names,
directory listings, etc. remain unchanged. Thus, Unix programs that depend on these
rules will continue to work without change. The standard directory-listing routines con-
tinue to return a hierarchical view of the name space, so that programs that do recursive
traversals will also continue to work. A few programs which make very picky assump-
tions about the structure of the name space may fail, but then again they would also do
so under nearly any enhanced file system.

4.1 The name evaluation method

Under a conventional file system, a path name is evaluated by starting at an initial
directory and iterating over each slash-separated component. The basic operation is as
follows: given a directory and a string, look up the string in the directory and return the file
system object that it points to. This object can either be a file or a directory. If it is a
directory and there are components remaining in the name, it is used as the context in
which to perform the next lookup.

Within our system, name evaluation is handled using exactly the same loop. The
difference is that each component can identify either a link, a tag, or a selector. A
directory-lookup operation returns either a file or aworking directory. This latter can be
either a real Unix directory or avirtual directory consisting of a real directory plus a set of
tags and selectors. A virtual directory represents the subset of the links in the underlying
directory that have those attributes associated with them.

By listing the contents of virtual directories, users are able to, in effect, execute
conjunctive queries on the file system. Looking up a component representing a tag or
selector simply adds that attribute to the working directory. This restricts the working
directory to a smaller subset of links. Looking up a component representing a link returns
the target of the link -- provided that that link is a member of the current working directory
subset.

In the case where the link target is a directory, the result of the lookup is a working
directory containing all tags from the current working directory that were not associated
with the link. Thus, when a virtual directory containing a given set of tags and selectors is
used as the basis for relative path names, the only valid continuations are those which
contain each of those tags and selectors somewhere in the path. Just as a real directory
represents a subtree, a virtual directory represents a “slice” out of a subtree consisting only
of files associated with certain attributes. Symbolic links whose targets are virtual
directories can be thought of as named views of a portion of the file system.

In order to increase the scope of queries that the system can respond to, we are in the
process of modifying one of the standard command shells to understand a new kind of
wildcard. This operator, consisting of two asterisks in a row, will match any sequence of

Getting More Information into File Names January 18, 1996 7

characters including a slash. This feature, in conjunction with the use of virtual
directories, will provide the ability to search entire directory trees for files associated with
a given set of attributes. Other querying facilities could be added, either to the shell or via
other tools.

4.2 An example

The sample interaction shown in Figure 1 illustrates some of the ways in which our
system could be used. The hypothetical user has, at some point in the past, created a
directory calledw95 somewhere under his home directory and has populated it with
selectors, tags, and links to files.

The first item in the list shows the output of our slightly modifiedls program, in this
case manually rearranged (not displayed verbatim) in order to highlight the different
categories of entries displayed. The -E option indicates that all of the attributes of each
link should be listed along with the link name. The user has created two papers that share
some common files, and has chosen to put them in one directory. The files associated with
the attribute journal (which happens to be a selector) are distinguished from those
associated with the attributeusenix (also a selector). Links which point to common files
are associated with both attributes. Several tags (text, diagram, etc.) provide additional
descriptions.

Items 2 and 3 demonstrate that the system can handle independent, intersecting
attributes, showing all of the relevant links in each case. Item 4 shows part of the listing
produced by a search for all files associated with the tagdiagram anywhere under the
user’s home directory. Items 5, 6, and 7 demonstrate a different organizational construct;
in this case, using selectors to organize the results of several experimental runs under two
independent conditions. The -K option to our modifiedls specifies that the name of a link
should not be displayed unless all of its associated selectors are in the current working
directory.

Note that in order to keep our prototype system reasonably simple we have chosen not
to implement either typed attributes or attributes with separate values. Instead, every
attribute is a simple string. As the example shows, it is possible to represent attribute
values syntactically. Conventions for such representation can be developed in an
analogous fashion to the historical development of rules for dot extensions in classical
Unix file systems.

4.3 Using the system

The person who uses our system to create a set of file names has a lot of control over
the shape of the name space (this is what makes the system multi-structured). One person
might place all of the files in one directory, with their names distinguished solely by
varying combinations of tags and selectors. The resulting directory would look somewhat
like a relational table. Someone else might disdain the use of tags and selectors and create
a standard directory tree. A third person might choose a middle ground and use some tags
and selectors and a moderately sized tree of directories (but almost certainly much smaller
than they would be forced to use if they were restricted to a single-structured file system).
One of the goals of the project is to gather some real data regarding the preferences of
various users, to guide in the subsequent development of more rigorous design
specifications for multi-structured file systems.

8 January 18, 1996 Getting More Information into File Names

1% ls -E <output rearranged for clarity>

journal/text/section1
journal/text/section2
journal/journal_paper.ps

journal/figure/diagram/arch.ps
journal/usenix/figure/diagram/protocol.ps
journal/usenix/figure/graph/performance.ps
usenix/figure/diagram/comparison.ps

usenix/text/section1
usenix/text/section2
usenix/text/section3
usenix/usenix_paper.ps

experiments

2% ls usenix

comparison.ps section1 usenix_paper.ps
performance.ps section2
protocol.pssection3

3% ls figure

arch.ps performance.ps protocol.ps
comparison.ps

4% ls ~/diagram/**.ps

<as part of a longer listing> papers/w95/comparison.ps
papers/w95/arch.ps papers/w95/protocol.ps

5% ls -E experiments

delay=50/caching=on/results.ps
delay=50/caching=off/results.ps
delay=60/caching=on/results.ps
delay=60/caching=off/results.ps
delay=70/caching=on/results.ps
delay=80/caching=on/results.ps

6% ls -K experiments/caching=off

delay=50 delay=60

7% lpr experiments/caching=off/delay=50

8%

Figure 1: This interaction illustrates some of the ways in which a user might take
advantage of a multi-structured file system to organize complex collections of files. See
section 4.2 for a commentary. The ls program whose output is shown here includes
several new options.

Getting More Information into File Names January 18, 1996 9

With our system in place, automatic tools could easily be written to add tags to files as
they are created and modified. Features such as viewpathing (mentioned in section 2)
would enhance the power of our system, just as they enhance the power of a conventional
system. Such facilities are orthogonal to our work.

5. Implementation

Our implementation was guided by two primary constraints: to perturb the operating
system and the user environment as little as possible, and to avoid unnecessary overhead.
The prototype system we have built meets both goals. It is implemented in C under SunOS
4.1.3 and consists of a loadable kernel extension, a user-level server, and replacements for
the standard file name manipulation commands. File attributes are stored in standard Unix
directories, by means of specially encoded entries. This allows standard utilities (backups,
for example) to operate on the files even when our server is not active.

The biggest portion of the kernel extension defines a new vnode and VFS type
[Kle86]. Figure 2 shows the relationships between the new vnode layer and the underlying
file system. Once the extension is loaded and the server is run, the directory tree which
stores the raw metadata can be mounted on top of the base path under which the files will
be accessed. As working-directories within the file system are visited, vnodes of the new
type are created and stacked above the underlying directory vnodes.

Vnode operations that do not involve names are simply vectored through to the
underlying vnodes. The only ones that are treated specially arelookup, readdir, create,
remove, link, rename, mkdir, rmdir, andsymlink. Each such operation causes an upcall to
the server, which reads the underlying directory and decodes its entries. The server then
computes the result of the operation and returns it to the kernel. If necessary, the kernel
carries out the required modifications to the base directory. Operations that do not fit
within the standard interface, such as the creation of tags and selectors, are handled by
special-casing the vnode operations.

The server runs with superuser privileges, and as part of each upcall is given the
credentials of the process that initiated the operation. This allows it to read and cache the
contents of the underlying directories containing the file metadata. Access control for all
other processes on the system continues to be handled by the kernel in the usual fashion.
The use of a user-level process was based strictly on convenience during development;
there is no reason why the required computations could not be carried out entirely by the
kernel. Concurrency control is avoided for this prototype by providing only one server
process. Requests are queued up, and satisfied one by one.

Aside from the modified kernel, our prototype system includes replacements for the
basic file-manipulation programsls, mv, cp andrm, and some special-purpose programs
for manipulating tags and selectors. The replacement utilities have an expanded set of
options, to take advantage of the additional features provided by the file system.

5.1 Performance and Compatibility

Although it is true that under our system some system calls necessitate two extra
context-switches, this does not add appreciably to the overall latency of the system. In
fact, the predominant factor continues to be the latency involved in fetching data to main
memory from the disk or across the network. As shown in Table 1, the amount of overhead

10 January 18, 1996 Getting More Information into File Names

is fairly small even for this unoptimized, prototype system. An implementation located
solely within the kernel would come close to parity with existing file systems.

Note, also, the fact that we use ordinary vnode operations to access the underlying
directories. This means that we can use nearly any other file system for the actual storage
of data and metadata. This includes NFS and, with slight modification to properly handle
authentication tokens, AFS.

6. Conclusion and future work

Naming is a modeling process, in which the concrete relationships among the name
components reflect abstract relationships among concepts. As database researchers

msfs

file vnodefile vnodedirectorydirectorybase vfs

mounted
vfs

vnode vnode

wdir
vnode

wdir
vnode

wdir
vnode

data

link

link

selector

link

tag

selector

Figure 2: To mount a file tree under our prototype system, the file system that is used for
underlying storage must already be mounted (1). The structures above the dotted line are
created dynamically by our kernel extension, while those below belong to the underlying
file system and represent objects on disk. Themount call causes a subtree of that file
system (rooted at vnode (2)) to be mounted onto some other path name through which it
will be accessed as a multi-structured file system. As a result of this call, a proxy vfs is
created (3), along with a working dir ectory vnode representing the root of the msfs (4). A
lookup operation performed on that working dir ectory causes the contents of the
underlying dir ectory (2) to be read, and may return either a file vnode (5) or a new
working dir ectory. The new wdir may point either to the same underlying directory with
an additional tag or selector (6) or to a new underlying directory as the result of following
a link (7).

(6)

(5)(2)(1)

(3) (4) (7)

Kernel Address Space

Getting More Information into File Names January 18, 1996 11

discovered long ago, hierarchies are a restrictive modeling tool. File system designers
have been relatively untroubled by this fundamental weakness, because until recently the
number of files with which a user has had to contend has been relatively small. Since most
files are retrieved only by their creators users have generally been able to rely on their own
memories. Yet, as file systems grow in volume and in scope, and as a much wider range of
information is placed on line, system designers must pay much closer attention to the
limitations of current systems and seek ways of overcoming them.

Hierarchical naming was introduced into file systems thirty years ago [DN65] and was
part of the design of Unix from its inception. It is therefore somewhat surprising how easy
it is to add nonhierarchical elements to the conventional file naming scheme. Most
applications are dependent on only the syntactical conventions of file naming. By adopting
a scheme that preserves these conventions, new schemes can be explored within the
context of existing environments.

The particular naming constructs we have implemented, tags and selectors, are only
two possibilities for adding more information to file names. Continuing research involves
both the development of new constructs and querying capabilities and the development of
new tools to use them. Such tools include both those oriented toward the presentation of
information to the user (i.e., file system browsers) and those oriented toward aiding and
automating the characterization of files. Organizing large collections of ad hoc data
remains one of the great challenges for the online world. Moving away from strict
hierarchy in file naming is a first step in this direction.

References

[GJS*91] D. Gifford, P. Jouvelot, M. Sheldon., and J. O’Toole. “Semantic File Systems”.
In Proc. 13th ACM Symposium on Operating Systems Principles, pp. 16-25, Pacific
Grove CA, October 1991.

Table 1: We performed four experiments to measure the overhead imposed by
our prototype file system when layered over the standard Unix file system. The
first thr ee consist of creating and then deleting a number of files (500, 50, and 1)
in a working dir ectory containing one selector, compared against creating and
deleting the same umber of files in a standard Unix directory. The fourth consists
of running the standard ls program in a working dir ectory whose contents
comprise 50 files against a standard Unix directory containing 50 files. Each
figure reports the average over ten trials. The principal cost of these operations is
the extra context switches to the user-level server. An implementation contained
entirely in the kernel would avoid this cost.

experiment elapsed time
(UFS)

elapsed time
(MSFS)

% change

cr 500 27.0 37.4 38

cr 50 2.6 2.8 7

cr 1 .05 .06 16

ls .17 .20 18

12 January 18, 1996 Getting More Information into File Names

[Hen90] D. Hendricks, “A Filesystem for Software Development”, inProc. USENIX
Summer Conference, pp. 333-40, Anaheim CA, June 1990.

[KK90] D. Korn and E. Krell. “A New Dimension for the Unix® File System”. Software–
Practice and Experience20(S1), pp. 19-34, June 1990.

[Kle86] S. Kleiman, “Vnodes: An Architecture for Multiple File System Types in Sun
UNIX”, in Proc. USENIX Summer Conference, pp. 238-24, Atlanta GA, June 1986.

[Mog86] J. C. Mogul, “Representing Information about Files”. Technical report STAN-
CS-86-1103, Stanford University, March, 1986.

[ND65] P. G. Neumann and R. C. Daley. “A General-Purpose File System for Secondary
Storage”. InAFIPS Fall Joint Computer Conference, pp. 213-229, 1965.

[Ols93] M. Olson, “The Design and Implementation of the Inversion File System”, in
Proc. USENIX Winter Conference, pp. 1-14, San Diego CA, January 1993.

[PPTT90] R. Pike, D. Presotto, K. Thompson, and H. Trickey. “Plan 9 from Bell Labs”. In
Proc. UK UUG, 1990

