Getting More Information into File Names

Michael McClennen and Stuart Sechrest

Software Systems Research Laboratory
the Unwersity of Michigan

Abstract: Hierarchical naming while deeply embedded in our conception of file
systems, is aather weak tool for storing information about files and their
relationships. A consequence is that asgrtodays file systemsdquently have
trouble locating files. Wdescribe a system in whia standad directory tee is
extended by allowing names to contain auxiliary componemesenting
descriptive attrilntes ather than diectory names. This system allows files to be
characterized mar extensivelyand lets usexr dhoose among multiple
organizational structues for their stoed information. A mtotype has been
implemented by means of annenode layer under SunOS 4.1.3.

1. Intr oduction

“Where is that file? | kne | saved a cop of that announcement, six months ago. What
did I name that figure? Widid | put that link there? Whichevsion is that?” Despite the
powerful capabilities of modernaevkstations, frustrated users ask themsekluch
guestions mantimes each week. As disk size and processor speed increase, people tak
adwantage of them to storger more gtensve collections of information. A single logical
file system can easily span hundreds of hosts, and habyges of information gleaned
from a worldwide netvark. The contents are kky to be quite heterogeneous, ranging
from source code to e letters, fromxecutables to graphics, encoded in a wideety
of formats.

In the midst of this)glosion of information, our tools for ganizing the contents of
file systems are @efully inadequate. Most Unix users depend on utilities that are nearly
20 years old, designed forar simpler vorld where file systems were small and contained
little more than source code andeeutables. Files, especially noxttgal ones, hae very
little associated information that could aid in retifg them.

In fact, the ery foundation of our concept of file systems, the hierarchical directory
tree, puts seere limitations on the ability of users to characterize their files. Encoding
descriptve information about files in long path names can hinder vatrés much as aid
it. Although people hae come up with cleer hacks wer the years to get around these
limitations, there is much to beiged by relaxing our strict reliance on hierarchical
structures.

A system that pnades etended &cilities for characterizing filesauld not only sole
mary of the frustrating problems with misplaced data,would provide a base on which
other information management tools could be implemented in agratee vay.

Examples range from configuration-management systems to WW\afséo\content-
based indeers for tat and images.

The standard directory-tree system of file naming camdt) be generalized to alo
much greater fhability, while preserving its innate aalvtages. & can allav the path
names of files to contain additional components that represent descaigtitutes rather

Getting More Information into File Names January 18, 1996 1

than directories. These auxiliary components can be optionally left out when a name is
used, and can commute with one otfidrey are aailable for use when needed, to search
for files or to select groups of files with similar properties.

This paper describes the design and implementation of such a system under SunOS
4.1.3. & hare implemented a mevnode layer to intercept name creation and resolution
calls, while relying on thexgsting file system for storage. The necessary modifications to
the lkernel are quite straightfoewd, and should be easy to port to almogt@dnix-based
operating system that uses the vnode iat&rf The tension produces minimal changes
to the application-lel file system intedce, so that most application programs can run
without change. dols that arewsare of the ne structure can prade an enriched user
ervironment. Vi currently hae under deelopment a set of tools for file systemwsing
and manipulation, to ge users full access to thepanded possibilities for data
characterization and retvial.

The net two sections of this paper discuss the problem in more detail, including
historical attempts to sadvit and a description of ouno approach. Sections 4 and 5
describe the implementation of our prototype file system, and 6 presents our conclusions
from the work so &r.

2. Points of view

The problem of characterizing andyanizing information stored in file systems is not
new. Ower the past f@ years, seeral groups of researchersreamplemented systems
under Unix whose purpose is to increase the amount of degenpétadata that can be
stored and madevailable through file names. These systeme liacused on di¢rent
kinds of metadata and on fdifent situations of use. Ouwa goal is tvo-fold: to develop
an abstract franveork by which to understand the problem, anduibdoa system that
focuses on pnading services to humans using the file system. This paper describes our
progress on the second of these goals.

2.1 Previous work

Gifford et. al. [GJS*91] pnade the most general treatment of this problem up o no
Their Semantic Fe Systens an gperiment in the characterization of files based upon
their contents. Under this system, a database is used to associate arbitrary collections of
attribute/Nalue pairs with files. The directory tree used to generate path names is
augmented by “virtual directories” which list theadlable attrilutes and, beneath these, a
second leel listing values. Automatic filter programs scan the contents of files psathe
stored, assigningalues to the relant attrilutes.

The basic premise of thisonk is the same as ours: that the file system name space can
be usefully augmented to hold additional desarginetadata. The limitations of the
project come across in baways. First, that the system is orientedvilgaoward the
automatic gtraction of file attrilntes. Little or nodcility is provided for users or for
processes not associated with the systemttis reason, the SFS is not well suited as a
base upon which to delop interactie tools. The set ofvailable attrilutes is defined
globally by those who writex¢raction tools, rather than locally by the people who store
files. This system prades one particular enhancement to the standard directoryutee, b
does not xplore the entire space of possible constructs. Fyminethe implementation

2 January 18, 1996 Getting More Information into File Names

level, their system wrks strictly through a special-purpose NFS file sefvhis would

make it cumbersome to use in nyagrvironments, and limits thexeent to which it can be
integrated with other kinds of file systems. Our system, by contrast, sits in the vnode layer
and can be configured toovk with ary underlying file system.

A different approach to the problem isealby systems that introdueiwpathingor
union directories([KK90], [Hen90], and [Pik89]). This refers to the construction of chains
of directories such that files from subsequent directories'shimugh” to the top one.

The result is to separate path names used forvatfriem those used for management.
This allovs the real names of files to contain more information, without complicating the
view provided for retri@al. This work provides \aluable insight into the ays in which
filesystem semantics can baended, and could be easily igtated with our wn work.

Other kamples of systems that demonstrateehavays of oganizing file metadata
are thdnversion Rle SystenjOIs93], which by using a relational database to support a file
system allavs general queries on file metadata, andPloperty-List Diectory System
[Mog86] which applies a global set of atuite names to a hierarchical directory structure.

2.2 Our view of the poblem

The basic goal of gnscheme for file naming is tadilitate two tasks: the
characterizationof files by storing descripté information as metadata, and threirieval
by querying that stored information. Consideen, the act of choosing a path name for a
new file in a strictly hierarchical name space (such as a Unix directory tree). The choice of
each component in the fisghame indicates some property of that file that may beargle
for later retri@al. From another point of we the name of each directory typically
represents some property common to all of the files in that subtree.

In the best of all possibleasids, the set of directories in a file systewud
correspond 1-1 with the set of file properties that \watwo use for retrial. In that case,
we could find all of the files with ag@n property simply by listing the appropriate
directory Unfortunatelythis is often impossible for tweasons. First, you cannot map
logically independent attnilies to the nodes of a tree. One property mugtya be made
superior to the otheor they cannot be alled to werlap. As a result, such properties will
either be mapped to multiple nodes or left out entidcond, eery component in a file’
name must be replayed, in one particular grieretriere the file. Thus, we ka the
situation that the better characterized a file is, the harder it is toveefFiais is gactly the
opposite of what one ould want.

As an eample of this phenomenon, consider arly e-mail messages byvsag
them to Unix files. The most wlous technique, to classify by subject and also by author
is impossible because these atités are independent. &vif we limit ourseles to
classifying by subject, file names become either too long to be wieldy or too short to be
arything kut cryptic. As anothen@mple, may people hee difficulty organizing files that
are common to more then one project (such as figures, bibliographies, and data files). If
one tries to associate these files directly with eadérdiit project to which tlyeare
relevant, one has to deal with either separate copies, multiple hard links, or symbolic links
(each of which can a unpleasant sidefetts rgarding data management and
consisteng). If the common files are put into a separate directorg is then unable to
easily retrige all of the files relant to a gien project.

Getting More Information into File Names January 18, 1996 3

Historically, in the case of Unix file systems, the most popular technique used to
overcome these ditulties is the ‘grep’ program, which scansttiles looking for strings
matching a gien rgular expression. This utility of this program rests on taet that
throughout most of the history of Unix thast majority of interesting files consisted
solely of ASCII text. Now that this is no longer the case, ‘grep’ is not the panacea it might
once hae been.

In general, there are masituations in which the actual contents of a document are
not suficient to characterize it in a manner meaningful to a particular fesethis reason,
the ability to associate descry#imetadata with stored files willays be crucial to
successful information ganization. Although auxiliary tools will aiays be able to aid in
locating files, the most wersal means of associating descvipinformation with Unix
files is to lkeep such information in the file system itself. This can be doneoimdys:
either by liilding functionality into the operating system, assvdone by [KK90],
[Hen90], and [Mog86], or by pwiding file serers that run at the usewéd as did
[GJS*91] and [OIs93]. W have chosen the former technique, with the aim of making
efficient use of gisting file systems for the actual storage of data and metadata.

3. The Multi-structur ed approach to information system design

Although this paper focuses on Unix file systems, the aim of our research is not simply
to provide another method of storing information about filesabt,fthe problems
described abee are not limited to file systems. Similarfidifilties plague users of
databases, orld-wide-web sites, and other systems for the interastiorage and
retrieval of information.

Each kind of information system imposes #garequirements on theays in which
stored documents (i.e., discrete pieces of information) can be arranged. In a concrete
sense, dferent systems use thfent data structures to associate metadata with
documents. File systems use trees, thddmvide-web uses a directed graph, and
relational databases use tables.

Each of these d#rent data structures has both pesitind ngative consequences for
the actvities of characterization and rewra&d. As we hae seen, the tree structure sharply
limits the amount of metadata that can be associated with each document. On the other
hand, it allevs for cowvenient traersal of the attribte space and is simple for users to
work with. Retrieal from a tree is accomplished by an itemaprocess that wolves at
most choosing from a limited number of options at eaatl.le

By contrast, a relational database can be used to associate arbitrary amounts of
metadata with a gen collection of objects. The price is that retaidoecomes much more
complicated. ® retrievze objects from such a database, one must use a complicated query
language. There is no easgyvo traverse the attrilte space, and noay at all to
establish relationships amongfdient attrilutes.

The crux of the matter is that no ongamizational structure avks well for all
possible collections of information. ¥&n a set of documents and a set of atteb
describing them, there is arponentially lage number of wys of arranging these
attributes into a data structure that can be used by avadtsgstem. The “best” choice
depends upon mgurvariables: among others, the nature of the documents and the

4 January 18, 1996 Getting More Information into File Names

relationships among them, the preferences of the person wigargzang the collection,
and the search stragies likely to be used by retners.

To revisit our earlier gamples: when storing files that are described byyman
independent attrildes, it maks sense to allwary combination of terms to be attached to
a given document and to allousers to xecute broad queries. Mail messages and
experimental data sets, foxample, could be described thiawThe resulting structure is
organizationally similar to a database table, with the columns or fields corresponding to
the attrilutes &ailable to describe files. On the other hand, when usinguésilbhat nest,
such as project-name, sub-project, module, and so on, a tree structureslyilMikk
best. Here, the adntages of tree tvarsal are not édet by aw difficulties in trying to
represent independent attribs.

Within most lage collections of files,ven those stored by a single person, there will
be situations in which each of these structuresamaknse. It is [y that most users will
wish to define some attrkes that fit well in a hierargrand some that do not. A/lbrid
model, in which these structures canxisieand &en be mied, will provide maximum
flexibility .

Whereas corentional information system designs start with a primary data structure
and attempt to apply this structure to as ynsituations as possible, we éthe opposite
tack. We believe that designers must pay much greater attention to the nature of the
information to be stored and to the range ghaizational stratges that users are &ky
to emplg. If users are to va the ability to choose from more than ongaoizational
structure, this choice must bepédicitly designed into the system. This is what we call the
multi-structued appoacdh to information system design.

4. Design of a pototype multi-structur ed file system ér Unix

The principal goal of our prototype system isxtead standard Unix file systems to
allow the inclusion of arbitrary metadata in file names. This wilhallgers to pursue a
variety of oganizational stratges within a single file system. At the same time, weha
taken care to minimize perturbation of the applicatioreldilesystem integce. Our file
system can be mounted as part of the standarkiing ervironment, and users can &k
advantage of its ng functionality while making use okesting software.

Under our system, the names of files and directories can contain auxiliary components
that do not represent Unix directoriese Woride the follaving elements which can be
used to gganize stored information:

» The conentional structure of directories, links, and symbolic links remaiatadle,
and links to directories are still constrained to form a tree.

» Users are able to define additional desacrgpéttritutes. These attriltes, which we call
tags can be associated with links to files or directoriey. wumber of tags can be
associated with agen link. Tags do not determine hame uniqueness, sontay be
omitted at will when a path name is used.yrban be used to associate desaripti
metadata with files and directories, and to select files based on this information.

» Users are also able to define atitéds for name distinction, which we csdllectos.
Like tags, these selectors are associated with links.dJags, the do determine
name uniquenesswb links are alleved to hae identical names if tlyeare associated

Getting More Information into File Names January 18, 1996 5

with different collections of selectors and neither of these collections is a subset of the
other Selectors can be used to distinguish multiglesions of the same file, or to parti-
tion a set of files into distinct classes (see Figure 1).

We meet our goal of minimal perturbation by ensuring theviati:

* Any existing directory tree continues to balid under our n& system. Users are free
to escher tags and selectors when yheeate ne links, duplicating the bekér of a
corventional file system.

» The syntax of file names and the basic rulganging absolute and rele#i path names,
directory listings, etc. remain unchanged. Thus, Unix programs that depend on these
rules will continue to wrk without change. The standard directory-listing routines con-
tinue to return a hierarchical weof the name space, so that programs that do regeursi
traversals will also continue towk. A few programs which makwery picky assump-
tions about the structure of the name space igybiit then agin they would also do
so under nearly gnrenhanced file system.

4.1 The name ealuation method

Under a coventional file system, a path namewsalaated by starting at an initial
directory and iteratingw@r each slash-separated component. The basic operation is as
follows: given a directory and a string, look up the string in the directory and return the file
system object that it points to. This object can either be a file or a ditd€ibry a
directory and there are components remaining in the name, it is used as tkeigonte
which to perform the ne lookup.

Within our system, namevaluation is handled usingactly the same loop. The
difference is that each component can identify either a link, a tag, or a sélector
directory-lookup operation returns either a file evaaking directory This latter can be
either a real Unix directory onartual directoryconsisting of a real directory plus a set of
tags and selectors. A virtual directory represents the subset of the links in the underlying
directory that hee those attribtes associated with them.

By listing the contents of virtual directories, users are able tofante&ecute
conjunctve queries on the file system. Looking up a component representing a tag or
selector simply adds that attuiie to the wrking directory This restricts the arking
directory to a smaller subset of links. Looking up a component representing a link returns
the taget of the link -- preided that that link is a member of the curreotking directory
subset.

In the case where the link ¢gat is a directorythe result of the lookup is aorking
directory containing all tags from the currerdrking directory that were not associated
with the link. Thus, when a virtual directory containing \&egiset of tags and selectors is
used as the basis for relegipath names, the onlgahd continuations are those which
contain each of those tags and selectors st in the path. Just as a real directory
represents a subtree, a virtual directory represents a “slice” out of a subtree consisting only
of files associated with certain attites. Symbolic links whose tgts are virtual
directories can be thought of as nameadvsief a portion of the file system.

In order to increase the scope of queries that the system can respond to, we are in the
process of modifying one of the standard command shells to understamdkincef
wildcard. This operatorconsisting of tw asterisks in a m will match ary sequence of

6 January 18, 1996 Getting More Information into File Names

characters including a slash. This feature, in conjunction with the use of virtual
directories, will preide the ability to search entire directory trees for files associated with
a gven set of attribtes. Other queryingtilities could be added, either to the shell or via
other tools.

4.2 An example

The sample interaction siva in Figure 1 illustrates some of thays in which our
system could be used. Thegpothetical user has, at some point in the past, created a
directory calledv95 someavhere under his home directory and has populated it with
selectors, tags, and links to files.

The first item in the list shes the output of our slightly modifidd program, in this
case manually rearranged (not displayerbatim) in order to highlight the t#rent
categories of entries displayed. The -E option indicates that all of theudsilof each
link should be listed along with the link name. The user has creabepbipers that share
some common files, and has chosen to put them in one direlterfiles associated with
the attritutejournal (which happens to be a selector) are distinguished from those
associated with the attrbe usenix(also a selector). Links which point to common files
are associated with both atuiles. Seeral tagstext, diagram, etc) provide additional
descriptions.

Items 2 and 3 demonstrate that the system can handle independent, intersecting
attributes, shwing all of the releant links in each case. Item 4 gsopart of the listing
produced by a search for all files associated with thditggam arywhere under the
users home directoryitems 5, 6, and 7 demonstrate dedént oganizational construct;
in this case, using selectors tgamize the results of geral experimental runs under tw
independent conditions. The -K option to our modifgespbecifies that the name of a link
should not be displayed unless all of its associated selectors are in the carkamg w
directory

Note that in order todep our prototype system reasonably simple we bhosen not
to implement either typed attrites or attribtes with separatealues. Insteadyvery
attribute is a simple string. As theample shass, it is possible to represent attrib
values syntacticallyCorventions for such representation can beettgped in an
analogousdshion to the historical delopment of rules for dotxéensions in classical
Unix file systems.

4.3 Using the system

The person who uses our system to create a set of file names has a lot of eentrol o
the shape of the name space (this is whaes#hke system multi-structured). One person
might place all of the files in one directpwith their names distinguished solely by
varying combinations of tags and selectors. The resulting directaridwook somehat
like a relational table. Someone else might disdain the use of tags and selectors and create
a standard directory tree. A third person might choose a middle ground and use some tags
and selectors and a moderately sized tree of directotieal(host certainly much smaller
than thg would be forced to use if thavere restricted to a single-structured file system).
One of the goals of the project is tatger some real datagarding the preferences of
various users, to guide in the subsequemtid@ment of more rigorous design
specifications for multi-structured file systems.

Getting More Information into File Names January 18, 1996 7

1%ls -E <out put rearranged for clarity>
journal /text/sectionl

journal /text/section2
journal/journal _paper.ps

journal/figure/diagran arch. ps

journal /fuseni x/figure/diagram protocol . ps
journal /useni x/figurel/ graph/ performance. ps
useni x/ fi gur e/ di agram conpari son. ps

useni x/ text/sectionl
useni x/ text/section2
useni x/ text/section3
useni x/ useni x_paper . ps

experiments

2% | s usenix

conpari son. ps sectionl useni x_paper. ps
per f or mance. ps section2
pr ot ocol . pssection3

3%Ils figure

arch. ps per f or mance. ps pr ot ocol . ps
conpari son. ps

4% | s ~/diagranf**. ps

<as part of a longer listing> paper s/ w5/ conpari son. ps
paper s/ wl5/ ar ch. ps paper s/ w95/ pr ot ocol . ps

5%1s -E experinents

del ay=50/ cachi ng=on/ resul ts. ps
del ay=50/ cachi ng=of f/resul ts. ps
del ay=60/ cachi ng=on/ resul ts. ps
del ay=60/ cachi ng=of f/resul ts. ps
del ay=70/ cachi ng=on/ resul ts. ps
del ay=80/ cachi ng=on/ resul ts. ps

6% | s -K experinents/cachi ng=of f
del ay=50 del ay=60

7% | pr experinments/cachi ng=of f/ del ay=50
8%

Figure 1: This interaction illustrates some of the ways in which a user might tak
advantage of a multi-structured file system to oganize complex collections of files. See
section 4.2 ér a commentary The |Is program whose output is shen here includes
several new options.

January 18, 1996 Getting More Information into File Names

With our system in place, automatic tools could easily be written to add tags to files as
they are created and modified. Features such aguaiding (mentioned in section 2)
would enhance the p@r of our system, just as thenhance the peer of a comentional
system. Suchekcilities are orthogonal to ourork.

5. Implementation

Our implementation @as guided by te primary constraints: to perturb the operating
system and the usena@ronment as little as possible, and t@ial unnecessaryerhead.

The prototype system wevehuilt meets both goals. It is implemented in C under SunOS
4.1.3 and consists of a loadabkrhel extension, a usdevel serer, and replacements for
the standard file name manipulation commands. File aiiskare stored in standard Unix
directories, by means of specially encoded entries. Thisaltandard utilities (backups,
for example) to operate on the filege® when our seer is not actie.

The biggest portion of thesknel etension defines a mevnode and VFS type
[KIe86]. Figure 2 shas the relationships between thewmenode layer and the underlying
file system. Once thexeension is loaded and the servs run, the directory tree which
stores the ma metadata can be mounted on top of the base path under which the files will
be accessed. Asarking-directories within the file system are visited, vnhodes of the ne
type are created and stackabee the underlying directory vnodes.

Vnode operations that do novolve names are simplyeetored through to the
underlying vnhodes. The only ones that are treated speciallyaknep readdir, create
remowe, link, renamemkdir, rmdir, andsymlink Each such operation causes an upcall to
the serer, which reads the underlying directory and decodes its entries. Tlee gen
computes the result of the operation and returns it todireek If necessaryhe lernel
carries out the required modifications to the base diredpgrations that do not fit
within the standard inteate, such as the creation of tags and selectors, are handled by
special-casing the vnode operations.

The serer runs with superuser piieges, and as part of each upcall izegi the
credentials of the process that initiated the operation. Thigsitdo read and cache the
contents of the underlying directories containing the file metadata. Access control for all
other processes on the system continues to be handled yritieéik the usuabshion.

The use of a usdevel process as based strictly on ceenience during delopment;

there is no reason whhe required computations could not be carried out entirely by the
kernel. Concurrenccontrol is &oided for this prototype by pvaling only one semr
process. Requests are queued up, and satisfied one by one.

Aside from the modifieddenel, our prototype system includes replacements for the
basic file-manipulation progrants my, cp andrm, and some special-purpose programs
for manipulating tags and selectors. The replacement utilitiesdragpanded set of
options, to tak adwantage of the additional featuresyad®zd by the file system.

5.1 Rerformance and Compatibility

Although it is true that under our system some system calls necessdasdrav
context-switches, this does not add appreciably to thexall lateng of the system. In
fact, the predominanattor continues to be the latgrinvolved in fetching data to main
memory from the disk or across the netkw As shavn in Table 1, the amount overhead

Getting More Information into File Names January 18, 1996 9

is fairly small een for this unoptimized, prototype system. An implementation located
solely within the krnel would come close to parity withisting file systems.

Note, also, thedct that we use ordinary vnode operations to access the underlying
directories. This means that we can use neasho#rer file system for the actual storage
of data and metadata. This includes NFS and, with slight modification to properly handle
authentication toéns, AFS.

6. Conclusion and future work

Naming is a modeling process, in which the concrete relationships among the name
components reflect abstract relationships among concepts. As database researchers

Sfs Kernel Addess Space
ata
3) (4) (6) (7)
mounted wdir wdir wdir
vfs vhode vhode vhode

® @, ©)

base vfs directory directory file vnode file vnode
vhode vnode

link
link
selector
link
tag
selector

Figure 2: To mount a file tree under our pmototype system, the file system that is usedrf
underlying storage must aleady be mounted (1). The structues abwe the dotted line ae
created dynamically by our lernel extension, while those belo belong to the underlying
file system and epresent objects on disk. Thanount call causes a subtre of that file
system (iooted at vnode (2)) to be mounted onto some other path name dlmgh which it
will be accessed as a multi-structwed file system. As aeasult of this call, a poxy vfs is
created (3), along with a wrking dir ectory vnode representing the oot of the msfs (4). A
lookup operation performed on that working dir ectory causes the contents of thi
underlying directory (2) to be ead, and may eturn either a file vnode (5) or a new
working dir ectory. The new wdir may point either to the same underlying diectory with
an additional tag or selector (6) or to a new underlying diectory as the esult offollowing
a link (7).

10 January 18, 1996 Getting More Information into File Names

experiment | elapsedtime elapsedtime % change
(UFS) (MSFES)

cr 500 27.0 37.4 38

cr 50 2.6 2.8 7

crl .05 .06 16

Is A7 .20 18

Table 1. We performed four experiments to measue the werhead imposed by
our prototype file system when lagred over the standard Unix file system. The
first thr ee consist of agating and then deleting a number of files (500, 50, and 1)
in a working dir ectory containing one selectgrcompared against ceating and
deleting the same umber of files in a standard Unix dactory. The fourth consists
of running the standard Is program in a working dir ectory whose contents
comprise 50 files against a standard Unix dactory containing 50 files. Each
figure reports the arerage wer ten trials. The principal cost of these operations is
the extra context switches to the usdevel sewver. An implementation contained
entirely in the kernel would avoid this cost.

discovered long ago, hierarchies are a restrectnodeling tool. File system designers

have been relately untroubled by this fundamental weakness, because until recently the
number of files with which a user has had to contend has beewvalglathall. Since most
files are retrieed only by their creators users/eayenerally been able to rely on theimo
memories. ¥t, as file systems groin volume and in scope, and as a much wider range of
information is placed on line, system designers must pay much closer attention to the
limitations of current systems and seekyw of wercoming them.

Hierarchical naming @as introduced into file systems thirty years ago [DN65] aasl w
part of the design of Unix from its inception. It is therefore sehad surprising he easy
it is to add nonhierarchical elements to thevemional file naming scheme. Most
applications are dependent on only the syntacticalezgions of file naming. By adopting
a scheme that preses/these caentions, ne schemes can be@ored within the
context of existing evironments.

The particular naming constructs wevbdamplemented, tags and selectors, are only
two possibilities for adding more information to file names. Continuing reseaxllien
both the deelopment of n& constructs and querying capabilities and theslbgpment of
new tools to use them. Such tools include both those orientesdtddhe presentation of
information to the user (i.e., file systemweers) and those orientedvard aiding and
automating the characterization of filesg@nmizing lage collections of ad hoc data
remains one of the great challenges for the onliokdxyMoving avay from strict
hierarcly in file naming is a first step in this direction.

References

[GJS*91] D. Giford, R Jouelot, M. Sheldon., and J. Qjdle. “Semantic File Systems”.
In Proc. 13th £M Symposium on Opaing Systems Principlepp. 16-25, Bcific
Grove CA, October 1991.

Getting More Information into File Names January 18, 1996 11

[Hen90] D. Hendricks,A Filesystem for Softare De&elopment”, inProc. USENIX
Summer Confence pp. 333-40, Anaheim CA, June 1990.

[KK90] D. Korn and E. Krell. A New Dimension for the Unix® File SystemSoftwae—
Practice and Experienc2)(S1), pp. 19-34, June 1990.

[Kle86] S. Kleiman, “Vnodes: An Architecture for Multiple File Systegpés in Sun
UNIX”, in Proc. USENIX Summer Conéerce pp. 238-24, Atlanta GA, June 1986.

[Mog86] J. C. Mogul, “Representing Information about File€cAnical report SAN-
CS-86-1103, Stanford Urersity, March, 1986.

[ND65] P G. Neumann and R. C. DgléA General-Purpose File System for Secondary
Storage”. INAFIPS Rall Joint Computer Confence pp. 213-229, 1965.

[OIs93] M. Olson, “The Design and Implementation of theetsion File System”, in
Proc. USENIX Witer Confeence pp. 1-14, San Dgo CA, January 1993.

[PPTT90] R. Pile, D. Presotto, K. Thompson, and HicKey. “Plan 9 from Bell Labs”. In
Proc. UK UUG, 1990

12 January 18, 1996 Getting More Information into File Names

