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Abstract

Satic timing analysis is used extensively in the design of high-performance processors. In this paper we present a
method which transforms the circuit graph used by timing analysis algorithms to a smaller one, and hence results in
faster timing analysis. This transformation, called bus compression, may lead to a more conservative analysis. How-
ever, experiments on several large designs yielded the same results with or without bus compression.
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1 Introduction

The design of high performance computers is subject to stringent timing requirements. Staticetiifiadion and
optimization are usedxeensiely to meet these requirements. In a typical desigir@mment, a gte-level netlist is
back-annotated with delayales dexied directly from the layout parasitics. Static timiragification and optimization
is performed on this netlist. The sheer size of taxlaystems results irexy lage netlists, and hence dgr execution
times, especially when performing timing optimization. In this paper westigate the dbct of eploiting “design
intent” to significantly reduce the size of the netkvto be processed by the timing algorithms. First wisnea popu-
lar model for static timingerification and optimization.

2 SMO Model

A comprehensie model for analyzing the temporal beioa of synchronous systemsas proposed by Sakallah,
Mudge and Okulotufil] (SMO). The SMO model assumes a multi-phase clocking system. All phagea bammon
clock period. During that clock period, each phaseanakactly one rising and onelfing transition. The circuit is
modeled by a netark of synchronizers (eitherdel-sensitve latches, or edge triggered flip-flops). The synchronizers
are connected by edges corresponding to the combinational logic. The edges are labeled with the minimum and maxi-
mum delay through the logic. The synchronizers are characterized by their setup and hold timeg,ahihsk clock
signal and its phaseoFclock scheduleerification, the ariables in the SMO model are the minimum and maximum
arrival time of signals at the input of the synchronizers, and the minimum and maximum departure time of signals at the
output of the synchronizersofFclock schedule optimization, the clock period and tlemetimes of the rising andlf-
ing transition of each phase am@iable as well. The relationship between thesébles combined with the setup and
hold constraints of the latches constitute a set of constraints that can bd telirear constraints.

For timing \erification, it is checd whether a gen clock schedule isalid, i.e., all setup and hold constraints are

met. This problem is sodd by relaxation. It has been sho[3] that conergence is obtained after at maist iterations
if the problem is feasible, whetk| is the number of ieel-sensitve latches. Each iteration has a comipeof O(|g]),
where ¢ is the number of edges in the graph. This results in a time cxitgpdé O(|L||e]) for the complete algo-
rithm. However, in practice covergence is obtained after just avféerations resulting in a time complgy of ©(l¢g).

Another timing problem consists of finding the optimal clock schedule, i.e., the clock schedule with the smallest
clock period that still satisfies all constraints. The optimization problems wriginally tackled by linear
programmind1]. However, Szymansk|4] proposed a more fidient approach. First the minimumjate time set by the
loops is computed. Subsequently all valet constraints with respect to thgtle time are generated. The resulting lin-
ear program is much smaller in size than that of [LhiAghe time compbety of the algorithm isO(|L||€]) . It is clear
that the number of \el-sensitve latches critically &écts the gecution time of the algorithms.
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3 Bus Compression

From the preious discussion it is clear that the time required to perform clock schegtifieation and optimiza-
tion is critically dependent on the number afdesensitve latches and the number of edges in the circuit graph.

Many classes of circuits can be partitioned into a datapath and a controffex controllermost signals are just one
bit wide. On the other hand, the signals the datapath operates ars @igrials (gctors). Some functional units in the
datapath treat each of the bits in thisds identicallyMultiplexers, logical units, gtes arexamples. In other units the
relationship between the bits is more compkeg., in adders. The important obsgion is that theseus signals are
single semantic entities. Aub signal is only alid if each of its bits isalid. From the perspew# of timing this implies
that the only gents of importance are those that correspond to the latest and the earliest bit. Consequently we need only
to retain one node in the timing graph for eaah SynchronizeMe call the transformation from the original graph to
the nev graph, lis compression. The transformation is illustrated in Figurehe synchronizera0 and al are
replaced by a single synchronizer The resulting min-max combinational deldgsA) , and the min-max clock el

(g, Q) are shwn. It is \ery easy to shw that the time to performus compression i®(|e]) , where|e is the number
of edges in the original graph.

Bus compression is consative in the sense that it will mer underestimate the clock period. It can result afsé
negatives. for instance, if in Figuré, Q,,>Q,; andA,y <A, ., thenQ, = Qo andd, = 8,1 | p-
This can lead to a consetwe analysis. If the clock sk between the diérent bits of the sameub is ngligible and
the hus signal is truly a single semantic entthen it is unlikely that luscompression will lead talse negative results.
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Figure 1: Original graph (left); after bus compression (right)
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4 Experimental Results

The efectiveness of the approactesnalidated with some lge designs. The firskample is the core of a 32-bit
ARM microprocessor [5]. The design contains 10,72teg, and 1,007 latches. A secordmple is the floating-point
unit of the Aurora3 processor [6]. This is a IEEE compliant double-precision floating-point proGésspetlist con-
tains 86,800 gtes and 8,518 latches. Some modifications to the original designs were oragtaniple, the rgister
files were replaced by a singlayigter addressed by the decoder logar. €ach of these designssbcompression as
performed using the highvel description (the only information needed is which 1-bit synchronizers constituse a b
synchronizer). The design withu$ compression applied is féifentiated from the original design by thefsuBC in
Tablel. The number of latched,|, and the number of edgés|, is indicated for each of the designs. Statistics for
both designs are listed irabBlel. The time to perform clock schedule optimization and clock schedufecation is
shavn for both the bit-leel design and theus-level design. Thexecution times reported do not include the time to
read the circuit descriptionoFboth designs, the algorithms yieldecetly the same results for the bit«g design as
for the lus-level design. As xpected the erification and optimization algorithms run significanthster when the
design is preprocessed withsbcompression.

Table 1: Experimental Results

Design L] lel | verification [sec]| optimization [sec]
arm 1,007 22,206 0.50 514.70
arm-BC 116 510 0.01 1.46
a3fpu 8,518 | 189,503 11.13 4,197.87
a3fpu-BC 948 6,688 0.41 94.54

5 Conclusions

Bus compression, which transforms a timing graph to one in which synchronizers corresponding to thse same b
nal are treated as single entitiegswised as a preprocessing step in timing analysis. Although this technique can lead to
a more conseative analysis, xperiments shoed that the results obtained did nofelifrom those obtained from ana-
lyzing the original design. Preprocessing the design withubebdmpression transformation leads to significant speed-
ups in the timing analysis, especially in the case of timing optimization.

Bus compression is just another instance of the girateexploit high level information when processing thever-
level description. This high-el information is generally information about the design inteetb@lieve that this strat-
egy can be gry beneficial in manrelated areas of timing analysis.
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