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Abstract

This report intoduces GRASHGeneric seaRcAlgorithm for the Satisdbility Problem), an integrated algorithmic frame-
work for SA that unifes several mviously poposed sea&h-pruning techniques and facilitates idecttion of additional
ones. GRASR premised on the inevitability of carfs during seach and its most distinguishing featus the augmentation
of basic backtracking seetn with a powerful corifit analysis pocedue. Analyzing conitts to determine their causes enables
GRASPo backtrack non-clanologically to earlier levels in the sedr tree, potentially pruning lgre portions of the seein
space. In addition, by &coding” the causes of comfts, GRASRan ecognize and gempt the occuence of similar con-
flicts later on in the seah. Finally, straightforwad bookkeeping of the causality chains leading up toicts'éillows GRASP
to identify assignments thateanecessary for a solution to be found. Experimemsults obtained ém a lage number of
benchmarks, including manyfn the #Id of test pattern generation, indicate that application of tlep@sed confit analy-
sis techniques to SAalgorithms can be exdmely effective for a Ilge number of@presentative classes of Bastances.
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1 Introduction

The Boolean satisthility problem (SA) appears in mancontexts in the feld of computerided design of intgated cir
cuits including automatic test pattern generatiohR@), timing analysis, delawdlt testing, and logicerification, to name
just a fev. Though well-researched and widelyésticated, it remains the focus of continuing interest becatiséeet tech-
nigues for its solution can & great impact. SAbelongs to the class of NP-complete problems whose algorithmic solutions
are currently belieed to hae exponential vorst case compidty [11]. Over the years, magmalgorithmic solutions hee been
proposed for SA the most well knan being the ditrent \ariations of the Das-Putnam procedui®]. The best knan ver
sion of this procedure is based on a backtracking search algorithm that, at each node in the search tree, elects an assign
and prunes subsequent search by itextiapplying theunit clauseand thepure literal rules[30]. Iterated application of the
unit clause rule is commonly referred toBalean Constraint Ripagation(BCP)[30] or asderivation of implicationsn the
electronic CAD literatur¢l].

Most of the recently proposed impriments to the basic Big-Putnam procedure[9, 10, 17, 28, 30] can be distin-
guished based on their decision making heuristics or their use of preprocessing or relaxation techniques. Common to all th
approaches, eever, is the chronological nature of backtracking. Only1i8] is a non-chronological backtracking procedure
outlined for solving SA, hut it is only sletched and nox@erimental results are presentedvél¢heless, non-chronological
backtracking techniques Y& been etensvely studied and applied to thfent areas oArtificial Intelligence, particularly
Truth Maintenance Systems (TMS) R7], Constraint Satisfction Problems (CSP,[12, 13, 21] andAutomated Deduction
[3], in some cases witlewy promising Bperimental resultss] 13].

Interest in the direct application of $Algorithms to electronic design automation AProblems has been on the rise
recently i, 17, 20, 28]. In addition, impre@ements to the traditional structural (path sensitization) algorithms for sole ED
problems, such aTPG, include search-pruning techniques that are also applicabld tal@#ithms in generallf, 16, 25].

This report introduces GRASR5éneric seaRt Algorithm for the Satisfability Problemn), an intgrated algorithmic
framawork for SAT that unifes sgeral preiously proposed search-pruning techniques awcditates identifiation of addi-
tional ones. GRASP is premised on thevitability of conficts during search and its most distinguishing feature is the aug-
mentation of basic backtracking search with aerdul conflict analysisprocedureAnalyzing conficts to determine their
causes enables GRASP to backtrack non-chronologically to eaviés ie the search tree, potentially pruningyéaportions
of the search space. In addition, by “recording” the causes ofatenERASP can recognize and preempt the occurrence of
similar conficts later on in the search. Finalstraightforvard bookleeping of the causality chains leading up to éoisfl
allows GRASP to identify assignments that are necessary for a solution to be found. Experimental results obtained from
large number of benchmarkg] indicate that application of the proposed dohfinalysis techniques to $Aalgorithms can
be etremely efective for a lage number of representaticlasses of SAinstances.

Several features distinguish the cadflanalysis procedure in GRASP from others useMi$s and CSPs. First, coiafl
analysis in GRASP is tightly coupled with BCP and the causes ofatemfeed not necessarily correspond to decision assign-
ments. Second, clauses can be added to the original set of clauses, and the number and size of added cleostslisdiser
This is in &plicit contrast with nogood recording techniquesaleped forTMSs and CSP<Third, GRASP emplgs tech-
nigues to prune the search by analyzing the implicatiarctue generated by BCHEXploiting the “anatomy” of corifits in
this manner has no egaient in other areas.
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Some of the proposed techniqueséhalso been applied in structubdIPG algorithms 14, 18, 26]. The GRASP frame-
work, havever, permits a uniéid representation of all knm search-pruning methods and introduce®ise othersThe basic
SAT algorithm in GRASP is also customizable togt@dwantage of application-spedftharacteristics to aclvie additional
efficiencies P4, 25. Finally, the framevork is oganized to allaw easy adaptation of other algorithmic techniques, such as
those in 4, 16], whose operation is orthogonal to those described here.

The remainder of this report isganized in four sections. I8ection 2 we introduce the basics of backtracking search,
particularly our implementation of BCBnd describe theverall architecture of GRASFhis is folloved, inSection 3 by a
detailed discussion of the procedures for ¢onfinalysis and he they are implemented. Extens! experimental results on a
wide range of benchmarks, including manom the feld of ATPG, are presented and analyzedattion 4 In particulay
GRASP is shan to outperform tw recent state-of-the-art $Algorithms 9, 28 on most, It not all, benchmark3.he report
concludes irBection 5with some suggestions for further research.

2 Backtrac k Search for CNF Satisfi ability

2.1 Basic Defi nitions and Notation

A conjunctve normal form (CNF) formula onn binary \ariablesx, ..., X, is the conjunction (AND) ofn clauses
w4, ..., o, €ach of which is the disjunction (OR) of one or more literals, where a literal is the occurrenceiabla or its
complementA formula ¢ denotes a uniguevariable Boolean functiori(x,, ..., X,) and each of its clauses corresponds to
an implicate off [15, p. 288]. Clearlya functionf can be represented by nyaequivalent CNF formulasA formula is com-
plete if it consists of the entire set of prime implicates for the corresponding function. In general, a complete formuka will ha
an ponential number of clausésle will refer to a CNF formula as@dause databasand use “formuld,”"CNF formula;
and “clause database” interchangeabhe satistbility problem (SA) is concerned with fiding an assignment to thegar
ments off(x,, ..., x,;) that males the function equal to 1 or piog that the function is equal to the constant 0.

A backtracking search algorithm for B4s implemented by aeard processthat implicitly trazerses the space af
possible binary assignments to the problemables. During the search, ariable whose binaryalue has already been deter
mined is considered to assigned otherwise it isunassignedwith an implicit \value of X = {0, 1} . A truth assignmentfor
a formulag is a set of assigne@sables and their corresponding binasjues. It will be covenient to represent such assign-
ments as sets oaviable/alue pairs; foreample A = { (x4, 0), (X7, 1), (X;3 0)} . Alternatively, assignments can be denoted
asA = {x; = 0,x; = 1,x;5 = 0} . Sometimes it is caenient to indicate that aaxablex is assigned without specifying
its actual @lue. In such cases, we will use the notaii¢x) to denote the binaryalue assigned ta An assignmené is com-
plete if |[A] = n; otherwise it is partial. Eluating a formulap for a gven a truth assignmeftyields three possible out-
comes:cp\A = 1 and we say thap is satisfed and refer t&\ as asatisfying assignmerntcp\A = 0 in which casep is
unsatisfed andA is referred to as auonsatisfying assignmentand cp‘A = X indicating that the alue of ¢ cannot be
resohed by the assignmenthis last case can only happen whkeis a partial assignmenAn assignment partitions the
clauses ofp into three sets: satisfi clauses {@luating to 1); unsati€d clauses {@luating to 0); and unresa@d clauses
(evaluating toX). The unassigned literals of a clause are referred to fasattiterals A clause is said to hanit if the number
of its free literals is one.
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2.2 Formula Satisfi ability

Formula satis@bility is concerned with determining if avgh formulae is satisfable and with identifying a satisfying
assignment for it. Starting from an empty truth assignment, a backtrack search algovignsesrtéhe space of truth assign-
ments implicitly and aganizes the search for a satisfying assignment by maintainiagision treeEach node in the decision
tree specifis an electe assignment to an unassignediable; such assignments are referred tdeg$sion assignments\
decision leel is associated with each decision assignment to denote its depth in the decision treeddwsiion assignment
at the root of the tree is at decisiondel. The search process iterates through the steps of:

1. Extending the current assignment by making a decision assignment to an unassigned variatdeisidns
processs the basic mechanism for exploring new regions of the search space. The search terminates successfully
if all clauses become satisfied; it terminates unsuccessfully if some clauses remain unsatisfied and all possible
assignments have been exhausted.

2. Extending the current assignment by following the logical consequences of the assignments made thus far. The
additional assignments derived by tbeduction processare referred to agplication assignment®r, more
simply, implications. The deduction process may also lead to the identification of one or more unsatisfied
clauses implying that the current assignment is not a satisfying assignment. Such an occurrence is referred to as
aconflict and the associated unsatisfying assignment is cattedflicting assignment

3. Undoing the current assignment, if it is conflicting, so that another assignment can be tribdckinacking
processis the basic mechanism for retreating from regions of the search space that do not correspond to
satisfying assignments.

The decision Ieel at which a gien \ariablex is either electiely assigned or forcibly impliedill be denoted by (x) . When
relevant to the contd, the assignment notation introduced earlier mayxbended to indicate the decisiowédé at which the
assignment occurre@hus,x = v@d would be read as<‘becomes equal toat decision leel d”

The arerage complbaty of the aboe search process depends ow kecisions, deductions, and backtracking are made. It
also depends on the formula itséthe implications that can deed from a gien partial assignment depend on the set of
available clauses. In general, a formula consisting of more clauses will enable more implications teteddmwill reduce
the number of backtracks due to cantél. The limiting case is the complete formula that contains all prime implicades. F
such a formula no coifts can arise since all logical implications for a partial assignment can bedd&fiis, havever, may
not lead to shorterxecution times since the size of such a formula maykperential.

2.3 Function Satisfi ability

Given an initial formulap mary search systems attempt to augment it with additional implicates to increase thesdeducti
power during the search proce3is is usually referred to as “learning22] and can be performed either as a preprocessing
step (static learning) or during the search (dynamic Iearlning)

Our approach can be classifias a dynamic learning search mechanism based on diagnosing the causeistef ttonfl
considers the occurrence of a caflwhich is ungoidable for an unsatisible instance unless the formula is complete, as an

1. Learning as defied in [L7, 22] only yields implicates of size 2 (i.e. non-local implicationg} the concept can be readily
extended to implicates of arbitrary size.
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opportunity to “learn from the mistakhat led to the comét” and introduces additional implicates to the clause database only
when it stumblesConflict diagnosisproduces three distinct pieces of information that can help speed up the search:

1. New implicates that did not exist in the clause database and that can be identified with the occurrence of the
conflict. These clauses may be added to the clause database to avert future occurrence of the same conflict and
represent a form afonflict-based equivalencéCBE).

2. An indication of whether the conflict was ultimately due to the most recent decision assignment or to an earlier
decision assignment.

a. If that assignment was the most recent (i.e. at the current decision level), the opposite assignment (if it has
not been tried) is immediately implied as a necessary consequence of the conflict; we refer to this as a
failure-driven assertion(FDA).

b. If the conflict resulted from an earlier decision assignment (at a lower decision level), the search can
backtrack to the corresponding level in the decision tree since the subtree rooted at that level corresponds
to assignments that will yield the same conflict. The ability to identify a backtracking level that is much
earlier than the current decision level is a form of non-chronological backtracking that we refer to as
conflict-directed backtracking(CDB), and has the potential of significantly reducing the amount of
search.

These conitt diagnosis techniques are discussed furth&eirtion 3

2.4 Structure of the Sear ch Process

The basic mechanism for dérig implications from a gien clause database is Boolean constraint pedjmag(BCP) 9,
30]. Consider a formula containing the clause = (x + =y) and assumg = 1. For ary satisfying assignment tp, o
requires thak be equal to 1, and we say thyat= 1 impliesx = 1 due tow . In general, gien a unit clausél; + ... +1,)
of ¢ with free IiteraIIj , consisteng requireslj = 1 since this represents the only possibility for the clause to beesatisfi
Ij = X, then the assignmemt = 1 is required; iflj = =X thenx = 0 is required. Such assignments are referred to as
logical implications (implications, for short) and correspond to the application of the unit clause rule proposed byisv. Da
and H. Putnanfb]. BCP refers to the iterated application of this rule to a clause database until the set of unit clauses becom

empty or one or more clauses become unsadisfi

Let the assignment of aanablex be implied due to a clause = (I; + ... +1,). The antecedent assignmerf X,
denoted a®A(x), is defned as the set of assignmentsdcdiables other thaxwith literals inw . Intuitively, A(x) designates
those wariable assignments that are directly responsible for implying the assignmxatiiefow . For example, the anteced-
ent assignments ok, y and z due to the clausew = (X+y+ -2) are, respeotely, A(x) = {y=0,z= 1},
Aly) = {x=0,z= 1}, and A(z) = {x =0,y = 0} . Note that the antecedent assignment of a decisatiable is
empty

The sequence of implications generated by BCP is captured by a diraptaxtion graph| defned as folls (see
Figure2-1):

1. Each vertex ifl corresponds to a variable assignment v(X).
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Current Truth Assignment: {Xg = 0@1, X1 = 0@3, X1 = 0@3, X1, = 1@2, X453 = 1@2}

Current Decision Assignment: {x; = 1@6}

0 = (7% + X))

X109 = 0@3
Wy = (X + X3+ Xg)
w3 = (7Xy + X3+ Xy)
wy = (7X4+ X5+ Xq)
wg = (X4 + Xg+ Xqq) X, = 1@6 K

conflict
wg = (=X + ~Xg)

wg = (Xq + Xg)
Xg = 0@1 X171 = 0@3
Clause Database ¢ Implication Graph | for Current Decision Assignment

Figure 2-1: Example of clause database and partial implication graph

2. The predecessors of vertex= v(X) inl are the antecedent assignmei(g) corresponding to the unit clause
o that led to the implication of. The directed edges from the verticesAi(x) to vertexx = v(x) are all
labeled withw . Vertices that have no predecessors correspond to decision assignments.

3. Special conflict vertices are addedltto indicate the occurrence of conflicts. The predecessors of a conflict
vertexk correspond to variable assignments that force a clausebecome unsatisfied and are viewed as the
antecedent assignmeftk) . The directed edges from the verticefifk) to k are all labeled withw .

The decision beel of an implied ariablex is related to those of its antecedeatiables according to:
3(x) = max{3(y)|(y, v(y)) € A(X)} (2.1)
2.5 Search Algorithm Template

The general structure of the GRASP search algorithm igrshoFigure2-2. We assume that an initial clause databgse
and an initial assignme#t at decision eel 0, are gien. This initial assignmentwhich may be emptynay be vigved as an
additional problem constraint and causes the search to be restricted to a subcubedoh#imsional Boolean spacdks the
search proceeds, bogh andA are modifed. The recursie search procedure consists of four major operations:

1. Deci de() , which chooses a decision assignment at each stage of the search process. Decision procedures are
commonly based on heuristic knowledge. For the results givBedtion 4 the following greedy heuristic is
used:
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/I G obal vari abl es: O ause dat abase
I Partial variable assignnment A
/l Return val ue: FAI LURE or SUCCESS
/l Auxiliary variables: Backt racki ng decision |evel B
Il
GRASP()
{
return ((Search (0, B) != SUCCESS) ? FAI LURE . SUCCESS);
}
/I I nput argunent: Current decision |evel d
/l Qut put argurent: Backt r acki ng decision |evel B
/l Return val ue: CONFLI CT or SUCCESS
I
Search (d, &B)
{
if (Decide (d) == SUCCESS)
return SUCCESS;
while (TRUE) {
if (Deduce (d) != CONFLICT) {
if (Search (d + 1, B) == SUCCESS) return SUCCESS;
else if (B !=d { Erase(); return CONFLICT;}
}
if (Diagnose (d, B) == CONFLICT) {Erase(); return CONFLICT;}
Erase();
}
}

Figure 2-2: Description of GRASP

At each node in the decision tree evaluate the number of clauses directly satisfied by each assignment to each
variable. Choose the variable and the assignment that directly satisfies the largest number of clauses.

Other decision making procedures have been implemented in the GRASP algorithmic framework, particularly
those described ii®]. For these heuristics, preference is given to assignments that simplify the clauses the most,
and can lead to more implications due to BCP. This is in explicit contrast with our heuristic which always
attempts to satisfy the largest number of clauses.

2. Deduce( ), which implements BCP and (implicitly) maintains the resulting implication graph. The pseudo-
code for this procedure is shownRigure2-3.

3. D agnose( ), which identifies the causes of conflicts and can augment the clause database with additional
implicates. Realization of different conflict diagnosis procedures is the subfeettidon 3

4. Er ase(), which deletes the assignments at the current decision level.
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/I G obal variabl es: | mplication graph |

/I 1 nput argunent: Current decision |level d
/I Return val ue: CONFLI CT or SUCCESS

I

Deduce (d)

{

while (unit clauses in ¢ or clauses unsatisfied) {
if (exists unsatisfied clause w) {
add conflict vertex k to I;
record A(k);
return CONFLI CT;

}

if (exists unit clause w with free literal | = x or | = =x) {
record A(X);
o(x) = d;
set x=1if | =xor x=0if | = =x;

}

}
return SUCCESS;

Figure 2-3: Description of the deduction engine

We refer taDeci de() , Deduce() andDi agnose() as theDecision DeductionandDiagnosisengines respectiely. Dif-

ferent realizations of these engines lead ttedéht SA algorithms. Br example, the Das-Putnam procedure can be emu-
lated with the abee algorithm by defiing a decision engine, requiring the deduction engine to implement BCP and the pure
literal rule, and aganizing the diagnosis engine to implement chronological backtracking.

3 Conflict Anal ysis Pr ocedures

When a conitt arises during BGRhestructure of the implication sequence a@rging on a conftt vertex k is analyzed
to determine those (unsatisfyinggriable assignments that are directly responsible for theicoififie conjunction of these
conflicting assignments is an implicant that representsficiguit condition for the corifit to arise. Ngation of this implicant,
therefore, yields an implicate of the Boolean funcfiGmhose satisfibility we seek) that does notist in the clause database
¢ . This nav implicatez, referred to as eonflict-induced clausgprovides the primary mechanism for implementiagure-
driven assertions, non-chronological cantftlirected backtracking, and cdnftbased eqwalence (se8ection 2.3

We denote the comfting assignment associated with a cobflertex k by A-(x) and the associated caaftinduced
clause byw(k). The conficting assignment is determined by a baakivtraversal of the implication graph starting wat
Besides the decision assignment at the current decisieln émly those assignments that occurred atipus decision beels

2. Conditions similar to these implicates are referred to as “nogood$#[7, 27] and in some algorithms for C$P1]. Nev-
ertheless, the basic mechanism for creating iotifiduced clauses défrs.
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are included inA-(k) . This is justifed by the dct that the decision assignment at the current decisiehisedirectly respon-
sible for all implied assignments at thatde Thus, along with assignments from yirrs levels, the decision assignment at
the current decision Vel is a suicient condition for the corifit. To facilitate the computation ok~(x) we partition the ante-
cedent assignments af as well as those foraviables assigned at the current decisiorllato two sets. Lek denote either

k or a\ariable that is assigned at the current decisiegl.[€he partition ofA(X) is then gien by:

A = {(y, v(¥)) € AX[3(Y) < d(X)} (3.1)
209 = { (v, v(y)) € AX[3(Y) = 3(x)} '

For example, referring to the implication graphFifure2-1, A(xg) = {X;; = 0@3} andX(xg) = {x, = 1@6} . Deter
mination of the conitting assignmenA-(«x) can nav be epressed as:

Ac(k) = causesdk) (3.2)

wherecausesdf) is defned by:

H (x (%) if A(X) =@
&) = 3.3
causesdk) E A(X) U { U causesc(fy)} otherwise (3-3)
0 (v, v(y) € 2(x)
The confict-induced clause correspondingA@.(k) is nav determined according to:
we(k) = > xW (3.4)

(X v(X)) € Ac(k)

where, for a binaryariablex, X0 = x andx} = = x. Application of(3.1)(3.4)to the conftt depicted irFigure2-1yields the
following conflcting assignment and coitfi-induced clause at decisiorvéd 6:

Ac(k) = {X; = 1@6, Xy = 0@1, X;q = 0@3, X;; = 0@3}

3.5
wc(k) = (=Xg + Xg + X109+ Xq9) 32

3.1 Standar d Confl ict Dia gnosis Engine

The identifcation of a conitt-induced clausay-(k) enables the destion of further implications that help prune the
search. Immediate implications ef-(«) include asserting the current decisi@miable to its oppositealue and determining
a backtracking kel for the search process. Such immediate implications do not requiretfw} be added to the clause
databaseAugmenting the clause database witf(k), havever, has the potential of identifying future implications that are
not dervable withoutw (k) . In particulay addingw(x) to the clause database insures that the search engine wijeot re
erate the confiting assignment that led to the current donfl

3.1.1 Failur e-Driven Assertions

If wc(x) involves the current decisioranable, erasing the implication sequence at the current decisiinneles
(k) a unit clause and causes the immediate implication of the dectsiiadle to its oppositealue.We refer to such
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decision

‘(V
antecedent assignment of Xq X12 = 1@2

due to w(k) in (3.5)

(a) Conflicting implication sequence (b) Decision tree

Figure 3-1: Implication sequence and backtracking due to asserting X =0

assignments asifure-driven assertions (F8s) to emphasize that there implications of corifits and not decision assign-
mentsWe note further that their dedtion is automatically handled by our BCP-based deduction engine and does not require
special processinghis is in contrast with most search-based @iyorithms that treat a second branch at the current decision
level as another decision assignment. Using our runniample (sed-igure2-1) as an illustration, we note that after erasing

the conficting implication sequence amve 6, the conftt-induced clause (k) in (3.5) becomes a unit clause withx; as

its free literal This immediately implies the assignmeqt = 0 andx, is said to be asserted.

3.1.2 Conflict-Dir ected Backtracking

If all the literals inwc(k) correspond toariables that were assigned at decisioeliethat ardower than the current
decision leel, we can immediately conclude that the search process needs to badiirsdituation can only takplace
when the conftt in question is produced as a direct consequence of diagnosingieupreonfict and is illustrated in
Figure3-1(a) for our vorking example.The implication sequence generated after assexting 0 due to conftt k leads to
another conitt k' . The conficting assignment and coitfi-induced clause associated with thisvreonfict are easily deter
mined to be

Ac(k') = {Xg = 0@1, x;q = 0@3, x;; = 0@3, X, = 1@2 X3 = 1@2}

: (3.6)
oc(k’) = (Xg+ X9+ Xgq T 7 X5+ 7 Xq13)

and clearly shwe that the assignments that led to this secondicowfére all made prior to the current decisiorele

In such cases, it is easy to shthat no satisfying assignments can be found until the search process backtracks to the
highest decision el at which assignments (k") were made. Denoting thimdktrack lewvel by (3, it is simply calculated
according to:

B = max{3(x)|(x, v(x) € Ac(x')} (3.7)

When3 = d — 1, whered is the current decisionuel, the search process backtrackeonologically to the immediately
preceding decisionVel. When < d — 1, however, the search process may backtrack-chronologically by jumping back
over s&eral levels in the decision tree. It isorth noting that all truth assignments that are made after decis@mlewill
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/I A obal vari abl es: I mplication graph |

I Cl ause dat abase ¢

/I I nput vari abl e: Current decision level d

/I Qut put vari abl e: Backtracki ng decision level B

/I Return val ue: CONFLI CT or SUCCESS

I

Di agnose (d, &B)

{
wc(k) = Create_Conflict_Induced_C ause(); /I Using (3.4)
Updat e_Cl ause_Dat abase ( og(k) );
B = Compute_Max_Level (); /I Using (3.7)
if (B !=d) {

add new conflict vertex k to I;
record A(k) ;
return CONFLI CT;

}
return SUCCESS;

Figure 3-2: Description of the standard diagnosis engine

force the just-identifid confict-induced clausen-(k’) to be unsatiséid. A search engine that backtracks chronologically
may; thus, vaste a signifiant amount of timexgloring a useless gion of the search space only to digmoafter much ébrt
that the rgion does not contain gsatisfying assignments. In contrast, the GRASP search enginedirexty from the cur
rent decision ieel back to decision el 8 . At that point,w(x") is used to either der a FDA at decision leel B or to cal-
culate a ne backtracking decisionvel.

For our xkample, after occurrence of the second éointhe backtrack decisionvel is calculated, fronf3.6), to be 3.
Backtracking to decision Vel 3, the deduction engine creates a dcinviertex corresponding taw(«’) . Diagnosis of this
confict leads to a FB of the decision ariable at leel 3 (sed-igure3-1 (b)).

The pseudo-code for the diagnosis engine in GRASP wrshoFigure3-2 and illustrates the main features of standard
confict diagnosis described alm The GRASP search algorithm described in this report is sound and complete. General
proofs of this claim can be found ihJ, 26].

3.2 Variations on the Standar d Diagnosis Engine

The standard condt diagnosis, described in the pi@us section, stérs from tw dravbacks. First, conftt analysis
introduces signifiant owerhead which, for some instances offSéan lead to lgre run times. Second, the size of the clause
database gmes with the number of backtracks; in thenst case such gnuth can be xponential in the number ofiviables.

The first dravback is inherent to the algorithmic frawmrk we propose. ¢ttunately the experimental results presented in
Section 4clearly suggest that, for speciiinstances of SR the performanceains fir outweigh the proceduseadditional
overhead.
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One solution to the second diaack is a simple moddation to the confit diagnosis engine that guarantees tlestv
case grath of the clause database to be polynomial in the numberiafoles The main idea is to be seleatiin the choice
of clauses to add to the clause datab&ssume that we are\gin an intger parametet. Confict-induced clauses whose size
(number of literals) is no greater thiamre markd greenand handled as described earlier by the standard diagnosis engine.
Conflict-induced clauses of size greater thaare markdredand lept around only while tlyeare unit clauses. Implementa-
tion of this scheme requires a simple madifion to procedurr ase() , which must na delete red clauses with more than
one free literal, and to the diagnosis engine, which must attach a color tag to eacticdafied clausalith this modifta-
tion the worst case gmth becomes kth-order polynomial in the number cdinables.

Further enhancements to the cmtffliagnosis engine wolve generating stronger implicates (containingeeliterals) by
more careful analysis of the structure of the implication graph. Such implicates correspond to the dd2@hatiotise con-
flict vertex k . These dominators, referred towasque implication point§UIPs), can be identéd in linear time with a single
traversal of the implication graph.

4 Experimental Results

In this section we presentmerimental results for GRASBeveral benchmarks are used and GRASP is compared with
other state-of-the-art and publiclyalable SA programs. In particulatve compare GRASP wifhEGUS[28] and POSIT
[9]. TEGUS is included in SIE3]. It was adapted to read CNF formulas and augmented to continue searching when all its
default options werexhausted. No changes were required with POSIT

GRASP and POSIT are implemented in the C++ programming language, WhEf@d$ is implemented in the C pro-
gramming languagdll programs were compiled with GCC 2.7.2 and run on a SUAREP5/85 machine with 64 MByte of
RAM. In order to galuate the three programs awifferent sets of benchmarks were tested:

e The UCSC benchmarks, available fr{8h, that include instances of SAT commonly encountered in test pattern
generation of combinational switching circuits for bridging and stuck-at faults.

» The DIMACS challenge benchmarks, also available figjrthat include instances of SAT from several authors
and from different application areas.

While GRASP has a lge number of cordiuration options, for thexperimental results gen belav, it was confjured to
use the decision engine describediction 2.5to allov the generation of clauses based on UIPs, and to limit the size of
clauses added to the clause database to 2@er fikerals All SAT programs were run with a CPU time limit of 10,000 sec-
onds (about three hours).

For the tables of results the faNng defnitions apply A benchmark suite is partitioned into classes of related bench-
marks. In each clasgM denotes the total number of class memb#sgjenotes the number of class members for which the
program terminated in less than 10,000 CPU secondstiareldenotes the total CPU time, in secondsemato process all
members of the class.

3. OtherwiseTEGUS would abort almost all benchmarkamples.
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Benchmark GRASP TEGUS POSIT
Class i #S Time #S Time #S Time
BF-0432 21 21 47.6 19 53,852 21 55.8
BF-1355 149 149 125.7 53 993,915 64 946,127
BF-2670 53] 53 68.3 25 295,410 53 2,971
SSA-0432 7 7 1.1 7 1,593 7 0.2
SSA-2670 12] 12 51.5 0 120,000 12 2,826
SSA-6288 3 3 0.2 3 17.5 3 0.0
SSA-7552 80 80 19.8 80 3,406 80 60.0

Table 4-1: Results on the UCSC Benc hmarks
4.1 UCSC Benchmark Results

The results obtained for the UCSC benchmarks arerstio Table4-1. The BF and SSA benchmark classes denote,
respectiely, CNF formulas for bridging and stuck-aift$’. These results are separated into benchmark classes according to
the given benchmark circuit (which are takfrom the ISCAS’85 benchmark circuits). GRASP performs much better than an
other program on these benchmaildse other tw algorithms abort arxeemely lage number of problem instances, whereas
GRASP aborts none. Furthermore, both the CPU times and the number of decisions of GRA®&Bmety esmall when
compared with the results of other prograifisese benchmarks are characterized stiyemely sparse CNF formulas for
which BCP-based cotdt analysis varks particularly wellThe performance diérence between GRASP ahBGUS, a ery
efficientATPG tool, illustrates the peer of the search-pruning techniques included in GRASP

Despite the xtremely good results of GRASP when compared with the other algorithms, some caution is required.
GRASP performs well in separate instances of &fthout knavledge of the circuit structure. KTPG systems the structure
of the circuit is knan and can be used to impeoeficieng. This is what is done witiEGUS when applied taTPG[28].
Given the greaten@rhead of GRASHEGUS is lilely to perform better on a g@r number of easwlfilts. Havever, GRASP
is ideal for the hardalults, for whichTEGUS applies learning techniques and iterates seeral decision making orderings.
As a result the optimum ganization forATPG is &pected to be a combination BEGUS for the simplesults, folloved by
GRASP for the hardaults.

4.1.1 Database Gowth Versus CPUTime

It is interesting toealuate hay the gravth of the clause databasdeats the amount of search and the CPU tiroe tikis
purpose the UCSC benchmark suites are ubké.same decision making procedure is used and GRASP is ruingllo
clauses of size at most 0, 5, 10, 15, 20, 30, 40, 60, 80 and 100 to be added to the clause databageeimeactTée CPU
time and the number of backtracks for the SSA and BF benchmarks areisttagure4-1.

As the maximum size of added clausesagrothe number of backtracks decreases and the CPU time decreases accord-
ingly. Eventually this tendeng is reversed, andwen though the number of backtracks continues to decrease, the CPU time
begins to increasalMe can thus conclude that addingykr clauses leads to additionakchead for conducting the search pro-

4. These CNF formulas wereddoped at the Umersity of California, Santa Cruz.
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Figure 4-1: UCSC benchmarks with different growths of the clause database

cess and hence iventually costs more than what ivea in terms of backtrackEhese results also suggest that it may possi-
ble to xperimentally identifying optimal gweth rates for diierent classes of problem instances. &ample, for the SSA and
BF benchmarks the optimal bound is near 30.

4.2 DIMACS Benc hmark Results

Finally, we illustrate the application of GRASP to other benchmarks, not directly related wAthlcations. Br this
purpose the DIMES benchmarks are usg]. The results of running GRASP and the other algorithms akersimrable4-
2 and agin are separated into classes of benchmarks. GRASP performs betteytbitihamther programs for t#éM-100,
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Benchmark | GRASP TEGUS POSIT
Class #S Time #S Time #S Time
AIM-100 24| 24 1.8 24 107.9 24 1,290
AIM-200 24' 24 10.8 23 14,059 13 117,991
BF 4 4 7.2 2 26,654 2 20,037
DUBOIS 13] 13 34.4 5 90,333 7 77,189
11-32 17| 17 7.0 17 1,231 17 650.1
PRET 8 8 18.2 4 42,579 4 40,691
SSA 8 8 6.5 6 20,230 8 85.3
AIM-50 24' 24 0.4 24 2.2 24 0.4
11-8 14' 14 23.4 14 11.8 14 2.3
JNH 50 50 21.3 50 6,055 50 0.8
PAR-8 10 10 0.4 10 1.5 10 0.1
PAR-16 10 10 9,844 10 9,983 10 72.1
11-16 10 9 10,311 10 269.6 9 10,120
H 7 5 27,184 4 32,942 6 11,540
F 0 30,000 0 30,000 0 30,000
G 4 0 40,000 0 40,000 0 40,000
PAR-32 10 of 100,000 o| 100,000 o| 100,000

Table 4-2: Results on the DIMA CS Benc hmarks

AIM-200, BF, DUBOIS, PRET and SSA benchmark classes, whereas POSIT performs better than GRASP for the 11-8, JNF
PAR-8 and RR-16 benchmarks. It can be concluded that for benchmarks where GRASP performs better the other progran
either tale a \ery long time to fid a solution or are unable todi a solution in less than 10, 000 secomis.have also
obsered that benchmarks for which POSIT performs better than GRASP are also handled by GRASP with a similar amou
of search; only thewerhead inherent to GRASP becomes appafdeGUS and POSIT each perform better oredént
classes of instances. In generalybeer, POSIT seems to be slightly moréi@ént thanTEGUS.

It is also interesting to measurevhavell confict analysis werks in practice. & this purpose statisticsgarding some
DIMACS benchmarks are shio in Table4-3, where#B denotes the number of backtracks,CB denotes the number of non-
chronological backtracksar gest jumpis the size of the Igest non-chronological backtragk)IP indicates the number of
unique implication points foun@p of Growth denotes theariation in size of the clause database, Bintk is the CPU time
in seconds. & these kamples seeral conclusions can be dm. First, the number of non-chronological backtracks can be a
significant percentage of the total number of backtracks. Second, the jumps in the decision tree @dageaamount of
search wrk. As can be obseed, in some cases the jumpsdalpotentially see searching millions of nodes in the decision
tree.Third, the gravth of the clause database is not necessariyeldburth, UIPs do occur in practice and for some bench-
marks a reasonable number is foundegithe number of backtracks. Finalfgr most of thesexamples conitt analysis
causes GRASP to be much moré&ogént than POSITNevertheless, POSIT antEGUS can be more fefient in specifi
benchmarks, as thexamples of the last threews indicate. TEGUS performs particularly well on these instances because
they are satisfible and becauSEEGUS iterates seral decision orderings. Hence, for these instances, iteratfegedif deci-
sion making orderings is kity to lead to a solution.
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Benchmark #B | #NCB "jirrgSSt #UIP G(f"o\?v‘;h GTRi'r:iP Ti?n Lés PT?%T
aim-200-2_0-yes1-2 109 50 13 25 152.63 0.38] 2.80 7,990.71
aim-200-2_0-yes1-3 74 35 16 15 99.67 0.31 0.64 > 10,000
aim-200-2_0-no-1 200 20 12 5 229 013 6993 >10,000
aim-200-2_0-no-2 39 20 37 4 43.6 0.19 87.53 > 10,000
bf0432-007 335 124 17 32 47.99 5.18] 6,648.6§ 11.79
b{1355-075 a0 20 24 2 6.50 1.25 483 > 10,000
bf1355-638 11 7 8 4 1.11 0.32] > 10,000 > 10,000
bf2670-001 16 8 22 2 3.02 0.40 > 10,00(¢ 25.64
dubois30 233 72 16 21 46583 06§ >10,000 > 10,000
dubois50 485 175 26 51 631.92 2.80 > 10,00(0 > 10,000
dubois100 1438 639 67 150 1033.54 26.22 > 10,00(¢ > 10,000
pret60_40 147 98 17 8 407.08 0.41) 652.30 175.49
pret60_60 131 83 16 10 353.54 0.35| 639.27 173.12
pretl50_25 428 313 38 35 588.17 4.84 > 10,00(¢ > 10,000
pret150_75 388 257 49 200 44678 389 >10,000 > 10,000
ssa0432-003 37 6 5 1 30.80 0.15| 221.71 0.01
ssa2670-130 130 45 34 10 17.26 2.07 > 10,00(¢ 14.23
ssa2670-141 377 97 16 28 65.71 3.42] > 10,00( 70.82
iil6al 110 19 13 0 0.03 13.61 5.99 > 10,000
ii16b2 2664 120 9 39 63.46 175.85 6.94 16.38
iil6b1 88325 2588 41 624 131.94 > 10,00( 21.65 16.73

Table 4-3: Statistics of Running GRASP on Representative DIMA  CS Benc hmarks

5 Conclusions and Resear ch Directions

This report introduces a procedure for cahffinalysis in satisdbility algorithms and describes a cgufiable algorith-
mic framevork for solving SA. Experimental results indicate that c@tflanalysis and its by-products, non-chronological
backtracking and identdation of equialent conficting conditions, can contritte decisiely for eficiently solving a lage
number of classes of instances offSAs a result, the proposed BAlgorithm is shan to be more déicient than other state-
of-the-art algorithms for a lge number of SAinstances.

The natural eolution of this research avk is to apply GRASP to ddrent EDA applications, in particular test pattern
generation, timing analysis, delaguft testing and logic erification, among others. Despite beingaatfSA algorithm,
GRASP introduces noticeablgarhead that can become a liability for some of these applications. Consecuesitgs the
algorithmic oganization of GRASPspecial attention must be paid to the implementation details. @isgoeed compromise
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is to use GRASP as the second choic& Sl§orithm for the hard instances of Bhen&er other simplerbut with less ger
head, algorithmsdil to find a solution in a small amount of CPU time.

Future research avk will emphasize heuristic control of the rate ofwtto of the clause databas&nother area for
improving GRASP is related with the deduction engine. Impneents to the BCP-based deduction engine are described in
[26] and consist of diérent forms of probing the CNF formula for creatingvridausesThis approach naturally adapts and
extends other deduction procedures, e.g. regeiisarning16] and transitie closurd4], since it completes the clause data-
base with additional implicates, in addition to being able to identify ag meressary assignments.

The actual practical usefulness of imygd deduction engines needs to kpegimentally walidated. Finallywe propose
to undertak a compreheng experimental characterization of the instances of Xk which confict analysis preides sig-
nificant performanceains.
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