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Abstract

Materialized database views allow applications to benefit from the powerful flexibility of views while minimizing the
performance penalties traditionally associated with views. However, the need to maintain materialized views in the face of
updates limits the variety of queries that can be used to define them. In this paper we address the problem of incrementally
maintaining OODB views formed using path queries. Traditional index organizations are not well suited for this task. The
indexing needs of the path query view problem are unique in that because the contents of the materialized view are cached
and can be queried directly, the primary use for a supplemental index is during the propagation of updates rather than during
query processing. Furthermore, traditional index organizations do not distinguish between single-valued and multi-valued
attributes, and thus do not account for the fact that multi-valued attributes enable a single object at the head of a path to be
associated with multiple instantiations of the path, any number of which could satisfy the path query predicate. This means
that if an updated path involves a multi-valued attribute then the aggregation hierarchy of the object at the head of the path
must be completely re-calculated in order to determine whether or not that object participates in an alternative instantiation
that fulfills the view query predicate despite the update. As a solution, we introduce a new Satisfiability Indicating Multi-
Index (SMX) organization, which maintains partial information indicating whether or not a given endpoint satisfies the query
predicate rather than what the exact value of the endpoint is. This new structure offers a number of benefits. (1) At most one
path position forward must be traversed to determine whether or not the endpoint of an instantiation of the path fulfills a given
path query predicate. (2) The SMX index structure only needs to be updated when the validity of an object’s instantiation
(in terms of the query predicate) changes. (3) No more than one path position forward must ever be traversed in order to
identify whether or not a given object participates in any alternative instantiations that fulfill a given path query predicate.
In addition to proposing this new index organization, we also present cost models and analytic evaluations comparing the
performance of the SMX organization to those of the multi, nested, and path index organizations with regards to calculating
the effects of updates upon views. The results of our evaluations indicate that the SMX dramatically improves upon the
performance of traditional index structures with respect to the problem of path query view maintenance.
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1 Introduction

Recent advances in information technology have issued a new set of challenges to the database community. There is a grow-
ing need for strategies that provide the means to cache and use query results, for mechanisms that support customized inter-
faces to shared data, and for the integration of such mechanisms with the powerful constructs of the object-oriented program-
ming model. For example, the need for improved access to diverse data sources has spurred a recent interest in supporting
queries across multiple information sources in a transparent fashion (e.g., data warehouses and digital libraries [19, 1]).
Materialized database views are a recognized means of achieving such interoperability among applications, allowing appli-
cations to benefit from the powerful flexibility of view technology while minimizing the performance penalties traditionally
associated with views. However, the fact that updates must be propagated to affected materialized views limits the variety
of queries that can be used to define materialized views.

We have previously discussed the problem of view materialization in the context of object-oriented databases (OODBs)
and proposed algorithms that exploit object-oriented characteristics in order to provide the incremental maintenance of ma-
terialized virtual classes created using the standard view query operators [11, 13, 14]. In this paper we address the problem
of the incremental maintenance of materialized virtual classes formed using selection queries on aggregation paths (or short,
path query views). To the best of our knowledge, only two other research groups have addressed the topic of maintaining
materialized path query views in object-oriented databases. Kemper et al.’s work on function materialization addresses the
problem of precomputing function results [7, 8]. Konomi et al. discuss a solution to supporting a type of join class that is
formed along the aggregation graph [10]. Readers might also note that in [12] we discussed the path query view problem and
proposed an initial technique for the maintenance of such views; however, none of the techniques proposed in the current
work have been previously introduced.

In this paper, we explore the utilization of traditional path index structures for facilitating the incremental maintenance
of path query views, but find that traditional indexing techniques are not well suited for this task. The indexing needs of
the path query view problem are unique in that because the contents of the materialized view are cached and can be queried
directly, the primary use for a supplemental index is for the propagation of updates rather than for query processing. Because
traditional index organizations are tailored for use during general query processing (i.e., primarily for data retrieval), they
are not optimized to evaluate path instantiations with regard to a static predetermined predicate condition such as would be
associated with a path query view. Furthermore, traditional index organizations do not distinguish between single-valued
and multi-valued attributes, and thus do not account for the fact that multi-valued attributes enable a single object at the head
of a path to be associated with multiple instantiations of the path, any number of which could satisfy the specific path query
predicate. This means that if an updated path involves a multi-valued attribute then the aggregation hierarchy of the object
at the head of the path must be completely re-calculated in order to determine whether or not that object participates in an
alternative instantiation that fulfills the view query predicate despite the update.

As a solution, we introduce a new Satisfiability Indicating Multi-Index (SMX) organization that is specifically tailored to
handle the issues of path query view maintenance. The SMX organization maintains partial information indicating whether
or not a given endpoint satisfies the query predicate rather than the exact values of endpoints. This strategy offers a num-
ber of benefits. (1) Instead of traversing all instantiations in which an object participates to their endpoints, with the SMX
organization at most two path positions forward must be examined in order to determine whether or not the endpoint of an
instantiation fulfills a given path query predicate. (2) The SMX index structure only needs to be updated when the validity of
an object’s instantiation (in terms of the query predicate) changes. (3) Instead of having to fully traverse all instantiations of
an object to identify whether or not it participates in any alternative instantiations (due to multi-valued attributes) that affect
its membership in a path query view, with the SMX organization we only need to check at most one forward reference. The
results of our evaluations indicate that the SMX dramatically improves upon the performance of traditional index structures
with respect to the problem of path query view maintenance.

Although we focus on an object-oriented model in this current work, our solution is directly applicable to the relational
context. Insofar as queries can be performed over multiple tables that are joined, select-project-join (SPJ) views are the
traditional counterpart to path query views. Maintaining materialized SPJ views is a well-studied problem in the relational
world [5, 17, 3]. Gupta and Blakeley present formal partial-information-based view maintenance techniques that infer knowl-
edge about the state of the underlying base relations using local information (such as the view definition, the update, the
current view materialization, and varying amounts of base relation replicas) [5]. Segev and Zhao propose a join pattern in-
dexing technique for materialized rule-derived data that allows the identification of join completion without reading base
relations [17]. Although the path query view problem that we address in this chapter is more restricted than the general SPJ
problem in that we do not allow free variables in the predicate expression, our solution is unique and dramatically improves
upon the performance of traditional treatments of the path query view problem.

We begin in Section 2 by briefly reviewing the MultiView object model and formally describing the characteristics of
path query views. In Section 3 we present three problems involved with the maintenance of path query views, including a
discussion of the limitations of utilizing traditional index organizations to address these problems. As a solution, we propose
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the SMX organization in Section 4. We introduce cost models comparing the SMX organization to the traditional multi-index
(MX), nested index (NX), and path index (PX) organizations in Section 5, and use these cost models to perform analytic
evaluations which we examine in Section 6. Finally, we discuss related work in Section 8, and present our conclusions and
future work in Section 9.

2 The MultiView Model and System

In this section, we briefly review the basic object model principles of the MultiView system. More details are given in [16]
and [11]. Let

�
be an infinite set of object instances, or short, objects. Each object

�������
consists of state (instance

variables or attributes), behavior (methods to which the object can respond), and a unique object identifier. The domain
of an instance variable can be constrained to objects or sets of objects of a specific class. If an instance variable is constrained
to sets of objects, then we say that the instance variable is multi-valued. Because our model is object-oriented and assumes
full encapsulation, access to the state of an object is only through accessing methods. Together, the methods and instance
variables of an object are referred to as its properties.

Objects that share a common structure and behavior are grouped into classes. We use the term type to indicate the set
of applicable property functions shared by all members of the class. Let � be the set of all classes in a database. A class� � � � has a unique class name, a type, and a set membership denoted by extent 	
� ��� .

We use both class type and class extent to determine subsumption relationships. For two classes � � and ��
 � � , � � is a
subtype of � 
 , denoted � ��� � 
 if and only if (iff) (properties( � � ) � properties( � 
 )). All properties defined for a supertype
are inherited by its subtypes. Similarly, � � is a subset of � 
 , denoted � ��� � 
 , iff 	���� ��� � 	�	�� � � � ��� 	�� � � 
 ��� .� � is a subclass of � 
 , denoted � � is-a � 
 , iff ( � ��� � 
 ) and ( � ��� � 
 ). � � is a direct subclass of � 
 if �����! � � s.t." �#�$ �#&% , � � is-a of �  , and �  is-a of ��
 .

An object schema is a rooted directed acyclic graph ' # 	�(�)+* � , where the finite set of vertices ( corresponds to classes� ��� � and the finite set of directed edges * corresponds to a binary relation on (-,.( representing all direct is-a rela-
tionships. Each directed edge / � * from ( � to (0
 represents the relationship � � is-a ��
 . Two classes � � )1��
 � � share a
common property iff they inherit it from the same superclass. The designated root node, Object, has a global extent equal to
the set containing all instances and an empty type description.

An aggregation path 2 � is defined as � �436587 9��43 :07 9��43 ;<7=78749��43 > where � �4365 is the path’s source class,
9��43 :

is an instance
variable of � �4365 , and � 9 �?3  )=@�A "CB�D ) 9 �43  is an instance variable of the class to which instance variable

9 �?3  FE 5 ’s values
are constrained. We use the term instantiation of path 2 � to refer to a sequence of objects

� 5 ) � : ) 7=7=7 ) � > s.t.
� 5

belongs to
class � �4365 , ��: belongs to class � �43 : , etc., and � " s.t. @�A "GB&D

, the value of
�  FE 5 ’s 9��?3  instance variable refers to

�  . We
identify an instantiation of subpath 2 � 	 % ) " � ) % BH"

of path 2 � as a sequence of objects
� 
I) � 
8J 5 ) 787=7 ) �  s.t.

� 
 belongs
to class � �43 
 , � 
8J 5 belongs to class � �43 
8J 5 , etc., and ��K s.t. % A�K B�" ) ��L E 5 ’s 9 �?3 L instance variable refers to

��L
. Given an

instantiation of a path 2 � # � �4365M7 9��43 :07 9��43 ;<787=7
9��?3 > , we call the object in the @8N
O position (e.g., the object from class � �?365 )
the head and the object in the

D O?P position (e.g., the object from class � �43 > ) the endpoint of the instantiated path. An object� 
 )8@ B % BQD
, can participate in multiple instantiations of a path 2 � .

Virtual classes are defined by the application of a query operator to one or two classes that restructures the source classes’
type and/or extent membership. MultiView provides a virtual-class-forming algebra that includes the following operators:
difference, hide, intersect, join, refine, select, and union [16, 13]. These queries determine the methods, instance variables,
and extent of the virtual classes. The join operator can be object-generating; all other operators are object-preserving.

Let R be the set of all possible queries. We constrain a query R � � R used to define a virtual class to correspond to
a single algebra operation, and refer to the query R � � R that defines a virtual class, (S� � � (�� , as query( (�� � ). We
identify three types of predicates used in virtual-class defining queries. Class membership predicates (intrinsic to hide,
union, intersect, refine, and difference queries) are predicate terms that depend upon the classes to which an object belongs

5
.

Value predicates, used by select and join queries, are predicate terms constraining instances based on the values of their local
instance variables. In addition, our select operator supports the formation of virtual classes using path queries (queries that
refer to a value along an object’s aggregation path). A path query, which consists of a path and a value predicate upon the
endpoint of that path, takes the form 2SR � # � �?365=7UT6VXW�9��43 :=7YT VXW�9��43 ;�787=71T6V!W�9��?3 >�Z0[]\ K_^`/ , where if attribute

9��?3 
 is a multi-valued
attribute then the quantifier

V-�ba �c)d�fe indicates whether the multi-valued attribute should be handled in an existential or
universal manner, and the comparison operator

Z
is defined for � �?3 > : .

Given an instantiation of a subpath 2 � 	 % ) D � � 
 ) � 
=J 5 ) 7=787 ) ��> s.t.
� 
 belongs to class � �?3 
 , � 
=J 5 belongs to class � �43 
8J 5 ,

etc., and ��K s.t. % A�K B�" ) ��L E 5 ’s 9 �43 L instance variable refers to
�gL

and
9 �43 
=J 5 is a single-valued attribute, if

� >
satisfiesh

Set operations are typical of queries using class membership predicates, because they function by using the presence of objects in source classes rather
than by checking value-based predicates.i

Typically, jlknmMolprqspftolp�u�p�v�prwyx{z
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the predicate
��>�Z0[|\ K�^}/ then we say that the subpath instantiation is a satisfying subpath instantiation, or short, that it is

satisfying. If
9��43 
8J 5 is a multi-valued attribute and

V # � , then we say that the subpath instantiation is satisfying if and
only if all the objects that serve as object

� �43 
 ’s values for attribute
9 �43 
8J 5 participate in satisfying subpath instantiations

of subpath 2 � 	 %<~ @|) D � . The extent of a virtual class that is defined by a path query 2SR � contains all objects
� 5 � � �4365 that

satisfy 2SR � . In the current paper we assume that virtual classes are materialized, and refer to a single virtual class that is
defined using a path query as a path query view ( 2�R�( ).

3 Path Query View Maintenance with the SMX Organization

In this section, we present an example of a path query view and describe issues involved in the incremental maintenance of
such views. We discuss the limitations of using traditional index organizations to address these issues, then introduce our
Satisfaction-Indicating Multi-Index solution.

3.1 Example Schema

Figure 1 shows an initial aggregation schema composed of four classes that we use as a basis for the remainder of this dis-
cussion. Person has an attribute, age, which is constrained to the Number class. Person also has a multi-valued instance
variable—cars, which associates each person with the set of cars they own. Car has one instance variable,maker, which is
constrained to the class Company. Company has two instance variables: stockPrice, which is constrained to the Number
class; and owner, which is constrained to the Person class.

stockPrice
Person Car Company

Number

�����

LEGEND

class

constrained-to

constrained-to set of

maker

�4�8�4�_�cars

Figure 1: The example schema.

Figure 2 shows instances of the base classes and the aggregation relationships between them. For example, the person1
object is an instance of the Person class, car1 is an instance of the Car class, and company1 is an instance of the Company
class. The person1 object has both car1 and car2 as values for her cars attribute. The car1 object has the company1 object
as a value for maker, the company1 object has a stockPrice of 25, etc.

Now suppose that we were to define a virtual class PathSelect1 for the schema in Figure 1 using the (existential) path
queryselect from Person where [:person � person. � cars.maker.stockPrice A 40]. Those in-
stances of the Person class whosecars instance variable includes an instance of Car that has amakervalue whosestockPrice
instance variable has a value less than 40 qualify to belong to the PathSelect1 class. As shown in Figure 3, the initial extent
membership of the PathSelect1 class contains the person1 and person2 objects.

Figure 4 depicts the index structures that would be created for our example schema under the traditional multi-index (MX),
path index (PX), and nested index (NX) organizations. We confine our current discussion to non-inherited forms of these
index organizations for the sake of simplicity. However, note that our treatment could easily be extended to address the
inherited forms.

3.2 Path Query View Maintenance Issues

The problem we address is how to maintain the extents of materialized path query views in the face of updates anywhere
along their paths. In order to solve this problem, we must address the following issues.

Determining instantiation validity. First we must determine whether or not the original and new endpoints of the path
instantiations in which the updated object participates fulfill the path query. The traditional index organizations shown in
Figure 4 facilitate the identification of head objects of instantiations, but not their endpoints. For all three index structures,
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Figure 2: Initial base instances and their aggregation relationships for the schema in Figure 1.
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Figure 3: The PathSelect1 is derived from the base schema using a path query.
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{person3}
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Index on Car.maker

Company Car

{car2}

{car3}
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VALUEKEY

company2

company1

company3
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Person

VALUEKEY

{company2}75

30 {company1}

{company1}

Company.stockPrice
Index on

Company

MULTI-INDEX STRUCTURES

Figure 4: Traditional index organizations for the path person.cars.maker.stockPrice.
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we must thus traverse each of the updated object’s path instantiations to their original and new endpoints in order to determine
if the update affects whether or not that instantiation satisfies the path query predicate.

For example, if the car2 object from Figure 2 were to change the value of itsmaker instance variable to refer to company3
instead of company2, then (with the PX, NX, and MX organizations) we would have to traverse both the company2 and the
company3 objects’ instantiations of the PathSelect1(2,4) subpath and determine that while the original endpoint of car2’s
path instantiation was ‘30’ (which does fulfill PathSelect1’s query predicate), the new endpoint is ‘75’ (which does not fulfill
PathSelect1’s query predicate).

Finding head objects. If the original and new endpoints of a given path instantiation differ in that one satisfies the query
predicate but the other does not, then we must identify the head object of the path instantiation. The membership of this head
object in path query views based on the path instantiation is potentially affected by the update.

Given a path 2 � # � �436587 9��?3 :F7 9��43 ;<787=749��43 > and a modified object
� 
 of class � �43 
 , we use the PX and NX organizations by

first finding the endpoint objects of instantiations involving the updated object by traversing the object’s instantiations of the2 � 	 % ) D � subpath (as already done in step 1), then looking these endpoints up in the index structure. With the PX organization,
we can then scan the paths retrieved from the PX, determine which involve

� 
 , and thus identify the head objects of the
instantiations in which

� 
 participates. However, because the NX structure does not include any path information, if multiple
heads are associated with a given endpoint then we must traverse these heads’ instantiations of the 2 � 	+@]) % � subpath forward in
order to identify which instantiations (and thus head objects) involve object

� 
 . We can use the reverse references provided
by the MX organization to avoid such forward traversals and instead identify the head objects of

� 
 ’s instantiations of the2 � 	 $ ) % � subpath by performing lookups in the %�Ð @ indices of the � �4365 through � �43 
8J 5 classes.
For example, if the car2 object from Figure 2 were to change the value of itsmaker instance variable to refer to company3

instead of company2, then with the PX and NX organizations we would first traverse the company2 object’s instantiation of
the 2 � 	�Ñ¯)+Ò � subpath and find that the original endpoint is 30. We would then look up 30 as a key in the index. Because
multiple values are associated with that key, under the PX organization we would examine each path to identify the one in
which the car2 object participates and thus determine that both the person1 and person2 objects are potentially affected by
this update. However, with the NX organization, we must traverse all the instantiations of each object associated with the
key of ‘30’ in order to determine which objects’ aggregation hierarchies involve the car2 object. With the MX organization,
we traverse backwards through all multi-index structures (e.g., we could look up the car2 object in the Person.cars index
and identify that both the person1 and person2 objects are potentially-affected head objects).

Identifying alternative instantiations. The presence of even one multi-valued attribute in the path of the query greatly
increases the cost of evaluating the effects of updates using any traditional index structure. If an update changes whether or
not an instantiation fulfills a path query’s predicate and the path includes at least one multi-valued attribute, then we must
determine if each involved head object participates in any alternative instantiations that cause the head object membership
in the path query view to remain the same despite the update. With the PX, NX, and MX organizations, this means that
in addition to the cost of identifying each head object, we must also traverse all of that head object’s path instantiations
completely forward in order to determine if it participates in any alternative satisfying instantiations.

For example, if the car2 object were to update its maker instance variable to remove the reference to company3 in-
stead of company2, then although we could use traditional index structures to identify that the person1 object is poten-
tially affected by the update, we would have to traverse all of the path instantiations of the person1 class, in particular per-
son1.car1.company1.25, in order to determine that person1 still satisfies PathSelect1’s query predicate and thus should not
be removed from the extent of the PathSelect1 class.

4 SMX Solution

4.1 The SMX Structure

From the above discussion, we can identify three characteristics of the path query view problem:

1. We use the supplemental index structures at the time of updates instead of queries.

2. Because of this, we do not need to know exact endpoints of updated instantiated subpaths—we really need only to
know whether or not these endpoints satisfy the path query view predicate.

3. We need to be able to determine whether or not, due to multi-valued attributes, head objects participate in alternative
path instantiations that affect the impact of the update on a head object’s membership in the path query view.
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Our Satisfiability-Indicating Multi-Index (SMX) organization exploits these characteristics to maintain path query views in
an efficient and incremental fashion. The fundamental principle of the SMX solution is that we do not need to know the
exact endpoint of path instantiations—we only need to know whether or not that endpoint satisfies the query’s predicate.
The SMX organization therefore extends each multi-index (MX) entry with a satisfiability indicator (or Ó \FÔ+Õ|DcÖ for short)
that indicates whether the key value object participates in any instantiations with an endpoint that fulfills the query predicate.
Because the satisfiability of a path instantiation is determined by its endpoint object, we can consider satisfiability to be a
transitive property in that if we know for all objects

� 
 � class � �?3 
 whether or not
� 
 leads to endpoints that satisfy the

path query predicate, then we also know for any object
� 
 E 5 � � �43 
 E 5 that refers to

� 
 as the value for its
9 �?3 
 attribute

whether or not
� 
 E 5 leads to endpoints that satisfy the path query predicate.

Lemma 1 Given any object
� 
 E 5 � � �43 
 E 5 that refers to members of class � �43 
 as the value for its

9 �43 
 attribute,
� 
 E 5 leads

to endpoints that satisfy the path query predicate if and only if those particular members of class � �43 
 lead to endpoints that
satisfy a path query predicate.

By Lemma 1, we can initialize the SMX index recursively. First, for each endpoint object
��>

of class � �43 > that serves
as a value for the

9��43 >
attribute of at least one object

��> E 5 of class � �43 > E 5 (i.e., the last component of the path), we storeÓ \FÔ+Õ|DcÖ 	 � >`� , which indicates whether or not
� >

satisfies the path query predicate, i.e.,
� > Z0[]\ K_^`/ evaluates to true. Next,

for each object
� 
 of class � �43 
 that serves as a value for the

9��43 
 attribute of at least one object
� 
 E 5 of class � �43 
 E 5 (i.e.,

the � �43 
 E 5M7 � �43 
 component of the path), we store Ó \FÔ+Õ|DcÖ 	 � 
 � , which indicates either (1) (if the predicate expression’s quan-
tifier for the � �43 
 E 5=7 � �43 
 component is existential) whether or not � � 
=J 5 s.t.

� 
 ’s 9��43 
8J 5 attribute value is set to
� 
=J 5 andÓ \FÔ+Õ|DcÖ 	 � 
=J 5�� is true; or (2) (if the component’s quantifier is universal) whether or not � � 
8J 5 s.t.

� 
 ’s 9 �43 
=J 5 attribute
value contains

� 
8J 5 , Ó \FÔ+Õ]DcÖ 	 � 
8J 5M� is true.
When an update takes place, we can use the SMX index to look up whether or not an object

� 
 leads to an endpoint that
satisfies the path query predicate (i.e., Ó \FÔ+Õ|DcÖ 	 � 
 � ). If a value of true is associated with

� 
 in the index, then
� 
 leads to an

endpoint that satisfies the path query predicate; otherwise (if a value of false is associated with
� 
 ’s record) it does not. If

� 

does not already have an index record associated with it because no object previously referred to it, then we must look up the� 
8J 5 objects referred to by

� 
 as values for attribute
9��43 
=J 5 in the � �?3 
 7 9��43 
=J 5 index. Because of the entries corresponding

to the
� 
 7 � 
=J 5 relationship, we are guaranteed to find these objects in the index, and thus no other traversal is needed. This

concept is summarized in the following lemma.

Lemma 2 If the satisfiability indicator value of an updated object
� 
 � � �43 
 does not change as the result of an update, then

the satisfiability indicator value of any object
� 
 E 5 � � �43 
 E 5 that refers to members of class � �?3 
 as the value for its

9 �?3 

attribute will not change as a result of the update.

For example, Figure 5 shows the satisfiability indicators for the objects from Figure 2. The initial path instantiations of the
person1 and person2 objects fulfill the PathSelect1 class’s path query predicate of person.cars.maker.owners.ageA 40 (introduced in Section 3). Now suppose that the car2 object were updated as shown in Figure 5, changing the value
of its maker instance variable to refer to company1 instead of company2. We can compare the satisfiability indicators asso-
ciated with the company2 and company1 objects, thus determining that because both lead to satisfying endpoints, the update
will not affect the satisfiability of car2’s path instantiations and nothing needs to be done. Figure 6 shows the SMX index
structures that correspond to the objects and classes shown in Figure 5.

4.2 Incremental Processing Strategy

We can maintain the SMX structures efficiently under all three update operations (create, delete, and modify). However, due
to space limitations, we discuss the processing of only the delete operation in depth. The strategies for maintaining the other
operations are similiar.

Suppose that there exists a virtual path virtual view class 2�R�( � defined by the query 2SR � # � �4365 7 9 �43 : 7 9 �43 ; 7=78749 �43 > Z0[|\ K�^}/ ,
and that some object

� 
 belonging to class � �43 
 , @ B % BQD
is updated. The satisfiability indicators can be maintained in an

incremental fashion; when object
� 
 is updated, we can use the index to determine the old and new values for Ó \FÔ+Õ|DcÖ 	 � 
 � .

If Ó \FÔ+Õ|DcÖ 	 � 
 � changes as a result of the update, then we must iteratively traverse backwards through the multi-index com-
ponents of the SMX organization to update the satisfiability indicators of

� 
 and the objects that directly or indirectly refer
to
� 
 in their path instantiations until either (1) we reach an object at the head of the path, in which case this object’s mem-

bership in 2SR�( � could potentially have to change, or else (2) we find an element whose Ó \FÔ+Õ]DcÖ is already set to the correct
value.

Note that if � 
 E 587 9 
 is a multi-valued attribute, then potentially we might have to check all other values for the updated
attribute in order to determine whether not the modified attribute value fulfills the quantifier. For example, if the quantifier
were existential (

V # � ), Ó \FÔ+Õ|DcÖ 	 ��>I×
Ø � were false, and Ó \FÔ+Õ]DcÖ 	 ��Ù L6Ú � true, then we would have to check to make sure
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Figure 5: Satisfiability Indicators allow us to maintain path satisfiability information incrementally.

that no other value for
� 
 E 5 7 9 �43 
 has a positive Ó \FÔ+Õ|DcÖ before we could determine that Ó \0Ô+Õ]DcÖ 	 � 
 E 5+� should be reset to

false. Similarly, if the query predicate were universal (
V # � ) and Ó \FÔ+Õ]DcÖ 	 ��>Û×
Ø � were true and Ó \0Ô+Õ]DcÖ 	 ��Ù L6Ú � were false,

then all other values of the multi-valued attribute must be checked in order to confirm that their satisfaction indicators are
positive before we could determine that Ó \0Ô+Õ]DcÖ 	 � 
 E 5+� should be reset to true.
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Figure 6: Satisfaction-Indicating Multi-Index (SMX) organization.

Knowing whether or not a given instance participates in a satisfying instantiation also allows us to process object deletion
updates efficiently. Suppose that we are given a path query 2SR � # � �4365 7YT VXW�9 �43 : 787=71T6V!W�9 �?3 > Z0[]\ K_^`/ , a deleted object

� 
 �� �43 
 )8@XA % BÜD
, and an object

� P � � �?365 that is the head object for a satisfying instantiation of 2 � in which
� 
 participates.

Further suppose that � a multi-valued attribute
9  )8@�A "ÝB % along the subpath 2SR � 	+@]) % � , with a quantifier

V
.

Lemma 3 Given a deleted object
� 
 � � �43 
 , if the quantifier for the % O4P component of the path query 2�R � is universal

(i.e., � �43 
 E 5�7 � 9��43 
 ), then any object
� P at the head of an instantiation of the queried path that did not satisfy 2SR � before

the update will now satisfy 2SR � due to the deletion of
� 
 if and only if (iff) � ��LÞ� � �?3 
I)1Kß�# Ö ) ��L participates in an

instantiation of 2 � headed by
� P that is satisfying, (i.e., if all remaining instantiations headed by

� P satisfy 2�R � ). Similarly,
if the quantifier for the % O4P component of the path query 2SR � is existential (i.e., � �43 
 E 5M7 � 9��?3 
 ), then any object

� P at the head
of an instantiation of the queried path that satisfied 2SR � before the update will satisfy 2�R � after the deletion of

� 
 if and
only if (iff) � � L � � �?3 
 )1K<�# Ö ) s.t.

� L
participates in an instantiation of 2 � headed by

� P that is satisfying.

It follows from Lemma 3 that if an object
� P satisfies 2SR � before the deletion of

� 
 and the quantifier for the % O?P com-
ponent of the path query 2SR � is universal, then all instantiations of 2 � headed by

� P satisfy 2SR � .
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Lemma 4 Given a deleted object
� 
 � � �?3 
 , if the quantifier for the % O4P component of the path query 2SR � is universal (i.e.,� �43 
 E 5M7 � 9��43 
 ), then any object

� P at the head of an instantiation of the queried path that satisfied 2�R � before the update
will continue to satisfy 2SR � despite the deletion of

� 
 iff � ��LX� � �43 
I)1K��# Ö
and

��L
participates in an instantiation of 2 �

headed by
� P (i.e., in this case, every instantiation headed by

� P satisfies 2SR � ).
It follows that if an object

� P did not satisfy 2SR � before the deletion of
� 
 and the quantifier for the % O?P component of

the path query 2�R � is existential, then none of the remaining instantiations of 2 � headed by
� P satisfy 2SR � .

Lemma 5 Given a deleted object
� 
 � � �43 
 , if the quantifier for the % O?P component of the path query 2�R � is existential

(i.e., � �43 
 E 5�7 � 9��43 
 ), then any object
� P at the head of an instantiation of the queried path that did not satisfy 2SR � before

the update will not satisfy 2SR � after the deletion of
� 
 .

5 Cost Models

In this section, we describe the cost of determining the effect of the creation, deletion, and modification of an object
� 


along the aggregation path 2 � # � �436587 9��43 :07 9��?3 ;<7=7=7?9��43 > , where
� 
 belongs to class � �43 
 and @ B % BàD

(see Table 1). We
assume that the index structures are organized as á J -trees, that each non-leaf node is stored on its own page, and that the
leaf-nodes of each index are stored on their own pages. For the sake of simplicity, the formulas described below assume
that the modified object participates in only one path query view and a given class appears at most once in the query’s path.
We will discuss extensions to our SMX solution that allow us to relax these assumptions in Section 7. We calculate cost in
terms of the number of page accesses, and assume that a page contains objects of only one class. Table 2 presents the system
parameters, adapted from the work of Choenni et al. [4] and Korth and Silberschatz [9], used in the following equations.
Table 3 lists the path-query-view-specific parameters used in our equations.

parameter definition
��â Õ â�ã Cost of retrieving an index record with organization ä .�Så Õ â ã Cost of maintaining an index record with organization ä .�S2Sæ0�1ç}�Sæ0/ \FÔ /èã Cost of determining the effect an object creation operation

has on a virtual class’s membership with organization ä .�S2Sæ0�1ç}éÝ/8K_/ Ô /èã Cost of determining the effect an object deletion operation
has on a virtual class’s membership with organization ä .�S2�æ0�1ç`å�� Ö ã Cost of determining the effect an object modification operation
has on a virtual class’s membership with organization ä .

Table 1: Operation cost parameters.

5.1 Single Index Record Operations

The structure of the SMX organization is similar to that of the MX organization, in that the SMX index fulfills the function of
an MX index by associating objects of a given class with those that refer to them. The difference is that a leaf node in an SMX
organization is slightly larger because it stores more information. The cost of retrieving or maintaining a single index record
in an SMX organization is thus very similar to that of performing the corresponding operation under an MX organization.
As other researchers have previously discussed and contrasted the cost of performing basic functions using traditional index
organizations [2, 4], we confine our model of the costs of performing basic operations to a comparison between the SMX
and MX operations.

5.1.1 Storage Costs

Each SMX index record extends the MX index record with additional information as described in Section 4. Each leaf node
used to store an index record from the SMX organization thus needs additional storage space for the satisfiability indicator
associated with each object. Given a path query view 2�R�( � whose path 2 � includes a class � 
 for which we are building
an index, the SMX organization’s entry for an object of class � � extends a typical MX entry with a satisfiability indicatorÓ \FÔ+Õ|DcÖ . We can express the relationship between the sizes of the SMX and MX leaf nodes using Equation 1. Ó \0Ô+Õ]DcÖ can
be implemented by a 1 bit boolean value.
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parameter definitionê
Average height of B+ tree used to store an index structure.ç Page size.ë æMã Fraction of the record retrieved with organization ä if leaf-node
index record occupies more than one page.ë`ì ã Fraction of record accessed during maintenance with organizationä if leaf-node index record occupies more than one page.K D ã Average size of a leaf-node of an index with organization ä .� Óc Average size of an object belonging to class �! .Ó \FÔ+Õ]DcÖ Size of the structure used for the satisfiability indicator (1 bit).2 \FÔ+ê � Ô æ Size of the structure used for the path position indicator.� $ Ö Object identifier size.�Sí % â�/ Ô Average cost of an object retrieval (for an object of class � L , this
is î � Ó L�ï çIð ).

Table 2: Cost model system parameters.

parameter definitionñ�ò0órô
õMöø÷1ù{ó�ú
Cost of checking if an object is a member of class

ñcú
.ûýü|þ6ÿ����8þ���� p	��
 Indicates whether or not path query ��
�� ’s ���	� �

attribute is multi-valued (0 or 1).� ü�� � �èÿ?ò=ûýü|þ´ÿ����=þ	� ��� � �1p õ 
�
 Indicates whether or not a subpath ��
�� � �+p õ 

includes any multi-valued attributes (0 or 1).�������
ÿ4ó �|ÿ!���=þ ��� � Indicates whether the quantifier associated with
the
ñ ��� �0z ñ ��� �#" h component of path query ��
�� ’s

quantifier is existential (0 or 1).$����	%8ó'&(�#�=þ �	� � Indicates whether the quantifier associated with
the
ñ ��� �0z ñ ��� �#" h component of path query ��
�� ’s

quantifier is universal (0 or 1).)�ü�*,+<ó.- ú
Average number of objects referring to each member of
class

ñ ú
as value for attribute � ú .)�ü�*/���=þ	�	� p õ 
 Average number of objects referred to as value of possibly

multi-valued attribute � �	� ú by an object 0 ú21 h k ñ ��� ú21 h .)�ü�*,���43rù65.�	�|ÿ������ p��1p � 
 Average number of distinct endpoints of instantiated
subpaths ��� � �1p � 
 of path ���
in which object 07� participates.)�ü�*98nó.�:3+ù65.���]ÿ��;�	� p	��
 Average number of distinct head objects of
instantiations of path �<� in which an object07� of class

ñ ��� � participates.)�ü�*=�>�8þ?��3�@�&(�2�Ûô
òA�	� p	�(
 Average number of instantiations of path ��� in which an
an object of class

ñ �	� � that fulfills the given path
query ��
�� participates.)�ü�* � -�-B@�&(�2�Ûô
òA�	� p	�(
 Average number of instantiations of path ��� that are affected
by a modification to the

ñ ��� �0z ���	� �'" h attribute
of an object 07� k ñ �	� � .öC&(�2%8ó &(��ó'@�&(�2�Ûô
ò0ó.�;�	� p õ 
 Average cost of traversing all instantiations that originate
from an object 0 ú of
class

ñ ú
at the head of subpath ��� ��õ p � 


(1 + DFEGIH ú " h ��J GK H ú " h )�ü�*=�>�8þ���� p * 
�
�LM0 � � +<ódÿ ).� &(5;��)N5.+<ó#-<��� p õ 
 Probability that (previous to the update) an object of
class

ñ �	� ú is not referred to
as a value of attribute � ú by any object 0 ú21 h k ñ ��� ú21 h z� &(5O� � -�- �	� � Probability that an update to an object 07� of class

ñ ��� �
will change the value of

���èÿ�P;�43Q� 07� ).� &(5O� �R�Mÿ ��� � Probability that an update to an object 07� of class
ñ ��� �

will change the value of
���èÿ�P;�43Q� 07� ) from

-A�8þS��ó
to
ÿ!&+ü|ó

.� &(5;� $��T�R�Mÿ ��� � Probability that an update to an object 07� of class
ñ ��� �

will change the value of
���èÿ�P;�43Q� 07� ) from

ÿ!&+ü|ó
to

-��=þU�ró
.

Table 3: Path query parameters.
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K DWVAX ã # K DYX ã ~ Ó \FÔ+Õ]DcÖ`7 (1)

5.1.2 Retrieving and Maintaining an Index Record

Assuming that indices for both MX and SMX organizations are stored using B+ trees, retrieving an index record with either
organization requires us to traverse the index from the root of the B+ tree to the appropriate leaf node. The cost Z\[/]�[9^ of
this operation is:

Z\[/]�[ ^\_ `Ca;bYc(^\d�e
fg h ` if _ji!kY^mlonYd

`qpsr�tvu�bYc ^sw i�k ^\x n4y otherwise
(2)

Similarly, the cost Z{zm]�[9^ of maintaining a single index record from either the MX or SMX organization is defined as:

Z\zm]A[ ^\_j`7a;b}|~^Nd�e
fg h `qtsr if _ji�kY^ml�n}d

`~p�r�t�u�� w bY| ^sw i�k ^\x n<y otherwise
(3)

5.2 Path Query View Maintenance Operations

For the purposes of the following comparisons, suppose that there exists a virtual path virtual view class �\�q�4� defined by
the query �\� � e Z ���I�:� �,��� ��� �9��� ���Q�Q���9��� �}����� i��Y� , and that some object �>� belonging to class Z ��� � , r9l��ql�k is updated.

5.2.1 Creation of a New Object

When a new object � � of class Z>��� � is created, we consider the creation operation to also include the setting of the instance
variable values for the new object. Because we treat creation and modification as independent operations, when a new object
is created, no existing object could possibly refer to �>� as a value for any of its attributes. Therefore, when a new object �>� of
class Z ��� � is created, unless Z ��� � is the class at the head of path � � (i.e., if ���evr ), �>� cannot participate in a full instantiation
of path � � and thus won’t affect the membership of �\�q� � . Note, however, that �>� ’s subpath � � _���aOkWd�e �>� � �,��� �:� �W�:�Q� �9��� �
instantiations could result in an end value �9� s.t. �9� ����� i��Y� .

Path Index. In the case of the path index organization, if Z ��� � is at the head of the path ( �Ne�r ), we must traverse all of the
new object � � ’s instantiations of path �7� in order to determine the endpoint key values under which we must add � � to the
path index ( � c �4� �Qc��:�Q�\c � kW�(`Y�:�B_j .a ��d ). The path index must be updated once for each distinct endpoint of every path instan-
tiation in which ��� participates (there are ¡ �}|£¢\kW¤Qn}¥� �kR¦O��_  #a'��aOkWd such endpoints, so the cost is ¡ �Y|§¢\kW¤QnY¥� �kR¦O�B_j .a ��a;kWd wZ\zm]A[9¨W^ ). If Z ��� � is not at the head of the path, then we do not need to update anything because �>� does not participate
in a full instantiated path.

Z\� c�¥;n Z c�� � ¦O�2¨W^©e
fªªg ªªh

� c �T� �:c��Q�Q�\c � kW�(`}�Q�B_j .a:rQd if _��\evrQdt ¡ �}|£¢\kW¤Qn}¥� �kR¦O��_  #aQr�a;kWd w«Z\zm]�[ ¨W^¬
otherwise

(4)

Nested Index. The cost of evaluating the creation of a new object with a nested index is identical to the cost of evaluating
the creation operation with the path index organization.
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Z{� c�¥;n Z c�� � ¦O�(­>^©e
fªªg ªªh

� c �T� �:c��Q�Q�\c � kW�(`}�Q�B_j .a:rQd if _!�Ne�r:dt ¡ �}|£¢\kW¤Qn}¥� �kR¦O��_  #aQr�a;kWd w«Z\zm]�[ ­>^¬
otherwise

(5)

MX. When a new instance �>� of a class Z ��� � is created, if Z ��� � is not at the head of path � � e Z ���I�:� �,��� �7�:�Q� �9��� � , r¯®��l°k , then we need to update the Z ��� � � �9��� �Q� � index to add ��� to the entries for all values of �>� � �9��� �Q� � (that is, update
the multi-index to reflect the relationships between �>� and the objects referred to by �>� � �,��� �:� � ). This cost is Z\zm]�[9±²^�w¡ �Y| � � i�_j .a'�³tFr:d .

If Z ��� � is at the head of the path (i.e., �Ne�r ) then in addition to updating the index structure for attribute Z ��� � � �,��� �:� � , we
must also traverse object ��� ’s complete aggregation hierarchy in order to see if it has any endpoints that satisfy the query’s
predicate, thereby qualifying � � for membership in �\�´�T� .

Z\� c�¥;n Z c�� � ¦O� ±²^ e
fªªg ªªh

¡ �Y| � � i�_  #a'�,t©rQd w«Z\zm]�[ ±²^ if _!�Ne�r:dt � c �4� �Qc��:�Q�\c � kW�(`Y�:�B_j .a ��d
¡ �Y| � � i�_  #a'�,t©rQd w«Z\zm]�[ ±²^ otherwise

(6)

SMX. When a new instance �>� of class Z ��� � is created, if Z ��� � is not at the head of the path � � e Z ���I�:� �,��� ��� �,��� ���:�Q� �9��� �
(i.e., ���eµr ), then we need to update only the appropriate SMX index records, and do not require any object traversal op-
erations. Because only one object is created at a time, the � ��� �:� � attribute of � � must refer to an existing object � �:� �
(or set of objects if �,��� �Q� � is multi-valued) of class Z ��� �:� � . We can look up the satisfiability indicator of �>�:� � ’s instan-
tiations of the subpath � � _!�¶t�r�a;kWd at the same time that we update the index records for the values for ��� � �,��� �Q� � . The
cost in this case is the cost of looking up and updating the index record associated with each ���Q� � s.t. �>� � �,��� �:� � refers
to � �:� � and of updating that index record to add � � ( ¡ �}| � � i�_j .a �\tmr:d w/Z\zm]A[=· ±²^ ). If an object � �Q� � does not al-
ready have an index record associated with it because no object previously referred to it (i.e., when � c�¥�¸ ¡ ¥ [ �:b£¹ ¬

), then
we must look up ���Q� � ’s values for �,��� �:� � in the Z��Q� �:� � �Q� � index to get the correct satisfiability indicator value for �>�:� �
( � c�¥�¸ ¡ ¥ [ �QbW_  #a'��t�rQd w�¡ �}| � � i�_j .a'��tºrQd w�¡ �Y| � � i�_j .a'��t»��d w�Z\[/]A[=· ±²^ ). Since we are guaranteed to find � �:� � in
this index, no other traversal is needed. If Z>��� � is at the head of the path (i.e., �NeF  ) then we can look up the satisfiability of�>�:� � ’s instantiation of the subpath � � _!��tºr�a;kWd at the same time that we update the index record for �>�:� � . Thus the cost is
independent of Z ��� � ’s position in the path.

Z\� c�¥;n Z c�� � ¦O� · ±²^ e
fg h ¡ �}| � � i�_j .a �,tsrQd w«Z\zm]A[ · ±²^t � c�¥�¸ ¡ ¥ [ �:bM_j .a �,tsrQd w«¡ �Y| � � ij_j .a �,tsrQd¡ �}| � � i�_j .a �,t��Ad w«Z\[/]A[ · ±²^ (7)

5.2.2 Deletion of an Existing Object

When an instance �>� of the class Z ��� � is deleted, if Z ��� � is at the head of the path (i.e., �\evr ), we can determine whether or
not � � participates in a materialized path query view �\�q�4� by checking to see if � � possesses the type of the virtual class
(regardless of the type of index organization in use). The cost of handling the deletion in this case is then simply Z `Y�:�2¼ �,½ nY� �
plus the cost of updating the appropriate index structures.

If �>� is not at the head of the path ( ���e°r ), then we must determine whether or not the change affects the membership
of the path query view �{�q� � . This task requires us to identify the object at the head of every instantiated path in which ���
participates. Once we identify the head objects, we can check to see if each head object possesses the type of the virtual class.
Even if we identify that a head object possesses the type of the virtual class, however, if the path includes any multi-valued
attributes between the head of the path and the deleted object, it is possible that the head object participates in alternative
instantiations of the path that don’t include � � and that will thus allow it to continue its membership in �\�q�4� .

11



In summary, given a path query view �\�´� � defined using path query �{� � e Z ���I�:�	¾I¿ÁÀ��9��� �:�	¾I¿ÁÀ��,��� �Â�Q�Q�(¾I¿«À��9��� �����A� i!�}�
and a deleted object ���{Ã¯Z ��� � aQr9®��¶lsk , the following tasks must be performed in order to maintain �\�q� � .Ä Identify every object �/Å{ÃÆZ>���I� that is the head object of an instantiation of �\�/� ’s path involving � � .Ä Determine which of these head objects is a currently member of �\�q� � .Ä If subpath query �\� � _Or�a'��d includes any multi-valued attributes, then the head objects potentially still satisfy �\� � .

Lemmas 3 through 5 state the conditions under which head objects can continue to satisfy �\� � .
Path Index. If the deleted object � � is at the head of the path (i.e., �§eÇr ), then we could immediately check its type to
determine whether or not it currently is a member of �\�q�4� and therefore satisfies �\�/� ( Z `Y�:�2¼ �,½ nY� � ). However, to update
the PX structure, we must traverse each of �>� ’s instantiations forward from the deleted object ��� to every endpoint object�9� (i.e., � c �T� �:c��Q�Q�\c � kW�(`}�Q�B_j .a ��d�t ¡ �Y|§¢\kW¤Qn}¥� �kR¦O�B_j .a ��a;kWd w«Z\zm]A[ ¨W^ ). Since we must do the traversal anyway, we
can forgo the cost of checking the type of � � .

If the deleted object �>� is not at the head of the path (i.e., ���e°r ), then we must also forward-traverse each of ��� ’s in-
stantiations forward from the deleted object �>� to every endpoint object � � and then look up each of these endpoints in
the path index in order to identify the heads of the instantiations and update the index entries. The cost for this operation is� c �4� �Qc��Q�:�\c � kW�(`Y�Q��_  #a'�Bd«t ¡ �}|£¢\kW¤Qn}¥� �kR¦O��_  #a'��aOkWd w/Z\zm]A[ ¨W^ . In addition, for each head object �/È of an instantia-
tion in which �>� participates (there will be ¡ �Y| � � i! �¤4�\c � kW�(`M_j .a ��d such head objects), if the subpath � � _Or�a'��d includes a
multi-valued attribute, then we may have to forward-traverse all instantiations of subpath � � _;r�a'�Bd headed by � È in order to
determine whether or not �=È satisfies �\�/� by Lemma 3. The worst-case cost of this traversal is � c �T� �:c��Q�Q�\c � kW�(`}�Q�B_j .a:rQd .
Thus in the worst-case, the cost of determining the impact of a deletion and updating the path index structure is:

Z\� c�¥;nYÉ²�:i!�;¦O� ¨W^ e
fªªªªªªªªg ªªªªªªªªh

� c �4� �Qc��Q�:�\c � kW�(`Y�Q��_  #a'�Bd if _��\evrQdt ¡ �Y|§¢\kW¤QnY¥� �kR¦O�B_j .a ��a;kWd w«Z\zm]�[9¨W^
� c �4� �Qc��Q�:�\c � kW�(`Y�Q��_  #a'�Bd otherwiset ¡ �Y|§¢\kW¤QnY¥� �kR¦O�B_j .a ��a;kWd w«Z\zm]�[ ¨W^t/Ê��}¸ � � ¦O` z �YiS¦ � � i�_ �\�/� _;r�a'�Bd.dwB� c �T� �:c��Q�Q�\c � kW�(`}�Q�B_j .a:rQd �

(8)

Nested Index. If the deleted object is at the head of the path (i.e., �Ne�r ), then the cost of propagating the update with the
NX organization is the same as it would be with the PX organization.

Otherwise ( �¯�e�r ), then (in addition to the cost of � c �4� �Qc��:�Q�\c � kW�(`Y�:�B_j .a ��d�t ¡ �Y|§¢\kW¤QnY¥� �kR¦O�B_j .a ��a;kWd w,Z\zm]A[9­�^ )
if there is more than one path head associated with a given endpoint �9� in the NX index
(if ¡ �Y|§Ë¯� � ¤Qn}¥� �kR¦O��_  #a;kWd>¹mr ) then we must traverse all of the instantiations of each of these path heads to position � in or-
der to identify which path instantiations actually involve the deleted object �>� ( ¡ �}|£¢\kW¤Qn}¥� �kR¦O��_  #a'��aOkWd w�¡ �Y|§Ë¯� � ¤Qn}¥� �kR¦O��_  #a;kWd w_ � c �T� �:c��Q�Q�\c � kW�(`}�Q�B_j .a:rQd/p � c �T� �:c��Q�Q�\c � kW�(`}�Q�B_j .a ��d#d ). We must do this because whereas with the path index, which
records the full instantiations associated with key, with the nested index only the head objects are stored and we thus cannot
tell from the index which of these objects head instantiations that do not involve � � . In addition, for each head object �/È
of an instantiation in which �>� participates, if the subpath � � _OrAa ��d includes a multi-valued attribute, then we must forward-
traverse all instantiations of �7� headed by �/È in order to determine whether or not �/È satisfies �\�/� by Lemma 3. The
worst-case cost of this traversal is � c �4� �Qc��:�Q�\c � kW�(`Y�:�B_j .aQr:d .

12



Z{� c�¥;n}É²�Qi���¦O�(­>^ve

fªªªªªªªªªªªªªªªªªªg ªªªªªªªªªªªªªªªªªªh

� c �4� �Qc��Q�:�\c � kW�(`Y�Q��_  #a'�Bd if _!�Ne�r:dt ¡ �Y|§¢\kW¤QnY¥� �kR¦O�B_j .a ��a;kWd w«Z\zm]�[ ­>^
� c �4� �Qc��Q�:�\c � kW�(`Y�Q��_  #a'�Bd otherwiset ¡ �Y|§¢\kW¤QnY¥� �kR¦O�B_j .a ��a;kWd w«Z\zm]�[9­>^t ¡ �Y|§¢\kW¤QnY¥� �kR¦O�B_j .a ��a;kWdwA¡ �}|£Ë¯� � ¤QnY¥� �kR¦O�B_j .aOkWdw ¾ � c �4� �:c��Q�:�{c � kW�2`}�Q��_  #aQr:dp � c �4� �Qc��:�Q�\c � kW�(`Y�:�B_j .a'�Bd Àt ¡ �Y|§¢\kW¤QnY¥� �kR¦O�B_j .a ��a;kWd w«Z\zm]�[9¨W^t/Ê��}¸ � � ¦O` z �YiS¦ � � i�_ �\� � _;r�a'�Bd.dwB� c �T� �:c��Q�Q�\c � kW�(`}�Q�B_j .a:rQd �

(9)

MX. If the deleted object is at the head of the path ( �=e�r ) then we only need to update the index records of the ¡ �Y| � � i�_j .a ��trQd objects that are directly referenced by � � � � �:� � (at a cost of ¡ �Y| � � i�_j .a �}t�rQd wYZ\zm]�[ ±²^ ). We can also test the deleted
object to see if it should be deleted from the extent of the materialized class, bringing the total cost to ¡ �Y| � � i�_  #a'�³tFr:d wZ\zm]A[9±²^ t Z `}�Q�(¼ �,½ n}� � .

If the deleted object is not at the head of the path (�v�eÌr ), then we must delete � � ’s index record in the Z>��� ��Í � � � ��� �
index and update the index records in the Z ��� � � �,��� �:� � index of the ¡ �}| � � i�_  #a'�Ât�r:d objects that are directly referenced by�>� � � �:� � (at a cost of _;r:t ¡ �Y| � � i�_  #a'�BtqrQd w�Z{zm]�[9±²^ ). We must also identify the objects at the head of path instantiations
that involve the deleted object �>� . We can use the MX structures for this task by looking up �>� in the Z ��� ��Í �:� �,��� � MX index
to identify the ¡ �Y| [ �:b;� objects of class Z>��� ��Í � that refer to � � , then looking up each of those objects in the Z>��� ��Í � � � ��� ��Í �
MX index to identify the ¡ �}| [ �Qb;��Í �³w\¡ �}| [ �Qb;� objects of class Z>��� ��Í � that refer to those objects, etc., for a cost of

Z\[/]A[,±²^¯w�Î � ÏIÐ � _jÑ ÏÒ Ð � ¡ �Y| [ �Qb Ò d . We then must test the head object of each instantiation to determine if it possesses
the type of �\�q�4� and thus should possibly be removed from �\�q�4� ( Z `Y�:�2¼ �,½ nY� ��wq¡ �}|£Ë¯� � ¤QnY¥� �kR¦O�B_j .a ��d ). If a head
object does possess the type of �\�q�4� and the path contains multi-valued attributes, then by Lemma 3. in the worst case we
must traverse the head object’s full aggregation hierarchy to determine if it possesses an alternative instantiation that satisfies�\�´�T� ’s predicate despite the deletion of object � � ( Ê��}¸ � � ¦O` z �YiS¦ � � i�_ �\�/� _;r�a'�Bd.d w>� c �4� �Qc��:�Q�\c � kW�(`Y�:�B_j .aQr:d ).

Z\� c�¥;n}É²�Qi��;¦O�2±²^me
fªªªªªªªªg ªªªªªªªªh

¡ �Y| � � i�_j .a �«t©rQd w«Z\zm]�[ ±²^�t Z `}�Q�(¼ �,½ n}� � if _��Ne�r:d
_Or�t ¡ �Y| � � ij_j .a �,tsrQd#d w«Z{zm]�[ ±²^ otherwiset Z\[/]�[9±²^�w Î � ÏIÐ � _ Ñ ÏÒ Ð � ¡ �Y| [ �Qb Ò dt Z `Y�:�(¼ �,½ n}� �Ww«¡ �}|£Ë¯� � ¤QnY¥� �kR¦O�B_j .a ��dt/Ê��}¸ � � ¦O` z �YiS¦ � � i�_ �{�/� _;r�a'�Bd.dw�� c �4� �:c��Q�:�{c � kW�2`}�Q��_  #aQr:d

(10)

SMX. With the SMX organization, if �\evr then we must update the record of every object referred to by �>� as a value forZ>���I� � � ��� � in the Z>���I� � � ��� � index structure to reflect the deletion of � � . The cost for this is ¡ �}| � � i�_j .a;��d w7Z\zm]�[/· ±²^ . We
can immediately determine whether or not � � participated in a satisfying instantiation by checking the satisfaction indicators
associated with the updated records.

Otherwise, if �Ó�e�r then in addition to updating the records the objects referred to by �>� as a value for Z ���I�:� �,��� � ( ¡ �Y| � � i�_  #a'�BtrQd w�Z{zm]�[ · ±²^ ), we must also update �>� ’s record in the Z ��� ��Í ��� � � index structure to reflect �>� ’s deletion ( r w�Z\zm]A[ · ±²^ ).
Again, we can immediately identify whether or not � � participated in a successful path instantiation by checking the satis-
faction indicators associated with the updated records. If Z>��� �BÍ � � � ��� � is a multi-valued attribute, then we must check to see
if the deletion of ��� changes the satisfaction indicators of objects that referred to ��� . If Z ��� �BÍ �(� �,��� � ’s quantifier is exis-
tential and � � participated in a path instantiation that satisfied �\�q�4� ’s query, or if Z>��� �BÍ � � � ��� � ’s quantifier is universal and
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�>� did not participate in a path instantiation that satisfied �\�q� � ’s query, then by Lemma 3. for each object � Å that re-
ferred to �>� , we must now examine � Å ’s other values for Z ��� ��Í �:� �,��� � to determine whether or not � Å now participates in
a satisfying instantiation and update the satisfaction indicators if appropriate. This task requires us to look up each � �BÍ �
object that refers to � � in the Z>��� ��Í � � � ��� �BÍ � index. For each of these � ��Í � objects, if the quantifier for Z>��� �BÍ � � � ��� � is ex-
istential (and Z ��� �BÍ �:� �9��� � is multi-valued) and Ê � ¦ ] kW¤�_ �>��Í � d is positive, or if the quantifier for Z ��� �BÍ �(� �,��� � is universal
and Ê � ¦ ] kW¤R_ ���BÍ � d is negative, then we must look up the satisfaction indicators of all the other objects that are referred
to by �>��Í � ( _ ¡ �}| � � i�_j .a ��d/pÔrQd w²Z\[/]�[ · ±²^ ). If the value of Ê � ¦ ] kW¤�_ �>��Í � d should be changed as a result of the
deletion of � � , then we must update the index record for � �BÍ � and repeat this process for each object �/ÅÕÃÖZ>��� Ï a:rºliÆl×� that both indirectly refers to the deleted �>� object and has a satisfaction indicator that changes value as a result
of the deletion. In the worst-case (assuming that we must do a full reverse traversal from � to r ), the cost for this task
is _Or,t ¡ �Y| � � i�_j .a'�{t�rQd#d w\Z\zm]A[=· ±²^ to update the records of objects that refer to and are referred to by � � , plus

� c�¥�¸ � bYb ��� �9w _ Î � ÏIÐ � _ Ñ ÏÒ Ð � ¡ �}| [ �Qb Ò d w,Z\zm]A[ · ±²^ to update the records of objects that indirectly refer to �>� , plus

Ê��Y¸ � � ¦O` z �YiS¦ � � i�_ �\�/� _;r�a'�Bd.d w ¾ Î � ÏIÐ � z �}i�¦O  � � i�_j .aOi!d;_jÑ ÏÒ Ð � ¡ �}| [ �Qb Ò wY¡ �}| � � i�_  #a;|§dBp§r:d À w}Z{zm]�[/· ±²^ to recal-
culate the satisfaction indicators of path components involving multi-valued attributes. Otherwise, we do not have to update
the satisfaction indicators. The cost of propagating a deletion using a SMX index organization is thus:

Z\� c�¥;nYÉ²�:i���¦O� · ±²^me

fªªªªªªªªªªg ªªªªªªªªªªh

¡ �}| � � i�_  #a;��d w«Z\zm]A[/· ±²^ if _��\evrQd
_;r�t ¡ �}| � � i�_j .a'�ÁtFr:d.d w«Z\zm]�[ · ±²^ otherwiset � c�¥�¸ � bYb ��� � w ¾ Î � ÏIÐ � _ Ñ ÏÒ Ð � ¡ �}| [ �:b Ò d ÀwAZ\zm]�[/· ±²^t/Ê��Y¸ � � ¦O` z �YiS¦ � � i�_ �\�/� _OrAa ��d#dw ¾IÎ � ÏIÐ � z �}iS¦O  � � i�_  #a;i�d;_ Ñ ÏÒ Ð � ¡ �Y| [ �Qb ÒwA¡ �Y| � � i�_  #a;|§dØp�rQd À w«Z\zm]A[ · ±²^

(11)

5.2.3 Modification of an Instance Variable

When an instance �>� of class Z ��� � is modified so that its �,��� �:� � attribute is set to object � �TÙ Ú of class Z ��� �:� � instead of
object �/Û ÏIÜ of class Z>��� �Q� � , then in order for the update to be propagated we must perform the following tasks:

1. We must identify whether � �4Ù Ú and � Û ÏIÜ lead to equivalent endpoints in terms of whether or not they satisfy the
query’s predicate.

2. If the endpoints are not equivalent in terms of satisfying the query’s predicate condition, then we must identify the
head objects of all path instantiations that involve � � and are thus potentially affected by the modification.

3. If � � contains any multi-valued attributes, and the endpoints are not equivalent in terms of satisfying the query’s pred-
icate condition, then we must determine whether or not alternative instantiations exist that affect the impact of the
update.

4. We must update the appropriate index structures.

Path Index. Whether or not � � is at the head of the path, we must traverse all path instantiations of both �=Û ÏIÜ and �9�TÙ'Ú
to their endpoint objects
(at a cost of � w�� c �4� �:c��Q�:�{c � kW�2`}�Q��_  #a'�³tºrQd ) so that we can update the path index records for these endpoints (at a cost of� w,¡ �Y|§¢\kW¤QnY¥� �kR¦O�B_j .a ��a;kWd w,Z\zm]A[9¨W^ ). If a comparison of the new and old endpoints indicates that the update affects
the instantiations in which � � participates, then we must identify the objects at the heads of these instantiations. Regardless
of �>� ’s position in the path, we can perform this task at the same time that we update the path index records. However,
if subpath query �\� � _;r�a'�Bd includes any multi-valued attributes, then we must determine whether or not the objects at the
heads of affected instantiations participate in alternative instantiations not involving � � , and what the impact of these alter-
native instantiations is. We thus must perform a forward traversal from each of these head objects in order to determine if
it participates in any alternative instantiation of � � (not involving �>� ) that affects the head object’s membership in �\�q� � .
The cost of this traversal is ¡ �Y| � bYbY�\c � kW�(`W_  #a'��d w>� c �4� �Qc��:�Q�\c � kW�(`Y�:�B_j .a:rQd .
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� w _ � c �4� �Qc��Q�:�\c � kW�(`Y�Q��_  #a'�NtFr:d if _!�Ne�r:dt ¡ �}|£¢\kW¤Qn}¥� �kR¦O��_  #a'��aOkWd w«Z\zm]�[ ¨W^/d
� w _ � c �4� �Qc��Q�:�\c � kW�(`Y�Q��_  #a'�NtFr:d otherwiset ¡ �}|£¢\kW¤Qn}¥� �kR¦O��_  #a'��aOkWd w«Z\zm]�[9¨W^ dt/ÊÂ�Y¸ � � ¦O` z �}i�¦ � � i�_ �\� � _;r�a'�Bd.dw�¡ �Y| � b}bY�\c � kW�(`M_j .a ��dw�� c �4� �Qc��Q�:�\c � kW�(`Y�Q��_  #aQr:d �

(12)

Nested Index. The cost of identifying whether �9�4Ù Ú and �/Û ÏIÜ lead to equivalent endpoints regarding whether or not they
satisfy the query’s predicate is the same with the NX as it is for the PX organization ( � w�� c �4� �:c��Q�:�{c � kW�2`}�Q��_  #a'�=tsrQd ). If�>� is at the head of the path ( �\evr ), then we can then update the appropriate index structures ( � wW¡ �Y|§¢\kW¤QnY¥� �kR¦O�B_j .a ��a;kWd wZ\zm]A[9­�^ ). However, if �>� is not at the head of the path, then in addition to looking up the head objects associated with
each endpoint object in the NX so that we can update them, if there is more than one path head associated with a given end-
point � � in the NX index
(if ¡ �Y|§Ë¯� � ¤Qn}¥� �kR¦O��_  #a;kWd>¹mr ) then we must traverse all of the instantiations of each of these path heads to position � in or-
der to identify which path instantiations actually involve the modified object � � ( ¡ �}|£¢\kW¤Qn}¥� �kR¦O��_  #a'��aOkWd w�¡ �Y|§ËÝ� � ¤Qn}¥� �kR¦O��_  #a;kWd w_ � c �T� �:c��Q�Q�\c � kW�(`}�Q�B_j .a:rQd>p � c �T� �:c��Q�Q�\c � kW�(`}�Q�B_j .a ��d#d ). In addition, if the endpoints of ��� ’s new and old instantiations
indicate a change in satisfaction of �\� � and the subpath � � _Or�a'��d includes a multi-valued attribute, then for the head ob-
ject � È of each instantiation in which �>� participates (there will be ¡ �}| � bYb}�\c � kW�(`M_j .a'�Bd such head objects), we must
forward-traverse all instantiations of subpath �C� _Or�a'��d headed by �=È in order to determine whether or not �/È still satisfies�\�N� by Lemma 3. The cost of this traversal is ¡ �Y| � b}bY�\c � kW�(`M_j .a ��d w>� c �4� �Qc��:�Q�\c � kW�(`Y�:�B_j .aQr:d .
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� w _ � c �4� �Qc��Q�:�\c � kW�(`Y�Q��_  #a'�NtFr:d otherwiset ¡ �}|£¢\kW¤Qn}¥� �kR¦O��_  #a'��aOkWd w«Z\zm]�[ ­>^=dt ¡ �}|£¢\kW¤Qn}¥� �kR¦O��_  #a'��aOkWdw�¡ �Y|§ËÝ� � ¤Qn}¥� �kR¦O��_  #a;kWdw _ � c �T� �:c��Q�Q�\c � kW�(`}�Q�B_j .a:rQdp � c �T� �:c��Q�Q�\c � kW�(`}�Q�B_j .a ��d;dt/ÊÂ�Y¸ � � ¦O` z �}i�¦ � � i�_ �\� � _;r�a'�Bd.dw�¡ �Y| � b}bY�\c � kW�(`M_j .a ��dw�� c �4� �Qc��Q�:�\c � kW�(`Y�Q��_  #aQr:d

(13)

MX. Identifying the new and old endpoints of the path requires the traversal of all branches from �9�TÙ Ú and �/Û ÏIÜ ( � w� c �4� �Qc��Q�:�\c � kW�(`Y�Q��_  #a'�Bd ). If the new and old endpoints indicate that the path query view must be updated, then we must

identify the objects at the heads of � � ’s path instantiations, at a cost of Z\[/]�[ ±²^ w\Î � ÏIÐ � Ñ ÏÒ Ð � ¡ �Y| [ �Qb Ò . We must
also update the Z ��� � � �,��� �:� � MX index structure to reflect �>� ’s old and new values of �9��� �:� � ( � w²Z\zm]�[9±²^ ). Finally,
if the subpath � � _Or�a'��d includes any multi-valued attributes, and �>� ’s instantiations are affected, then we must traverse all
instantiations of each associated head object in order to see if the head object participates in any alternative instantiations
that negate the effect ( ÊÂ�Y¸ � � ¦O` z �}i�¦ � � i�_ �\� � _OrAa ��d#d w«¡ �Y| � b}bY�\c � kW�(`M_j .a ��d w>� c �4� �Qc��Q�:�\c � kW�(`Y�Q��_  #aQr:d ).
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_j� w>� c �4� �Qc��Q�:�\c � kW�(`Y�Q��_  #a'�Bd.d�t Z\[/]�[ ±²^ wÎ � ÏIÐ � Ñ ÏÒ Ð � ¡ �Y| [ �Qb Òt/ÊÂ�Y¸ � � ¦O` z �}i�¦ � � i�_ �\� � _;r�a'�Bd.d w«¡ �}| � bYb}�{c � kW�2`W_  #a'�Bdw�� c �4� �Qc��Q�:�\c � kW�(`Y�Q��_  #aQr:d �
(14)

SMX. When object � � is modified so that its � ��� �Q� � attribute is set to the object �9�4Ù Ú instead of object �/Û ÏIÜ then the
following tasks can be performed using the SMX organization:

1. Update the Z ��� � � �,��� �:� � index and change � Û ÏIÜ ’s index record to remove �>� . When we perform this update, we can look
at �/Û ÏIÜ ’s satisfiability indicator to see whether or not the endpoints of �/Û ÏIÜ ’s path instantiations satisfied the query’s
predicate ( r w«Z\zm]A[ · ±²^ ).

2. Update the Z ��� � � �,��� �:� � index to reflect the fact that �>� now refers to � �TÙ'Ú ( r w/Z\zm]A[ · ±²^ ). This could be done
at the same time as the previous step, so as to reduce the extra cost. If no other object previously referred to �9�TÙ'Ú
then we must look up � �TÙ'Ú�� �,��� �:� � ’s value(s) in the Z ��� �:� �(� �,��� �:� � index in order to calculate what the satisfiability
indicator for � �TÙ'Ú should be ( � c�¥�¸ ¡ ¥ [ �:bM_j .a �,tsrQd w«¡ �Y| � � ij_j .a �³tº�Ad w«Z\[/]�[ · ±²^ ).

3. If �=Û ÏIÜ and �9�4Ù Ú ’s satisfiability indicators differ in value, then we must iteratively update the satisfiability indicators
of �>� and the objects that directly or indirectly refer to �>� in their path instantiations until either (1) we reach an
object at the head of the path, in which case this object’s membership in �{�q�T� should change, or else (2) we find an
element whose Ê � ¦ ] kW¤ is already set to the correct value. Note that if the query predicate is existential ( ¿ eFÞ ) andÊ � ¦ ] kW¤R_ � �TÙ'Ú d is false and Ê � ¦ ] kW¤�_ � Û ÏIÜ d is true, or if the query predicate is universal ( ¿ eàß ) and Ê � ¦ ] kW¤R_ � �4Ù Ú d
is true and Ê � ¦ ] kW¤R_ � Û ÏIÜ d is false, then all values of each examined multi-valued attribute �,��� Å must be checked. We
can delineate this process as follows:

Procedure 1
For each á�â s.t. ã�ä2å�æ;ç4èQé�á�âSê changes as a result of the modification to á7ë , do:

Update á â ’s ãRä(å�æ�çTè in the ìWí	î âSï<ðQñ ò í	î â SMX index. ( ó7ôCì7õöæ;÷>ø:ù/ú )
If û�ü í is existential and á7ë ’s instantiation ceases to
satisfy the path query predicate as a result of the modification
( ý�þ�ÿ�� å��'ç�å�ÿ�ä � í ôWû &���� $ çTãRä(å í�î ë ),
or if ûÂü í is universal and ã�ä(å�æ;çTèQé	á7ë�ê changes to true
as a result of the modification (

$ ç�ÿ % � & �#ä � í ôYû &���� ã�ä2å í	î ë ),
then 	Tá�âSï�ð s.t. á�âSï�ð ’s ò í�î â attribute refers to á�â ( 
���
9÷����;â )

If the ò í�î â attribute is multi-valued ( õ�� � å���ä � é�ÿ�����ê )
then look up all of á�âSï<ð ’s values for ò í�î â
in the ìWí	î âSï�ðQñ ò í�î â SMX index ( 
���
���ä � é�ÿ�� � ê )
and evaluate whether or not ã�ä(å�æ;çTèQé	á âSï<ð ê changes
as a result of the modification to ã�ä(å�æ;çTèQé	á�âUê .
If ã�ä2å�æ;ç4èQé�á�âSï�ð;ê changes, then ã�ä2å�æ;çTè6é�á�âSï�ðOê changes
as a result of the modification to áCë ,
and thus á�âSï�ð should be processed.
Otherwise, á�âSï<ð should not be processed.

The total cost of propagating a modification with the SMX organization is thus:

Z\� c�¥;n z ¥�¤ · ±²^ e
� w«Z\zm]�[ · ±²^t � c�¥�¸ ¡ ¥ [ �QbW_  #a'�ÁtFrQd w«¡ �}| � � i�_  #a'�³tº��d w«Z{[=]A[ · ±²^t � c�¥�¸ � bYbM_j .a ��d w«Î �ÏIÐ � _jÑ ÏÅ Ð � ¡ �Y| [ �Qb Å d w ¾ Z\zm]A[/· ±²^t{_j¢��Y ���¦O�QkR¦O  � i � w«� c�¥�¸��=kWÊ � ¦ ��� � t��=kW  � �Qc�� � i � w«� c�¥�¸(Ê � ¦ ��� � dw�¡ �Y| [ �Qb Ï w«z �YiS¦ � � i�_j .a'�Bd w«¡ �}| � � i�_j .a;i�d w«Z\[/]A[ · ±²^ À

(15)
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6 Performance Evaluation

In order to compare the performance of the SMX index organization with that of traditional index organizations, we used
the cost models presented in Section 5 to drive an analytic comparison of the organizations using a mathematical function
plotting package. Because the SMX organization stores only 1 additional bit of information per data item over the MX or-
ganization, the costs of operating upon the index (i.e., storage, retrieval, insertion, and deletion of an index record) with the
SMX organization can be considered to be nearly identical to those of the MX organization. Our evaluation instead focuses
upon the comparative costs of calculating the effects of an update in the presence of a path query view with the various index
structures.

Figure 7 presents factors that we identify as particularly relevant to our cost models. The columns of Figure 7 correspond
to the types of index organizations we evaluate, and the rows represent parameters. The “faces” indicate the impact of the
parameter upon the cost of calculating the effect of an update to object � � ÃöZ � with the corresponding index organization,
given a virtual class based upon the path query �\� � e Z ���I�(��¾I¿ÁÀ��,��� ���Q�:�;¾I¿ÁÀ��9��� � �:�Q�(¾I¿ÁÀ��,��� ������� i��Y� . In this section we present
the results of our main analytic experiments that evaluate the effects of varying these parameters.
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Figure 7: Parameters that affect cost of maintaining �\�´�T� .
Ä j pm¹ 1. The closer the updated object is to the head of the path, the higher the cost of traversing forward from it to

its endpoints becomes. This affects the traditional index organizations, but does not affect the SMX organization.Ä j p ¹ n. The closer the updated object is to the end of the path, the lower the cost of traversing forward from it
to its endpoints becomes. This affects the traditional index organizations, but does not affect the SMX organization.
However, when ��� is closer to the end of the path, then it becomes more expensive to use the multi-index structures
to identify the heads of its instantiations. This increases the cost of evaluating all updates with the MX organization
and increases the cost of evaluating updates where Ê � ¦ ] kW¤R_ � ��d changes with the SMX organization.Ä n large. As the path increases in length, both the cost of traversing forward to identify endpoints and the cost of
traversing backwards using MX structures to identify headpoints increase. The increased cost of forward traversal
increases the cost of evaluating all updates with traditional organizations. The increased cost of finding headpoints
increases the cost of evaluating all updates with the MX organization, and increases the cost of evaluating those updates
where Ê � ¦ ] kW¤�_ �>� d changes with the SMX organization.Ä Fork (MVA). If due to multi-valued attributes, an object � Å ( rÆl ¼àlÖk ) can lead to multiple endpoints, then the
costs of finding both headpoints and endpoints increases. This increases the cost of evaluating all updates with tra-
ditional organizations, but only increases the cost of evaluating those updates where Ê � ¦ ] kW¤�_ �>� d changes with the
SMX organization.Ä Converge (Mult. refs.). If, due to multiple objects referring to a given object �/Å as a value for their Z>��� Å Í � � � ��� Å
attribute ( ��l ¼�l k ), a given object � Å can lead to multiple headpoints, then the costs of finding headpoints in-
creases for the NX, MX, and SMX organizations. This increases the cost of evaluating all updates with the NX and
MX organizations, but only increases the cost of evaluating those updates where Ê � ¦ ] kW¤R_ �>� d changes with the SMX
organization.
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Figure 8: Creating a new head object while varying the
length of � � .
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Figure 9: Creating a new object �>� while varying path po-
sitions (varying � ).

6.1 Object Creation

If the new object is at the head of the path, then we would expect the SMX organization to outperform traditional index
organizations because we can use the SMX satisfiability indicators to avoid traversing forward from the new object to its
endpoints in order to determine whether or not it qualifies for membership in �\�q� � . The cost of the forward traversal depends
on both the length of the path and on the characteristics (number, position, fan-out) of multi-valued attributes included in the
path. For the sake of simplicity, however, we constrain our current comparison to paths that do not include any multi-valued
attributes.

Figure 8 compares the performance of the PX/NX, MX, and SMX organizations when calculating whether or not a newly-
created object � � qualifies to belong to a path query view �\�q�4� based on path �7� e Z>���I� � � ��� � � � ��� � �:�Q��� ��� � , where � � is
at the head of the path (i.e., �Óe°r ). The vertical axis of the graph indicates the number of page accesses required for this
calculation. The horizontal axis of the graph indicates the length of � � (i.e., the value of k ). Because the creation costs for
the PX, NX, and MX organizations are identical in this case, we plot them as a single function. As is illustrated by the graph,
even in the absence of multi-valued attributes, the cost of calculating the effect of the creation remains constant with the
SMX organization, while the cost increases in proportion to the length of the path with the other organizations.

Figure 9 compares the cost of calculating whether or not a newly-created object �>� qualifies to belong to �\�q� � while
varying the position of � � in the path ( � ). As indicated by our cost model equations, if � � is not at the head of the path, the
object creation cannot possibly affect the membership of the path query view, and thus the only thing that must be done is
to update the relevant index structures. This cost is constant for all of our index organizations—nothing needs to be done
for the NX or PX structures (because no head object is affected), and the MX and SMX structures only need to update theZ � � � �Q� � index structure. Note that although the SMX is slightly more expensive because it must retrieve an extra index
record for � � � � ��� �:� � � � ��� �Q� � ’s value if no previously existing object referred to � � � � ��� �:� � , this expense is at most only one
additional page access.

6.2 Object Deletion

If the path is simple, then with the NX and PX organizations, our primary cost is that of traversal forward from �>� to iden-
tify the associated endpoints. The primary cost of the MX and SMX organizations, on the other hand, is that of traversing
backwards from �>� to identify its associated headpoints. Figure 10 compares the cost of evaluating the deletion of object� � from a simple path of length 10 while varying the position of � � from �XW e�r to k . Note that there are two lines plotted
for the SMX organization—one representing a 10% probability and one assuming a 20% probability that Ê � ¦ ] kW¤�_ �>� d will
change due to the deletion. Because the path is simple (no forks and no convergence), the costs of the PX and NX organi-
zations are identical. As we would expect, the cost of evaluating the deletion with the PX and NX organizations decreases
as � approaches k while the cost with the MX and SMX organizations increases. Because the SMX organization requires
traversal only when Ê � ¦ ] kW¤R_ ��� d changes, we can see that the lower that probability, the better SMX’s performance.

If one of the attributes along the path, say Z ��� YB� �9��� Z , is multi-valued, then the cost associated with the NX organization
increases because now each endpoint is associated with multiple headpoints, each of whose instantiations must be traversed
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Figure 10: Deleting an object �>� from a simple path while
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Figure 11: Deleting an object ��� from a path with one
multi-valued attribute (forward fork) while varying � .
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Figure 12: Modification (varying j).
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Figure 13: Modification (varying ProbUnSat).

to their �Q¦O` element in order to identify which involve � � . In addition, if �q®\[ , then the cost of evaluating the update with the
traditional organizations increases because we must perform additional traversals to identify alternative paths that satisfy the
predicate. Figure 11 compares the cost of evaluating the deletion if each object in Z ��� Z has as a value for attribute Z ��� Y�� �,��� Z an
average of 2 objects from Z ��� Y , and a probability of 25% that the view is affected. Because the SMX organization eliminates
the need for traversals to identify alternative paths, its performance is overall the best.

6.3 Modification of Attribute Values

If Z>��� Y � � ��� Z is both multi-valued and has multiple-references to its values, then for traditional index organizations the cost of
evaluating the modification of an object ��� so that its �,��� �Q� � attribute is set to object � �4Ù Ú of class Z ��� �:� � instead of object� Û ÏIÜ of class Z ��� �:� � involves both forward traversals to identify the endpoints of � Û ÏIÜ and � �4Ù Ú ’s instantiations, and, for
NX and PX, extra traversals in order to handle multiple headpoints being associated with each endpoint. (We can use the MX
indices to explicitly identify the headpoints that indirectly refer to an updated object.) The SMX organization is primarily
affected by the cost of propagating the update when Ê � ¦ ] kW¤R_ � ��d changes.

Figure 12 compares the cost of evaluating the modification of object �>� from a path of length 10 where Z ��� ZB� �9��� ] is both
multi-valued (2) and has multiple-references (2) to its values while varying the position of � � from �^WIevr to k . We assume
a 50% probability that Ê � ¦ ] kW¤R_ � ��d will change due to the modification and a 5% probability that �9�TÙ Ú does not have a
previously existing entry in an SMX index. As we would expect, Figure 12 demonstrates that even with only one minimal
multi-valued attribute and only one minimal multiple-reference, the SMX organization outperforms the traditional index
organizations for path queries (with up to 10 components in the path predicate) that involve only one minimal multi-valued
attribute and even one class of objects that is minimally multiply-referenced.
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Figure 13 fixes � at position 5 for a path query of length 10 and compares the cost of evaluating the modification of ���
while varying the probability that Ê � ¦ ] kW¤�_ �>� d will change due to the modification from 0% to 100%. As demonstrated by
the figure, even with the probability of a change set to 100%, because SMX avoids the need to perform full forward traversals,
it out-performs the traditional index organizations.

7 Extensions to the SMX Organization

The SMX organization as described thus far offers a number of advantages. We can use the SMX index to determine whether
or not a path instantiation satisfies a path query predicate without doing any forward traversals. The SMX organization fa-
cilitates the incremental maintenance of path query views, even if the path includes multi-valued attributes. SMX indices
need to be maintained in the face of an update if and only if the update actually affects the status of the instantiation with
regard to the predicate. In this section we present a number of extensions to our SMX organization. These extend the SMX
organization to:Ä handle multi-valued attributes in an efficient manner;Ä take into account classes that appear in multiple positions in a path (e.g., cycles in the query’s path);Ä share index structures among multiple path query views.

7.1 Multi-Valued Attributes

As discussed in Section 4, given a path query �\� � containing a multi-valued attribute Z ��� ��Í �(� �9��� � , if an object belonging to
class Z ��� ��Í � changes one of its values for Z ��� ��Í ��� �9��� � then in order to determine whether or not the updated object’s satisfac-
tion indicator should change value we might have to retrieve the satisfaction indicators for the updated object’s other values
for Z>��� ��Í � � � ��� � . If the updated object’s satisfaction indicator does change, then as we propagate the change backwards, we
must similarly check the alternative values of any other multi-valued attributes encountered.

For example, Figure 14 depicts a path query view PathSelect2 defined by the path query Car.maker. Þ owner.age® 50 (using the schema and instances from Figure 2). Initially all three cars belong to the PathSelect2 class. If person3
were to change his age from 40 to 55, then upon determining that Ê � ¦ ] kW¤R_�nY�:c��Q¥�k`_�d will change from True to False, we
must retrieve the satisfaction indicators for all other values of company2’s owner attribute in order to determine the correct
value for Ê � ¦ ] kW¤R_j�(¥�|{n � k ½ �Ad .
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Figure 14: The PathSelect2 class uses an existential quantifier.

We can avoid these additional retrievals if, instead of using a boolean bit, we represent the satisfaction indicator of an
object belonging to class Z ��� � using a bit string that counts the number of positive satisfaction indicators referenced by the
object’s values for attribute Z ��� � � �9��� �:� � . For example, Figure 15 depicts the SMX index that would be constructed for the
path query of Figure 14.
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Figure 15: Using counters to represent satisfaction indicators.

The advantage of extending the satisfiability indicators to “count” the number of satisfying subpath instantiations reach-
able from a given object is that we can thus avoid having to individually look up all the values of a multi-valued attribute.
However, the disadvantage is that now we must update the value of the counter even if the status of the object has not changed
in regard to whether or not it participates in a satisfying subpath instantiation. For example, if person3 changes his age to 55,
we could immediately identify that although this update would cause the satisfiability indicators for company3 and car3 to be
decremented to 0, the satisfiability indicator for company2 would only be decremented to 1. Because 1 is positive, we would
be able to recognize that SatInd(company2) would remain positive without any retrieving any of company2’s other values
for the multi-valued attribute owner. In addition, an increased amount of storage is needed to represent the satisfiability in-
dicators as counters. However, these costs are reasonable if large multi-valued sets are expected as values for multi-valued
attributes, because this strategy replaces the need to perform individual look-ups of the items in these sets with a look-up of
a single number.

7.2 Incorporating Cycles

The SMX strategy as originally proposed requires that the query path be free from cycles, in that it associates each indexed
object with only a single satisfaction indicator. However, a given path query�\� � e Z ���I�:�	¾ ¿ÁÀ��,��� ���	¾I¿ÁÀ��,��� �Â�Q�Q�O¾I¿ÁÀ��,��� ������� i��Y� could include a given class/attribute Z�� � �=Å in multiple positions. For exam-
ple, Figure 16 depicts a simple schema in which a virtual class PathSelect3 is defined using the queryPerson.car.mechanic.car.price® 1000. We cannot use the SMX solution as presented to maintain this class because a given Person.car entry could
lead to either a positive or negative satisfaction indicator, depending on its position in the path. E.g., the satisfaction indicator
associated with car1 should be positive if it appears as the second item in the path (person1.car1.person2.car2.800),
but should be negative if it appears as the fourth item in the path (person2.car2.person1.car1.5000).
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Figure 16: The PathSelect3 class includes the Person.car attribute in two positions.

We can extend the SMX structure to handle classes that appear multiple times in a path query by ordering the satisfac-
tion indicators of each entry according to path position and associating the index with a key correlating the order with path
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position. Figure 17 shows the SMX structures that would be associated with the instances of Figure 16. We would corre-
spondingly extend our definition of the Ê � ¦ ] kW¤R_jd function to take an optional additional parameter of position in the path. If,
for example, person2 were now to change the value of its car attribute to car1 instead of car2 then we would be recognize
that Ê � ¦ ] kW¤R_j� � c4rAa�½4d returns false, and thus that the satisfaction indicator of the car1.person2 entry in the Car.mechanic
index should be updated to false, which in turn causes the position 2 satisfaction indicator of the person1.car1 entry in the
Person.car index to change to false.
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Figure 17: We can extend the SMX structure with an ordered list of satisfaction indicators.

7.3 Sharing SMX Index Structures

Given a class Z � and an attribute � �Q� � of class Z � , Z � � � �:� � could appear in multiple path queries. The relationship between
any two of these path queries must be one of the following:

1. The two path queries could share the subpath Z � � � �Q� � �:�Q� � � and end on an identical predicate on � � , in which case
the two views can share satisfiability indicators for the Z � � � �Q� � �:�Q� Z>� Í � � � � indices.

2. The two path queries could share the subpath Z�� � � �Q� �C�:�Q� �,� and end on different predicates on �9� , in which case
the two views cannot share satisfiability indicators, but the indicators can be ordered to exploit the subsumption of
predicate conditions in such a way as to facilitate possible early termination of evaluation.

3. The two path queries could share the subpath Z � � � �:� � �Q�:��� Å a2�´®s¼£®sk�a in which case the two views cannot share
satisfiability indicators.

In order to maximize the sharing of index structures for cases 2 and 3, we propose to extend the SMX organization to
associate multiple satisfiability indicators with each Z � � � �:� � index entry. The disadvantage of such an extension is that it
increases the storage space needed for each satisfiability indicator, but the advantage is that now the multi-index portion of
the SMX structure can be shared amongst multiple path query views. For example, Figure 18 shows the SMX index for
Person.cars that would result if we were to extend the schema in Figure 1 with an additional class PathSelect2, defined
using the query select from Company where [:company | company. Þ owner.car = car1 (so that the
two paths share the Person.cars index structure).

car1

car2

car3

KEY VALUE
Car Person

{{True, False}, {person1,

{{True, True}, {person1}}

{{False, False}, {person3}}

person2}}

Index on Person.cars
(Sat. Indicator order: PathSelect1, PathSelect2)

Figure 18: Sharing the Person.cars SMX structure for two virtual classes.
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8 Related Work

Project-Select-Join Views. Although traditional relational databases don’t have complex attributes of the object-oriented
variety, foreign keys allow tuples to include references to other tuples. Multiple tables can be “joined” using foreign keys
to form a relational equivalent to the object-oriented aggregation hierarchy. The relational equivalent of a path query is a
select-project-join (SPJ) query, in that finding tuples from a different table that join with a given tuple is similar to the act of
traversing a given object’s attribute link.

Note that path query views, as defined in this paper, are less powerful than the more general select-project-join views. We
do not yet support aggregate functions, and we assume constants in predicate comparison functions (as opposed to compar-
isons with other components of the path). However, in the future we hope to adapt our SMX solution to address these more
complex problems. A common expense of relational SPJ and object-oriented path query views is the cost of finding a join
match in a relational table / following a reference. Our SMX solution allows us to avoid such traversals.

A number of researchers have investigated the problem of maintaining materialized SPJ views. Gupta and Blakeley
present formal partial-information-based view maintenance techniques that infer knowledge about the state of underlying
base relations using local information (such as the view definition, the update, the current view materialization, and vary-
ing amounts of base relation replicas). They identify classes of materialized views according to the amount of information
needed to maintain them in the face of updates [5], and demonstrate necessary and sufficient conditions for determining the
amount of information needed to update a materialized select-project-join view.

Segev and Zhao propose a join pattern indexing technique for materialized rule-derived data that allows the identification
of join completion without reading base relations [17]. A join pattern relation is a precomputation of complete (all join
attributes instantiated) and incomplete (not all join attributes instantiated) joins that satisfy the constraints of a rule. Join
pattern indexing represents join relationships between existing tuples. These join patterns are similar to our satisfaction
indicators in that they facilitate the incremental maintenance of materialized rule-derived data by marking data records that
satisfy rule constraints. Join pattern information more closely resembles a path index than a multi-index, and thus needs to
be maintained in the face of all updates (unlike the SMX satisfaction indicators).

Shekita and Carey selectively replicate individual data fields in order to improve query processing performance by elim-
inating some functional joins [18]. Although the problem of maintaining the consistency of these replicated fields does not
benefit from our satisfiability indicators because the replicated fields represent endpoint objects (as opposed to the head point
objects materialized in our path query views), the task is similar to that of maintaining materialized path query views in that
both tasks require a means of inverting the queried path in order to handle updates to references along the path. Shekita and
Carey create special link objects to maintain inverse mappings that associate objects with the objects that reference them [18].
These link objects are like the entries in a multi-index, except that the database objects maintain references to the link objects
and the link objects maintain references to the link objects that precede them along the aggregation graph. However, because
such references are implemented as stored oids rather than as direct pointers, following one link object to another requires a
retrieval of the link object by oid, which is equivalent to the retrieval of a multi-index record in our SMX solution.

Konomi et al. [10] use superkey classes to maintain consistency for a particular type of join class formed along an existing
path in the aggregation graph. Superkey classes facilitate the incremental update and elimination of duplicates for material-
ized views produced by relational expressions that include projections. Instead of using external index structures, the authors
provide a procedure that transforms class schemas to add new classes that will allow it to satisfy the super-key condition and
thus permit incremental updates of the join class. They do not address the more general problem of path query views, which
is the focus of this paper, nor do they provide any cost models or performance analyses.

Function Materialization. The work of Kemper et al. on function materialization is closely related to OODB view ma-
terialization [7, 8]. The goal of function materialization is the precomputation and maintenance of function results. Similar
to the SMX satisfaction indicator solution, Kemper et al. associate a “validity” value with each object that can serve as an
argument to a function. However, our satisfaction indicators indicate whether or not the object can be used to reach end-
points that satisfy the path view predicate and allows us to avoid evaluating updates that don’t affect view membership. The
“validity” value, on the other hand, indicates whether or not the object has been updated and thereby invalidated the stored
result. The goal of keeping “validity” values is to facilitate lazy rematerialization of the function result.

Indexing Techniques. We also considered the work of previous researchers who have compared index structures when
designing our SMX organization. In particular, the work of Bertino et al. informed us of the costs and issues involved in
the performance of basic operations with traditional index organizations [2, 4]. However, note that traditional indexing tech-
niques have the goal of supporting the evaluation of queries. Our primary indexing goal, on the other hand, is to reduce the
overhead of propagating an update on a single object to materialized path query views.
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9 Conclusions and Future Work

To the best of our knowledge, ours is the first work to identify and address the specific needs of the path query view problem
for object-oriented databases and to present a solution that is tailored to these needs. We introduce a new Satisfiability Indi-
cating Multi-Index (SMX) organization, which maintains partial information indicating whether or not the endpoints reach-
able from an object satisfies the query predicate. We identify a number of tasks required to maintain materialized path query
views that involve multiple forward traversals with traditional index organizations. The SMX organization can be used to
eliminate these forward traversals. We also present cost models and compare the performance of the SMX organization with
regards to calculating the effects of updates upon views to that of the multi, nested, and path index organizations. The results
of our evaluations indicate that the SMX dramatically improves upon the performance of traditional index structures with
respect to the problem of path query view maintenance.

Future Work. Although the MultiView model currently supports multi-valued attributes, it does not yet support the defi-
nition of views using aggregation functions over multi-valued attributes (e.g., sum, max, or min). Support for such views
would be a valuable contribution to MultiView’s functionality. Furthermore, although a number of researchers have studied
the problem of maintaining materialized aggregation functions in relational databases [15, 6], to the best of our knowledge,
this problem has not been examined in an object-oriented context. Because the object-oriented model provides for the defini-
tion of collection classes, an OO approach to this problem might extend the construct of the collection class with an instance
variable that would store the result of the aggregation function (similar to a refine view) and an indicator (like our satisfaction-
indicators from the path query view problem) that represents the status of the aggregation value instance variable.

References
[1] E. Baralis and S. Ceria nd S. Paraboschi. Conservative timestamp revisited for materialized view maintenance in a data

warehouse. Proceedings of the SIGMOD Workshop on Materialized Views: Techniques and Applications, pages 1–9,
1996.

[2] E. Bertino and P. Foscoli. Index organizations for object-oriented database systems. IEEE Transactions on Knowledge
and Data Engineering, 7(2):193–209, April 1995.

[3] J. Blakeley, P. Larson, and F. Tompa. Efficiently updating materialized views. SIGMOD, pages 61–71, 1986.

[4] S. Choenni, E. Bertino, H. M. Blanken, and T. Chang. On the selection of optimal index configurations in OO databases.
In IEEE International Conference on Data Engineering, pages 526–537, 1994.

[5] A. Gupta and J.A. Blakeley. Using partial information to update materialized views. Information Systems, 20(8):641–
662, 1995.

[6] V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing data cubes efficiently. SIGMOD, page XXXX, 1996.

[7] A. Kemper, C. Kilger, and G. Moerkotte. Function materialization in object bases. SIGMOD, pages 258–267, 1991.

[8] A. Kemper, C. Kilger, and G. Moerkotte. Function materialization in object bases: Design, realization, and evaluation.
IEEE Transactions on Knowledge and Data Engineering, pages 587–608, 1994.

[9] W. Kim and J. Seo. Classifying schematic and data heterogeneity in multidatabase systems. IEEE Computer, pages
12–18, 1991.

[10] S. Konomi, T. Furukawa, and Y. Kambayashi. Super-key classes for updating materialized derived classes in object
bases. In International Conference on Deductive and Object-Oriented Databases, pages 310–326, July 1993.

[11] H. A. Kuno and E. A. Rundensteiner. Materialized object-oriented views in MultiView. In ACM Research Issues in
Data Engineering Workshop, pages 78–85, March 1995.

[12] H. A. Kuno and E. A. Rundensteiner. Augmented inherited multi-index structure for maintenance of materialized path
query views. In ACM Research Issues in Data Engineering Workshop, March 1996.

[13] H. A. Kuno and E. A. Rundensteiner. The MultiView OODB view system: Design and implementation. In Harold
Ossher and William Harrison, editors, Accepted by Theory and Practice of Object Systems (TAPOS), Special Issue on
Subjectivity in Object-Oriented Systems. John Wiley New York, 1996.

[14] H. A. Kuno and E. A. Rundensteiner. Using object-oriented principles to optimize update propagation to materialized
views. In IEEE International Conference on Data Engineering, pages 310–317, 1996.

24



[15] D. Quass. Maintenance expressions for views with aggregation. Proceedings of the SIGMOD Workshop on Material-
ized Views: Techniques and Applications, pages 110–118, 1996.

[16] E. A. Rundensteiner. MultiView: A methodology for supporting multiple views in object-oriented databases. In 18th
VLDB Conference, pages 187–198, 1992.

[17] A. Segev and J. L. Zhao. Efficient maintenance of rule-derived data through join pattern indexing. In International
Conference on Information and Knowledge Management, pages 194–205, December 1993.

[18] E. J. Shekita and M. J. Carey. Performance enhancement through replication in an object-oriented dbms. SIGMOD,
pages 325–336, 1989.

[19] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a warehousing environment. In SIGMOD,
1995.

25


