The Satisfiability-Indicating M ulti-Index Organization for Maintaining
Materialized Path Query OODB Views*

Harumi A. Kuno Elke A. Rundensteiner
Dept. of Elect. Engin. and Computer Science, Software Systems Research Laboratory
The University of Michigan, Ann Arbor, M1 48109-2122
e-mail: kuno@m ch. edu, rundenst @ecs. um ch. edu

University of Michigan Technical Report CSE-TR-302-96

Abstract

Materialized database views allow applications to benefit from the powerful flexibility of views while minimizing the
performance penalties traditionally associated with views. However, the need to maintain materialized viewsin the face of
updates limits the variety of queriesthat can be used to define them. In this paper we address the problem of incrementally
maintaining OODB views formed using path queries. Traditional index organizations are not well suited for thistask. The
indexing needs of the path query view problem are unique in that because the contents of the materialized view are cached
and can be queried directly, the primary use for a supplemental index is during the propagation of updates rather than during
query processing. Furthermore, traditional index organizations do not distinguish between single-valued and multi-valued
attributes, and thus do not account for the fact that multi-valued attributes enable a single object at the head of a path to be
associated with multiple instantiations of the path, any number of which could satisfy the path query predicate. This means
that if an updated path involves a multi-valued attribute then the aggregation hierarchy of the object at the head of the path
must be completely re-calculated in order to determine whether or not that object participatesin an alternativeinstantiation
that fulfills the view query predicate despite the update. As a solution, we introduce a new Satisfiability Indicating Multi-
Index (SMX) organization, which maintains partial information indicating whether or not agiven endpoint satisfiesthe query
predicate rather than what the exact value of the endpoint is. Thisnew structure offers anumber of benefits. (1) At most one
path position forward must betraversed to determinewhether or not the endpoint of an instantiation of the path fulfillsagiven
path query predicate. (2) The SMX index structure only needs to be updated when the validity of an object’s instantiation
(in terms of the query predicate) changes. (3) No more than one path position forward must ever be traversed in order to
identify whether or not a given object participatesin any aternative instantiations that fulfill a given path query predicate.
In addition to proposing this new index organization, we also present cost models and analytic evaluations comparing the
performance of the SM X organization to those of the multi, nested, and path index organizations with regardsto cal culating
the effects of updates upon views. The results of our evaluations indicate that the SMX dramatically improves upon the
performance of traditional index structures with respect to the problem of path query view maintenance.

Keywords: Incremental view maintenance, path queries, datawarehousing, view materialization, and object-oriented databases.

*This work was supported in part by the NSF RIA grant # RI-9309076, NSF NY | grant # RI 94-57609, and the University of Michigan Faculty Award
Program, Intel, and AT& T. Harumi Kuno is also grateful for support from the NASA Graduate Student Researchers Program.

1 Introduction

Recent advancesin information technol ogy have issued anew set of challengesto the database community. Thereisagrow-
ing need for strategiesthat provide the means to cache and use query results, for mechanismsthat support customized inter-
facesto shared data, and for theintegration of such mechanismswith the powerful constructs of the object-oriented program-
ming model. For example, the need for improved access to diverse data sources has spurred a recent interest in supporting
queries across multiple information sources in a transparent fashion (e.g., data warehouses and digital libraries [19, 1]).
Materialized database views are arecognized means of achieving such interoperability among applications, allowing appli-
cationsto benefit from the powerful flexibility of view technol ogy while minimizing the performance penalties traditionally
associated with views. However, the fact that updates must be propagated to affected materialized views limits the variety
of queriesthat can be used to define materialized views.

We have previously discussed the problem of view materialization in the context of object-oriented databases (OODBS)
and proposed algorithms that exploit object-oriented characteristicsin order to provide the incremental maintenance of ma-
terialized virtual classes created using the standard view query operators[11, 13, 14]. In this paper we address the problem
of the incremental maintenance of materialized virtual classesformed using selection queries on aggregation paths (or short,
path query views). To the best of our knowledge, only two other research groups have addressed the topic of maintaining
materialized path query views in object-oriented databases. Kemper et al.’swork on function materialization addresses the
problem of precomputing function results [7, 8]. Konomi et al. discuss a solution to supporting atype of join class that is
formed along the aggregation graph [10]. Readers might also notethat in [12] we discussed the path query view problem and
proposed an initial technique for the maintenance of such views; however, none of the techniques proposed in the current
work have been previoudly introduced.

In this paper, we explore the utilization of traditional path index structures for facilitating the incremental maintenance
of path query views, but find that traditional indexing techniques are not well suited for this task. The indexing needs of
the path query view problem are unique in that because the contents of the materialized view are cached and can be queried
directly, the primary use for a supplemental index isfor the propagation of updatesrather than for query processing. Because
traditional index organizations are tailored for use during general query processing (i.e., primarily for data retrieval), they
are not optimized to evaluate path instantiations with regard to a static predetermined predicate condition such as would be
associated with a path query view. Furthermore, traditional index organizations do not distinguish between single-valued
and multi-valued attributes, and thus do not account for the fact that multi-val ued attributes enable a single object at the head
of a path to be associated with multiple instantiations of the path, any number of which could satisfy the specific path query
predicate. This meansthat if an updated path involves a multi-valued attribute then the aggregation hierarchy of the object
at the head of the path must be completely re-calculated in order to determine whether or not that object participatesin an
alternative instantiation that fulfills the view query predicate despite the update.

Asasolution, weintroduce a new Satisfiability Indicating Multi-Index (SMX) organization that is specifically tailored to
handle the issues of path query view maintenance. The SM X organization maintains partia information indicating whether
or not a given endpoint satisfies the query predicate rather than the exact values of endpoints. This strategy offers a num-
ber of benefits. (1) Instead of traversing al instantiations in which an object participatesto their endpoints, with the SMX
organization at most two path positions forward must be examined in order to determine whether or not the endpoint of an
instantiation fulfillsagiven path query predicate. (2) The SMX index structure only needsto be updated when the validity of
an object’sinstantiation (in terms of the query predicate) changes. (3) Instead of having to fully traverse all instantiations of
an object to identify whether or not it participatesin any alternative instantiations (due to multi-val ued attributes) that affect
its membership in a path query view, with the SMX organization we only need to check at most one forward reference. The
results of our evaluationsindicate that the SMX dramatically improves upon the performance of traditional index structures
with respect to the problem of path query view maintenance.

Although we focus on an object-oriented model in this current work, our solution is directly applicable to the relational
context. Insofar as queries can be performed over multiple tables that are joined, select-project-join (SPJ) views are the
traditional counterpart to path query views. Maintaining materialized SPJ viewsis awell-studied problem in the relational
world[5, 17, 3]. Guptaand Blakeley present formal partial-i nformation-based view maintenancetechniquesthat infer knowl-
edge about the state of the underlying base relations using local information (such as the view definition, the update, the
current view materialization, and varying amounts of base relation replicas) [5]. Segev and Zhao propose a join pattern in-
dexing technique for materialized rule-derived data that allows the identification of join completion without reading base
relations[17]. Although the path query view problem that we address in this chapter is more restricted than the general SPJ
problem in that we do not alow free variables in the predicate expression, our solution is unique and dramatically improves
upon the performance of traditional treatments of the path query view problem.

We begin in Section 2 by briefly reviewing the MultiView object model and formally describing the characteristics of
path query views. In Section 3 we present three problems involved with the maintenance of path query views, including a
discussion of thelimitationsof utilizing traditional index organizationsto addressthese problems. Asasolution, we propose

the SMX organizationin Section 4. Weintroduce cost model scomparing the SM X organi zation to the traditional multi-index
(MX), nested index (NX), and path index (PX) organizationsin Section 5, and use these cost models to perform analytic
evaluations which we examine in Section 6. Finally, we discuss related work in Section 8, and present our conclusions and
future work in Section 9.

2 TheMultiView Model and System

In this section, we briefly review the basic object model principles of the MultiView system. More details are given in [16]
and [11]. Let O be an infinite set of object instances, or short, objects. Each object O; € O consists of state (instance
variables or attributes), behavior (methods to which the object can respond), and a unique object identifier. The domain
of aninstance variable can beconstrained to objectsor setsof objectsof aspecific class. If aninstancevariableisconstrained
to sets of objects, then we say that the instance variable is multi-valued. Because our model is object-oriented and assumes
full encapsulation, accessto the state of an object is only through accessing methods. Together, the methods and instance
variables of an object are referred to asits properties.

Objects that share a common structure and behavior are grouped into classes. We use the term type to indicate the set
of applicable property functions shared by all members of the class. Let C' be the set of all classesin adatabase. A class
C; € C hasaunique class name, atype, and a set membership denoted by extent(C;).

We use both class type and class extent to determine subsumption relationships. For two classes C; and C; € C, C; isa
subtypeof C;, denoted C; < Cj if andonly if (iff) (properties(C;) O propertie(C};)). All propertiesdefined for asupertype
are inherited by its subtypes. S|m|IarIy, C; isasubset of C;, denoted C; C Cj, iff (Yo € O)((0 € C;) = (0 € C))).
C; isasubclass of C;, denoted C; is-a Cj, iff (C; C Cj) and (C; =X CY). C; isadirect subclass of C; if ACy € C st.
k#1# j,C;sisaof Cy,and Cy is-aof Cj.

An object schemaisarooted directed acyclic graph G = (V, E), wherethefinite set of vertices V' correspondsto classes
C; € C and thefinite set of directed edges £ corresponds to a binary relation on V' x V' representing all direct is-a rela-
tionships. Each directed edge e € E from V; to V; represents the relationship C; is-a C;. Two classes C;, C; € C sharea
common property iff they inherit it from the same superclass. The designated root node, Object, hasa global extent equal to
the set containing all instances and an empty type description.

An aggregation path P; isdefined as C; 1.4; 2. A; 3. .. A; , where C; 5 is the path’s source class, A; » is an instance
variable of C; 1, andVA; 1,1 < k& < n, A; ; isan instance variable of the class to which instance variable A; _’s values
are constrained. We usetheterm instantiation of path P; torefer to asegquence of objectsO1, O-, . . ., O,, st. O; belongsto
classC; 1, 02 belongsto class C; -, etc., and Vk st. 1 < k < n, thevalueof O,_1’s A4; i, instance variablerefersto O,. We
identify an instantiation of subpath P;(j, k), j < k of path P; as a sequence of objects O;, Oj 41, ..., Oy st. O; belongs
toclassC; j, 041 belongstoclass C; j 41, ., and Vi st. j < I < k,O;—1's A;; instance variable refersto O;. Given an
instantiation of apath P; = C; 1.4; 2. 4; 3. .. A; ,, wecal the object in the 1°* position (e.g., the object from class C; ;)

the head and the object in the n** position (e.g., the object from class C; ,,) the endpoint of the instantiated path. An object
0;,1 < j < n, can participate in multiple instantiations of a path 7;.

Virtual classesare defined by the application of aquery operator to one or two classesthat restructuresthe source classes
type and/or extent membership. MultiView provides a virtual-class-forming algebra that includes the following operators:
difference, hide, intersect, join, refine, select, and union [16, 13]. These queries determine the methods, instance variables,
and extent of the virtual classes. The join operator can be object-generating; all other operators are object-preserving.

Let) be the set of all possible queries. We constrain a query @; €) used to define a virtual class to correspond to
a single algebra operation, and refer to the query Q; € @ that defines avirtual class, VC; € VC, asquery(V C;). We
identify three types of predicates used in virtual-class defining queries. Class member ship predicates (intrinsic to hide,
union, intersect, refine, and difference queries) are predicate termsthat depend upon the classes to which an object belongs'.
Valuepredicates, used by select and join queries, are predicate terms constrai ning instancesbased on the values of their local
instance variables. In addition, our select operator supportsthe formation of virtual classesusing path queries (queriesthat
refer to avalue along an object’saggregation path). A path query, which consists of a path and a value predicate upon the
endpoint of that path, takestheform PQ); = C; 1.[O]A4; 2.[0)A; 5. .. [O]A; n0value, whereif attribute 4; ; isamulti-valued
attribute then the quantifier © € {3, V} indicates whether the multi-valued attribute should be handled in an existential or
universal manner, and the comparison operator ¢ is defined for C; ,, 2

Givenan instantiation of asubpath P;(j,n) O;, Oj 41, ..., O, st. O; belongstoclassC; ;, O; 41 belongstoclassC; 41,
etc., andVist. j < < k,0;_1's A;; instance variable refersto O; and A; ;41 isasingle-valued attribute, if O,, satisfies

1 Set operationsare typical of queries using class membership predicates, because they function by using the presence of objects in source classes rather
than by checking value-based predicates.

2Typlca||y, g€ {:7 < %, <>y 2}

the predicate O,,fvalue then we say that the subpath instantiation is a satisfying subpath instantiation, or short, that it is
satisfying. If A; ;41 isamulti-valued attribute and © = ¥, then we say that the subpath instantiation is satisfying if and
only if al the objects that serve as object O; ;s valuesfor attribute A; ;1 participate in satisfying subpath instantiations
of subpath P;(j + 1, n). Theextent of avirtual classthat is defined by apath query P@); containsall objects O, € C; 1 that
satisfy P@;. In the current paper we assume that virtual classes are materialized, and refer to asingle virtual classthat is
defined using a path query as a path query view (PQV).

3 Path Query View Maintenance with the SMX Organization

In this section, we present an example of a path query view and describe issuesinvolved in the incremental maintenance of
such views. We discuss the limitations of using traditional index organizations to address these issues, then introduce our
Satisfaction-Indicating Multi-Index solution.

3.1 Example Schema

Figure 1 shows an initial aggregation schema composed of four classes that we use as a basis for the remainder of this dis-
cussion. Person has an attribute, age, which is constrained to the Number class. Person also has a multi-valued instance
variable—car s, which associates each person with the set of carsthey own. Car hasoneinstancevariable, maker ,whichis
constrained to the class Company. Company hastwo instancevariables: st ockPr i ce, whichis constrained to the Number
class; and owner , which is constrained to the Person class.

O class

cars owner
P
—_—
@ maker stockPrice — =
age

constrained-to

—
— constrained-to set of

Figure 1: The example schema.

Figure 2 shows instances of the base classes and the aggregation relationships between them. For example, the personl
object is an instance of the Person class, carl is an instance of the Car class, and companyl is an instance of the Company
class. The personl object hasboth car1 and car2 asvaluesfor her car s attribute. The car1 object hasthe companyl object
asavauefor maker , the companyl object hasast ockPri ce of 25, etc.

Now suppose that we were to define a virtual class PathSelect1 for the schemain Figure 1 using the (existential) path
querysel ect from Person where [:person | person. dcars. maker.stockPrice < 40]. Thosein-
stancesof the Person classwhosecar s instancevariableincludesaninstanceof Car that hasanaker valuewhosest ockPri ce
instance variable has a value less than 40 qualify to belong to the PathSelect1 class. Asshown in Figure 3, theinitial extent
membership of the PathSelect1 class contains the personl and person2 objects.

Figure4 depictstheindex structuresthat would be created for our example schemaunder thetraditional multi-index (M X),
path index (PX), and nested index (NX) organizations. We confine our current discussion to non-inherited forms of these
index organizations for the sake of simplicity. However, note that our treatment could easily be extended to address the
inherited forms.

3.2 Path Query View Maintenance | ssues

The problem we address is how to maintain the extents of materialized path query views in the face of updates anywhere
along their paths. In order to solve this problem, we must address the following issues.

Determining instantiation validity. First we must determine whether or not the original and new endpoints of the path
instantiations in which the updated object participates fulfill the path query. The traditional index organizations shown in
Figure 4 facilitate the identification of head objects of instantiations, but not their endpoints. For all three index structures,

cars maker stockPrice o5
=45
age carl company1 owner
personl
cars ./: maker L o4 stockPrice
e ooo ——)> 30
age™ 37 owner
car2 company?2
X
person2
cars : maker stockPrice 75
age> 40 car3 company3 owner

person3 =%

Figure 2: Initial base instances and their aggregation relationships for the schemain Figure 1.

: person1
person2 !
| S |

| person2
1 person3

PathSelect1

Select from Person
where [:person |
person.cars.maker.stockPrice < 40]

LEGEND|
- Z lstockPrice ==
1 company1 constrained-to
1 company2 set of
1 company3 | — >

constrained-to

C 21 extent
1951 O class
'301
|75| 1

subclass-of gerived-from

Figure 3: The PathSelectl is derived from the base schema using a path query.

NESTED INDEX PATH INDEX MULTI-INDEX STRUCTURES
Car Person Company Car Person Company
KEY | VALUE KEY VALUE KEY | VALUE KEy |VALUE KEY VALUE
carl |{personl 25
25 | {persony} 25 | {personi.carl.companyl} {p } company1| {car1} {company1}
ersonl, 30 {company1}
{personi, {personl.car2.company2, car2 |{P company2 | {car2
30 M person2} 30 | person2.car2.company?} person2} pany2] {car2} 75 | {company2}
car3 |{person3 company3| {car3
75 | {person3} 75 | {person3.car3.company3} | d{p } pany3| { } Index on
ndexon Index on Car.maker i
Person.cars Company.stockPrice

Figure 4: Traditional index organizationsfor the path per son. car s. maker . st ockPri ce.

wemust thustraverse each of the updated object’ spath instantiationsto their original and new endpointsin order to determine
if the update affects whether or not that instantiation satisfies the path query predicate.

For example, if the car2 object from Figure 2 wereto changethevalueof itsmaker instancevariableto refer to company3
instead of company2, then (with the PX, NX, and MX organizations) we would have to traverse both the company?2 and the
company3 objects’ instantiations of the PathSelect1(2,4) subpath and determine that while the original endpoint of car2's
path instantiationwas* 30’ (which doesfulfill PathSelect1’squery predicate), the new endpointis‘ 75 (which does not fulfill
PathSelect1’s query predicate).

Finding head objects. If the original and new endpoints of a given path instantiation differ in that one satisfies the query
predicate but the other does not, then we must identify the head object of the path instantiation. The membership of this head
object in path query views based on the path instantiation is potentially affected by the update.

Givenapath P; = C;1.4; 2. 4; 3 ... A; , and amodified object O; of class C; ;, we usethe PX and NX organizations by
first finding the endpoint objects of instantiationsinvolving the updated object by traversing the object’ sinstantiations of the
P;(j, n) subpath (asalready donein step 1), then looking these endpointsup in theindex structure. With the PX organization,
we can then scan the paths retrieved from the PX, determine which involve O;, and thus identify the head objects of the
instantiationsinwhich O; participates. However, becausethe NX structuredoes not include any path information, if multiple
heads are associated with agiven endpoint then we must traversethese heads' instantiationsof the P;(1, j) subpathforwardin
order to identify which instantiations (and thus head objects) involve object O; . We can use the reverse references provided
by the MX organization to avoid such forward traversals and instead identify the head objects of O;’sinstantiations of the
P;(1, j) subpath by performing lookupsinthe j — 1 indices of the C; ; through C; ;41 classes.

For example, if the car2 object from Figure 2 wereto changethevalueof itsmaker instancevariableto refer to company3
instead of company?2, then with the PX and NX organizations we would first traverse the company2 object’s instantiation of
the P;(3, 5) subpath and find that the original endpoint is 30. We would then look up 30 as akey in the index. Because
multiple values are associated with that key, under the PX organization we would examine each path to identify the onein
which the car2 object participates and thus determine that both the personl and person2 objects are potentially affected by
this update. However, with the NX organization, we must traverse all the instantiations of each object associated with the
key of ‘30’ in order to determine which objects’ aggregation hierarchiesinvolvethe car2 object. With the MX organization,
we traverse backwards through all multi-index structures (e.g., we could look up the car2 object in the Person.cars index
and identify that both the personl and person2 objects are potentially-affected head objects).

Identifying alternative instantiations. The presence of even one multi-valued attribute in the path of the query greatly
increases the cost of evaluating the effects of updates using any traditional index structure. If an update changes whether or
not an instantiation fulfills a path query’s predicate and the path includes at least one multi-valued attribute, then we must
determine if each involved head object participatesin any alternative instantiations that cause the head object membership
in the path query view to remain the same despite the update. With the PX, NX, and MX organizations, this means that
in addition to the cost of identifying each head object, we must also traverse all of that head object’s path instantiations
completely forward in order to determineif it participates in any alternative satisfying instantiations.

For example, if the car2 object were to update its maker instance variable to remove the reference to company3 in-
stead of company2, then although we could use traditional index structures to identify that the personl object is poten-
tially affected by the update, we would have to traverse all of the path instantiations of the personl class, in particular per-
sonl.carl.companyl.25, in order to determine that personl still satisfies PathSelect1's query predicate and thus should not
be removed from the extent of the PathSelect1 class.

4 SMX Solution
41 TheSMX Structure

From the above discussion, we can identify three characteristics of the path query view problem:
1. We use the supplemental index structures at the time of updates instead of queries.

2. Because of this, we do not need to know exact endpoints of updated instantiated subpaths—we really need only to
know whether or not these endpoints satisfy the path query view predicate.

3. We need to be able to determine whether or not, due to multi-valued attributes, head objects participate in aternative
path instantiations that affect the impact of the update on a head object’s membership in the path query view.

Our Satisfiability-Indicating Multi-Index (SMX) organization exploits these characteristics to maintain path query viewsin
an efficient and incremental fashion. The fundamental principle of the SMX solution is that we do not need to know the
exact endpoint of path instantiations—we only need to know whether or not that endpoint satisfies the query’s predicate.
The SMX organization therefore extends each multi-index (MX) entry with a satisfiability indicator (or Sat/nd for short)
that indicateswhether the key value object participatesin any instantiationswith an endpoint that fulfillsthe query predicate.
Because the satisfiability of a path instantiation is determined by its endpoint object, we can consider satisfiability to be a
transitive property in that if we know for all objects O; € class C; ; whether or not O; leads to endpoints that satisfy the
path query predicate, then we also know for any object O;_; € C; ;_; that refersto O; asthe value for its A; ; attribute
whether or not O, _; leads to endpoints thet satisfy the path query predicate.

Lemmal GivenanyobjectO;_; € C; ;_; that refersto membersof classC; ; asthevaluefor its A; ; attribute, O; _; leads
to endpointsthat satisfy the path query predicate if and only if those particular members of class C; ; lead to endpoints that
satisfy a path query predicate.

By Lemma 1, we can initialize the SMX index recursively. First, for each endpoint object O,, of class C; ,, that serves
as avaluefor the 4; ,, attribute of at least one object O,,_; of class C; ,,_1 (i.e., the last component of the path), we store
SatInd(O,), which indicates whether or not O,, satisfies the path query predicate, i.e., O,,fvalue evaluatesto true. Next,
for each object O; of class C; ; that serves asa valuefor the A; ; attribute of at least one object O;_; of classC; ;_; (i.e,
the C; j_1.C; j component of the path), we store Sat Ind(O;), which indicates either (1) (if the predicate expression’squan-
tifier for the C; ;_,.C; ; component is existential) whether or not 30; 1, st. O;'s A; ;4 attribute valueis setto O; 4, and
SatInd(Oj41) istrue; or (2) (if the component’s quantifier is universal) whether or not VO, 11 st. O;'s A; ;41 dtribute
value contains O; 11, SatInd(O;41) istrue.

When an update takes place, we can use the SMX index to look up whether or not an object O; leads to an endpoint that
setisfiesthe path query predicate (i.e., SatInd(O;)). If avalueof trueisassociated with O; intheindex, then O; leadsto an
endpoint that satisfies the path query predicate; otherwise (if avalue of falseisassociated with O;’srecord) it doesnot. If O;
does not already have an index record associated with it because no object previously referred to it, then we must look up the
O; 41 objectsreferred to by O; asvaluesfor attribute A; ; ; inthe C; ;. A; ;41 index. Because of the entries corresponding
to the O;.0; 41 relationship, we are guaranteed to find these objects in the index, and thus no other traversal is needed. This
concept is summarized in the following lemma.

Lemma2 If the satisfiability indicator value of an updated object O; € C; ; does not change as the result of an update, then
the satisfiability indicator value of any object O;_; € C; ;_; that refersto members of class C; ; asthe value for its A, ;
attribute will not change as a result of the update.

For example, Figure 5 showsthe satisfiability indicatorsfor the objectsfrom Figure2. Theinitial path instantiationsof the
personl and person2 objectsfulfill the PathSelect1 class's path query predicateof per son. car s. maker . owner s. age
< 40 (introduced in Section 3). Now suppose that the car2 object were updated as shown in Figure 5, changing the value
of itsmaker instance variableto refer to companyl instead of company?2. We can compare the satisfiability indicators asso-
ciated with the company2 and company1 objects, thus determining that because both lead to satisfying endpoints, the update
will not affect the satisfiability of car2's path instantiations and nothing needs to be done. Figure 6 shows the SMX index
structures that correspond to the objects and classes shown in Figure 5.

4.2 Incremental Processing Strategy

We can maintain the SMX structures efficiently under all three update operations (create, delete, and modify). However, due
to space limitations, we discuss the processing of only the delete operation in depth. The strategies for maintaining the other
operations are similiar.

Supposethat thereexistsavirtual pathvirtual view class PQV; defined by thequery PQ; = C; 1. 4; 2. Ai 3. . . Aj nOvalue,
and that some object O; belongingto class C; ;, 1 < j < n isupdated. The satisfiability indicators can be maintained in an
incremental fashion; when object O; is updated, we can use the index to determine the old and new valuesfor SatInd(O;).
If SatInd(O;) changes asaresult of the update, then we must iteratively traverse backwards through the multi-index com-
ponents of the SMX organization to update the satisfiability indicators of O; and the objects that directly or indirectly refer
to O; intheir path instantiations until either (1) we reach an object at the head of the path, in which case this object’s mem-
bershipin PQV; could potentially have to change, or else (2) we find an element whose Sat Ind isalready set to the correct
value.

Notethat if C;_,.A4; isamulti-valued attribute, then potentially we might have to check all other valuesfor the updated
attribute in order to determine whether not the modified attribute value fulfills the quantifier. For example, if the quantifier
were existential (© = 3), SatInd(On.) Werefase, and SatInd(O,4) true, then we would have to check to make sure

True

% cars

personl

True

maker stockPrlce 25
carl

True
/maker stockPrice
ooo

True True

companyl

True
True

—I g N
person2 car2 company?2
cars Eﬁ maker stockPrice
. car3 company3
person
7 it
satisfiability Lo WP
indicator

Figure 5: Satisfiability Indicators allow us to maintain path satisfiability information incrementally.

that no other value for O;_,.A; ; hasa positive SatInd before we could determine that SatInd(O;_1) should be reset to
fase. Similarly, if the query predicate were universal (© = V) and SatInd(Op.,,) Weretrueand SatInd(O,1q) werefalse,
then all other values of the multi-valued attribute must be checked in order to confirm that their satisfaction indicators are
positive before we could determine that SatInd(O;_1) should be reset to true.

SATISFACTION-INDICATING MULTI-INDEX STRUCTURES

Car Person Company Car stockPrice
KEY| VALUE KEY |VALUE KEY

Company
VALUE

carl [{True, {personi}}

{True, {personi,

car2 person2}}

car3 |{False, {person3}}

Index on Person.cars

companyl

{True, {carl}}

company?2

{True, {car2}}

company3

{False, {car3}}

Index on Car.maker

25 [{True, {companyl}}

30 [{True, {company2}}

75 |{False, {company3}}

Index on
Company.stockPrice

Figure 6: Satisfaction-1ndi cating Multi-Index (SMX) organization.

Knowing whether or not a given instance participatesin a satisfying instantiation also allows usto process object deletion
updates efficiently. Supposethat we are given apath query PQ; = C; 1.[0]A4; 5 .. .[O]A; nfvalue, adeleted object O; €
C;;,1< j<n,andanobject Oy, € C; ; that isthe head object for asatisfying instantiation of P; in which O; participates.
Further suppose that 3 a multi-valued attribute Ay, 1 < k£ < j dong the subpath PQ;(1, j), with aquantifier ©.

Lemma3 Given a deleted object O; € C; ;, if the quantifier for the j*» component of the path query PQ); is universal
(i.e, C;;-1.YA; ;), then any object O, at the head of an instantiation of the queried path that did not satisfy PQ); before
the update will now satisfy P(); due to the deletion of O; if and only if (iff) YO; € C;;,1 # d, O; participates in an
instantiationof P; headed by O}, that issatisfying, (i.e., if all remaining instantiationsheaded by O}, satisfy PQ;). Smilarly,
if the quantifier for the j*" component of the path query PQ; isexistential (i.e., C; ;—1.34; ;), thenany object O, at thehead
of an instantiation of the queried path that satisfied P(; before the update will satisfy PQ); after the deletion of O; if and
onlyif (iffy 30; € C; ;,1 # d, st. O, participatesin an instantiati on of P; headed by O, that is satisfying.

It followsfrom Lemma 3 that if an object O, satisfies P(; before the deletion of O; and the quantifier for the j** com-
ponent of the path query P@; isuniversal, then all instantiations of P; headed by O, satisfy PQ;.

Lemma4 Given adeleted object O; € C; ;, if the quantifier for the j** component of the path query PQ; isuniversal (i.e.,
C; j—1.Y4A; ;), then any object Oy, at the head of an instantiation of the queried path that satisfied P(); before the update
will continue to satisfy PQ; despite the deletion of O; iff 30; € C; ;,1 # d and O; participates in an instantiation of P;
headed by O, (i.e., inthis case, every instantiation headed by O}, satisfies PQ);).

It follows that if an object O, did not satisfy P(; before the deletion of O; and the quantifier for the j'* component of
the path query P(Q); is existential, then none of the remaining instantiations of P; headed by O}, satisfy PQ;.

Lemma5 Given a deleted object O; € C; ;, if the quantifier for the 5** component of the path query PQ; is existential
(i.e., C;;-1.34; ;), then any object O}, at the head of an instantiation of the queried path that did not satisfy PQ); before
the update will not satisfy P(); after the deletion of O;.

5 Cost Models

In this section, we describe the cost of determining the effect of the creation, deletion, and modification of an object O;
aong the aggregation path P; = C; 1.4; 2. 4;3... A; », where O; belongstoclassC; ; and 1 < j < n (see Teble 1). We
assume that the index structures are organized as B+ -trees, that each non-leaf node is stored on its own page, and that the
leaf-nodes of each index are stored on their own pages. For the sake of simplicity, the formulas described below assume
that the modified object participatesin only one path query view and a given class appears at most once in the query’s path.
We will discuss extensions to our SMX solution that allow usto relax these assumptionsin Section 7. We calculate cost in
terms of the number of page accesses, and assume that a page contains objectsof only one class. Table 2 presentsthe system
parameters, adapted from the work of Choenni et al. [4] and Korth and Silberschatz [9], used in the following equations.
Table 3 lists the path-query-view-specific parameters used in our equations.

| parameter | definition |
CRIRx Cost of retrieving an index record with organization X .
CMIRx Cost of maintaining an index record with organization X .

C PropCreatex | Cost of determining the effect an object creation operation

has on avirtual class's membership with organization X.

C PropDeletex | Cost of determining the effect an object deletion operation

has on avirtual class's membership with organization X.
CPropModx | Cost of determining the effect an object modification operation
has on avirtual class's membership with organization X.

Table 1: Operation cost parameters.

5.1 SinglelIndex Record Operations

The structure of the SMX organizationissimilar to that of the M X organization, in that the SM X index fulfills the function of
an M X index by associating objects of agiven classwiththosethat refer to them. The differenceisthat aleaf nodeinan SMX
organization isdlightly larger becauseit stores moreinformation. The cost of retrieving or maintaining a singleindex record
in an SMX organization is thus very similar to that of performing the corresponding operation under an MX organization.
Asother researchers have previously discussed and contrasted the cost of performing basic functions using traditional index
organizations [2, 4], we confine our model of the costs of performing basic operations to a comparison between the SMX
and MX operations.

511 StorageCosts

Each SMX index record extends the M X index record with additional information as described in Section 4. Each leaf node
used to store an index record from the SM X organization thus needs additional storage space for the satisfiability indicator
associated with each object. Given a path query view PQV; whose path 7; includes a class C; for which we are building
an index, the SMX organization’s entry for an object of class C; extends atypical MX entry with a satisfiability indicator
SatInd. We can express the relationship between the sizes of the SMX and MX leaf nodes using Equation 1. SatInd can
be implemented by a 1 bit boolean value.

| parameter | definition

h Average height of B+ tree used to store an index structure.
p Page size.
frx Fraction of the record retrieved with organization X if leaf-node
index record occupies more than one page.
fmx Fraction of record accessed during maintenance with organization
X if leaf-node index record occupies more than one page.
Inx Average size of aleaf-node of an index with organization X .
OS} Average size of an object belonging to class C'.

SatInd Size of the structure used for the satisfiability indicator (1 bit).

PathCtr | Sizeof the structure used for the path position indicator.

oid Object identifier size.
ObjRet | Average cost of an object retrieval (for an object of class (i, this
is[0S1/p]).

Table 2: Cost model system parameters.

par ameter | definition
CheckTypey, Cost of checking if an object is amember of class ..
MultVal(z, 5) Indicates whether or not path query PQ;’s A; ;

attribute is multi-valued (0 or 1).
SubPathMultVal(P;(j,k)) | Indicates whether or not asubpath PQ; (7, k)
includes any multi-valued attributes (0 or 1).
Ezistential; ; Indicates whether the quantifier associated with
the C; ;.C; ;41 component of path query PQ;’s
quantifier isexistential (0 or 1).

Universal; ; Indicates whether the quantifier associated with
the C; ;.C; ;41 component of path query PQ;’s
quantifier isuniversal (O or 1).

NumRef, Average number of objects referring to each member of
class C'y, asvaluefor attribute Aj,.
NumVal(i, k) Average number of objects referred to as value of possibly

multi-valued attribute A4; , by anobject Oy _1 € C; _1.
NumEndpoints(i, j,n) Average number of distinct endpoints of instantiated
subpaths P; (4, n) of path P;

in which object O ; participates.

NumHeadpoints(t, 5) Average number of distinct head objects of

instantiations of path P; in which an object

O, of class C; ; participates.

NumValidBranch(z, 5) Average number of instantiations of path P; in which an
an object of class C; ; that fulfills the given path

query PQ; participates.

NumAf fBranch(z,j) Average number of instantiations of path P; that are affected
by amodificationtothe C; ;. A; ;41 atribute

of anobject O; € C; ;.

TraverseBranches(z, k) Average cost of traversing all instantiations that originate
from an object O, of

class Cy, at the head of subpath P; (&, n)

@+, ([T sy NumVal(i,m)) = ObjRet).
ProbNoRef(1, k) Probability that (previous to the update) an object of

class C; , isnot referred to
asavalue of attribute A, by any object Oy, _1 € C; 1.

ProbAff; ; Probability that an update to an object O; of class C; ;
will change the value of SatInd(O;).
ProbSat; ; Probability that an update to an object O; of class C; ;
will change the value of SatInd(O;) from false to true.
ProbUnSat; ; Probability that an update to an object O ; of class C; ;

will change the value of SatInd(O;) from true to false.

Table 3: Path query parameters.

Inspx = Inpx + SatInd. (1)

5.1.2 Retrieving and Maintaining an Index Record

Assuming that indices for both MX and SMX organizations are stored using B+ trees, retrieving an index record with either
organization requires usto traverse theindex from the root of the B+ tree to the appropriate leaf node. The cost C RI R x of
this operation is:

h if (Inx < p)
CRIRx(h, frx) = 2
h—1+4[frx *xInx/p] otherwise

Similarly, the cost C'M I Rx of maintaining asingle index record from either the MX or SMX organization is defined as:

h+1 if (lnx < p)
CMIRx(h, fmx) = (©)
h—14[2% fmx *Inx/p] otherwise

5.2 Path Query View Maintenance Operations

For the purposes of the following comparisons, suppose that there exists a virtual path virtual view class PQV; defined by
thequery PQ; = C;1.4; 2. 4; 3. .. A; nfvalue, and that some object O; belongingtoclassC; ;, 1 < j < n isupdated.

5.2.1 Creation of a New Object

When anew object O; of class C; ; is created, we consider the creation operation to also include the setting of the instance
variablevaluesfor the new object. Because wetreat creation and modification asindependent operations, when anew object
iscreated, no existing object could possibly refer to O; asavauefor any of itsattributes. Therefore, whenanew object O; of
classC; ; iscreated, unless C; ; isthe class at the head of path P; (i.e., if j # 1), O; cannot participatein afull instantiation
of path P; and thuswon't affect the membership of PQV;. Note, however, that O;'ssubpath P;(j,n) = O;.Ai j4+1... Ain
instantiations could result in an end value O,, st. O, 6value.

Path Index. Inthecase of the path index organization, if C; ; isat the head of the path (j = 1), we must traverse all of the
new object O;’sinstantiations of path P; in order to determine the endpoint key values under which we must add O; to the
pathindex (Traverse Branches(i, j)). Thepathindex must be updated oncefor each distinct endpoint of every pathinstan-
tiation inwhich O; participates (there are N um Endpoints(i, j, n) such endpoints, so thecost is NumEndpoints(i, j, n) *
CMIRpx). If C; ; isnot at the head of the path, then we do not need to update anything because O; does not participate
in afull instantiated path.

Traverse Branches(i, 1) if(j=1)

+NumEndpoints(i,1,n) « CMIRpx

CPropCreatepx = 4

0 otherwise

Nested Index. The cost of evaluating the creation of a new object with a nested index isidentical to the cost of evaluating
the creation operation with the path index organization.

10

Traverse Branches(i, 1) if(j=1)

+NumEndpoints(i,1,n) « CMIRNx

CPropCreatenx = (5)

0 otherwise

MX. When anew instance O; of aclass C; ; is created, if C; ; isnot at the head of path P; = C;1.4;2... 40, 1 <
J < n, then we need to update the C; ;. A; ;1 index to add O; to the entries for all values of O;.A; ;4 (that is, update
the multi-index to reflect the relationships between O; and the objects referred to by O;. A; j+1). ThiscostisCM IRy x *
NumVal(i,j+ 1).

If C; ; isat the head of the path (i.e., j = 1) then in addition to updating the index structure for attribute C; ;. A; j41, we
must also traverse object O;’s complete aggregation hierarchy in order to seeif it has any endpoints that satisfy the query’s
predicate, thereby qualifying O; for membership in PQV;.

NumVal(i,j+ 1)« CMIRyx if(j=1)

+Traverse Branches(i, j)

CPropCreateyrx = (6)

NumVal(i,j+ 1) x CMIRpyx otherwise

SMX. When anew instance O; of classC; ; iscreated, if C; ; is not at the head of the path P; = C; 1.4; 2. 4;3... Ain
(i.e, j # 1), then we need to update only the appropriate SMX index records, and do not require any object traversal op-
erations. Because only one object is created at a time, the A; ;1 attribute of O; must refer to an existing object O; 41
(or set of objects if A; ;41 is multi-valued) of class C; ;1. We can look up the satisfiability indicator of O;44’s instan-
tiations of the subpath P;(j + 1, n) at the same time that we update the index records for the values for O;.4; j+1. The
cost in this case is the cost of looking up and updating the index record associated with each O; 41 st. O;.4; ;4 refers
to O; 41 and of updating that index record to add O; (NumVal(i,j + 1) * CMIRsarx). If an object O; 4, doesnot a-
ready have an index record associated with it because no object previoudy referred to it (i.e., when ProbNoRef > 0), then
we must look up O; 41’svaluesfor A; ;42 inthe Cj 1. A; 42 index to get the correct satisfiability indicator valuefor O; 41
(ProbNoRef(i,j+ 1)« NumVal(i, j+ 1)« NumVal(i, j 4+ 2) * CRIRsax). Sinceweare guaranteed to find O; 4 in
thisindex, no other traversal is needed. If C; ; isat the head of the path (i.e., j = ¢) then we can look up the satisfiability of
0;41'sinstantiation of the subpath P;(j + 1, n) at the same time that we update the index record for O; ;1. Thusthe costis
independent of C; ;s position in the path.

NumVal(i,j+ 1) * CMIRsyx
CPropCreategyyx = +ProbNoRef(i,j+ 1)« NumVal(i,j + 1) @)
NumVal(i,j+2) * CRIRspmx

5.2.2 Deletion of an Existing Object

When an instance O; of theclass C; ; isdeleted, if C; ; isat the head of the path (i.e., j = 1), we can determine whether or
not O; participates in a materialized path query view PQV; by checking to seeif O; possessesthe type of the virtual class
(regardlessof thetype of index organizationin use). Thecost of handling thedeletioninthiscaseisthen ssimply C'heckT'ype;
plus the cost of updating the appropriate index structures.

If O; isnot at the head of the path (; # 1), then we must determine whether or not the change affects the membership
of the path query view PQV;. Thistask requires usto identify the object at the head of every instantiated path in which O;
participates. Onceweidentify the head objects, we can check to seeif each head object possessesthe type of the virtual class.
Even if we identify that a head object possesses the type of the virtual class, however, if the path includes any multi-valued
attributes between the head of the path and the deleted object, it is possible that the head object participatesin alternative
instantiations of the path that don’t include O; and that will thus allow it to continue its membership in PQV;.

1

In summary, given a path query view PQV; defined using path query PQ; = C; 1.[0]4; 2.[0]A; 3. ..[0O]A4; n0value
and adeleted object O; € C; ;,1 < j < n, thefollowing tasks must be performed in order to maintain PQV;.

o ldentify every object O, € C; 1 that isthe head object of an instantiation of PQ);’s path involving O;.
o Determine which of these head objectsis a currently member of PQV;.

o If subpath query PQ;(1, j) includes any multi-valued attributes, then the head objects potentially still satisfy PQ;.
Lemmas 3 through 5 state the conditions under which head objects can continue to satisfy PQ;.

Path Index. If the deleted object O; is at the head of the path (i.e., j = 1), then we could immediately check its type to
determine whether or not it currently isamember of PQV; and therefore satisfies PQ; (CheckT'ype;). However, to update
the PX structure, we must traverse each of O;’sinstantiations forward from the deleted object O; to every endpoint object
O, (i.e, TraverseBranches(i,j) + NumFEndpoints(i,j,n) * C MIRpx). Since we must do the traversal anyway, we
can forgo the cost of checking the type of O;.

If the deleted object O; is not at the head of the path (i.e., j # 1), then we must also forward-traverse each of O;’sin-
stantiations forward from the deleted object O; to every endpoint object O,, and then look up each of these endpoints in
the path index in order to identify the heads of the instantiations and update the index entries. The cost for this operationis
TraverseBranches(i,j) + NumEndpoints(i, j,n) *x CMIRpx. Inaddition, for each head object O}, of aninstantia-
tion in which O; participates (there will be NumV alid Branch(i, j) such head objects), if the subpath P;(1, j) includesa
multi-valued attribute, then we may have to forward-traverse all instantiations of subpath P;(1, j) headed by Oy, in order to
determine whether or not O}, satisfies P@Q; by Lemma 3. The worst-case cost of thistraversal isTraverse Branches(i, 1).
Thusin the worst-case, the cost of determining the impact of a deletion and updating the path index structureis:

Traverse Branches(i, j) if(j=1)
+NumEndpoints(i, j,n)« CMIRpx

CPropDeletepx — { TraverseBranches(i, j) otherwise (8)
+NumEndpoints(i, j,n)« CMIRpx
+SubPathMultVal(PQ;(1,j))

*xTraverse Branches(i, 1).

Nested Index. If the deleted object is at the head of the path (i.e., ; = 1), then the cost of propagating the update with the
NX organization is the same as it would be with the PX organization.

Otherwise (j # 1), then (in addition to the cost of T'raverse Branches(i, j) + NumFEndpoints(i,j,n) x CMIRyx)
if there is more than one path head associated with a given endpoint O,, inthe NX index
(if NumH eadpoints(i, n) > 1) thenwemust traverseall of theinstantiationsof each of these path headsto position j inor-
der toidentify which pathinstantiationsactually involvethedeleted object O; (N um Endpoints(i, j, n)*NumH eadpoints(i, n)*
(Traverse Branches(i,1) — Traverse Branches(i,j))). We must do this because whereas with the path index, which
records the full instantiations associated with key, with the nested index only the head objects are stored and we thus cannot
tell from the index which of these objects head instantiations that do not involve O;. In addition, for each head object O},
of an instantiation in which O; participates, if the subpath P;(1, j) includes amulti-val ued attribute, then we must forward-
traverse al instantiations of P; headed by O}, in order to determine whether or not O, satisfies PQ; by Lemma 3. The
worst-case cost of thistraversal isT'raverse Branches(i, 1).

12

Traverse Branches(i, j) if(7=1)
+NumEndpoints(i,j,n) « CMIRNx

Traverse Branches(i, j) otherwise
+NumEndpoints(i, j,n) « CMIRNx
+NumEndpoints(i, j,n)

* NumH eadpoints(i, n)

*[Traverse Branches(i, 1)

—Traverse Branches(i, j)]

+NumPEndpoints(i, j,n)« CMIRpx
+SubPathMultVal(PQ;(1,j))

«Traverse Branches(i, 1).

CPropDeletenx = 9

MX. If thedeleted objectisat thehead of thepath (j = 1) thenweonly needto updatetheindex recordsof the NumV al(i, j+
1) objectsthat aredirectly referenced by O;.4; 41 (atacost of NumVal(i, j+1)*CM IR x). Wecan also test the del eted
object to seeif it should be deleted from the extent of the materialized class, bringing the total cost to NumVal(i,j + 1) *
CMIRymx + CheckType;.

If the deleted object is not at the head of the path (j # 1), then we must delete O;'s index record in the C; ;_1.4; ;
index and update theindex recordsin the C; ;. A; ;11 index of the NumVal(i, j + 1) objectsthat are directly referenced by
0;.Aj41 (atacostof (1+ NumVal(i, j+1)xC M IR x). Wemust alsoidentify theobjectsat thehead of path instantiations
that involve the deleted object O;. We can usethe MX structuresfor thistask by looking up O; inthe C; ;_1.A; ; MX index
toidentify the Num Re f; objectsof classC; ; _; that refer to O;, then looking up each of those objectsinthe C; ;5. A; ;4
MX index to identify the NumRef; 1 * NumRef; objects of class C; ; _» that refer to those objects, etc., for a cost of

CRIRyx * Z (H 5 NumRe f,,). Wethen must test the head object of each instantiation to determineif it possesses
the type of PQV; and thus should possibly be removed from PQV; (CheckType; * NumH eadpoints(t, j)). If a head
object does possess the type of PQV; and the path contains multi-valued attributes, then by Lemma 3. in the worst case we
must traverse the head object’sfull aggregation hierarchy to determineif it possesses an alternative instantiation that satisfies
PQV;’s predicate despite the deletion of object O; (SubPathMultVal(PQ;(1, j)) * Traverse Branches(i, 1)).

NumVal(i,j+ 1) *x CMIRyx + CheckType; if (7 =1)

(1+ NumVal(i,j + 1)) * CMIRMx otherwise

CPropDeleteyrx =< +CRIRyx * Ez 1(H o NumRefn,) (10)
+CheckType; * NumHeadpomts(z J)

+SubPathMultVal(PQ;(1, 7))

*TraverseBranches(i, 1)

SMX. Withthe SMX organization, if j = 1 then we must update the record of every object referred to by O; asavaluefor
C;1.4; 2intheC; 1. 4; » index structureto reflect the deletion of O;. Thecost for thisis NumVal(i,2)« CMIRsyx. We
can immediately determine whether or not O; participated in a satisfying instantiation by checking the satisfaction indicators
associated with the updated records.

Otherwise, if j # 1 theninadditionto updating therecordstheobjectsreferredtoby O; asavauefor C; 1. 4; » (NumVal(i, j+
1)«*C'MIRsux), wemust also updateO; ' srecordinthe C; ;1. A; index structuretoreflect O;’sdeletion (1« CM I Rsarx).
Again, we can immediately identify whether or not O; participated in a successful path instantiation by checking the satis-
faction indicators associated with the updated records. If C; ;_1.4; ; isamulti-valued attribute, then we must check to see
if the deletion of O; changes the satisfaction indicators of objects that referred to O;. If C; ;1. A4; ;'s quantifier is exis-
tential and O; participated in a path instantiation that setisfied PQV;’'s query, or if C; ;_1.A; ;’s quantifier is universal and

13

O; did not participate in a path instantiation that satisfied PQV;’s query, then by Lemma 3. for each object Oy, that re-
ferred to O;, we must now examine Oy,’s other values for C; ;_1.A; ; to determine whether or not O, now participates in
a satisfying instantiation and update the satisfaction indicators if appropriate. This task requires us to look up each O;_1
object that refersto O; inthe C; ;_o.A; ;1 index. For each of these O;_; objects, if the quantifier for C; ;_1.A; ; isex-
istential (and C; j_1.A; ; ismulti-valued) and SatInd(O;_,) is positive, or if the quantifier for C; ;_1.4; ; is universal
and SatInd(O;_1) is negative, then we must look up the satisfaction indicators of all the other objects that are referred
toby O;_1 (NumVal(i,j) — 1) * CRIRsumx). If the value of SatInd(O;_1) should be changed as a result of the
deletion of O;, then we must update the index record for O;_; and repeat this process for each object O, € C;;,1 <
! < j that both indirectly refers to the deleted O; object and has a satisfaction indicator that changes value as a result
of the deletion. In the worst-case (assuming that we must do a full reverse traversal from j to 1), the cost for this task
is(1 + NumVal(i,j + 1)) * CMIRgnx to update the records of objects that refer to and are referred to by O;, plus

ProbAff; i *({:1 (anz? NumRefy) * CMIRsux to update the records of objects that indirectly refer to O;, plus

SubPathMultVal(PQ;(1,5))*[S20_, MultiVal(i,[)([].,—, NumRe fm % NumVal(i, m)—1)]* CMIRsxx torecal-
culate the satisfaction indicators of path componentsinvolving multi-valued attributes. Otherwise, we do not have to update
the satisfaction indicators. The cost of propagating a deletion using a SMX index organization is thus:

NumVal(i,2) x CMIRsyx if(j=1)

(1+ NumVal(i,j+ 1)) * CMIRspx otherwise
+ProbAffi; *| lel(l_[inz2 NumRefp)]
*CMIRSMX

+SubPathMultVal(PQ;(1,7))

*[> 1 MultiVal(i, l)(HinI2 NumRe fp,
«*NumVal(i,m) — 1)]* CMIRspx

CPropDeletesyrx = (1)

5.2.3 Maodification of an Instance Variable

When an instance O; of class C; ; is modified so that its A; ;41 attribute is set to object O,,.,, Of class C; ;41 instead of
object 0,14 0f class C; ; 41, then in order for the update to be propagated we must perform the following tasks:

1. We must identify whether O,,.,, and O,;4 lead to equivalent endpoints in terms of whether or not they satisfy the
query’s predicate.

2. If the endpoints are not equivalent in terms of satisfying the query’s predicate condition, then we must identify the
head objects of all path instantiations that involve O; and are thus potentially affected by the modification.

3. If P; containsany multi-valued attributes, and the endpoints are not equivalent in terms of satisfying the query’s pred-
icate condition, then we must determine whether or not aternative instantiations exist that affect the impact of the
update.

4. We must update the appropriate index structures.

Path Index. Whether or not O; is at the head of the path, we must traverse all path instantiations of both 0,4 and O,y
to their endpoint objects

(at acost of 2 x T'raverse Branches(i, j + 1)) so that we can update the path index records for these endpoints (at a cost of
2+ NumFEndpoints(i,j,n) * CMIRpx). |f acomparison of the new and old endpointsindicates that the update affects
theinstantiationsin which O; participates, then we must identify the objects at the heads of these instantiations. Regardless
of O;’s position in the path, we can perform this task at the same time that we update the path index records. However,
if subpath query PQ;(1, 7) includes any multi-valued attributes, then we must determine whether or not the objects at the
heads of affected instantiations participate in aternative instantiations not involving O;, and what the impact of these alter-
native instantiations is. We thus must perform aforward traversal from each of these head objectsin order to determine if
it participatesin any alternative instantiation of P; (not involving O;) that affects the head object’s membership in PQV;.
The cost of thistraversal is NumAf f Branch(i, j) * Traverse Branches(i, 1).

14

2 x (TraverseBranches(i,j + 1) if(7=1)
+NumEndpoints(i,j,n) * CMIRpx)

2 x (TraverseBranches(i,j + 1) otherwise
+NumEndpoints(i,j,n) * CMIRpx)
+SubPathMultVal(PQ;(1, 7))
xNumAffBranch(i, j)

«xTraverse Branches(i, 1).

CPropModpx = (12

Nested Index. The cost of identifying whether O,,.,, and O 14 |ead to equivalent endpoints regarding whether or not they
satisfy the query’s predicate isthe same with the NX asit isfor the PX organization (2 « Traverse Branches(i, j + 1)). If
O; isat the head of thepath (j = 1), then we can then update the appropriate index structures (2« NumEndpoints(i, j, n) *
CMIRNx). However, if O; isnot at the head of the path, then in addition to looking up the head objects associated with
each endpoint object in the NX so that we can update them, if there is more than one path head associated with a given end-
point O,, inthe NX index

(if NumH eadpoints(i, n) > 1) thenwemust traverseall of theinstantiationsof each of these path headsto position j inor-
der toidentify which pathinstantiationsactually involvethe modified object O; (NumEndpoints(i, j, n)* NumH eadpoints(i, n)*
(T'raverseBranches(i,1) — TraverseBranches(i, j))). Inaddition, if the endpoints of O;’s new and old instantiations
indicate a change in satisfaction of P@); and the subpath P;(1,) includes a multi-valued attribute, then for the head ob-
ject Oy, of each instantiation in which O; participates (there will be NumAf f Branch(i, j) such head objects), we must
forward-traverse all instantiations of subpath P;(1, j) headed by Oy, in order to determine whether or not O}, till satisfies
P@Q; by Lemma3. The cost of thistraversal is NumAf f Branch(i, j) * Traverse Branches(i, 1).

2 % (Traverse Branches(i,j + 1) if(j=1)
+NumEndpoints(i, j,n) *x CMIRNXx)

2 x (TraverseBranches(i,j + 1) otherwise
+NumEndpoints(i, j,n) *x CMIRNXx)
+NumEndpoints(i, j,n)

*NumH eadpoints(i, n)

*(Traverse Branches(i, 1)

—Traverse Branches(i, 7))
+SubPathMultVal(PQ;(1, 7))
xNumAffBranch(i, j)

«xTraverse Branches(i, 1)

CPropModnx = (13

MX. Identifying the new and old endpoints of the path requires the traversal of al branches from O, and O,4 (2 *
Traverse Branches(i, j)). If the new and old endpoints indicate that the path query view must be updated, then we must

identify the objects at the heads of O;’s path instantiations, at acost of CRIRyx * Y 1_, an:z Num~Re fr,. We must
aso update the C; ;. 4; ;41 MX index structure to reflect O;’s old and new values of A; j11 (2« CMIRyx). Finaly,
if the subpath P;(1,) includes any multi-valued attributes, and O;’s instantiations are affected, then we must traverse all
instantiations of each associated head object in order to see if the head object participatesin any alternative instantiations
that negate the effect (SubPath MultVal(PQ;(1,5)) * NumAffBranch(i,j) * Traverse Branches(i, 1)).

15

(2 % TraverseBranches(i, j)) + CRIRy x*
j I
_ _, NumRef,
PropMod - 1=1 [[n=s m
€ PropMody x +SubPathMultVal(PQ;(1, 7)) * NumAf fBranch(i, j)

«Traverse Branches(i, 1).

(14)

SMX. When object O; is modified so that its A; ;41 éttribute is set to the object O,,.,, instead of object 0,14 then the
following tasks can be performed using the SMX organization:

1. UpdatetheC; ;. A; ;41 index and change O,;4’sindex record to remove O; . Whenwe perform thisupdate, we can look
at 0,4’ s satisfiability indicator to see whether or not the endpoints of O,;4’s path instantiations satisfied the query’s
predicate (1 x CMIRsarx)-

2. Update the C; ;. A; j4+1 index to reflect the fact that O; now refersto Oy, (1 * CMIRsa x). This could be done
at the same time as the previous step, so as to reduce the extra cost. If no other object previously referred to O,y
then we must 00k Up Oy . A j4+2'Svalue(s) inthe C; j41.4; j4+2 index in order to calculate what the satisfiability
indicator for O,.,, should be (ProbNoRef(i,j + 1) * NumVal(i,j+ 2) x CRIRsmx)-

3. If Oyq and O,,,,'ssatisfiabilityindicators differ in value, then we must iteratively update the satisfiability indicators
of O; and the objects that directly or indirectly refer to O; in their path instantiations until either (1) we reach an
object at the head of the path, in which case this object’s membership in PQV; should change, or else (2) we find an
element whose SatInd isalready set to the correct value. Note that if the query predicateis existential (© = J) and
SatInd(Oyey) isfalseand SatInd(O,4) istrue, or if the query predicate isuniversal (© = V) and SatInd(Opew)
istrue and SatInd(O.1q) isfalse, then al values of each examined multi-valued attribute A; , must be checked. We
can delineate this process as follows:

Procedure 1
For each O; st. SatInd(O;) changes asa result of the modificationto O ;, do:
Update O;’s SatIndinthe C; ;_1.A; ; SMXindex. (1 * CMIRgarx)
If PQ; isexistential and O ;'s instantiation ceases to
satisfy the path query predicate as a result of the modification
(Existential; x ProbUnSat; ;),
or if PQ; isuniversal and SatInd(O;) changesto true
as aresult of the modification (Universal; x ProbSat; ;),
then VO;_; st. O;_1's 4; ; attributerefersto O; (Num Re f;)
If the A; ; attributeis multi-valued (M ultV al(z, 7))
then look up all of O;_; 'svaluesfor A4; ;
intheC; ;_1.A; ; SMXindex (NumVal(i, 1))
and evaluate whether or not SatInd(0;_;) changes
asa result of the modificationto SatInd(O;).
If SatInd(O;_1) changes, then SatInd(O;_;) changes
asa result of the modificationto O,
and thus O;_, should be processed.
Otherwise, O;_; should not be processed.

Thetotal cost of propagating a modification with the SMX organization is thus:

2 % CMIRSMX

+ProbNoRef(i,j+ 1)« NumVal(i,j +2)« CRIRsmx
CPropModsyx = +ProbAff(i,j) * S —; ([Tj=; NumRe fi) * [CMIRspx (15)

+(Ezistential; * ProbUnSat; j + Universal; x ProbSat; ;)

xNumRefi x MultVal(i, j) * NumVal(i,l) * CRIRspx]

16

6 Performance Evaluation

In order to compare the performance of the SMX index organization with that of traditional index organizations, we used
the cost models presented in Section 5 to drive an analytic comparison of the organizations using a mathematical function
plotting package. Because the SM X organization stores only 1 additional bit of information per data item over the MX or-
ganization, the costs of operating upon the index (i.e., storage, retrieval, insertion, and deletion of an index record) with the
SMX organization can be considered to be nearly identical to those of the M X organization. Our evaluation instead focuses
upon the comparative costs of calculating the effects of an updatein the presence of a path query view with the variousindex
structures.

Figure 7 presentsfactors that we identify as particularly relevant to our cost models. The columns of Figure 7 correspond
to the types of index organizations we evaluate, and the rows represent parameters. The “faces’ indicate the impact of the
parameter upon the cost of calculating the effect of an update to object O; € C; with the corresponding index organization,
givenavirtual classbased uponthepath query PQ; = C; 1.[O]A; 2 ... [O]A; ; .. . [O]A; nOvalue. Inthissectionwe present
the results of our main analytic experiments that evaluate the effects of varying these parameters.

MX
S LEGEND

PX NX

I
- o w
n large @ @
Fork

(MVA) changes
Converge @ Increases
(mult. refs.) cost

Figure 7: Parametersthat affect cost of maintaining PQV;.

Increases cost
if inst.’s sat.

Cost
unaffected

E/[e3)[e3)[e3][e3)
BB|B|6S

e j — > 1. Thecloser the updated object isto the head of the path, the higher the cost of traversing forward from it to
its endpoints becomes. This affects the traditional index organizations, but does not affect the SM X organization.

e j — > n. The closer the updated object is to the end of the path, the lower the cost of traversing forward from it
to its endpoints becomes. This affects the traditional index organizations, but does not affect the SMX organization.
However, when O; is closer to the end of the path, then it becomes more expensive to use the multi-index structures
to identify the heads of itsinstantiations. Thisincreases the cost of evaluating all updates with the MX organization
and increases the cost of evaluating updates where SatInd(O;) changes with the SMX organization.

e n large. Asthe path increases in length, both the cost of traversing forward to identify endpoints and the cost of
traversing backwards using MX structures to identify headpoints increase. The increased cost of forward traversal
increases the cost of evaluating all updates with traditional organizations. The increased cost of finding headpoints
increasesthe cost of evaluating all updateswith the M X organization, and increasesthe cost of eval uating those updates
where SatInd(O;) changes with the SMX organization.

e Fork (MVA). If due to multi-valued attributes, an object Oy (1 < k£ < n) can lead to multiple endpoints, then the
costs of finding both headpoints and endpoints increases. This increases the cost of evaluating all updates with tra-
ditional organizations, but only increases the cost of evaluating those updates where SatInd(O;) changes with the
SMX organization.

e Converge (Mult. refs.). If, due to multiple objects referring to a given object Oy, as avalue for their C; 1_1.4;
attribute (2 < k& < n), agiven object O, can lead to multiple headpoints, then the costs of finding headpoints in-
creases for the NX, MX, and SMX organizations. This increases the cost of evaluating all updates with the NX and
MX organizations, but only increases the cost of eval uating those updates where SatInd(O;) changeswith the SMX
organization.

17

25

T
SMX —o—
NX/PX —+-
MX -8-
25 T
SMX —o— 20
MX/NX/PX + | i
* I
20 * N 4 i
+ s i
ot g B
+ < {
8 15f + . g
< + a
? + K i
+ 3 [&
- + 2 ot
S 10 + N E
& +
+
5 +
+ b
51 + 4 5P
+ b
0 ‘ ‘ ‘ N ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
5 15 20 2 4 6 16 18 20

10 8 10 12 14
Length of Path Position of new object in the path

Figure 8: Creating a new head object while varying the Figure 9: Creating anew object O; while varying path po-
length of P;. sitions (varying j).

6.1 Object Creation

If the new object is at the head of the path, then we would expect the SMX organization to outperform traditional index
organizations because we can use the SMX satisfiability indicators to avoid traversing forward from the new object to its
endpointsin order to determinewhether or not it qualifiesfor membershipin PQV;. Thecost of theforward traversal depends
on both the length of the path and on the characteristics (number, position, fan-out) of multi-valued attributesincluded in the
path. For the sake of simplicity, however, we constrain our current comparison to pathsthat do not include any multi-valued
attributes.

Figure 8 comparesthe performance of the PX/NX, M X, and SMX organizationswhen cal cul ating whether or not anewly-
created object O; qualifies to belong to a path query view PQV; based on path P; = C;1.4; 2. 4;3... A; n, Where O; is
at the head of the path (i.e., j = 1). The vertical axis of the graph indicates the number of page accesses required for this
calculation. The horizontal axis of the graph indicates the length of P; (i.e,, the value of n). Because the creation costs for
the PX, NX, and MX organizationsare identical in this case, we plot them asasinglefunction. Asisillustrated by the graph,
even in the absence of multi-valued attributes, the cost of calculating the effect of the creation remains constant with the
SMX organization, while the cost increasesin proportion to the length of the path with the other organizations.

Figure 9 compares the cost of calculating whether or not a newly-created object O; qualifies to belong to PQV; while
varying the position of O; in the path (5). Asindicated by our cost model equations, if O; isnot at the head of the path, the
object creation cannot possibly affect the membership of the path query view, and thus the only thing that must be done is
to update the relevant index structures. This cost is constant for all of our index organizations—nothing needs to be done
for the NX or PX structures (because no head object is affected), and the MX and SMX structures only need to update the
C;.A;4+1 index structure. Note that although the SMX is dightly more expensive because it must retrieve an extra index
recordfor O;.A; j41.4; j+2"svalueif no previously existing object referred to O; . 4; ; 11, thisexpenseis at most only one
additional page access.

6.2 Object Deletion

If the path is simple, then with the NX and PX organizations, our primary cost is that of traversal forward from O; to iden-
tify the associated endpoints. The primary cost of the MX and SMX organizations, on the other hand, is that of traversing
backwards from O; to identify its associated headpoints. Figure 10 compares the cost of evaluating the deletion of object
O; from asimple path of length 10 while varying the position of O; from j := 1 ton. Note that there are two lines plotted
for the SMX organization—one representing a 10% probability and one assuming a 20% probability that SatInd(O;) will
change due to the deletion. Because the path is simple (no forks and no convergence), the costs of the PX and NX organi-
zations areidentical. Aswe would expect, the cost of evaluating the deletion with the PX and NX organizations decreases
as j approaches n while the cost with the MX and SMX organizations increases. Because the SMX organization requires
traversal only when SatInd(O;) changes, we can see that the lower that probability, the better SMX's performance.

If one of the attributes along the path, say C; 5. 4; ¢, iS multi-valued, then the cost associated with the NX organization
increases because now each endpoint is associated with multiple headpoints, each of whose instantiations must be traversed

18

16 T T T T T
10% prob. SatInd(Qj) change —¢—

20% prob. SatInd(O) ():(h?’l e
% MX

12 - X 3

SMX

SMX +

14 -G
X

Number of Page Accesses

4 5 6 7
Position of deleted object in path

Figure 10: Deleting an object O; from asimple path while
varying j.

90

s L P PX -8
70
60
50

40/

Number of Page Accesses

x B
¥

30t R =N
20 -

10

0 L L L L L L L L

4 5 6 7
Position of modified object in path

Figure 12: Modification (varying j).

50 T T T
+ SMX ——
45 + NX +]
+ PX - O -
20 * MXC e
+ + + + +
é 35 R
X
S = « . % x x —
(]
F = F s
5 B Beela
3 20 . e
§ 15 \\\n> B
10 el
-
5 i
0 | | | | | | | |
1 2 8 9 10

4 5 6 7
Position of deleted object in path

Figure 11: Deleting an object O; from a path with one
multi-valued attribute (forward fork) while varying j.

80

70 MX % |

60

50

40

30

Number of Page Accesses

20

10

20 30 40 50 60 70 80 100
Probability that modification changes Satind value of updated object

Figure 13: Modification (varying ProbUnSat).

totheir j¢h element in order toidentify whichinvolve O;. In addition, if j < 6, thenthe cost of eval uating the update with the
traditional organizationsincreases because we must perform additional traversalsto identify alternative pathsthat satisfy the
predicate. Figure 11 comparesthe cost of evaluating the deletionif each object in C; ¢ hasasavaluefor attribute C; 5. 4; ¢ an
average of 2 objectsfrom C; 5, and a probability of 25% that the view is affected. Becausethe SMX organization eliminates
the need for traversalsto identify alternative paths, its performanceis overall the best.

6.3 Maodification of Attribute Values

If C; 5.A; ¢ isboth multi-valued and has multiple-referencesto its values, then for traditional index organizations the cost of
evaluating the modification of an object O; so that its A; ;41 attributeis set to object O, ., 0Of class C; ;41 instead of object
0,14 Of class C; ;41 involves both forward traversals to identify the endpoints of O,;4 and O,,..,’S instantiations, and, for
NX and PX, extratraversalsin order to handle multiple headpoints being associated with each endpoint. (We can usethe M X
indices to explicitly identify the headpoints that indirectly refer to an updated object.) The SMX organization is primarily
affected by the cost of propagating the update when SatInd(O;) changes.

Figure 12 compares the cost of evaluating the modification of object O; from apath of length 10 where C; ¢.A; 7 isboth
multi-valued (2) and has multiple-references (2) to its values while varying the position of O; from j := 1 ton. We assume
a 50% probability that SatInd(O;) will change due to the modification and a 5% probability that O,,.., does not have a
previously existing entry in an SMX index. Aswe would expect, Figure 12 demonstrates that even with only one minimal
multi-valued attribute and only one minimal multiple-reference, the SMX organization outperforms the traditional index
organizationsfor path queries (with up to 10 componentsin the path predicate) that involve only one minimal multi-valued
attribute and even one class of objects that is minimally multiply-referenced.

19

Figure 13 fixes j at position 5 for a path query of length 10 and compares the cost of evaluating the modification of O;
while varying the probability that SatInd(O;) will change due to the modification from 0% to 100%. As demonstrated by
thefigure, even with the probability of achange set to 100%, because SM X avoidsthe need to perform full forward traversals,
it out-performs the traditional index organizations.

7 Extensionstothe SM X Organization

The SMX organization asdescribed thus far offersa number of advantages. We can use the SM X index to determinewhether
or not a path instantiation satisfies a path query predicate without doing any forward traversals. The SMX organization fa-
cilitates the incremental maintenance of path query views, even if the path includes multi-valued attributes. SMX indices
need to be maintained in the face of an update if and only if the update actually affects the status of the instantiation with

regard to the predicate. In this section we present anumber of extensionsto our SMX organization. These extend the SMX
organization to:

o handle multi-valued attributes in an efficient manner;

¢ takeinto account classesthat appear in multiple positions in a path (e.g., cyclesin the query’s path);

o shareindex structures among multiple path query views.

7.1 Multi-Valued Attributes

As discussed in Section 4, given apath query PQ); containing amulti-valued attribute C; ;1. A; ;, if an object belonging to
classC; ;_; changesoneof itsvaluesfor C; ;_1.4; ; thenin order to determine whether or not the updated object’ s satisfac-
tion indicator should change value we might haveto retrieve the satisfaction indicatorsfor the updated object’ sother values
for C; j_1.4; ;. If the updated object’s satisfaction indicator does change, then as we propagate the change backwards, we
must similarly check the alternative values of any other multi-valued attributes encountered.

For example, Figure 14 depicts a path query view PathSelect? defined by the path query Car . maker . Jowner . age
< 50 (using the schema and instances from Figure 2). Initially all three cars belong to the PathSelect2 class. If person3
were to change his age from 40 to 55, then upon determining that Sat Ind(person3) will change from True to False, we
must retrieve the satisfaction indicatorsfor all other values of company2'sowner attributein order to determinethe correct
valuefor SatInd(company?2).

LEGEND
—
=5 @ ﬁ> constrained-to
Pe = o) ,_ make |- 2 stockPrice set of
,person p carl | company1 —
| person2 | company2 | constrained-to
1person3 | Lccimgarﬂw_ !
—_—— - L 1 extent
Qumeey” =
Select from Car Icarl ! :25_ (?7 _45-: !
where [:car | I car2 : .30 _40 75, '
car.maker. owner.age <50]. 1car3 | subclass-of gerived-from

Figure 14: The PathSelect? class uses an existentia quantifier.

We can avoid these additional retrievalsiif, instead of using a boolean bit, we represent the satisfaction indicator of an
object belonging to class C; ; using abit string that counts the number of positive satisfaction indicators referenced by the

object’s values for attribute C; ;. A; ;41. For example, Figure 15 depicts the SMX index that would be constructed for the
path query of Figure 14.

20

Company Car age Person

KEY VALUE Person Company KEY VALUE
companyl| {1, {carl}} KEY VALUE 45 | {1, {personl}}
person2 | {1, {company2, company3}} 77 | {1, {person2}}
person3 | {1, {companyl, company?2}} 40 {1, {person3}}

Index on Company.owner Index on Person.age

company?2| {2, {car2}}

company3| {1, {car3}}

Index on Car.maker

Figure 15: Using countersto represent satisfaction indicators.

The advantage of extending the satisfiability indicatorsto “count” the number of satisfying subpath instantiati onsreach-
able from a given object is that we can thus avoid having to individually look up all the values of a multi-valued attribute.
However, the disadvantageisthat now we must update the value of the counter evenif the status of the object has not changed
in regard to whether or not it participatesin asatisfying subpath instantiation. For example, if person3 changeshisageto 55,
we couldimmediately identify that although thisupdate would cause the satisfiabilityindicatorsfor company3and car3to be
decremented to 0, the satisfiabilityindicator for company2 would only be decrementedto 1. Because 1 is positive, wewould
be able to recognize that Satlnd(company2) would remain positive without any retrieving any of company?2’s other values
for the multi-valued attribute owner . In addition, an increased amount of storage is needed to represent the satisfiabilityin-
dicators as counters. However, these costs are reasonableif large multi-valued sets are expected as values for multi-valued
attributes, because this strategy replaces the need to perform individual look-ups of the itemsin these sets with alook-up of
a single number.

7.2 Incorporating Cycles

The SMX strategy as originally proposed requires that the query path be free from cycles, in that it associates each indexed

object with only a single satisfaction indicator. However, a given path query

PQ; = C;1.[0]4; 5.[0]4; 5. ..[0]A; n0value couldincludeagiven class/attribute C; . Ay, in multiple positions. For exam-

ple, Figure 16 depictsasimple schemain whichavirtual classPathSelect3isdefined usingthequery Per son. car . nechani c. car.
< 1000. We cannot use the SMX solution as presented to maintain this class because agiven Per son. car entry could

lead to either apositive or negative satisfaction indicator, depending on itspositioninthe path. E.g., thesatisfactionindicator
associated with car1 should be positiveif it appearsasthe seconditeminthepath (per sonl. car 1. per son2. car 2. 800),

but should be negative if it appears as the fourth item in the path (per son2. car 2. per sonl. car 1. 5000).

price

$5000
car, g g
carl mechanic
personl ==
\y car mechanic
% ——> $800
car2 price

person2

PathSelect3 := select from Person where
[:p | p.car.mechanic.car.price < $1000]

Figure 16: The PathSelect3 class includes the Person.car attribute in two positions.

We can extend the SMX structure to handle classes that appear multiple times in a path query by ordering the satisfac-
tion indicators of each entry according to path position and associating the index with akey correlating the order with path

21

position. Figure 17 shows the SMX structures that would be associated with the instances of Figure 16. We would corre-
spondingly extend our definition of the Sat Tnd() functionto takean optional additional parameter of position in the path. If,
for example, person2 were now to change the value of itscar attribute to carl instead of car2 then we would be recognize
that SatInd(carl, 4) returnsf al se, and thusthat the satisfaction indicator of the car1.person2 entry in the Car.mechanic
index should be updated to false, which in turn causes the position 2 satisfaction indicator of the personl.carl entry in the
Person.car index to changeto f al se.

PATH: person.car.mechanic.car.price < 1000
) 1

2 3 4 5
Index on Person.car Index on Car.mechanic index on Car.price
car Person mechanic Car price Car
carl | {{T,F}, {personi}} persont {F, {car2}} 800 | {T,{car2}}
car2 | {{F,T},{person2}} person2 {T, {cart}} 5000 | {F, {car1}}

Sat. Ind. order: {2, 4}

Figure 17: We can extend the SM X structure with an ordered list of satisfaction indicators.

7.3 Sharing SM X Index Structures

GivenaclassC; and an attribute A; 1 of classC;, C;. A; 41 could appear in multiple path queries. The relationship between
any two of these path queries must be one of the following:

1. Thetwo path queries could share the subpath C;.4; 1+ . . . A, and end on an identical predicate on A,,, in which case
the two views can share satisfiability indicators for the C;. 4; 11 .. . Cp—1. A, indices.

2. The two path queries could share the subpath C;.4; 4+ ... A, and end on different predicates on A,,, in which case
the two views cannot share satisfiability indicators, but the indicators can be ordered to exploit the subsumption of
predicate conditions in such away as to facilitate possible early termination of evaluation.

3. Thetwo path queries could share the subpath C;. A; 41 ... Ag, j < k < n, inwhich case the two views cannot share
satisfiability indicators.

In order to maximize the sharing of index structures for cases 2 and 3, we propose to extend the SMX organization to
associate multiple satisfiability indicators with each C;.A; 1 index entry. The disadvantage of such an extension isthat it
increases the storage space needed for each satisfiability indicator, but the advantage is that now the multi-index portion of
the SMX structure can be shared amongst multiple path query views. For example, Figure 18 shows the SMX index for
Per son. car s that would result if we wereto extend the schemain Figure 1 with an additional class PathSelect2, defined
using the query sel ect from Conpany where [:conmpany | conpany. Jowner.car = car 1 (sothat the
two paths share the Per son. car s index structure).

Car Person
KEY | VALUE

carl [{{True, True}, {personi}}

{{True, False}, {personl,

car2 person2}}

car3 |{{False, False}, {person3}}

~ Index on Person.cars
(Sat. Indicator order: PathSelectl, PathSelect2)

Figure 18: Sharing the Per son. car s SMX structurefor two virtual classes.

22

8 Reated Work

Project-Select-Join Views. Although traditional relational databases don’t have complex attributes of the object-oriented
variety, foreign keys allow tuples to include references to other tuples. Multiple tables can be “joined” using foreign keys
to form arelational equivalent to the object-oriented aggregation hierarchy. The relational equivalent of a path query is a
select-project-join (SPJ) query, in that finding tuplesfrom a different table that join with a given tupleis similar to the act of
traversing a given object’s attribute link.

Notethat path query views, asdefined in this paper, are less powerful than the more general select-project-joinviews. We
do not yet support aggregate functions, and we assume constants in predicate comparison functions (as opposed to compar-
isons with other components of the path). However, in the future we hope to adapt our SMX solution to address these more
complex problems. A common expense of relational SPJ and object-oriented path query views is the cost of finding ajoin
match in arelational table / following areference. Our SMX solution allows us to avoid such traversals.

A number of researchers have investigated the problem of maintaining materialized SPJ views. Gupta and Blakeley
present formal partial-information-based view maintenance techniques that infer knowledge about the state of underlying
base relations using local information (such as the view definition, the update, the current view materialization, and vary-
ing amounts of base relation replicas). They identify classes of materialized views according to the amount of information
needed to maintain them in the face of updates[5], and demonstrate necessary and sufficient conditions for determining the
amount of information needed to update a materialized select-project-join view.

Segev and Zhao propose ajoin pattern indexing technique for materialized rule-derived data that allowsthe identification
of join completion without reading base relations [17]. A join pattern relation is a precomputation of complete (all join
attributes instantiated) and incomplete (not al join attributes instantiated) joins that satisfy the constraints of arule. Join
pattern indexing represents join relationships between existing tuples. These join patterns are similar to our satisfaction
indicatorsin that they facilitate the incremental maintenance of materialized rule-derived data by marking data records that
satisfy rule constraints. Join pattern information more closely resembles a path index than a multi-index, and thus needs to
be maintained in the face of all updates (unlike the SMX satisfaction indicators).

Shekitaand Carey selectively replicate individual datafieldsin order to improve query processing performance by elim-
inating some functional joins[18]. Although the problem of maintaining the consistency of these replicated fields does not
benefit from our satisfiability indicators because the replicated fiel ds represent endpoint objects (as opposed to the head point
objects materialized in our path query views), thetask is similar to that of maintaining materialized path query viewsin that
both tasks require a means of inverting the queried path in order to handle updates to references along the path. Shekitaand
Carey create special link objectsto maintaininverse mappingsthat associate objectswith the objectsthat referencethem[18].
Theselink objectsarelike the entriesin amulti-index, except that the database objects maintain referencesto the link objects
and thelink objects maintain referencesto the link objectsthat precede them along the aggregation graph. However, because
such references areimplemented as stored oids rather than as direct pointers, following one link object to another requires a
retrieval of the link object by oid, which is equivalent to the retrieval of a multi-index record in our SMX solution.

Konomi et a. [10] use superkey classes to maintain consistency for aparticular typeof join classformed along an existing
path in the aggregation graph. Superkey classes facilitate the incremental update and elimination of duplicatesfor material-
ized views produced by relational expressionsthat include projections. Instead of using external index structures, the authors
provide aprocedure that transforms class schemas to add new classesthat will allow it to satisfy the super-key condition and
thus permit incremental updates of the join class. They do not addressthe more general problem of path query views, which
isthe focus of this paper, nor do they provide any cost models or performance analyses.

Function M aterialization. Thework of Kemper et al. on function materializationis closely related to OODB view ma-
terialization [7, 8]. Thegoal of function materialization is the precomputation and maintenance of function results. Similar
to the SMX satisfaction indicator solution, Kemper et al. associate a “validity” value with each object that can serve as an
argument to a function. However, our satisfaction indicators indicate whether or not the object can be used to reach end-
pointsthat satisfy the path view predicate and allows usto avoid evaluating updates that don’t affect view membership. The
“validity” value, on the other hand, indicates whether or not the object has been updated and thereby invalidated the stored
result. The goal of keeping “validity” valuesisto facilitate lazy rematerialization of the function result.

Indexing Techniques. We also considered the work of previous researchers who have compared index structures when
designing our SMX organization. In particular, the work of Bertino et al. informed us of the costs and issues involved in
the performance of basic operationswith traditional index organizations[2, 4]. However, notethat traditional indexing tech-
nigques have the goal of supporting the evaluation of queries. Our primary indexing goal, on the other hand, is to reduce the
overhead of propagating an update on a single object to materialized path query views.

23

9 Conclusionsand Future Work

To the best of our knowledge, oursisthefirst work to identify and address the specific needs of the path query view problem
for object-oriented databases and to present a solution that istailored to these needs. We introduce a new Satisfiability Indi-
cating Multi-Index (SMX) organization, which maintains partial information indicating whether or not the endpoints reach-
ablefrom an object satisfiesthe query predicate. Weidentify a number of tasks required to maintain materialized path query
views that involve multiple forward traversals with traditional index organizations. The SMX organization can be used to
eliminate these forward traversals. We al so present cost model sand compare the performance of the SM X organization with
regardsto cal culating the effects of updates upon viewsto that of the multi, nested, and path index organizations. The results
of our evaluations indicate that the SMX dramatically improves upon the performance of traditional index structures with
respect to the problem of path query view maintenance.

Future Work. Although the MultiView model currently supports multi-valued attributes, it does not yet support the defi-
nition of views using aggregation functions over multi-valued attributes (e.g., sum max, or m n). Support for such views
would be a valuable contribution to MultiView’ sfunctionality. Furthermore, although a number of researchers have studied
the problem of maintaining materialized aggregation functionsin relational databases[15, 6], to the best of our knowledge,
this problem has not been examined in an object-oriented context. Because the object-oriented model providesfor the defini-
tion of collection classes, an OO approach to this problem might extend the construct of the collection class with an instance
variablethat would storethe result of the aggregation function (similar to arefine view) and anindicator (like our satisfaction-
indicators from the path query view problem) that represents the status of the aggregation value instance variable.

References

[1] E.Baralisand S. Ceriand S. Paraboschi. Conservativetimestamp revisited for materialized view maintenancein adata
warehouse. Proceedings of the SGMOD Workshop on Materialized Views: Techniques and Applications, pages 1-9,
1996.

[2] E.Bertinoand P. Foscoli. Index organizationsfor object-oriented database systems. | EEE Transactions on Knowledge
and Data Engineering, 7(2):193-209, April 1995.

[3] J. Blakeley, P. Larson, and F. Tompa. Efficiently updating materialized views. SSGMOD, pages 61-71, 1986.

[4] S.Choenni, E.Bertino, H. M. Blanken, and T. Chang. On the selection of optimal index configurationsin OO databases.
In I1EEE International Conference on Data Engineering, pages 526-537, 1994.

[5] A. Guptaand J.A. Blakeley. Using partial information to update materialized views. Information Systems, 20(8):641—
662, 1995.

[6] V.Harinarayan, A. Rgaraman, and J.D. Ullman. Implementing data cubes efficiently. SGMOD, page XXX X, 1996.
[7] A. Kemper, C. Kilger, and G. Moerkotte. Function materialization in object bases. SGMOD, pages 258267, 1991.

[8] A.Kemper, C.Kilger, and G. Moerkotte. Function materialization in object bases: Design, realization, and eval uation.
| EEE Transactions on Knowledge and Data Engineering, pages 587—608, 1994.

[9] W. Kim and J. Seo. Classifying schematic and data heterogeneity in multidatabase systems. |EEE Computer, pages
12-18, 1991.

[10] S. Konomi, T. Furukawa, and Y. Kambayashi. Super-key classes for updating materialized derived classes in object
bases. In International Conference on Deductive and Object-Oriented Databases, pages 310-326, July 1993.

[11] H. A. Kuno and E. A. Rundensteiner. Materialized object-oriented views in MultiView. In ACM Research Issuesin
Data Engineering Workshop, pages 78-85, March 1995.

[12] H.A.KunoandE. A. Rundensteiner. Augmented inherited multi-index structure for maintenance of materialized path
guery views. In ACM Research Issues in Data Engineering Workshop, March 1996.

[13] H. A. Kuno and E. A. Rundensteiner. The MultiView OODB view system: Design and implementation. In Harold
Ossher and William Harrison, editors, Accepted by Theory and Practice of Object Systems (TAPOS), Special 1ssue on
Subjectivity in Object-Oriented Systems. John Wiley New York, 1996.

[14] H.A. Kunoand E. A. Rundensteiner. Using object-oriented principles to optimize update propagation to materialized
views. In |EEE International Conference on Data Engineering, pages 310-317, 1996.

24

[15] D. Quass. Maintenance expressions for views with aggregation. Proceedings of the SGMOD Workshop on Material-
ized Views: Techniques and Applications, pages 110-118, 1996.

[16] E. A. Rundensteiner. MultiView: A methodology for supporting multiple views in object-oriented databases. 1n 18th
VLDB Conference, pages 187198, 1992.

[17] A. Segev and J. L. Zhao. Efficient maintenance of rule-derived data through join pattern indexing. In International
Conference on Information and Knowledge Management, pages 194205, December 1993.

[18] E. J. Shekitaand M. J. Carey. Performance enhancement through replication in an object-oriented doms. SGMOD,
pages 325-336, 1989.

[19] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenancein awarehousing environment. In SGMOD,
1995.

25

