Extended Aggrgation Relationships for Process
Specification and Enactment in AstiDatabases

Nauman Chaudhry, James Moyne, and Elle A. Rundensteiner
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, Ml 48109-2122
email: {chaudhry, moyne, rundenst}@eecs.umich.edu

Abstract: Process specification in arety of domains, such asperiment modeling, erk-flow modeling, and process-

flows in semiconductor maratdturing, is typically characterized by recuesspecification in terms of sequences and
alternatves. Aariety of models ha been proposed for the specification of such processes. In partibjgat-oriented
techniques hae been used for acliaeg various desirable features (e.g., reusabifitgintainability etc.) in the process
specification and aste databases 1@ been suggested as possible platforms for process enactmeetetion the one

hand object-oriented models for process specification lack an important feature of object-orientation, namely the ability
to omganize processes as classes with inheritance support, and on the othartwasdovoblems, such as lack of meth-
odological support for aste rule definition, analysis, and maintenance, stand in e off successfully empjying

active database technology for process enactmertak& better adantage of both object-oriented techniques andecti
database technologye present a compreheresiframevork for process specification and enactment, whickiges an
integrated solution utilizing ideas from both these domains. This isvechi®y deeloping PSOM (Process Specification
Object Model) which is an object-oriented model wixpleit aggreyation constructs andeended sub-typing relation-

ships for these meaggreation constructs. ¥shaev the use of PSOM for defining processes using the gafipa con-

structs and arranging these processes into class hierarchies based on the formal types of the processes. In addition, we
establish guidelines for defining acirules for process enactment on PSOM process specificatieredst\pree that

the rule definition guidelines lead to modularized rule sets which simplify the analysis of terminatidorbeftective

rules defined in a PSOM process database.

Keywords: Active database, object modeling, process specification, rule definition, process control.

1 Introduction

Process specification in anety of domains, such agperiment modeling, ork-flow modeling, and process-fs in
semiconductor manatturing, is typically characterized by recuesspecification in terms of sequences and altegsati

Given the importance of these application domainsargety of process specification modelvéddeen proposed in

recent years. Most of these models are based on Petri nets, state charts, weighted and colored graphs, or enhancements of
these basic techniques [Beck94], [Hsu96]yihann94], [Ellis93]. All of these techniques all@xplicit representation

of the process sequence structure. TRfdi€it representation can then be directly mapped to an appropriate database
schema for persistent storage of the process instances.

Object-oriented techniques and wetdatabases i@ been used as implementatiehicles for a number of these pro-
posals, with process specifications being mapped to object-oriented databases (OODBs)eandeactencoding trig-
gering conditions, used to carry out the enactment of the processvéioon the one hand object-oriented models for
process specification lack an important feature of OODB data models, namely the abilijgnineoprocesses in class
hierarchies based on sub-typing relationships between the formal types of these processes. On the o#iieuband v
problems, such as lack of methodological support fovectile definition, analysis, and maintenance, stand in dlye w
of successfully emplang active database technology for process enactmertak better adantage of both object-ori-
ented and acte database technolggye present a comprehersidata model and framverk for process specification
and enactment, which prides an intgrated solution utilizing ideas from both these domains. This isvachi®y deel-
oping the notion of process agga¢ion relationships tcatilitate process specification and @etiule definition for pro-
cess enactment.

We examine the main requirements for specifying processes and use these requiremeam®poadormal process
specification data model called Process Specification Object Model (PSOM). PSOM contailypeneonstructors

which can be used to specify a process in terms ofxeemded (has-a) aggation relationship between itself and
sequences and alternegs of component processese Wien define sub-typing relationships for PSOM thusigimy

the capability of aganizing processes defined using these type constructors in class hierarchies, and hence enhancing
reusability of process specifications. The utility of this feature, which is an essential requirement for reuse of processes,
has been recognized in the literature [Hsu96]IBi94]. But, to the best of our kwmtedge, no wrk has been reported

as of nav on dereloping notions of sub-typing and class inheritance for processes.

Some of the &y difficulties in deeloping applications using ae#i databases are the lack of methodological support for
active rule definition, and the dii€ulty in analyzing the belér of active rule sets [Simon95]. In this papae propose
solutions to these dédrent problems in the comtieof process enactment bymoiting particular characteristics of
PSOM. W present design guidelines for defining\actules for enactment of processes specified using PS@Nhai
prove that the PSOM rule definition framerk leads to the definition of modularized rule sets whose termination-beha
ior is easy to analyze. The research presented in this paper thigeprsolutions for both process specification as well
as process enactment.

The rest of the paper is structured as fefioln Section 2, we metite the gtensions for process specification amd-e

cution by discussing the requirements for process modeling and enactment. In Section 3, we pnesenteahobject

data model for process specification. In Section 4, the need for definivey radtis for processcecution and control is
discussed, design guidelines for defining such rules are presented and the utility of these techniques in leading to the def-
inition of modular and tractable rules is illustrat¥# discuss the features of the proposed model and contrast it with
related vork in Section 5, while Section 6 contains some conclusions and directions for fatire w

2 Requirements br Process Specification and Enactment

As mentioned before, process specification and enactment &oresyvof domains, e.g.xperiment modeling, ork-
flow modeling, process-fles in semiconductor maradturing, shares certain featureswéeer, to motivate our verk
and define its scope, in this section we address process specification and enactment irxtloé agadicular domain,
namely semiconductor maracturing. In Section 5 (relatedovk), we discuss the commonalities andfeténces
between the requirements for this domain aaibus other domains.

2.1 Process Specification

Semiconductor manatturing processes talfricate a &fer are specified as sequences and alteesatf other pro-

cesses and/or steps which need toxszwted in order toabricate that afer [Durbeck93]. The sub-processes in turn

may consist of other processes and steps, whereas steps are considered to be non-decomposable. This thus leads to a
nested specification of processes with a “parent-process” atvahelézomposable into a sequence of “child-processes”

or “child-steps” at anothervel and so on. The generic term “child wityi” will be used when we dohwwant to mak a

distinction between a child-step and a child-proceé#salso term a parent-process to be anetdevel (of nesting), and

a child-actvity to be at a highelevel (of nesting). The entire hierarchical structure, consisting of all the processes and

steps from the lwest level of nesting to the highest, is called a process-fldhe process at the root of a procesg-flo
corresponds to the class off@rs which may beabricated by xecuting \alid instances of this processvilo

To develop the releant concepts for process specification, wes poesent a simplifiedxample of a process-floin
semiconductor mana€turing (omitting attribtes to lkeep the xample simple). Consider the process C-MO&giin
[Figure 1]. This process is to bexecuted todibricate C-MOS transistors. C-MOS consists of the child-procefisort
mation and the child-step Metallization. Instances efl\érmation consist of a sequence of instances of the process
class Vafercleaning, the step class Deposition, the step class Oxidation and the process class Photolithafedince W
cleaning and Photolitho are processes, each of these is further composed of eftiksa&ikample 1 implies that we
want to be able tepecify pocesses as sequences of othddeactivitiesthus leading to nested definitionseoa number

of levels. C-MOS is at the West-level of nesting, leel 0, Well-formation and Metallization are atvkd 1 and so on.

Level O C-MOS Legend

| Step:

<&

| Process

Sequenced aggregation<>
Level 1 Well-formation Metallization

| Alternatives: O

<|> Is-a: q

Level 2 Wafer-clean Deposition Oxidation Photolitho
Level 3 Water-rinsing Spin-coat Expose Develop

Organic-clean | |Inorganic-clean

Order of the drawing from left to right corresponds to the sequencing order.

FIGURE 1. The C-MOS Process and its Descendants.

The relationship between the class of a parent-process and the classes of its chigd-&tnot a class-subclass rela-
tionship. For exkample, the WlI-formation class does not generalize the Photolitho class and therefore is notdasgper
of Photolitho. Ratherthe Well-formation class is defined as being composed of a sequence of other (chitg}acti
classes. Therefore the semantics ofrtlationship between a peess and itshild-activities ae those of anggregation
relationship i.e., has-arelationship, rather than those of iara relationship. In &ct, we say that a parent process is
defined via aequencedggregation of its child-actities whereas carentionally has-a relationshipsugathe semantics
of being unordered [Kim89], [Liu92].

In Figurel, note that the Wfercleaning process can beeeuted in tvo ways, either as a sequence of the stegaiiix-
clean and \&terrinsing or the sequence of steps famic-clean and Vaterrinsing. 1 handle such cases, we need to
allow specification of rcesses in terms of alternative sequencehifaf-activities.Instances of \&fercleaning are then
allowed to be wlid instances of anof the specified alterna® sequences.

Now consider that a process engineer decides to adevalass of Photolitho processes, called Photolitho-1 to the
schema described alm Photolitho-1 diers from Photolitho in that Photolitho-1 has an additional child-step Post-bak

after the sequence of all the child-steps of Photolitho [Figlur8ince the Photolitho-1 class is a refinement of the Pho-
tolitho class, this ne class should be definable as a sub-class of the Photolitho class so as to profit fromntiageslv
provided by the concept of inheritance. In OODB models for a class B to be a sub-class of another class A, the type asso-
ciated with B should be a sub-type of the type associated with A [Abiteboul95]. Since the processes are defined in terms
of the sequenced aggedion relationship, this requires thhe piocess specification model should include the notion of
sub-typing for sequencedgregation relationshipsThus &en though indiidual processes are specified using agmre

tion (i.e., has-a) relationships between a parent process and its chiltlieacthere is also the need to arrange processes

in superclass/sub-class (i.e., is-a) relationships thaterfak use of the inheritance mechanisms of the object-oriented

. The aggregation
Photolitho <] Photolitho-1 relatio%gshig for
is-a Photolitho-1 is

shown in dashed

|

| .

A lines.
< <>

Spin-coat Expose Develop Post-bake

FIGURE 2. The Photolitho and Photolithol Pr ocesses.

2.2 Process Execution & Contol

When a vafer is to bedbricated, an instance of the corresponding process is selected and the resultant proisess-flo
executed. Thexacution of the process-flowill result in the &ecution of the child-aatities at level 1, and in the case of

the child-actiities that are processes, theeution in turn of the child-aeities of these child-processes, and so on. The
fabrication of a \afer thus results in thexecution of a number of processes and stepsfatetift levels of nesting in the
process-flar. Thusprocess recution has the notion of a statehich specifies the processes and steps that een
executed at eachvel, those that are currently undeeeution, and those that are going to keceted in the future.

However, as the eecution of a process-floinstance proceeds, frequently the need to control tferviabrication
requires changes to the original processing sequence specified in the preceBkidlas caused by thadt that pro-
cesses often drift with time due toariety of factors. Performance may also change drastically after maintenance opera-
tions. Hence as there is an ongoing necessity to ensure optimal processingde tifeafl theseariable fctors, there is

a subsequent need for carrying out contvelrdhe processkecution where, depending upon the state of thiemdue to

prior processing, the dastream processing is modified. Examples of such changes aoekrér@peating a part of the
processing sequence already carried out on #ierto correct errors in the processing), and feedgahwontrol (mod-

ifying the processes yet to be carried out on thfento correct errors in the processing) [Larrabee91]. Thus we need the
ability to specify contl actions @er the pocess specificationThese control actions can modify processingfoy
example, requiring rex@cution of a part of the processvilmr by substituting parts of the original process¥floith

valid instances of analternatve process sequences specified in the schema.

Active databases, with their capability to define and automaticadtyuée rules, prade a natural implementatioreki-

cle for process»ecution. Defult rules can cause theegution of the dierent processes and steps in the original pro-
cess-flav, while control knavledge can be encoded in terms of control rules. These control rules can trigger appropriate
control actions during procesgeeution wheneer the need arises. As axaeple, consider a control rule defined to
carry out re-wark on the process-flodescribed in Section 2.1. An error occurs in carrying out the Spin-coat step of the
Photolitho process.dlcorrect this erroithere is a need to rexecute the Deposition and Oxidation steps, and then carry
out Expose and xelop steps of Photolitho. This control action may be encoded via theifadloule:

Rule 1: ON step Spin-coat of process Photolitho of procedisfd¥mation completesxecution,
IF desired resist-thickness - actual resist thicknes%o;>

DO repeat the Deposition and Oxidation steps withetarmodified byi%, and then carry out Expose andvBlep
steps of Photolitho.

It has been noted that one of the hindrances in the acceptance®fdattibase technology is thefidiflty in defining
and maintaining rule sets whoseseution is predictable [Wom96]. Therefore, to present agtidatabase technology as
an attractie wehicle for the implementation of proces®eution, therule programmer should be guided towdardefin-
ing rules that ag easy to analyze and whose behavior ésljgtable

Having discussed the requirements for process specification and enactment, ixt tin rsection we first present an
extended object model for process specification, and then describe the use of this proposed model for the definition of
easy-to-analyze ag® rules @er the process specification.

3 Process Specification Object Model (PSOM)

In this section, we present PSOM, atteeded object data model that alkspecification of process aggaéions in
terms of sequences and altervedi of processes and steps. PSOM also includes definitioeofded sub-typing rela-
tionships for these process aggations and we skiothe use of these features for process specification.

3.1 Base Model

We use the object-oriented data model presented in [Abiteboul95] as the base model for defining PSOM. This data model
includes alues and objects. Aalue has a type. This type is recuedy definable from atomic types and the set and tuple

type constructors. Object identity is one of the atomic types. An object has an identity and a state whitleisAa v

object belongs to a class. Alue (and thus the corresponding object) can refer to other objects via their identities. Belo

we give a brief description of this model, restricting ourseslto the parts of the model that we will use ldter a more

detailed discussion see [Abiteboul95].

Assume thexstence of a number atomic typesand their paiwise disjoint domaingnteger, string, bool, float. The
setdom of atomic valuess the union of these domains. The elementioafi are callecconstantsAlso assume an infi-
nite setobj = {04, 05, . . . } of object identifies (OIDs), a setlass= {cy, Cy, . . .} of class namesand a seatt = {A;, A,,
.. .} of attribute namesA special constantil represents the undefinedlwe. All objects in a class Y& comple values
of the same type. The type corresponding to each class is specified by the OODB schema.

Definition 1: Typesare defined with respect to agn selC of class names. Tharhily of types wer C is defined so that:
a) integer, string, bool, andfloat are types;
b) the class names (are types;
c) if Tis a type, thent} is a (set) type;
d) iftq, ..., T, are types anfy, . . .,A, O att are distinct attribte names, them\}: 14, . . .,Aq T4] is a (tuple) type.
The set of typeswer C together with the special class naamy are denotetypegC). The virtual clasany senes as the

unique root of the is-a hierarghMe associate with each class class a typeo(c), which dictates the type of objects in
this class.

The class hierarghhas three components: 1) a set of classes, 2) the types associated with these classes, and 3) a specifi-
cation of the is-a relationships between the classes.

Definition 2: A class hiearchy is a triple C, o, <), whereC is a finite set of class names,a mapping fronC to
typedC), and < a partial order dt.

Definition 3: A subtyping elationshipontypegC) is the smallest partial orderover typegC) satisfying the follaing
conditions:
a) if ¢ < ¢y, thenc; < ¢y;
b) if 1; < 17" for eachi O [1, n] andn < m, then
Aty WA T - WA TR STAC T - LAY T
c)ift <1, then{t} <{t’}; and
d) for eactr, T < any (i.e.,any is the top of the hierargh

A class hierarch (C, o, <) iswell-formedif for each pairc,, ¢, of classesg; < ¢, implieso(c,) < o(cy).

Definition 4: A schemacontains a well-formed class hieraydlC, o, <) whereo is a mapping fronC to typegC) of
tuple type only*

3.2 Extending the Object Model ér Process Aggegation Relationship

We naw extend the abee formal model so as txglicitly model the process ag@agion relationship and define sub-typ-
ing for this relationship. & examples in Section 3.2 and Section 3.3, we use the schema described in Section 2.1
(Figurel and Figure?).

3.2.1 Adding New pe Constructors: SEQ and ALT

We add tvo nav type constructors SEQ and ALThe SEQ constructor is used to define sequences. Inforgiatn
typesty, . . ., T, the SEQ type constructor defines agpe, whose &lues are sequences aflives belonging to types
14, . - ., T respectrely. Formally the interpretation of type SEQ iven by:

dom(SEQ(y,T) = {SEQ{4, . . .,vy) |v, O don(t;),i =1, ...n}, and

dom(SEQ(y) = dont(ry).
The ALT type constructor is introduced to define altemesti Informally given typesq, . . .,T,, the ALT type construc-

tor defines a ne type, whose alues are thealues belonging to grof the typegy, . . .,1,,. Formally the interpretation of
type ALT is given by:

dom(ALT(tq, . . ., 1)) = {v; | v O don(t;), for somei O [1, n]}; (i.e., ALT has &clusive-or semantics).

3.2.2 The Attribute p-spec

The SEQ and AL constructors can be used to define the childkéies of a process in terms of a sequenced agtjon
of alternatves and sequences of other process and/or stepisitidduce an attrilie p-spec(short for process specifica-
tion) as a special atttilbe for modeling the child-agities of a process.

Example: The type of the p-spec attitib for the Photolitho class is: SEQ(Spin-coat, Exposeelop).
By composing types defined by SEQ andTAlke can define gnallowable alternatie process/step sequences when
specifying the child-actities of a process.

Example: The type of p-spec for theal#f-cleaning process class can beegibe as: SEQ(AL(Organic-clean, Inor-
ganic-clean), \eterrinsing).

3.2.3 Extended Emily of Types

Types created with the proposed SEQ and Afpe constructors need to be prated with the xdsting types of the
object model. Our goal is to add theantype constructors SEQ and Also that types defined with these constructors
can be meaningfully composed with each gthéth the original types, and used recuesy to define n& process aggre-
gations.

¢ To recursiely huild process agggations we alley free composition of types constructed by using &ind SEQ.
* The child-actvities of a process can only be processes and/or steps, therefore we use ahd SEQ type construc-
tors aver only class names corresponding to process and step classes.

Types are defined with respect to @egi setC of class names.oTpermit recursie definition and composition only
among alid types, we introduce sim-types (simple types) and pf-types (processsiles). Sim-types correspond to the
types in the base model (Definition 1), whereas pf-types are introduced to specify the procgati@ygekationships.

1. We ignore the presence of methods in the data model for simphcity that thexdensions we propose to the data
model do not ééct the diferent issues in defining methods, such asgance, inambiguity of method inheritance, etc.

Similarly a class is termed to be either a sim-class (if the class does not model a step or a process) or a pf-class (if the
class models a process or a step).

Definition 5: In PSOM the dmily of types wer C is defined so that:
a) integer, string, bool, float are sim-types;
b) the class names @ are either sim-types (if the class is a sim-class) or pf-types (if the class is a pf-class);
c) if T is a sim-type, thent} is a set sim-type;
d) if 14, . . .,1,, are either sim-types or pf-types afd . . ., A, distinct attritute names, theA[: 14, . . Ay Tl is a
tuple sim-type.
e) iftq, . . .,1, are pf-types, then Al(t4, . . .,T,) is an ALT (or alternatie) pf-type;
f)if 1y, . . .,14 are pf-types, then SEQ)(. . .,1,) is a SEQ (or sequence) pf-type;
The set of all sim-types and pf-typegeoC together with the special class naamy are denotetypeqC).

3.2.4 Subtyping Relationshipsdr PSOM’s Family of Types

To define the notion of sub-typing for processes xteral the sub-typing relationship (Definition 3) to the sequence and
alternatve pf-types constructed to define process agdgi@ns. The definition of sub-typing for all other types in Defini-
tion 5 remains the same as in Definition 3.

Definition 6: Subtyping for Sequenceypes.

In traditional object-oriented models, a sub-type needsue &lathe attribites of the supéwype plus possibly some
additional ones. There must also be a sub-type/gyperrelationship between the attribs common between the
sub-type and the supgmpe. The same concept directly carrigerdor sequence types. When defining process aggre-
gations, we require a sub-type toshall the child-actiities of the supetype (in the same order) plus possibly some
additional ones. There must also be a sub-type/gyperrelationship between the corresponding childgiets of

the sub-type and the sugtgpe. Formally:

SEQf, . . ., Ty < SEQY, . . ., T,) only if
for eacht;” with i [J [1, n], there is a; with j [J [1, m], such that; <7;" and
for ary 1/, 1/ with k<l andk, | [[1, n] there &ist 1o, T, with 0 <p ando, p I [1, m] such thatt, < 7,/ and < T/

Example: The type of the p-spec for the Photolitho process claseislyi: SEQ(Spin-coat, Expose,\2&p). Nav
Photolitho-1 is defined with p-spec SEQ(Spin-coat, Exposes|De, Post-bad). Thus the supeaype/sub-type rela-
tionship holds between the p-spec atttéhof Photolitho and Photlihol.

Definition 7: Subtyping for Alternatie Types.

Following the definition of sub-typing for union types in [Cardelli84], the alteraatib-type can be defined by using
the ALT type constructorer valid sub-types of a sub-set of types of the alteragBuper) type. drmally:

if T, < 7 for eachi O [1, n] andn < m, then ALT(ty, . . ., T,) S ALT(T{, . . ., Ty, - . . Tpy), and
if <t forsome O[1,n], Ty <ALT(Tq, .. .,Ty)

Example: Gien Waferclean with p-spec of type SEQ(A(Organic-clean, In-aganic-clean), Vdterrinsing)) and
Waferclean-1 with p-spec of type SEQ@anic-clean, Veterrinsing), by Definition 7 abee, the type of the child-
activities of Waferclean-1 is a alid sub-type of the child-astities of class \@ferclean.

Definition 5 extends Definition 1 of Section 3.1 to allmew types defined using SEQ and Rtype constructors, while
Definitions 6 and 7 modify Definition 3 toend the subtyping relationship to types defined via thesetypes con-

1. If the type checking for determininglid subtypes defined using the SEQ type constructor appears toptbastiyb-
typing definition can be restricted so that a sub-type isvalldo add actities only at the start and the end of the super

type.

pf-class Process
type tuple (name: string, p-spec: sequence)

sim-class Machine
type tuple (name: string, year-of-manufacture: integer)

pf-class Expose
type tuple (name: string, expose-time: double)

pf-class Spin-coat
type tuple (name: string, resist-thickness: double, use-machine: Machine)

pf-class Develop
type tuple (name: string, expose-time: double)

pf-class Photolitho inherit Process
type tuple (p-spec: sequence(Spin-coat, Expose, Develop))

pf-class Post-bake
type tuple (name, string, temperature: double)

pf-class Photolithol inherit Photolitho
type tuple (p-spec: sequence(Spin-coat, Expose, Develop, Post-bake))

FIGURE 3. Class Definitions f or the Sc hema of Figure 2.

structors. & leare the other definitions (Definitions 2 and 4) of Section 3.1 unchanged. Thus as in Definition 4, classes
are allaved to hae only the sim-type tuple.

3.3 Specifying Pocesses Using PSOM

Using PSOM we can modefine processes asvitay the special attrilte p-specto model the process aggation rela-
tionship plus other attrilies to model the traditional attnites associated with a class.
Definition 8: A proces$ has a tuple sim-type,\gn by:
[A¢: T4, . . A, Ty, P-SPEC: sequence] whekg, . . ., A, are distinct attribte namest;, . . .,T,are sim-types.
Since the child-actities of a process are defined in terms of a sequenced relationship between the parent-process and the
child-actiities, hence thp-specattribute has sequence pf-typarkhe schema of a process specification database one
can nav define a clasBrocesswith the attrilute p-spec (plus other attutes relgant to the application domain) and use
this class as the root of the process class higrafchan @ample, in Figur& we gie a set of possible definitions for
some of the classes stio in Figure2 (the class Machine has been added to the schema to illustrate ttisteoece of
sim-classes and pf-classes).
In summary PSOM:
¢ gspecifies processes in terms of a sequencedgadigne relationship between a process and its childities,
¢ allows specification of alternats among the child-agtties,
¢ s fully integrated with the base object model,
* supports sub-typing relationshipgen the process specification, thus wllyg definition of appropriate supelass/
sub-class relationshipser the process classes.

We can conclude then that PSOMdes all the capabilities required for process specification as characterized in Sec-
tion 2.1.

4 Process Execution & Contol

Having described a comprehewsimodel for process specification, wevneonsider the issuesviolved in processxe-

cution and control. In the prwus section, while defining processes we considered only the requirements for process
specification. In this section, we first discuss the use of PSOM to define process classes that can be used for defining pro-
cess gecution. As briefly discussed in Section 2.2 v&ctlatabases with their capability to define and automatioadly e

cute rules appear to pfide an attractie implementation platform for process enactmentvéyer, a number of issues

need to be resodd for successful emplment of actre databases foubding applications. W discuss these problems

in a greater detail in Section 4.2e\When describe moPSOM can be &ctively used as a basis for dealing with some of

these problems. Bpresent rule design guidelines for PSOM to address the problem of lack of design methodologies for
active databases and then yedhat these guidelines lead to the definition of modularized rule sets with easy-to-analyze
behaior.

4.1 Using PSOM or Process Enactment

While describing PSOM we only considered the requirements for process specification. The resulting definition of the
root Processclass though adequate for specifying processes, needs to be augmented for use in process enactment. As we
mentioned in Section 2.2, when afer is beingdbricated the enactmentnonment needs todep track of information

relating to the processecution. In a nely instantiated process-floall the processes are yet to eauted. On being

told to bayin execution by its parent process, a process P in turn tells its 1st childyactistart @ecution and then aits

for the child-actiity to finish its eecution. On being informed of this by the child-gityi, P starts xecuting its ngt

activity. When all the child-aatities hare been eecuted, P informs itsvn parent that it has finished itsegution. er

the process at the root of the procesexfthis means that thexecution of the entire process¥las complete. By aug-

menting the rooProcesstlass, it is possible to maintain this state information within each process asmectro

To maintain the state information within each process, a specialitdtsiiate is added to the ro®rocessclass. The
attribute state has the domain: “notxecuted”, “finished-gecution”, and “&ecuting child-actiity X", wherex is a non-
zero positie integer The state attribute of each process in awlg instantiated process-flois set to “not-gecuted”.
When a process P starteeeution, thestateis modified to “&ecuting child-actiity 1”. When the child-actity finishes
its execution, thestate of P is updated to secuting child-actiity 2” and so on. When all the child-adties hare been
executed, thatate of P is set to “finishedxecution”. Note that the statarable can be treated as an g&eThis can be
done by using a non-zero positivaluex to indicate that the process is in the stateeteating child-actiity x”, while
encoding the “notyecuted” and “finished»@cution” states via mative integers.

The description of procesgexution also points to the need of modeling another atitribf processes, namely the par-
ent-process. This is needed so that a process can inform its parent-process on finigeitigtits eAn attribte parent-
processcan be added to the roBtocessclass to address this need. This atitebrefers to the parent (if @nof a pro-
cess. Since we ant processes to be reusable in defining sequences, the type phrent-processshould not be spe-
cific to a particular parentubshould be generic to all possible parents. It should thus be dPtgpessand should not
be specialized when sub-classes of the lPwotes<class are defined.

With these rtensions, an augment@iocessclass that can sexas a root for the processes in Figliaay be defined
as shan in Figure4.

pf-class Process
type tuple (name: string, p-spec: sequence, state:int, parent-process: Process)

FIGURE 4. Definition of the A ugmented Pr ocess Class.

4.2 Utilizing Active Databasesdr Process Execution & Contol

Active database systems can monitor the database state and react to predefined situationspligihogtee action or
application requests. The desired hetiis expressed in terms ofzent-condition-action (ECA) rules. The rule syntax

can be described a@N eventlF conditionDO action, with the semantics: when #ventoccurs, if theconditionis true,
then carry out thaction

For carrying out process enactment,aiéf rules can be used to cause tkecation of the dferent processes and steps
as specified in a processvlowhile actie rules for control can be defined to encode contralvlguge so as to trigger
appropriate control actions during processcaition wheneer the need arises.

However, as has been noted in [Simon95], a number of problems need to bedeasdifill the promise of astée data-
base technologyrhese include:

¢ insufiicient methodological support for designing applications usingeanties,
¢ (difficulty in analyzing interaction of control rules, and
¢ difficulty in maintaining such applications as rules are added and deleted.

Important properties that need to be analyzed to understand thaobetianteracting rules include termination (i.e, is
rule processing guaranteed to terminate?) and confluence (i.e, is the final state of the database after rule termination inde-
pendent of which rule, among multiple eligible rules, is selectedkémution first?).

In case of actie OODBs, there are a number of other complicatogofs that are not present in relationahactata-
bases [Vilom96]. These include:

* when to use aaté rules and when to use methods, since\behean also be implemented using methods,
* alack of consensus onwa@ctive rules should be ingeated in the object-oriented model.

Different actie OODBs use diérent approaches for representing rules. These include defining rules as first-class objects
as, for @ample, in HIRC [Dayal96], defining them within class definitions as in Ode [Lieuwen96], or defining rules as
separate entities using special rule languages as in SAMOS [Geppert95]. When rules are defined as part of the schema,
these are typically restricted to one class and can only specify intra-object triggers. Representing rules as first-class
objects can ge more gpressional peer, including the ability to define interbject triggers. Hoever as has been

pointed out in [Kkmper94], rules spanning multiple classes do not conform to the object-oriented paradigm, since such a
definition does not respect encapsulation which Bra basic object-oriented principleofrocess control one may fre-

guently need to define rules that carry out contvel onultiple processes aarious nesting eels.

As an &le, consider Rule 1\gin in Section 2.2. This rule spans multiple process and step classeseihgstep
Spin-coat completeskecution) is at nesting Vel 3, as is the condition, whereas the actions cause modifications to be
carried out at both ‘el 2 and lgel 3. The oerall contat for the rule (Véll-formation process) is at nestingéé 1.
Clearly the rule violates the principle of encapsulation.

Programming and maintaining rules that arbitrarily spanynetasses can be arteemely dificult task, since the rule
programmer has to ensure that wiyedefined rule does not cause unforeseen interaction with other rules already defined

at these dferent classes. There is thus a need to guide the rule programmer in defining rules that can be easily analyzed,
yet hare suficient expressie paver. Unfortunatelythe deelopment of generic methodologies faiilding applications

using actve database systems has been hindered due to the afore-mentioned comlatating f

In emplging active OODB technology for process enactment, we feel that there are particular characteristics of our pro-
cess specification model that can be useddibithte actve rule definition, analysis and maintenance. Miv shav the
use of PSOM as a basis for defining rules for carrying out progesstmsn and control.

4.3 PSOM Design Guidelinesolr Process Execution & Contol Rules

To overcome the absence of desigh methodologies for defining aates, we nw present guidelines for rule definition
for process enactment.eMant to define an appropriate scoperowhich a rule may be defined so that the resulting def-
inition is tractable, while being didiently paverful. We also vant the process classes to be reusable so tifiertedif
parent processes should be able to specify the same process class as a child-process. Processeseas tharefatv
abstraction of sequences that can be reuseudiltbriav sequences.

10

Process classes specified using PSOMigeoa foundation for defining such re-usable processesrdpose the fol-
lowing guidelines for defining control rules on a process specified using PSOM:

Guideline 1 To limit the scope of interaction of rules, each rule has to be defined on a particular PSOM process class.
The rule can only refer to properties (i.e., atttés, methods or other rules) that are directly accessible from the process
class it is defined on. This means, that the ECA parts of a raetbide restricted to properties defined on the child-
actiities, on the parent, or locally on the process on which the rule is defined.

Guideline 2 Since the same process class should be re-usable in definipglifferent parent sequences, a rule defined
on a process can only refer to those properties of the parent that are common to all possibleygarantstlyefer to
properties that are specific to a particular parent. Thus when using a parent pacpeute is restricted to the properties
defined on the ro®roces<lass.

We hare used PSOM as a foundation for rule definition. Guideline 1 causes each rule towell-defined scope of
influence. Since we remain within the scope of the process on which the rule is defined, Guideline 1 leads to the defini-
tion of process classes which respect the principle of encapsulation. The restriction, due to Guideline 2, that only generic
parent properties can be used in rule definition implies that process classes can be easily re-used in @efining ne
sequences of processes. Additionadijpce PSOM pnddes a pwerful abstraction for all the child-aetiies of a pro-

cess, rules defined using these guidelivesdahe lack of gpressie paver of cowentional actte rules that are defined

within a class. Note that the rule guidelines are generic and are not specific to a particular rule definition laeguage. W
nowv shav some gamples of defining rules using the PSOM guidelines faudeéecution and for process control.

4.3.1 Rulesdr Default Execution

Using the rule definition guidelines, it is quite easy to define rules faulietecution. V¥ first define tw events for the
Processclass to accommodate the state transitionsx@cigion. The eent “executé can be raised to inform a process
to start its gecution, while theent “child-finished-executiori is added so that it may be raised by a childvégtito
inform the parent that it has finished ik®eution. Wth these eents defined on the roBtoces<lass, three rules defined
on theProcessclass are sfitient for defult execution as shen in Figure5. Rule 2 is used to start theeeution of a
process, Rule 3 for continuing theeeution of the process, while Rule 4 finishes ttexation of a process when all its
child-activities hare been eecuted!

Rule 2:
ON: execute,
IF: state equals not-executed,

DO: set state to 1; raise event execute for the 1st child-activity.

Rule 3:

ON: child-finished-execution,

IF: the number of child-activities > state,

DO: increment state from x to x+1; raise event execute for (x+1st) child-activity.

Rule 4:
ON: child-finished-execution,

IF: the number of child-activities equals state,
DO raise child-finished-execution for the parent.

FIGURE 5. Rules for Default Ex ecution.

4.3.2 Rulesdr Process Contol

The actual definition of rules for process control depends on the particular type of control actionga beaajen sit-
uation. For certain control actions, such as rerky this may require modifications to processes at multipkddeHav-

1. To handle the case where the completed process is at the root of the pregessiil completion of thexecution
of a process here is a need to check if the process indeed has a pateme¥®r ignore this for simplicity

11

ever, our rule definition guidelines restrict the scope of each rule. But, this apparent restriction doesetivesaver
of the types of control actions that may be encoded using rules. A control action spanning mudtipledg be defined
via a set of rules which trigger each other at neighborimgl/deand we claim that this technique avbgethe desired
result without violating the principle of encapsulation.

Example: Rule 1 (from Section 2.2) can be refined and the desired contreiobaedrecoded via the three rules
defined to conform to our guidelines aswhan Figure6. Rule 1a detects the error in the Spin-coat step and informs
the parent. At Wll-formation, Rule 1b is triggered which carries out corvectictions locally by rexecuting Oxida-

tion and Deposition, and thenaig passes control okecution to Photolitho. At Photolitho, Rule 1c causes correc-
tive actions by modifying the @ets of its child-actities

Rule 1a. Defined at Photolitho
ON: child-finished-execution,
IF: the child-activity is of type Spin-coat and desired resist-thickness - actual resist-thickness > a%,
DO: suspend processing; note resist-thickness error of 0% at Spin-coat caused suspension;
raise event child-finished-execution for the parent.

Rule 1b.Defined at Well-formation
ON: child-finished-execution,
IF: the child-activity is of type Photolitho and is suspended due to Spin-coat thickness error,
DO: execute Oxidation and Deposition;
after these steps finish execution inform Photolitho to execute.

Rule 1c. Defined at Photolitho

ON: execute,

IF: the state is suspended due to Spin-coat thickness error,
DO: execute the remaining steps with target adjusted by a%.

FIGURE 6. Refined Definition of Rule 1.

4.4 Rule Strata br Rule Termination Analysis

The guidelines presented in thepoals section lead to the definition of rules which when considereddodily have a

clearly specified scope of influence.davthough thalirectinteraction between rules may be limited to only the rules
defined within the scope of influence specified by the rule design guidelines, when analyzing a rule set we need to also
look at the possiblandirectinteraction among rules. In the absence of additional abstractions for partitioning rules into
sets with well-defined properties, the requirement to consider indirect interaction between releshmakoblem of
analyzing termination properties for the rules defined in a process specification datakaseyehard.

Stratification of actie rules has been recently proposed as a design principle for modularizationeofudes for easier
termination analysis [Baralis96]. Informallgtratification consists of partitioning rules into disjoint sets or strata. Rule
behaior is considered in terms of local interaction within anvittlial stratum and the global befia across strata. By
establishing the property of termination of ruleeution in indvidual strata, and ordering the strata into priorixels
such that the termination of highewédt strata is not &fcted by gecution of rules from ler level strata, it becomes
possible to establish properties of termination for the entire set v aates. © facilitate the termination analysis of
process control rules, wewapply this concept of rule stratification to refine our rule design guidelines.

For the process control rules, the walet stratification approach éent-based sétification This approach is used to
partition rules into strata and arrange these strata in a (partial) ordering of priority such that a rule stratum A is said to
have higher priority lgel than rule stratum B (or B < A), if rules in A cannot be triggered by rules in B. It is thus possible

to establish an gclic relationship between rule sets, and as long as thexedeition in each inglidual stratum termi-

nates, thexecution caused by gmule triggering in the system will terminate.

1. From the xample rules, the reader mightleanoticed that there is a need for some generic access methods for the
Process class. It should be relaly straight-forvard to add such methods, since the types of access is quite simple.

12

We nav define tvo strata of actie rules at each process class, called Det (for Detection) and Cor (for Correction). The
idea is that rules belonging to the stratum Det at a process P are fired when the need for control is detected, and the rules
belonging to Cor are fired when a correetaction is to be tan. The detection rules at a process P can cause o@recti

actions to be tadn by firing correction rules at P or correction rules at children Dfiése rules may also notify the par-

ent of the need for control by firing detection rules at the parent. The correction rules at P on the other hawddre allo

to fire other correctke rules at P or correug rules at children of. Hhus we refine the PSOM rule design guidelines and

add the follaving 3 guideline for defining aet rules for a process class P:

Guideline 3 Each rule defined at a process P has to be specified as belonging to either the stratum Det or the stratum Cor

Guideline 4:Det rules at P should be defined so that tan directly trigger only:
a) Det rules at the parent of P
b) Cor rules at P
¢) Cor rules at children of P

Guideline 5 Cor rules at P should be defined so thag ttan directly trigger only:
a) other Cor rules at P
b) Cor rules at children of P

Det Rules at P

Det Rules at
the parent of P

Cor Rules at Cor Rules at P

child-activities of P

FIGURE 7. Dependenc y Relationships between Rule Sets whic h can have Direct Interaction (the
arrow-head points to a set that can be trig gered by the set at the other end of the line).

These restrictions imply that the Det rules at P can cause direct or indirect firing of Det rules only on those processes that
are at a lever nesting leel than PSince the nestingVels in a schema are finite, the firing of Det rules wiérgually

terminate, as long as the firing of Det rules at each process terminates. Sidanyle firings can only be caused,

either directly or indirectlyby Det or Cor rules defined at either the loce¢le®r defined at a process at a higheelle

So, Cor rule firings from parent to child caraggo on only along a finite number of nestingele and as long as Cor

rules at each indidual process also cearge, ary rule eecution in the acte rule system will eentually conerge. \e

thus hae Proposition 1.

Proposition 1 If active rules in a process specification databapeessed in PSOM respect all€i?SOM rule design
guidelines, and the Det and Cor rules at eaclvithaiadl process camerge, the entire set of aeti rules will corerge.

Proof: Given in Appendix A.

We have thus preed that the PSOM design guidelines lead to the definition ekatties whose termination befar is
easy to analyze.

13

5 Related Work

An extended object-oriented model fogaoring semantics in agggation relationships is presented in [Liu92], [Liu93].
Composite objects are used as a mechanism of object queriem@lisers to remain within the framerk of compos-

ite objects when querying the database. Agafien relationships are also used as a means of encapsulationAbgaallo

the aggrgate object to freely use the methods defined on constituent objects. At the¢ypihile results in enabling the
definition of the constituent types to be re-used in the gggdype, and this feature is termed “aggt®n inherit-

ance’. We drav upon this idea by introducing the sequenced agdgjan relationship andxeloit it as a basis for encap-
sulation by using the Process type as a fundamental unit for process specification and rule definition. In additien, we ha
presented sub-typing relationships for sequenced gafipas. This represents a partial solution to the problem of defin-
ing sub-typing on general aggede relationships, which is mentioned as a posskténsion in [Liu92].

Process specification for anety of others domains, in particulaosk-flow modeling, shares mgrfeatures with the
specification of process-fis in semiconductor maragturing. Hence, the results presented in this paper will be applica-
ble and of use to thesanous domains. There are, of course, additional features particulaferemtiidomains. In the
case of hsiness wrkflows parallel gecution of processes can ¢gfilace. This does not happen in semiconductor manu-
facturing, where the processing on thefav can only be carried out sequentially

Various models he been proposed for specifyingsk-flow processes. These includarwus graph-based models for
process specification, includingfl@rocedures in [Hsu96] and colored, weighted graphs iynflaan94]. The utility of
organizing processes in class hierarchies has been recognized in [Hem 96, issue is not addressed in either [Hsu96]

or [Leymann94]. Both of these approacheswalftested definition of processes with control and data Sfzecification.

The notion of state for processegution is also defined rigorousljhe schema describes all possildeants of a pro-

cess gecution of a particular kind of process and triggers can be defined for picking partaidats/under diérent
conditions. Note that this diérs from our approach, where thealdf execution is specified via a schema and control is
encoded via rules. Bfeel that in domains l&ksemiconductor maraturing processes, where the possiblgadiens

from the dedult execution cannot alays be defined before hand and the control actions are subject to frequent change,
the use of rules permits easy adaptation of the process since rules can be modified much more easily than the schema.

A fairly comprehense object model for recurs specification of scientificxperiments in terms of alternagis,
sequences of and optionaiperiments is presented in [Chen95]. This object model has also been implemented on top of
commercial relational database management systems. Though specialization and generalixatoimehé models is
mentioned, yet sub-typing relationships faperiment models that can be used as means of defining sub-class/super
class relationships are not discussed.

The Mentor project described in pitke96] uses the formalism of state andatsticharts for verk-flow process speci-
fication. The emphasis is on automatically dieg an eecutable distribted work-flow from a formal specification and

the use of state charts is ofeeplary nature. The issue of arranging processes in class hierarchies is not addressed. The
same remark is true of [Ellis93], in which Information Control Nets are described for usekiflow process specifica-

tion, analysis and implementation. ever, the need for dynamic change amdeption handling is noted, both of which

we feel are praided by actie rules. The use of an object-oriented database for stodrigflew specification is dis-

cussed in [Beck94]. The specification mechanism is graph-baseejgdrgprocess sub-class/swptass relationships are

again not discussed.

Increasingly there va also been proposals for specifying processes via rules. In this approach, rules are used to define
the ordering of processes, altermatprocesses, etc., [Kappel95]. Note thatrein may of the approaches where pro-
cesses arexplicitly specified via graphs, rules are used to represent triggering conditions under which, e.g., one may
choose between dgrent alternatie processes [lyenann94], [Hsu96]. There tia also been approaches in which pro-
cesses are specified via a schema, which are then processed to automatically gemenatlesétir process enactment
according to the specified schema [Casati96].

It has been gued that the specification of processes via rules results in embedding the relationship anitieg) iacti
action statements of the rules [Casati96] and it fecdlf to use these rules to ackeean understanding of the progres-
sion of a process [Hsu96]. The use of specification mechanismsfiaitly represent the control flo (e.g., process
schema or graphs) produces models which not onligeaan intuitve understanding of the process structuue,for

14

which notions lile progression of the process can be easily defined. On the other handdis@em relately simple to

carry out changes when specification is done using rules, since one only needs to changanheuteleand not the
schema. Our approach, where a schema is used for specifyadt deécution while rules can be added for defining
exceptions wheneer required, praides schema specification mechanisms with the easy modification of specification via
rules.

Some of the dffculties in analyzing and maintaining aetirules hae been mentioned in Section 4, and these criticisms
would appear applicable to process specifications carried out using rules. Rule analysfiidtgpblem. Important
properties of rule bek@r such as termination and confluence candrg difficult or impossible to decide in the general
case [Ailen95]. D help the application geloper with rule programming and maintenance, modularization techniques
have been proposed in [Baralis96prRhe purposes of control rule definition for semiconductor naatwfing, we hae

used these techniques tordidp more specific guidelines and/aahaevn that the resulting rule base can be easily ana-
lyzed to check for termination.

There has been some research carried out on the conceptual designeoD&iiBs [Bichler94], bt comprehense

design methodologies still appear to be missingvéder, there hae been promising recent approaches to help the appli-

cation deeloper with rule definition in particular domains. Rule patterng Hzeen presented in [Kappel96] as an
abstract means to capturarious types of (l,siness) control policies in a generic manfiérese patterns can then be
parameterized for use in specific applicatiors. &utomatically defining rules forosk-flows, templated rules ke also

been introduced in [Casati96]. These ideas seem readily applicable to process control in general and can be used in con-
junction with our rule definition guidelines to pide templates for the definition of aatirules for diferent types of

process control actions.

6 Conclusions and Futue Work

In this paperwe presented a comprehesesapproach for process specification and enactmenprdposed PSOM, an
extended object model for process specification. PSOM includesype constructors for defining process aggtien
relationships in terms of sequences and alterestias well asx¢ended sub-typing relationships for types defined using
these ne type constructors. This feature pides the capability of arranging process specifications in class hierarchies,
thus supporting inheritance and enhancing re-use of process specifications.

For process enactment, we discussed the use wé aldtabases and some of the probleansd in deeloping applica-

tions using this technologyo overcome the problem caused by the absence of generic methodologievéondetilef-

inition, we dereloped guidelines for defining rules for the domain of processution and control. These guidelines use

the process aggyation relationship of PSOM as a foundation for defining rules and result in the definition of rules that
remain within the scope of the process on which the rule is defined. This encapsulation feature of PSOM means that pro-
cess classes with rules defined using the PSOM rule design guidelines can be easily re-used iradiefiisimgarpro-

cess sequences.ethen turned our attention to the problem of rule termination analysisefiied the rule definition
guidelines and preed that these refined guidelines lead to modularized rule sets for which rule termination analysis can
be easily carried out. Although for descniptipurposes we kia used a specific process domain, i.e., semiconductor pro-
cesses, the results are applicable to other domains, in particularktdlow processes.

We are currently in the process of implementing the proposed process specification and enactment maelepfogde

the net version of a semiconductor process contrpfiest proposed in [Chaudhry95].aMe/eloped a prototype of this
controller using the Ode aeti DBMS. Actie rules in Ode are defined as part of class definitions and are limited to a sin-
gle class. This restriction limits theyser of individual rules, ot it does force the rule programmer to limit the scope of
each rule. W have further deeloped this notion of well-defined scope in this paper in the form of the PSOM rule design
framavork. While using Ode for deloping the schema for process specification, we recognized the needelopitey
inheritance mechanisms for our process specification model and the resulting PSOM is described in.this paper

Our work opens up a number of interesting problems for future study:

¢ We limit the sub-typing relationship definition to sequenced agtjoms. This idea can be furthexpbored to
develop sub-typing relationships for aggation relationships in general.

15

* The presented PSOM rule design guidelines deal with termination analysivefralgs sets. These can b#¢eaded
So as to also puide help with confluence analysis. Perhaps this can bevadhiy deeloping rule templates for the
definition of actve rules such that definition of non-confluent and non-terminating rule sets is automatically rejected.

* More use can also be made of the concept of rule stratification for defining rules for process enactment. Stratification
can, for ample, be used for defining rules that guarantee progression of the premeDR.

* Rule inheritance in act® object-oriented databases has not been fuploeed. W feel that the encapsulation pro-
vided by aggreation relationships can seras a basis for defining semantics of rule inheritance thus cleagiainte
ing active rule definition with the object-oriented model. This can be donébyxample, deciding what sort of
changes to the sub-type couldalidate a rule defined at a sujgpe.

References

[Abiteboul95] S. Abiteboul, R. Hull, Wianu, Foundations of Databases, Addisoreshy, 1995.

[Aiken95] A. Aiken, J. Hellerstein, and J.itlém, “Static Analysis &chniques for Predicting the Befar of Active
Database Rulé¢sACM TODS, 20, 1, 3-41, March 1995.

[Baralis96] E. Baralis, S. Ceri, SaRboschi, “Modularizationéchniques for Actie Rule Desigii,ACM TODS, 21, 1,
March 1996, 1-29.

[Bichler94] P Bichler and M. Schrefl,Active Object-Oriented Database Design Using vactDbject/Behaor Dia-
grams, Proc. of the Burth International \@tkshop on Research Issues in Data Engineering (RIDE-ADS ‘94), 163-171,
Houston, &xas, February 1994.

[Beck94] B. Beck and S. Hartlg"Persistent Storage for adfkflow Tool Implemented in Smalltalk9th Annual Con-
ference on Object-oriented Programming, Systems, Languages and Applications, OOPSLA 94, October 94, Portland,
Orggon.

[BuBler94] C. Bler and S. JablonskiAh Approach to Intgrate Workflow Modeling and Qganization Modeling in an
Enterprisé€, Proc. of 3rd Vérkshop on Enablingechnologies: Infrastructure for CollabovatiEnterprises, April 1994,
Morgantovn, West Mrginia, 81-95.

[Cardelli84] L. Cardelli and .PMegner “On Understanding yipes, Data Abstraction, and PolymorphisiCM Com-
puting Sureys, 17, 4, December 1984, 471-522.

[Casati 96] FCasalti, et. al., “Deving Active Rules for Wrkflow Enactment,to appear in 7th International Conference
on Database and Expert Systems Applications, DEXA 96, September 1996, Zurich, Switzerland.

[Chaudhry95]N. Chaudhyy. Moyne, E. Rundensteing®™ Generic Framwork for InterCell Control of a Semiconduc-
tor Manufacturing Facility,” 42nd National Symposium of the Americandium SocietyMinneapolis, October 1995.

[Chen95] I. Chen and.MWarkowitz, “Modeling Scientific Experiments with an Object Data Mddetoc. 11th IEEE
ICDE, 1995.

[Dayal96] U. Dayal, A. Buchmann and S. Chalendhy, “The HiPAC Project”, in [Wdom96].

[Durbeck93] D. Durbeck, et. alA“System for Semiconductor Process SpecificdtidEE Transactions on Semicon-
ductor Manuécturing, 6, 4, Neember 1993, 297-305.

[Ellis93] C. Ellis and G. Nutt, “Modeling and Enactment obiflow System$,14th International Conference on the
Application and Theory of Petri Nets, Chicago, June 1993, 1-16.

[Geppert95] A. Geppert, et. alArchitecture and Implementation of the AgtiObject-Oriented Database Management
System SAMOS,Technical Report 95.29, Institut fur Informatik, Meisitat Zurich, Switzerland.

16

[Hsu96] M. Hsu and C. KleissnéObjectFlav: Towards a Process Management Infrastructiistributed and Brallel
Databases, 4 (1996), 169-194.

[Kappel95] G. Kappel, et. al, “@rkflow Management Based on Objects, Rules and RoEeSE Bulletin of TC on Data
Engineering, June 1995, 11-18.

[Kappel96] G. Kappel, et. al., “From Rules to RukgtBrns, Proceedings of the Conference on Adged Information
Systems Engineering (CAISE 96), May 1996, 99-115.

[Kemper94] A. kmper P Lockemann, and H-D. Wlter, “Autonomous Objects: A Natural Model for Compkepplica-
tions; Journal of Intelligent Information Systems, 2, 133-150, 1994.

[Kim89] W. Kim, E. Bertino, and J. Garza, “Composite Objectgisted; Proc. of the LM SIGMOD International
Conference on the Management of Data, PortlandyddreMay 31-June 2, 1989, 337-347.

[Larrabee91] G. Larrabee, “The Intelligent Microelectroniastbry of the FuturéProceedings of the 1991 IEEE/SEMI
International Semiconductor Maragdturing Science Symposium, 30-34.

[Leymann94] FLeymann and WAIltenhuber “Managing Business Processes as an Information ResolBbe Sys-
tems Journal, 33, 2, 1994, 326-348.

[Lieuwen96] D. Lieuwen, N. Gehani, and R. Arlien, “The Ode ¥&tDatabase: rigger Semantics and Implementa-
tion,” Proc. of the IEEE ICDE, Ne Orleans, Louisiana, 1996, 412-420.

[Liu92] L. Liu, “Exploring Semantics in Aggoation Hierarchies for Object-Oriented DatabdsPsoc. IEEE ICDE,
Phoenix, Arizona, 1992, 116-125.

[Liu93] L. Liu, “A Recursve Object Algebra Based on Aggetion Abstraction for Manipulating CompléObjects;,
Data and Knwledge Engineering, 11, 1993, 21-60.

[Simon95] E. Simon and A. &&z-Dittrich, “Promises and Realities of Addi Database Systerh&roc. of the 21st
VLDB Conference, Zurich, Switzerland, 1995, 642-653.

[Widom96] J. Vidom and S. Ceri, eds., Aeti Database Systemsriggers and Rules for Adnced Database Process-
ing, Morgan Kaufmann Publishers, Inc., 1996.

[Wodtke96] D. Wodtke, et. al., “The Mentor Project: Stepswvirds Enterprise-Wle Workflow ManagemenitProc. 12th
IEEE ICDE, 556-565.

Appendix A

Proposition 1 If active rules in a process specification databapeessed in PSOM respect all€i?SOM rule design
guidelines, and the Det and Cor rules at eaclvithaial process camerge, the entire set of aeti rules will corerge.

Proof: Let G and 3 be the set of Cor and Det rules defined at pracd$sen by Guideline 5, rules iry €annot trigger
rules in B, so G < D;.

Also for allj, such that procegss at a higher leel of nesting than ary rule in the set Pof Det rules at procegsannot
be triggered either directly or indirectly by rules in eithg(y Guideline 5) or B(by Guideline 4). Hence;Bx D; and
Ci < DJ

Similarly (by Guideline 5) for alk, such that procedsis at a lover level of nesting tham, ary rule in the set of Cor
rules at procedscannot be triggered either directly or indirectly by rules;irHénce ¢< G

17

However by Guideline 4, rules in the setd@ Det rules at processre allaved to directly trigger rules at the parent.of
Hence for alk, such that processis at a laver level of nesting thai rules in the set pPof Det rules at processmay be
triggered by rules in the set,D.e., O, < D;.

Therefore, we get the folldng stratification:

Det rules at are at a higher priority than Cor rules and Cor rules at all descendants and ancestors, while beiag lo
in priority than Det rules at all descendants. Cor rulésua at a higher priority than Cor rules at all descendantarb
at a laver priority than Cor rules at all the ancestors. So for a prédasa gven process-flo, we get the follwing
event-based stratification whekes ary ancestor of, andj is ary descendant af

G <G<G<D<Dh <D

18

