Specification and Verification of Pipelining in the ARM2 RISC
Microprocessor®

James K. Huggins'and David Van Campenhout?
EECS Department, University of Michigan, Ann Arbor, MI, 48109-2122, USA

December 19, 1996

Abstract

We specify the ARM2 RISC microprocessor using the Gurevich Abstract State Machine methodology,
and prove the correctness of its pipelining techniques.

The Gurevich Abstract State Machine (ASM) methodology, formerly known as the evolving algebra or
ealgebra methodology, first proposed by Yuri Gurevich in [5], is a simple yet powerful methodology for
specifying and verifying software and hardware systems. ASMs have been applied to a wide variety of
software and hardware systems: programming languages, distributed protocols, architectures, and so on.
See [2, 8] for numerous examples.

The ARM2 [1, 4] is one of the early commercial RISC microprocessors. Key features of this processor
include a load/store architecture, a 32-bit datapath, conditional execution of every instruction, and a small
but powerful instruction set.

In this paper, we specify the ARM2 microprocessor and prove the correctness of its pipelining techniques.
We begin with a self-contained introduction to sequential ASMs in section 1; the definitions given there are
sufficient for understanding of this paper. Section 2 introduces the ARM2 (hereafter ARM) microprocessor
in greater detail. We then present a non-pipelined version of the ARM processor in section 3; this version
establishes the standard to which we will compare the pipelined versions.

Following [3], we alter the ASM presented in section 3 to operate with a simple, three-stage pipeline,
ignoring the possible problems with branch and data dependency which may arise; this simple pipelined
processor is presented in section 4 and proved to be equivalent to the non-pipelined version in an appropriate
sense.

In section 5, we alter the ASM to reflect the hardware limitations of the external memory system of the
ARM2. In section 6, we alter the ASM to correctly handle branch-conflicts. In section 7, we alter the ASM
to correctly handle data-dependencies. In section 8, we alter the ASM to reflect the hardware restrictions of
the register file. For each of these revised machines, we prove that the revised machine is equivalent to the
original ASM described in section 3. The final pipelined version of the ARM2 processor is given in Appendix
A.

Acknowledgements. Trevor Mudge originally suggested this project to us.

1 Gurevich Abstract State Machines

The ASM thesis is that any software or hardware system can be modeled at its natural abstraction level by
a Gurevich abstract state machine. Based upon this thesis, members of the ASM community have sought to

*University of Michigan EECS Department Technical Report CSE-TR-321-96.
Thuggins@eecs.umic:h.edu. Partially supported by ONR grant N00014-94-1-1182 and NSF grant CCR-95-04375.
tdavidvc@eecs.umich.edu. Partially supported by SRC contract 95-DJ-338 and NSF grant MIP-9404632.

develop a methodology based upon mathematics which would allow such systems to be modeled naturally;
that is, described at their natural abstraction levels. See [2, 8] for a number of examples of ASMs applied
to various real-world systems.

Sequential ASMs (under their former name, evolving algebras) are described in [6]; a more detailed
description of ASMs (including distributed characteristics) is given in [7]. We present here only those
features of sequential ASMs necessary to understand this paper. Those already familiar with ASMs may
wish to skip ahead to the next section.

1.1 States

The states of a ASM are structures in the sense of first-order logic, except that relations are treated as
Boolean-valued functions.

A wocabulary is a finite collection of function names, each with a fixed arity. Every ASM vocabulary
contains the following logic symbols: nullary function names true, false, undef, the equality sign, (the names
of) the usual Boolean operations, and (for convenience) a unary function name Bool. Some function symbols
(such as Bool) are tagged as relations.

A state S of vocabulary T is a non-empty set X (the superuniverse of S), together with interpretations of
all function symbols in T over X (the basic functions of S). A function symbol f of arity r is interpreted as
an r-ary operation over X; if r = 0, f is interpreted as an element of X. The interpretations of the function
symbols true, false, and undef are distinct, and are operated upon by the Boolean operations in the usual
way.

Let f be a relation symbol of arity r. We require that (the interpretation of) f is {rue or false for every
r-tuple of elements of S. If f is unary, it can be viewed as a universe: the set of elements a for which f(a)
evaluates to true. For example, Bool is a universe consisting of the two elements (named) true and false.

Let f be an r-ary basic function and Uy, ..., U, be universes. We say that f has type Uy x ... x U, — Uy
in a given state if f(Z) is in the universe Uy for every # € Uy x ... x Uy, and f(Z) has the value undef
otherwise.

1.2 Updates

The simplest change that can occur to a state is the change of an interpretation of a function at one particular
tuple of arguments. We formalize this notion.

A location of a state S is a pair £ = (f,), where f is an r-ary function name in the vocabulary of S and
z is an r-tuple of elements of (the superuniverse of) S. (If f is nullary, £ is simply f.) An update o of a state
S is a pair (¢, y), where £ is a location of S and y is an element of S. To fire a at S, put y into location ¢;
that is, if £ = (f, Z), redefine S to interpret f(Z) as y and leave everything else unchanged.

1.3 Transition Rules

We introduce rules for describing changes to states. At a given state S whose vocabulary includes that of a
rule R, R gives rise to a set of updates; to execute R at S, fire all the updates in the corresponding update
set. We suppose throughout that a state of discourse S has a sufficiently rich vocabulary.

An update wnstruction R has the form

f(tlat21"':tn) = tO

where f is an r-ary function name and each ¢; is a term. (If r = 0, we write f := #g rather than f() :=#g.) The
update set for R contains a single update (£, y), where y is the value (tg)s of tg at S, and £ = (f, (z1,..., z,)),

where z; = (t;)s. In other words, to execute R at S, set f(z1,...,2,) to y, where z; is the value of ¢; at S
and y is the value of ¢ at S.
A block rule R is a sequence Ry, ..., R, of transition rules. To execute R at S, execute all the R; at S

simultaneously. That is, the update set of R at S is the union of the update sets of the R; at S.
A conditional rule R has the form

if ¢ then Rj else R; endif

where g (the guard) is a term and Ry, Ry are rules. The meaning of R is the obvious one: if g evaluates to
true in S, then the update set for R at S is the same as that for Ry at S; otherwise, the update set for R
at S is the same as that for Ry at S.

A parallel synchronous rule (or declaration rule) R has the form

var v ranges over c(v)
RQ(U)

endvar

where v is a variable, ¢(v) is a term involving variable v, and Rg(v) is a rule with free variable v. To execute
R in state S, execute simultaneously all rules R(u), where u is an element of the superuniverse of S and e(u)
has the value true in S.

1.4 Programs and Runs

A program TI is simply a transition rule (typically a block rule).

A sequential run p of program II from an initial state Sy 1s a sequence of states Sp,S1, ..., where each
Si+1 1s obtained from S; by executing program II in state S;.

A sequential ASM is thus given by a program and a collection of initial states; this determines a corre-
sponding collection of runs of the ASM.

2 The ARM2 Microprocessor

The ARM is a 32-bit microprocessor. In user mode, 16 general purpose registers (R0-R15) are visible to
the programmer. Among those registers, R15 plays a special role as it serves as the program counter (PC').
Moreover, R15 also contains the processor status register. The status register records certain events, such
as overflow, that occur while executing an instruction. R14 also plays a special role; it is the register
used to save the return address in branch-with-link instructions. The other registers (R0-R13) are truly
interchangeable. The processor can also operate in three special modes, other than user mode, due to the
occurrence of exceptions and interrupts. This feature is beyond the scope of the paper, as we focus on the
effect of pipelining.

2.1 ARM2 Instruction Set Architecture

In this section we give an overview of the ARM2 instruction set architecture (ISA). The instructions fall into
four categories.

ALU instructions perform a logical operation (such as bitwise-or) or an arithmetic operation (such as
subtraction) on two operands, storing the result in the register file. The first operand is always (the contents
of) a register. The second operand can either be an immediate value, encoded in the instruction word, or a
register. In either case, the second operand can be subjected to a shift before being used. Up to five types
of shifts are supported, and the number of bits by which the operand is to be shifted can either be encoded
in the instruction word or can be specified by a register. The result of applying an ALU operation is stored
in the register file, with an optional update to the status flags. Compare instructions which do not store a
result in the register file but always affect the status flags are also classified as ALU instructions.

Single data transfer instructions copy the contents of a register to a specified memory location or vice
versa. Depending on the transfer direction the instruction is a load (from memory) or a store (to memory).
The address of the memory location can be computed in several ways. An offset is added or subtracted
from the value of a base register, which is a specified general-purpose register. The offset is either directly
specified in the instruction word or obtained by shifting a directly specified quantity by a number of bits
(also contained within the instruction word). The actual address used for the data transfer can be either

the base address or the modified base address as described above. Furthermore, the register containing the
base address may be updated with the computed address if desired.

Multiple data transfer instructions copy the contents of an arbitrary subset of registers to sequential
locations in memory, or vice versa. The location with the lowest address corresponds to the register with
the smallest register number. Four different ways to compute the address of the lowest location involved are
provided. The address of the lowest location in memory is a function of the content of the base register and
the number of registers involved in the transfer. Again, the base register can be updated if desired.

Branch instructions allow the sequential flow of the program execution to be interrupted. After execution
of a branch instruction, the execution is continued with the instruction at a computed address. The address
is specified by an offset relative to the program counter (i.e. relative to the program counter). For branch-
with-link instructions, the address of the instruction (sequentially) following the branch instruction can be
saved in the link register.

The implementation of the ARM2 discussed in this paper does not implement the floating point instruc-
tions nor the multiply instructions.

An interesting feature of the instruction set is that the execution of every instruction is conditional. Every
instruction contains a field which indicates under which conditions it is to be executed. If the condition is
not met, the instruction is simply converted into a nop, i.e. it does not have any effect. The conditions refer
to the condition register of the processor, which can be set by ALU instructions.

Register 15 (R15) plays a special role in the ARM, as it serves as the program counter (PC). As this
register is accessible like any other register in the register file, this has some interesting consequences. When
R15 appears as the result register in an ALU instruction, or as the destination in single-load or multiple-load
instructions, the sequential flow of the program is interrupted, and execution continues at the value stored
into R15. Furthermore, R15 also stores the status bits of the processor. This is possible because the address
space of the ARM2 can be addressed with 26 bits.

2.2 Hardware implementation

A block diagram of the datapath of our pipelined ARM implementation is shown in Figure 1. Not shown is the
control section, which computes the signals that steer the datapath (such as select signals to multiplexers).
Registers and the register file are colored gray, to indicate that they are clocked. The other units are
constituted by combinational logic, such as multiplexers. The ISA’s general purpose registers, R0-R15, are
kept in the register file. The register file has two read ports and one write port. The PC is a special
register, as it can be written both via the general write port of the register file and via a dedicated port
used to increment the PC. The fact that the PC is also accessible through the register file is indicated in the
figure by the dashed lines. The address sent to address sent to memory is either obtained from the PC, for
instruction fetches, or from the address register AR, for data fetches during data transfer instructions. Data
is transferred between the processor and memory via a bidirectional bus. During instruction fetches, any
data transferred is stored in one of two instruction registers. For loads and stores, this data is transferred
via the registers Din and Dout, respectively. Note that the registers AR, Din, Dout, Aop and Bop are not
part of the ISA.

The processor has a three-stage pipeline. This means that while the current instruction is in its execute
phase, the next instruction is being decoded, and the instruction which following the instruction being
decoded is being fetched from memory. During the instruction fetch phase, the instruction at the address
indicated by the PC is obtained from memory. During the decode phase of an instruction, the processor
sets up the operands the instruction requires for its execution. For data processing instructions, typically
two registers are read from the registerfile. One of them has a shift applied to its contents. During the
execute phase, both operands Aop and Bop are combined in the arithmetic and logic unit (ALU). The result
is stored in the register file.

Often these three phases can take place in parallel, so that the throughput of the processor is one
instruction per clock cycle. However, some instructions require more than one clock cycle for their execution.
This causes stalls to occur. Only during the first cycle of an instruction’s execute phase will the processor

ADDRESSBUS DATABUS

w

|
m

Y

ALU

)
)
-

Figure 1: Block diagram of ARM datapath.

fetch a new instruction from memory. Only during the last cycle of an instruction’s execute phase will the
processor decode the next instruction.

3 & Sequential ARM

Here, we present &;, our first ASM for the ARM. The ASM can be seen as an interpreter for the ARM
instruction set. &; processes commands sequentially; that is, & completes its execution of a given ARM
instruction before beginning to execute the next instruction in sequence.

3.1 Some Universes and Functions

The ARM processor manipulates values from an abstract universe of words, of which the universe of addresses
is a subset. Words are composed of four bytes, each of which is a value in the range {0,...,255}. Functions
Word: bytes* — words and ByteExtract: words x bytes — bytes are used to translate between a word and its
constituent bytes. The unary function Memory: addresses — bytes represents the memory of the computer
system where the ARM processor stores and retrieves various values.

The ARM processor’s register file is represented by a universe of registers and a function Contents:
registers — words. A distinguished element PC: registers is the ARM’s program counter, storing the address
of the currently-executing program instruction. A distinguished element LinkReg: registers indicates the
register to be used for “branch-with-link” operations, where the address of the instruction following the
branch instruction is stored when a branch is performed. This feature is used to implement subroutine calls:
the calling routine leaves the return address in the link register to be used when the subroutine terminates.

The ARM processor performs instructions from a specified instruction set; the universe of instructions
(a subset of the universe of words) represents this set. The nullary function Instr: instructions indicates the
current instruction being executed.

&1 takes three steps, or stages, to execute each instruction: the fetch stage (in which the instruction is
loaded from memory), the decode stage (in which the operands needed for the instruction are loaded from
the register file), and the execute stage (in which the instruction is actually performed). A universe of stages
contains elements fetch, decode, and ezecute to represent these stages. The nullary function Stage: stages
indicates the current stage of execution of a given instruction.

Every instruction in the ARM instruction set is conditionally executed, depending upon a set of status
flags. Universes of bits and flaglists are used to represent this information; flaglists are lists of bits. The
nullary function Status: flaglists represents the current status flags of the ARM processor; various static
functions such as Carry: flaglists — bits are used to extract information from this list (in this case, whether
or not the last ALU instruction generated a carry bit).

To abbreviate some rules, we make use of a function IfThenFlse: Bool x words x words — words which
serves as a conditional expression. That is:

IfThenElse(true,termi,term?2) = term1
IfThenElse(false,termi,term?2) = term?2

3.2 Fetch Rule

The program for &; is a block of transition rules. We present each of these rules individually in the following
sections.

In the fetch phase, the ARM reads the instruction stored in memory at the address currently indicated
by the program counter (PC) register. The transition rule in Figure 2 shows this activity.

FetchOK abbreviates an expression indicating that the fetch rule should fire; Fetchlnstr abbreviates an
expression indicating the instruction to be fetched from memory. At this point it may seem simpler not to
use these abbreviations and to incorporate their definitions in the transition rule above. In later sections, we
will redefine these abbreviations with more complicated expressions; using these abbreviations now facilitates
this revision.

Rule: Fetch
if FetchOK then
Instr := FetchiInsir

Stage := decode
endif

where
FetchOK abbreviates Stage=Fetch
FetchInstr abbreviates MemoryWord(Contents(PC))
MemoryWord(z) abbreviates
Word(Memory(z), Memory(z+1), Memory(z+2), Memory(z+3))

Figure 2: Fetch rule.

3.3 Decode Rule
The ARM instructions can be classified into the following categories:
e Instructions which do nothing (nops)

e Instructions which perform an arithmetic or logic operation, using the processor’s arithmetic logic unit

(ALU).
e Instructions which cause execution to branch to a different location in memory
e Instructions which cause one byte or word to be transferred between the register file and memory
e Instructions which cause several words to be transferred between the register file and memory

The unary functions Nop, Aluinstr, BranchInstr, Single TransferInstr, Multiple TransferInstr: instructions —
Bool indicate whether or not a given instruction is in the corresponding category.

The decode phase retrieves the operands necessary to perform the instruction. The operands are tem-
porarily stored in nullary functions. The functions Aop, Bop: words contain the two operands to be manip-
ulated during the execute phase (e.g. the values to be added by the ALU). The function DestReg: regisiers
indicates (when appropriate) the register where the result of the instruction is to be stored.

The value of the first operand, Aop, is always the value stored in a specified register; AopReg: instructions
— registers indicates this register. The value of the second operand Bop is more involved.

Bop could be obtained immediately from the instruction itself (i.e. a constant), or could be obtained
from a register. The function ImmBop: instructions — Bool indicates whether Bop should be obtained
immediately from the instruction; the function Immediate Val: instructions — words gives that immediate
value. If Bop should be obtained from a register, the function BopReg: instructions — registers indicates
that register.

Additionally, the value of Bop (regardless of how it is obtained) may have a mathematical “shift” oper-
ation performed upon it before it is used. The universe of shifts represents the types of shifts which may be
performed/ Shift Type: instructions — shifts indicates the shift called for by a given instruction. The function
Shift: words x shifts x words x bits — words is used to perform the shift. Shift(val shifttype,amt,carry)
performs a shift of type shifttype for amt bits, possibly using the bit carry to fill-in shifted positions. The
related function ShiftCarry: words x shifts x words x bits — bits gives the corresponding carry bit for the
specified operation.

The magnitude of the shift can be specified in two ways. The instruction itself may specify the shift
amount; alternatively, the shift amount may be the contents of a specified register. The function ImmShuft:

wnstructions — Bool indicates whether the given instruction specifies an immediate shift amount; if so,
ImmShiftAmt: instructions — words indicates that amount. Otherwise, ShifiReg: instructions — registers
indicates the register containing the shift amount.

The transition rule for the decode phase is given in Figure 3.

Rule: Decode
if DecodeOK then
Stage := ezecute

if not Nop(Insir) then
DestReg := DestOp(Insir)
Aop := Contents’(AopReg(Instr))
Bop := Shift(Source Val, Shift Type(Instr),Shift Ami, Carry(Status))
ShiftCarryOp := ShiftCarry(Source Val, Shift Type(Instr),Shift Ami, Carry(Status))
endif
endif

where
DecodeOK abbreviates Stage=decode
Contents’(z) abbreviates IfThenElse(x # PC,Contents(z), Contents(PC)+8)
SourceVal abbreviates
IfThenElse(ImmBop(Insir), Immediate Val(Insir), Contents’(BopReg(Instr}))
ShiftAmt abbreviates
IfThenElse(ImmShift(Insir), ImmShift Amt(Instr), Contents’(Shift Reg(Insir)))

Figure 3: Decode rule.

The observant reader may notice that in operations involving the PC register, the value retrieved from
the register file is not Contents(PC) but rather Contents(PC) + 8. This is part of the ARM instruction set
architecture; it anticipates certain aspects of the pipelined architecture which will be made apparent in later
sections.

3.4 Execute Rules

The ARM processor executes every instruction conditionally, depending upon the values of the status flags
stored (in our model) in the nullary function Status. The function CondCode: instructions — flaglists
indicates the conditions under which an instruction should be executed; the function Satisfies: flaglists x
flaglists — Bool indicates whether the current status flags satisfy the corresponding condition.

3.4.1 Incrementing PC

The execute phase always modifies the PC register. Usually, the contents of the PC register is incremented by
4. The exception arises when PC is explicitly modified by an instruction (for example, a branch instruction).
The function WritesPC: instructions — Bool indicates whether a given instruction explicitly attempts to
write to the PC register.

Thus, in every execute phase, the PC register i1s incremented by 4 if the condition attached to the
instruction fails, or if the instruction does not attempt to write to the PC register. The transition rule which
performs this activity is shown in Figure 4.

Rule: ExecutePC
if ErecuteOK then
if not Satisfies(Status, CondCode(Instr)) or not WritesPC(Instr) then
Contenis(PC) := Contents(PC) + 4
endif
endif

where EzxecuteOK abbreviates Stage=Fzrecute

Figure 4: Rule for incrementing PC register.

3.4.2 Nop Instructions

As seen in Figure 5 below, nop instructions have no effect on the system, other than resetting Stage to fetch
(as will every other execute stage transition rule to follow).

Rule: ExecuteNop
if FrecuteOK and Nop(Instr) then Stage := feich endif

Figure 5: Nop rule.

3.4.3 ALU Instructions

Mathematical operations involving the arithmetic and logic unit (ALU) of the ARM processor require four
pieces of information: the operation to be performed, the two arguments for that operation, and the last carry
bit set (which is part of the processor’s status flag set). The universe of ALUops represents the operations
which may be performed by the ALU; the function ALUOp: wnstructions — ALUops indicates the ALU
operation called for by a given instruction.

An ALU instruction may call for an update to the specified destination register and/or an update to
the status flags. The functions WriteResult: instructions — Bool and SetCondCode: instructions — Bool
indicate which of these actions are required.

The function ALU: ALUops X words x words x bits — words performs the requested mathematical
operation; ALU(op, wordl, word?2, carry) performs operation op on arguments word! and word2, possibly
using the carry bit carry. A similar function UpdateStatus: flaglists x ALUops X words X words X bits —
flaglists computes the status resulting from this instruction; UpdateStatus(oldflags, op, wordl, word2, carry)
produces the new status flag list obtained from oldflags by performing op on arguments wordl and word?2,
possibly using the bit carry generated by the shifter during the decode phase.

The transition rule for ALU instructions is given in Figure 6.

3.4.4 Branch Instructions

Branch instructions call for a change to the normal sequential flow of the program. The address for the
next instruction to be executed is the sum of the current value of the PC register and an immediate offset
(contained in the instruction word). To execute a branch, the current value of the PC register is placed in Aop
and the desired offset is placed in Bop; these values are then added and placed in the PC register. Branch-
with-link instructions perform an additional action: they store the address of the instruction which would
normally be performed next in a specific register called the link register. The function BranchWithLinkInstr:

Rule: ExecuteALU
if EzecuteOK and Alulnstr(Instr) then
if Satisfies(Status,CondCode(Insir)) then
if WriteResult(Instr) then
Contents(DestReg) := ALU(ALUop(Instr), Aop, Bop, Carry(Status))
endif
if SetCondCode(Instr) then
Status := UpdateStatus(Status, AL Uop(Insir),Aop,Bop,Shift CarryOp)
endif
endif
Stage := fetch
endif

Figure 6: ALU instruction rule.

wnstructions — Bool indicates whether an instruction calls for that linking action; the static nullary function
LinkReg: registers indicates which register is used for this purpose.
The transition rule for branch instructions is shown in Figure 7.

Rule: ExecuteBranch
if FzecuteOK and BranchInsir(Instr) then
if Satisfies(Status,CondCode(Insir)) then
Contenis(PC) := ALU(“+”, Aop, Bop, 0)
if BranchWithLinkInstr(Insir) then Contents(LinkReg) := Contents’(PC) - 4 endif
endif
Stage := fetch
endif

Figure 7: Branch instruction rule.

3.4.5 Single-Transfer Instructions

Single-transfer instructions call for a transfer of a single byte or a single word between memory and the register
file. The transfer may load data into a register from memory or store data from a register into memory;
the function LoadInstr: instructions — Bool indicates which action is required for a given instruction. Also,
the datum transferred may be a single byte or an entire four-byte word; the function ByteTransferinstr:
instructions — Bool gives this information.

In the event that only a single word is being loaded from memory, a static function Pad Word: bytes —
words converts the given byte into an equivalent 4-byte word.

The abbreviation MemAddr indicates the location in memory involved in this data transfer. MemAddr 1s
an expression involving the base address and an offset value calculated during the decode phase and placed
in Aop and Bop, respectively. Certain instructions (called pre-indezed instructions) call for using the base
address without the offset value: Prelndezed: instructions — Bool indicates these instructions. Certain
instructions call for the base address to be incremented by the offset value, while others call for the base
address to be decremented by that value; InerOp: instructions — Bool indicates if a given instruction calls
for incrementing the base address.

Certain instructions call for the base address plus the offset to be written back to the base register (the

10

register from which the base address was retrieved). WriteBack: instructions — Bool indicates if a given
instruction should perform this “write-back” operation; BaseOp: instructions — registers indicates the base
register, which is also the register to which the write-back value should be written. The ARM instruction
set architecture specifies that BaseOp(i) = PC = WriteBack(i) = false; that is, single-transfer instructions
never call for write-back to the program counter PC.

The transition rule for single-transfer instructions is shown in Figure 8.

Rule: ExecuteSingleTransfer
if FrecuteOK and Single TransferInsir(Instr) then
if Satisfies(Status, CondCode(Instr))Jthen
if LoadInstr(Instr) then
if ByteTransferInstr(Instr) then
Contenis(DestReg) := PadWord(Memory(MemAddr))
else Contents(DestReq) := MemoryWord(MemAddr)
endif
elseif Storelnstr(Instr) then
if ByteTransferInstr(Instr) then Memory(MemAddr) := Contents’(DestReg)
else AssignWord(MemAddr,Contenis’(DestReg))
endif
endif
if WriteBack(Instr) then Contenis(BaseOp(Instr)) := Aop + Offset
endif
endif
Stage := fetch
endif

AssignWord(l,v) abbreviates:
Memory(l) := ByteEztract(v,0) Memory(l+2) := ByteExtract(v,2)
Memory(l+1) := ByteEzxtract(v,1) Memory(l+3) := ByteExtract(v,3)
MemAddr abbreviates IfThenElse(PreIndezed(Instr),Aop + Offset,Aop)
Offset abbreviates IfThenElse(IncrOp(Instr),Bop,— Bop)

Figure 8: Single-transfer rule.

3.4.6 Multiple-Transfer Instructions

Multiple-transfer instructions call for multiple words to be transferred between a subset of the register file
and a sequence of consecutive locations in memory. Depending on the transfer direction, these instructions
are either multiple-load instructions or multiple-store instructions. The registers to be used are indicated
by a binary function TransferReg: registers x instructions — Bool; TransferReg(r,i) is true if instruction i
calls for transfer to or from register r.

The relationship between the transfer registers and the memory locations involved in the operation is
such that the numerical order of the register numbers is the same as the numerical order of the addresses.
For example, an instruction which calls for loading registers 1, 3, and 6 from memory location 1000 would
load the word beginning at location 1000 in register 1, the word beginning at location 1004 in register 3,
and the word beginning at location 1008 in register 6. The function NumPrevRegs: registers x instructions
— ntegers indicates the number of registers previous to a given register that must be transferred. That is,
NumPrevRegs(r,i) indicates how many registers prior to register » must also be transferred.

11

As with single transfer instructions, multiple-transfer instructions have a “write-back” option. The PC
register is prohibited from serving as a base register; hence, no write-back update can occur to the PC
register. It is possible that write-back can be specified and the base register also occurs in the list of registers
to be written to memory; the value which actually should be written to memory for that register is a little
complicated to explain. If this register is the first register to be written to memory, the result is the value
which resided originally in the register; otherwise, the result is the write-back value. (This definition reflects
how the instruction will be implemented in the pipelined version; this convoluted definition will become
clearer at that time.)

The transition rule for multiple-transfer instructions is shown in Figure 9.

Rule: ExecuteMultiple Transfer
if FrecuteOK and Multiple TransferInstr(Instr) then
if Satisfies(Status, CondCode(Insir)) then
var rranges over TransferReg(r,Instr)
if LoadInstr(Instr) then
Contenis(r) := MemoryWord(Aop + Bop + {*NumPrevRegs(r,Instr))
else AssignWord(Aop + Bop + 4*NumPrevRegs(r,Instr), Write Val)
endif
endvar
if WriteBack(Instr) and not (LoadInstr(Instr) and TransferReg(BaseOp(Insir),Instr)) then
Contenis(BaseOp(Insir)) := WriteBackVal
endif
endif
Stage := fetch
endif

Write Val abbreviates
IfThenElse(r = BaseOp(Insir) and NumPrevRegs(r) > 1 and WriteBack(Instr),
WriteBackVal, Contents’(r))
WriteBackVal abbreviates Aop + Bop + 4*NumRegs(Instr)

Figure 9: Multiple-transfer rules.

3.5 Definitions and Discussion

Let Ty be the vocabulary containing the function names Contents, Status, and Memory; these “visible”
functions constitute the ISA’s view of the state of the processor.

Let p =< 01,09,... > be a run of &. An ezecution cycle (or simply a cycle) C of a run p of & is a
subsequence < 0j, 041,042 > such that: Stage = fetch (respectively, decode, execute) in o; (respectively,
Ojt+1, 0j4+2). We refer to the three phases of C, respectively, as the fetch, decode, and ezecute phases of C.

We say that instruction 7 is performed by C' if Fetchinstr = i holds in the fetch stage of C' and Instr =
¢ holds in the decode and execute stages of C'; C' is a meaningful cycle if ¢ is not a nop instruction. The
significant updates of a meaningful cycle C' are the updates to functions in Ty performed in the execute
phase of C', except for any update to Contents(PC). Clearly each run p =< o1,03,... > gives rise to a
unique sequence of meaningful cycles < Cy,Cs, ... >.

Every instruction ¢ has a corresponding set of input locations; these are the locations whose values, when ¢
is executed, are directly used in the execution of . For a given instruction ¢, there are at most four input loca-
tions (depending upon the instruction): Contents(AopReg(i)), Contents(BopReg(i)), Contents(ShiftReg(i)),

12

and Status. (Technically, every instruction is dependent upon Status, since every instruction is conditionally
executed. But only certain ALU instructions use the carry flag stored in Status as an operand; it is these
instructions for which we consider Status to be an input location.)

For simplicity of exposition, assume that that the instructions of every ARM program are stored in
consecutive words in memory. (This is not strictly necessary but makes the following explanations simpler.)
We say that a program is self-modification free if the set of memory locations modified by the program is
distinct from the memory locations containing program instructions. This eliminates the possibility of an
instruction modifying the code being executed. Throughout this paper we will consider only programs which
are self-modification free.

We can thus, without loss of generality, characterize the program being executed by the processor as
a sequence of instructions I =< 4g,4;,... > where instruction ¢; is stored in memory location b + 4; for
some base address b. We say that such a program is branch-conflict free if for every instruction #; such that
WritesPC(i;) is true, instructions i;4; and ;42 are nop instructions, and no other nop instructions appear
in the program.

We say that two consecutive instructions ¢;, ¢;41 have a data dependency if one of the following conditions

hold:

o Instruction 7; potentially writes to a register (other than PC) which serves as an operand to instruction
i1

e Instruction ¢; potentially updates the status condition flags (in particular, the carry bit) and instruction
ij41 1s an ALU instruction (which may use the carry bit).

A program is data-dependency free if every pair of consecutive instructions does not have a data dependency.

4 &y: Simple Pipeline Model

In this section, we revise our previous ASM & to incorporate a simple pipelined model. The result is our

revised ASM &s.

4.1 Constructing & From &

The basic idea is as follows. Observe that in &, every ARM instruction is executed in three steps; an
execution of the Fetch rule, an execution of the Decode rule, and an execution of one of the Execute rules.
The execution of one ARM instruction must be completed before execution of the next ARM instruction
can occur. Suppose that two consecutive instructions in memory are independent of one another (that
is, performing the first instruction has no effect on if or how the second instruction is performed). We
can improve the speed of the system by allowing the second instruction to begin executing while the first
instruction is completing its execution.

Since the ARM uses a three-step execution cycle, we can implement a three-stage pipeline. Let 7;, 441,
ij4+2 be consecutive ARM instructions in an ARM program. If ¢;, i;41, and 4j42 are “independent” (in the
sense described above), we can decode instruction é;4; at the same time as we are executing instruction i;.
Further, we can fetch instruction ¢;45 at the same time as these other two actions.

To incorporate an instruction pipeline into &£, we add new distinguished elements Decodelnsir, Ezecute-
Instr which will hold the instructions being decoded and executed, respectively. We change the rule Fetch by
substituting Decodelnsir for Insir; we also change the rule Decode to read from Decodelnstr instead of Instr.
Similarly, we add the update Ezecutelnsir := Decodelnsir to rule Decode, and change all of the execute rules
to read from Ezecutelnsir instead of Instr.

Of course, we wish the fetch, decode, and execute rules to execute at every step, so we remove the function
Stage from all rules and redefine the abbreviations FeichOK, DecodeOK, and EzrecuteOK to the constant
value true.

13

Notice that the contents of a register used in a particular instruction are read during its decode phase.
If the register in question is the PC register (which holds the address of the instruction being executed),
the value of that register should be incremented by 8 before the value is used. In our pipelined model,
however, the contents of the PC register are usually incremented by 4 at every step; thus, the value of
the PC register seen by the decode phase is actually 4 greater than the address of the instruction being
decoded. Consequently, we only need to increment the value seen in the PC register by 4 during the
decode phase. We thus redefine the abbreviation Conients’(z), used only during the decode phase, to:

IfThenElse(x#PC,Contents(z), Contents(PC)+4)

In the initial state of &5, Decodelnstr and Erecutelnstr are both nop instructions (i.e., Nop(Decodelnsir)

= Nop(Erecutelnstr) = true).

4.2 Proof of Equivalence

We now proceed to prove that & and &2 are equivalent, in an appropriate sense. We fix an ARM-program II
and show that & and & generate the same sequence of “significant updates” when executing II. Throughout
this section, we assume that the ARM program being executed by & and & is both branch-conflict and
data-dependency free.

First, some definitions. Let p =< 01,03,... > be a run of . An ezecution cycle (or simply a cycle)
C of a run p of &; is any three element subsequence < ¢j,0;41,0;42 >. We refer to the three states of C,
respectively, as the feich, decode, and ezecute stages of C.

We say that instruction i is performed during C if i is the value of Fetchlnstr (respectively, Decodelnstr,
Fzecutelnsir) during the fetch (respectively, decode, execute) stage of C'; C' is a meaningful cycle if 7 is not a
nop instruction. As before, each run p =< 01,03,... > gives rise to a unique sequence of meaningful cycles
< Cq,Cy,...>.

The stgnificant updates of a meaningful cycle C' which performs instruction ¢ are all the updates to
functions in Ty performed in the execute stage of C, except for any update to Contents(PC).

In this section, let s; and s} be initial states of £, and &, respectively, such that s1|Ty = s{|Tv. Let
p =< S1,89,...> be a run of & with corresponding sequence of meaningful cycles < Cy,Cs,... >. Let
p =< si,sh, ... > be arun of & with corresponding sequence of meaningful cycles < C1,C%, ... >.

We say that execution cycles C' and C” of & and &, respectively, correspond if:

e C and C’ agree on the value of Contents(PC) (and thus on the value of Fetchlnstr) in their fetch
phases.

e C and C' agree on the values of all input locations (with respect to Instr and Decodelnstr) in their
decode phases.

e C and C' agree on the values of Memory, Status, and Contenis (with the exception of Contents(PC))
in their execute phases.

Lemma 1 (Consecutive Instruction Lemma) Fiz a state s of &. Let i., ig, and if be the values of
Executelnstr, Decodelnstr, and FetchInstr, respectively. Let a be the value of Contents(PC); that is,
i;=MemoryWord(a). Ifi. is not a nop instruction, then i,.=MemoryWord(a —8) and iz=MemoryWord(a —
4). Further, if iq is not a nop instruction, then iz=MemoryWord(a — 4).

Proof. By induction over states. The invariant condition is trivially true in the initial state, since 7, and i4
are both nop instructions.

Consider an arbitrary state in which the desired condition holds. In every state, Fetchinsir is moved to
Decodelnstr and Decodelnsir is moved to Ezecutelnstr. Usually Contents(PC) is incremented by 4, which
maintains the invariant. The exception occurs when WritesPC(i.) and Satisfies(Status, CondCode(i.)) are
true in s; in this case, Contents(PC) is updated to an arbitrary value. By the invariant condition, 74 and #;
are the two instructions which follow ¢, in memory; since the program stored in memory is branch-conflict
free, these are both nop instructions. Thus, i, and iz will be nop instructions in the successor state of s,
maintaining the invariant. QED.

14

Lemma 2 (Nop Pipe Lemma) Fiz a state s of 5. Let i, 14, and iy be the values of Executelnstr, Decode-
Instr, and Fetchlnstr, respectively. If WritesPC(i.) is true, then iz and iy are nop instructions. Further, if
WritesPC(iq) is true, then iy is a nop instruction.

Proof. Since WritesPC(7.) is true, i, is not a nop instruction. By the Consecutive Instruction Lemma
the instructions ¢ and i; are stored in memory immediately after ¢.; since the program being executed is
branch-conflict free and WritesPC(i.) is true, these instructions are nops. The case for i4 is similar. QED.

Lemma 3 (Update Lemma) Suppose ezecution cycles C and C' correspond. Then the significant updates of
C and C' are identical.

Proof. Let C' =< s1, 89,53 > and C' =< s}, s, s5 >, and consider the three corresponding phases of C' and
.

e Fetch. Since C and C’ correspond, s; and s} agree on the value of Contents(PC), and thus the value
of Instr in sy and the value of Decodelnsir in s/, are identical (recall that memory locations containing
instructions are never changed, since the program is self-modification free). Thus, the instruction
performed by C and C” is identical.

e Decode. Since the instruction performed by C and C’ is identical, and C' and C” correspond, the
values of the input locations for Insir (or Decodelnstr) are identical. The updates performed to Aop,
Bop, DestReg, and ShiftCarryOp in either sy or s, depend only upon the instruction being performed,
the input locations for the instruction, and various static functions; thus, the values of these four
functions will be identical in s3 and s4. Additionally, the value of Fzecutelnsir in s§ will match the
value of Instr in ss3.

¢ Execute. Since C' and C’ correspond, the values of Memory and Status agree in s3 and s5. The
updates to Memory, Status, and Contents performed in s3 and s} (with the possible exception of
Contents(PC)) depend upon the values of Memory and Status (identical from correspondence), various
static functions, and the functions updated in the decode phase (which we have already shown to be
identical). Thus, the significant updates performed are identical. QED.

Corollary 1 (Update Corollary) Let C' and C” be corresponding cycles. Let s and s' be the states immediately
following the execute phases of C and C', respectively. Then s and s agree with respect to Memory, Status,
and Contents (ezcept for Contents(PC)).

Proof. By the Update Lemma, the execute phases agree with respect to Memory, Status, and Contents
(except for Contents(PC) and generate the same updates to these functions. QED.

Lemma 4 (PC Lemma) Suppose C; and C; correspond. Then the fetch phases of Cj11 and C}, agree with
respect to Contents(PC).

Proof. By supposition, since C; and C]’» agree in their fetch phases with respect to Contents(PC), C; and
C']’» perform the same instruction ¢. There are several cases.

o WritesPC(i) is true, and Satisfies(Status, CondCode(i)) holds in the execute phase of C; (and by
correspondence, in C}). Then the value of Contents(PC) in the fetch phase of Cj41 is determined by
the updates executed in the execute phase of Cj.

Notice that by the Nop Pipe Lemma, two nop instructions will follow ¢ in the pipeline for £;. Since
nop instructions do not appear in significant execution cycles, the next significant instruction cycle
CJ/'+1 will not begin until the state following the execute phase of C]’» (when a non-nop instruction will
appear in the pipeline). Thus, the value of Contents(PC) in the fetch phase of C7 ., is determined by
the updates executed in the execute phase of CJ’

An argument similar to that given in the Update Lemma shows that the updates to Contents(PC)
performed in the execute phases of C; and C]’» are identical.

15

o WritesPC(i) is true, but Satisfies(Status,CondCode(i}} does not hold in the execute phase of C; (and
by correspondence, in C}). Then Contents(PC) will be incremented by 4 in the execute phase of Cj. &
will then proceed through two non-meaningful execution cycles (since i is always followed by two nop
instructions), incrementing Contents(PC) at the end of each cycle. Thus, the value of Contents(PC)
in the fetch phase of ;41 is 12 greater than its value in the fetch phase of Cj.

As in the previous case, two nop instructions will follow ¢ in the pipeline for £, and the value of Con-
tents(PC) in the fetch phase of €}, is determined by the updates executed in the execute phase of Cj.
Since Satisfies(Status, CondCode(i' }) does not hold in that phase, Contents(PC) will be incremented
by 4; by the Consecutive Instruction Lemma, the value of Contenis(PC) at this time is 8 more than
the address of ¢ (which is the value of Contents(PC) in the fetch phase of C;). Thus, the value of
Contents(PC) in the fetch phase of Cj11 is 12 greater than its value in the fetch phase of C} ;.

o WritesPC(i) is false. Then Contents(PC) is incremented by 4 in the execute phase of Cj.

Consider the fetch stage s of C]’». Since C; and C']’» are meaningful instruction cycles, the instruction
¢ being performed in C; and C']’» is not a nop instruction. The Nop Pipe Lemma implies that Write-
sPC(Ezecutelnstr) is false in s; thus, Contents(PC) will be incremented by 4 in s. The Nop Pipe
Lemma also implies that WritesPC(Decodelnstr) is false in s. Since the program being executed is
branch-conflict free, and lies in continuous memory, the instruction immediately following ¢ is not a
nop instruction. Thus, C;41 will begin in the state immediately following the fetch phase of Cj; thus,
the value of Contents(PC) in the fetch phase of C;41 is determined by the update to Contents(PC) in
the fetch phase of Cj; as discussed above, Contents(PC) is incremented by 4 in that state. QED.

Lemma 5 (Correspondence Lemma) For every j > 1, C; and C]'» correspond.

Proof. By induction over j.

Consider C1 =< s1, 82,83 > and C] =< s, s}, s5 >. By construction, s; and s} agree with respect to
Contents, Memory, and Status. Notice that & performs no updates to these functions in s;, and &; only
increments Contents(PC) by 4; taking into account the differing definitions of Contents’, we know that s,
and s, agree with respect to Contents’, Memory, and Status, and thus agree over all input locations. Neither
sg nor sh, update these functions (again, with the exception of Contents(PC), so s3 and sj agree over these
functions. Thus C; and C] correspond.

For the inductive step, assume that Cy and Cj, coincide for every k& < j, and consider the three phases

of Cjy1 and Cf 4.

e Fetch. We must show that Contents(PC) has the same value in the fetch phases of Cj41 and Cj, ;
this is the PC Lemma above.

e Decode. Let s and s’ be the decode phases of Cj41 and C]’»_H, respectively. We must show that
all input locations of s and s’ agree. Since the fetch phases of Cj4; and C']’»_l_1 agree on the value of
Contents(PC), we know that the value of Instr and Decodelnstr in s and s’ agree, and thus the set of
input locations in Cj41 and Cj,, are identical.

Notice that s, the decode phase of C} , may also be the execute phase of C} (if Ezecutelnsir is not a
nop instruction) or occur strictly after the execute phase of C']’» (if Fzecutelnstr is a nop instruction).
We consider each case in turn.

— Case 1. Suppose Ezecutelnsir is a nop instruction; that is, the execute phase of C? occurs strictly
before s’. By the Update Corollary, the state » which follows the execute phase of C]'» agrees with
the fetch phase of Cj 41 with respect to Status, Memory, and Contents (except for Contents(PC)).
Since C/ is the last significant cycle before Cj41, s’ agrees with r with respect to these locations
(notice that r and s may be the same state). Further, since & does not modify any of these
locations in its fetch phases, s agrees with r (and s’) with respect to these locations. We must
still show that s and s’ agree with respect to Contents’(PC); see below.

16

— Case 2. Suppose s’ is both the execute phase of C]’» and the decode phase of Cj ;. Then the most
we can assert is that, with respect to the input locations of C; except for Contents(PC), s’ agrees
with the state following C;_;. If the instruction ¢ being performed relies on updates performed
by Cj, the input locations of s and s’ may not have the same values. But our data-dependency
assertion specifically disallows this condition, so s and s’ will agree with respect to these locations.

Tt remains to show that s and s’ agree with respect to Contents’(PC). Since ¢ is not a nop instruction,
by the Nop Pipe Lemma, the instruction i’ in Erecutelnsir when i was in FeichInstr did not satisfy
WritesPC(i'). Thus, Contents(PC) was incremented by 4 in the fetch phase of Cj, , and thus its value
in s’ is 4 greater than its value in s. But the definition of Contents’ in & reports a value 4 less for
Contents(PC); thus, s and s agree with respect to Contents’(PC).

e Execute. The correspondence of the execute phases is easy to observe; by the Update Corollary,
the states which follow the execute phases of C; and C]’», agree with respect to Status, Memory, and
Contents (except for Contenis(PC)). No other updates to these locations occur between these states
and the execute phases of Cj1 and C} ;. QED.

Theorem 1 (Equivalence Theorem) The sequence of update sets < Uy, Ua,... > and < Uj, U, ... > pro-
duced by < C1,Cy,...> and < C],C4, ... >, respectively, is identical.

Proof. A simple induction using the Correspondence Lemma and the Update Lemma. QED.

5 &;: Coping With The Memory System

We now modify our model of the ARM processor to reflect some important hardware constraints pertaining
to the memory system.

The (external) memory system requires one cycle to transfer a datum between memory and the register
file. At the beginning of a load cycle, the address is given to the memory system; the desired datum is placed
on the data bus by the end of the same cycle. Similarly, at the beginning of a store cycle, the address and
datum are given to the memory system; the desired datum is written to the specified memory location by
the end of the same cycle. This poses the following two constraints:

M1 Only one word or byte may be transferred per clock cycle.
M2 The address used in a memory operation must be available at the beginning of the clock cycle.

Constraint M1 is violated in several ways by &. The multiple-transfer instructions allow an arbitrary
subset of registers to be transferred to or from memory in a single clock cycle. In &3, these rules are refined
so that these transfers are serialized. Notice also that the instruction fetch phase accesses the memory to
fetch a new instruction; thus, our serialization must be careful not to conflict with the fetching of the next
instruction from memory.

Constraint M2 requires several modifications to £ as well. Memory transfer instructions require the
generation of an address to be used during the transfer. In the implementation of the ARM, this address is
generated using the ALU. Consequently, the actual memory transfer has to take place one cycle after the
address is generated.

Both of these constraints force us to take several steps to execute ARM instructions involving memory,
once the given instruction has been fetched and decoded. Consequently, the remaining instructions in the
pipeline must be “stalled”; that is, delayed from advancing through the pipeline until the multiple-step
memory instruction has finished executing.

To accomplish this, we introduce a new universe of modes and a new nullary function EzecuteMode:
modes. ErecuteMode indicates which step of a multi-step execution sequence is currently being performed;
usually, ErecuteMode has the value first-step (including in the initial state). For multi-step instructions,
EzecuteMode will take on other values as the execution of that instruction proceeds.

17

The fetch and decode rules clearly will need to be modified so that if an instruction being executed
takes more than one step, the fetch and decode rules execute only once while the multi-step instruction is
executing. The ARM executes the fetch rule during the first step of a multi-step instruction, while it executes
the decode rule during the last step of a multi-step instruction (z.e. just before the instruction being decoded
will be executed). We describe the changes this requires to the program for £ in greater detail.

Fetch. We redefine the abbreviation FeichOK to be equivalent to the expression “FzecuteMode = first-
step”; this will ensure that the fetch rule only executes once for each instruction being executed.

Since the decode rule will not execute until the last step of a multi-step instruction, the fetch rule cannot
simply put the instruction retrieved from memory into Decodelnsir, since that could possibly displace the
instruction waiting to be decoded. Consequently, we introduce two new nullary functions, FetchedInstr,
PrevFetchedInstr: instructions, which will store the instruction most-recently and next-most-recently fetched
from memory, respectively. In the block diagram Figure 1, this is embodied by the two registers IR1 and
IR2.

The new fetch rule is shown in Figure 10.

Rule: Fetch
if FetchOK then
FetchedInsir := Fetchlnstr
PrevFetchedInsir := FeitchedInsir
endif

Figure 10: New fetch rules.

Decode. As stated above, the ARM delays the decoding of an instruction until the execute rules are
performing the last step of the required instruction sequence. Consequently, we introduce a new binary
function LastStep: instructions x modes — Bool, which indicates for a given instruction ¢ and mode m,
whether mode m is the last step in executing instruction ¢. For example, for any single-step instruction ¢,
LastStep(i,first-step) is true.

We then redefine the abbreviation DecodeOK to be equivalent to:

not Satisfied(Status, CondCode(Erecutelnsir)) or LastStep(Ezecutelnsir, FzecuteMode)
That is, the instruction currently in the execute phase is in its last step if the instruction’s condition is not
satisfied (and thus the instruction will not be performed at all), or if LastStep explicitly indicates that it is
in its last step.

We remove the function Decodelnsir and instead make Decodelnsir an abbreviation for:

IfThenElse(Execute Mode=first-step, FetchedInstr, PrevFetchedInstr)
That is, if the decode rule is executing during the first step of the execute cycle (as it did in &), the
instruction to be decoded is simply the instruction which was most-recently fetched from memory, z.e.
FetchedInstr. If not, the fetch rule has executed in the meantime, and the instruction to be performed
resides in PrevFetchInstr instead.

We re-define the expression Contents’(z) to be equivalent to:

IfThenElse(x#PC,Contents(z), If ThenElse(Erecute Mode=first-step, Contenis(PC)+4,Contents(PC}))
As with the definition of Decodelnsir, this reflects the fact that the execute rule which increments PC by 4
always fires in the first step of any multi-step instruction. Thus, if the contents of PC are to be accessed
after that first step during the decode phase, the access should take this into account.

We can now comment on the odd requirement in the ARM that the value of the PC register for any
instruction is 8 greater than the address of that instruction. Notice that by the time an instruction which

18

uses PC' as an operand is permitted to decode the instruction, PC' may have been incremented by 4 once
or twice. If PC has been incremented twice by 4, the ARM can access the appropriate value by reading PC
directly. If PC has been incremented once by 4, the ARM will need to take the value of PC' and increment
it again by 4; this is accomplished by the same combinational logic used to increment PC by 4 during each
execute stage.

Execute. We redefine the abbreviation EzecuteOK to be equivalent to the expression “FrzecuteMode =
first-step” , reflecting the idea that all instructions begin executing in the first step of each phase. Additionally,
we add the update “EzecuteMode := first-step” to the FzecuteALU and FEzecuteBranch rules (which will
take only one step to perform in &3).

The new rules for single-load instructions are shown in Figure 11. A single-load instruction takes three
steps. The first step calculates the address to be loaded and places that address in a special location AddrReg:
words. The second step loads the specified value from memory into an intermediate location Dataln: words.
The third step places that value into the desired register. Additionally, if write-back to the base register is
required, that write occurs during the second step.

Rule: SingleLoad
if SingleLoadInstr(Erecutelnsir) then
if FzecuteMode=firsi-step and Satisfies(Status, CondCode(EzecuteInsir)) then
Contenis(AddrReg) := MemAddr
EzecuteMode := load-read-memory
Bop := Offset
elseif ErecuteMode = load-read-memory then
if ByteTransferInstr(Ezecutelnsir) then
Dataln := PadWord(Memory(Contents(AddrReg)))
else Dataln := MemoryWord(Contents(AddrReg))
endif
if WriteBack(FEzecutlelnsir) then
Contenis(BaseOp(FEzecutelnstr)) := ALU(“+”,Aop,Bop,0)
endif
FEzecuteMode := load-write-register
elseif ErecuteMode = load-write-register
Contenis(DestReg) := Dataln
EzecuteMode := first-step
endif
endif

Figure 11: Single-load rules.

The rules for single-store instructions, shown in Figure 12, follow a similar pattern. A single-store
instruction takes two steps to execute. The first step calculates the address to which the datum should be
stored, as well as places the value to be stored in a nullary function DataQut. The second step performs the
transfer to memory, as well as any required write-back operation.

Rules for multiple-load instructions, shown in Figure 13, are similar to those for single-load instructions.
In a given step, the ARM calculates the address of the memory location to be used to read from memory in the
following step, storing the address in the special register AddrReg. Functions First TransferReg: instructions
— registers and NextTransferReg: instructions X registers — regqisters give the list of registers to be loaded
by this instruction.

The reader may notice that if write-back is specified for a multiple-load instruction, and the register to
be written back is also in the list of registers to be loaded, that register may be written twice during the

19

if SingleStorelnstr(Ezecutelnstr) then
if EzecuteMode=first-step and Satisfies(Status, CondCode(Ezecutelnstr))then
Contents(AddrReg) := MemAddr
DataOut := Contents’(DestReg)
EzecuteMode := store
Bop := Offset
elseif ExecuteMode = store then
if ByteTransferInstr(EzecuteInsir) then
Memory(Contents(AddrReg)) := DataOut
else AssignWord(Contents(AddrReg), DataOut)
endif
if WriteBack(Fzecutelnstr) then
Contenis(BaseOp(FEzecutelnstr)) := ALU(“+”,Aop,Bop,0)
endif
FEzecuteMode := first-step
endif
endif

Figure 12: Single-store rules.

execution of the instruction. The semantics of the multiple-load instruction specify that the value loaded
from memory should be the value stored in the register; it is easy to see that indeed this value is the last
value assigned to this register.

The rules for multiple-store instructions are given in Figure 14; they operate in a similar fashion to the
rules for multiple-load instructions.

The reader may recall one peculiar requirement for multiple-store instructions. Suppose that the list of
registers to be written to memory includes the base register. Then the value written to memory for the
base register is the write-back value if and only if the base register is not the first register being written to
memory; otherwise the value contained in the base register before the write-back is used. The rules above
implement this requirement rather cleanly. Observe that the value being written back to the register file is
written during the second step of the execute cycle, while the first value to be written to memory is read
during the previous step. Thus, the write back value will only be present in the register file for the second
and succeeding writes to memory.

5.1 Proof of Correctness

In this section, we prove the correctness of &3 with respect to the original ASM model &. The proof that &
and &3 produce the same sequence of significant updates is almost identical to that given in the last section
for £ and &. We point out here only the places where the proof differs, due (naturally) to the changes
introduced in &3.

First, some definitions. Let p =< 01,03,... > be a run of 3. An ezecution cycle (or simply a cycle)
C of a run of p of & is any maximal subsequence < oy,...,05-1,0;,...,05-1,0%,...,00—1 > such that
EzecuteMode = first-step is true in 03, 0, 0, 0¢ but in no other states in that interval. We refer to the three
subsequences 0;,...,05_1, 0j,...,0p_1, and o, ..., 001, respectively, as the fetch, decode, and ezecute
phases of C. Notice that every phase may have as little as one state.

We say that instruction i is performed during C' if ¢ is the value of Fetchlnstr (respectively, Decodelnstr,
Fzecutelnstr) during the fetch (respectively, decode, execute) stage of C; C' is a meaningful cycle if 1 is not
a nop instruction. It is easy to check that the instruction ¢ performed during a cycle C' is well-defined.

The stgnificant updates of a meaningful cycle C' which performs instruction ¢ are all the updates to

20

Rule: MultipleLoad
if MultipleLoadInstr(Ezecutelnstr) then
if EzecuteMode=first-step and Satisfies(Status, CondCode(EzecuteInsir)) then
Contents(AddrReg) := ALU(“+”,Aop, Bop,0)
Bop := FinalOffset(Ezecutelnstr)
EzecuteMode := multi-load-init
elseif ExecuteMode = multi-load-init then
if WriteBack(FEzecutlelnsir) then
Contenis(BaseOp(FEzecutelnstr)) := ALU(“+”,Aop,Bop,0)
endif
Dataln := MemoryWord(Contents(AddrReg))
Contenis(AddrReg) := Contents(AddrReg) + 4
TransferReg := FirstTransfer Reg(Executelnstr)
FEzrecuteMode := multi-load-loop
elseif ErecuteMode = multi-load-loop then
Contents(TransferReg) := Dataln
if TransferReg = LastTransferReg(FEzecutelnstr) then
TransferReg := undef
FErecuteMode := first-step
else
Dataln := MemoryWord(Contents(AddrReyg))
Contenis(AddrReg) := Contents(AddrReg) + 4

TransferReg := NexziTransferReg(FEzecutelnsir, TransferReg)
endif
endif

endif

Figure 13: Multiple-load instructions.

21

Rule: MultipleStore
if MultipleStoreInstr(Ezecutelnstr) then
if EzecuteMode = first-step and Satisfies(Status, CondCode(EzecuteInsir)) then
Contents(AddrReg) := ALU(“+”,Aop, Bop,0)
TransferReg := FirstTransferReg(Ezecutelnstr)
DataOut := Contents’(FirstTransfer Reg(Ezecutelnstr))
Bop := FinalOffset(Ezecutelnstr)
EzecuteMode := multi-store-init
elseif ExecuteMode = multi-store-init then
if WriteBack(Fzecutelnstr) then
Contenis(BaseOp(FEzecutelnstr)) := ALU(“+”,Aop,Bop,0)
endif
AssignWord(Contents(AddrReg), DataOut)
if TransferReg = LastTransferReg(FEzecutelnstr) then
FEzecuteMode := first-step
else
Contenis(AddrReg) := Contents(AddrReg) + 4
TransferReg := NexztTransferReg(FEzecutelnstr, TransferReg)
DataOut := Contents’(NextTransferReg(FEzecutelnstr, TransferReyg))
EzecuteMode := multi-store-loop
endif
elseif ErecuteMode = multi-store-loop then
AssignWord(Contents(AddrReg), DataOut)
if TransferReg = LastTransferReg(FEzecutelnstr) then
FErecuteMode := first-step
else
Contenis(AddrReg) := Contents(AddrReg) + 4
TransferReg := NexztTransferReg(FEzecutelnstr, TransferReg)
DataOut := Contents’(NextTransferReg(Ezecutelnstr, TransferReyg))
endif
endif endif

Figure 14: Multiple-store rules.

22

functions in Ty performed in the execute stage of C, except for any update to Contents(PC). In the case
this set is inconsistent (that is, contains multiple updates to the same location), only the last update applied
to a particular location is included in the set. Each run p =< 01, 09,... > gives rise to a unique sequence of
cycles < Cq,Cy, ... >.

As before, we assume that the program being executed by both & and &3 is data-dependency and
branch-conflict free.

In this section, let s; and s} be initial states of £, and &3, respectively, such that s1|Yy = s{|Tv. Let
p =< S1,82,... > be a run of & with corresponding sequence of execution cycles < C7,C5,... >. Let
p =< si,sh,...> be arun of & with corresponding sequence of execution cycles < C7,C%, ... >.

For the remainder of this section, we will speak of the phases of & as if they were composed of multiple
states (as in &), even though a stage of a a cycle of £; only has one state. Thus, the first state, or the last
state, of a cycle of & is the same as the unique state of that cycle.

We say that execution cycles C' and C” of & and &3, respectively, correspond if:

e C and C’ agree on the value of FeichInsir in the first state of their fetch phases.

e (C and C’ agree on the values of all input locations (with respect to Instr and Decodelnstr) in the first
state of their decode phases.

e (C and C' agree on the values of Memory, Status, and Contents (with the exception of Contents(PC))
in the first state of their execute phases.

The proof of equivalence for £ and &3 is identical to that for & and &, except for the following lemma:

Lemma 6 (Update Lemma) Suppose ezecution cycles C and C' correspond. Then the significant updates of
C and C' are identical.

Proof. We consider the three corresponding phases of C' and C".

e Fetch. In the fetch phase of C, a new instruction, MemoryWord(Contents(PC)), is loaded into De-
codelnstr. Since C and C' correspond, Contents(PC) has the same value in the first state of the fetch
phase of €', in which MemoryWord(Contents(PC)) is loaded into FetchedInstr. Tt is easy to show that
this value is the instruction being performed by C’; thus, C' and C’ agree over all stages with respect
to the current instruction being performed.

e Decode. Since the instruction i performed by C and C” is identical, and C' and C’ correspond, the
first state of the decode phases of C' and C” agree with respect to all values which are used to perform
updates to Aop, Bop, DestReg, and Shift CarryOp: namely, the instruction i being performed, the input
locations for 7, and various static functions. We claim that C' and C’ make the same updates to Aop,

Bop, DestReg, and ShiftCarryOp.

If the decode phase of C’ has only one state, the claim is obvious. If the decode phase of C’ has more
than one state, £5 does not perform the updates to these functions until the last state of the decode
phase. The only way the claim could be violated is if one of the input locations for ¢ were modified
between the beginning and end of the decode phase. It might be the case that the location in question
is Contents(PC), which is usually incremented by 4 in the first state of every phase; the new definition
for Contents’ accounts for this discrepancy. Otherwise, this would mean that the instruction whose
execute phase coincides with this decode phase modifies one of ¢’s input locations; this would violate
our assumption that the program being executed is data-dependency free. So the claim holds.

e Execute. Since C' and C’ correspond, the first state of the execute phases of C' and C’ agree with
respect to Memory, Status, and the intermediate locations Aop, Bop, DestReg, and ShifiCarryOp. We
claim that C and C’ produce the same significant updates. This is obvious if the execute phase of C’
has only one state; in this case, the rules performed in the execute phase of C' and C’ are identical.
There are several other cases.

23

— Case 1: Single-Load. In one step, C assigns Memory(MemAddr) or MemoryWord(MemAddr)
to Contents(DestReg). C' takes three steps to perform this operation: copying MemAddr to
Contenis(AddrReg), copying Memory(Contenis(AddrReg)) or MemoryWord(Contents(AddrReyg))
to Dataln, and copying Dataln to Contents(DestReg). Since DestReg does not change during the
execute phase of C’, these updates yield the same effect.

C' may also update Contents(BaseOp(Ezecutelnsir)); in this case, an identical update occurs in
the second step of the execute phase of C”.

— Case 2: Single-Store. In one step, C' executes either Memory(MemAddr) := Contents’(Dest-
Reg) or AssignWord(MemAddr, Contents’(DestReg)). C' takes two steps to perform this op-
eration: copying Conients’(DestReg) to DataOut and MemAddr to Contents(AddrReg), then
performing either Memory(Contents(AddrReg)) := DataOut or Assign Word(Contents(AddrReg),
DataOut). Clearly these updates have the same effect.

C' may also update Contents(BaseOp(Ezecutelnsir)); in this case, an identical update occurs in
the second step of the execute phase of C”.

— Case 3: Multiple-Load. In one step, C performs a number of updates to various registers

through the Contents function, based upon several consecutive locations in memory. Additionally,
if WriteBack(i) holds, Contents(BaseOp(i)) is also modified.
It is easy to see that C’ performs the same updates as C' in an iterative fashion, proceed-
ing sequentially through the consecutive locations in memory and the list of registers to be
written. If required, the same update to Contents(BaseOp(i)) is also performed. Notice that
Contenis(BaseOp(i)) might be updated twice; once if WriteBack(i) holds and once if BaseOp(i)
is in the list of registers to be loaded. C' requires that only the latter update be performed; in C’,
this update 1s performed after the former update, so the effect is the same.

— Case 4: Multiple-Store. Again, C’ performs the same updates to memory as C' in an iterative
fashion. There are two subleties. Notice that if PC appears in the list of registers to be stored,
it will have been incremented by 4 by the time it is ready to be stored in memory; the new
definition of Contents’ handles this discrepancy. Notice also that if WriteBack(i) holds and
BaseOp(i) appears in the list of registers to be copied to memory, the value copied to memory
will be the “write-back” value if BaseOp(i) is not the first in the list of registers; this is consistent
with the definition of WriteVal in &;.

All cases have been considered and the proof is complete. QED.

6 &,;: Branches

We now modify our model of the ARM processor to correctly handle branch conflicts. Recall that an ARM
program is branch-conflict free if every instruction which explicitly modifies the PC register is followed by
two nop instructions. Up until this point we have assumed that every program was branch-conflict free; we
now remove this assumption.

The problem which we must now solve is as follows. Recall that in our pipelined model, while we
are executing an instruction ¢;, we are also decoding the next instruction #;4; and fetching the even later
instruction ;2. However, if ¢; is a branch instruction and its condition codes are satisfied, the instruction
which should be executed following 7; may not be #;1, but some completely different instruction 4;. Thus,
the instructions which are currently in the pipeline must be discarded, and the pipeline must be allowed to
fill with instructions starting with .

The revised rules for branch instructions are shown in Figure 15. Notice that there are two new modes
used: refilll and refill2, which reflect steps in the computation where the pipeline will be refilled.

Notice that instructions which explicitly write to a register (such as load instructions) may write to the PC
register; as with branch statements, we use this refilling technique. Consequently, we replace every update
of the form “FrecuteMode := firsi-step” appearing in every rule (except for Ezecute PC') to the following:

24

Rule: ExecuteBranch
if EzecuteMode = first-step and Branchlnstr(EzecuteInsir) then
if Satisfies(Status,CondCode(FEzecutelnsir)) then
Contents(PC) := ALU(“+”, Aop, Bop, 0)
if BranchWithLinkInstr(EzecuteInstr) then
Aop := Contents’(PC)

Bop := 4
endif
FErecuteMode := refilll
endif
endif

if FrecuteMode = refilll then
EzrecuteMode := refilll
Contenis(PC) := Contents(PC) + 4
if BranchWithLinkInstr(EzecuteInsir) then
Contenis(LinkReg) := ALU(“”,Aop,Bop,0)
endif endif
if EzecuteMode = refill2 then
FEzrecuteMode := first-step
Contenis(PC) := Contents(PC) + 4
endif

Figure 15: Revised branch instruction rules.

if WritesPC(FEzecutelnstr) then ErecuteMode := refilll
else FrecuteMode := first-step
endif

In this manner, every instruction which writes to the PC register will proceed through modes refilll and
refill2 before beginning the next execution cycle.

We now need to ensure that the fetch and execute rules in fact will perform as required during modes
refilll and refill2 in order to refill the instruction pipeline. We redefine the abbreviation FetchOK to:
FrecuteMode = first-step or FrecuteMode = refilll or FrecuteMode = refill2
Thus, the fetch rule will load instructions from memory during the refill modes as well as at the beginning
of each phase. The function LastFzecutionStep will ensure that the decode rules are executed during mode

refill2.
We also redefine the abbreviation Decodelnstr to:
IfThenElse(Execute Mode=first-step or ErecuteMode=refill2, FetchedInstr, PrevFetchedInstr)
This ensures that Decodelnstr will retrieve the correct instruction during the refill modes.

6.1 Proof of Correctness

In this section we prove the equivalence of & and &4, by describing the changes necessary to the proof of
equivalence of & and &£3. Notice that the proof of equivalence of £ and &3 assumes that the program being
executed by the ARM is branch-conflict free; we make no such assumptions in this proof of equivalence.

In the initial state of &4, FrecuteMode = refilli. The definitions of execution cycle, phase, instructions
performed during a phase, etc. are the same in &, as in &s.

In this section, let s; and s} be initial states of £, and &4, respectively, such that s1|Ty = s{|Tv. Let
p =< S1,82,... > be a run of & with corresponding sequence of execution cycles < C7,C5,... >. Let
p =< si,sh,...> be arun of & with corresponding sequence of execution cycles < C7,C%, ... >.

25

The proof of equivalence of £ and &4 is identical to that of & and &3, except for the following lemmas:

Lemma 7 (Consecutive Instruction Lemma) Fiz a state s of £4. Let i, ig, and iy be the values of Exe-
cutelnstr, Decodelnstr, and Fetchlnstr, respectively. Then:

o If ExecuteMode = refill2, then i = MemoryWord(a) and iq = MemoryWord(a — 4), where a =
Contenis(PC).

o If ExecuteMode # refill2 and ExecuteMode # refilll, then iy = MemoryWord(a), iq = Memory-
Word(a — 4), and i, = MemoryWord(a — 8), where a = Contents(PC) if ExecuteMode = first-step
and a = Contents(PC) - 4 otherwise.

Proof. By induction over states. The condition is trivially true in the initial state, since FrecuteMode =
refilll.

In most states, Contents(PC} is incremented by 4, which can be seen to maintain the invariant. The
exception occurs when Contenis(PC) is updated to an arbitrary value; in this case, FzecuteMode is always

updated to refilll. QED.

Lemma 8 (PC Lemma) Suppose C; and C} correspond. Then the fetch phases of Cj11 and C agree with
respect to Contents(PC).

Proof. By supposition, since C; and C']’» agree in the first state of their fetch phases with respect to
Contents(PC), Cj and C} perform the same instruction i.

o WritesPC(i) is true, and Satisfies(Status, CondCode(i)) holds in the first state of the execute phase of
Cj (and thus in C}). Thus, Contents(PC) will be modified in the execute phase of C; and C7.

In &1, the next meaningful instruction cycle will begin with the state following the execute phase of
Cj; consequently, the address of the instruction executed by that phase is determined by the update
to Contents(PC) performed in the execute phase of Cj.

In &4, the execute phase will have several states in which updates are made to Contents and Memory
(including the update to Contents(PC), followed by states r1 and ra, in which EFzecuteMode has the
value refilll and refill2, respectively. The instruction j which appears in Ezecutelnstr in the first state
following 75 will be loaded into FetchedInsir in r1 and copied into Decodelnstr in ry; the memory
address used to find j is thus determined by the update to Contents(PC) performed in the execute
phase of C'J’». Thus, 71 and ry are the fetch and decode phases of C]l'+1~

An argument similar to that given in the Update Lemma shows that C; and Cj perform the same
update to Contents(PC); thus, the fetch phases of Cj 41 and C},, agree with respect to Contents(PC),
as desired.

e WritesPC(i) is not true, or Satisfies(Status, CondCode(i)) does not hold in the execute phase of Cj
(and C}). Then the instruction i’ executed in Cj41 and Cj,, is the next instruction in the pipeline,
which is the instruction following i in memory. Thus Fetchlnstr = i’ in both Cj4q and C} ;.

In each case, Cj4;1 and C']’»_}_1 agree with respect to FetchInsir in their fetch phases, as desired.

7 &;: Data dependencies

In &, we now remove the assumption that the ARM programs being executed have no data-dependencies.
Recall that a data-dependency occurs if there are two consecutive instructions i;, ¢; 4.1 such that 7; 4, uses

the contents of a register r as input while 7; modifies register r. In our pipelined model, this is problematic

because i; writes to register r (in its execute phase) at the same time as i;4; reads from register » (in its

26

decode phase). A similar problem results with the status flags; i; may update the status register during its
execute phase while ¢;1 is reading the status register to perform a shift during its decode phase.

The solution is to make the value being written by instruction ¢; explicitly available to the decode phase
of #;41. The ARM performs this task by means of a forwarding path where the written value is conveyed
immediately to the decode phase. We do this by redefining the abbreviation Contents’(z) to:

IfThenElse (x # PC,
IfThenElse(WritingReg(Execute Mode, FEzecutelnstr,z), Write Data, Contents(z)),
IfThenElse(Execute Mode=first-step, Contents(PC)+4, Contents(PC)))

where WriteData abbreviates:

IfThenElse(ErecuteOK and Alulnstr(Ezecutelnstr), ALU(Op(Ezecutelnstr), Aop, Bop, Carry(Status)),
IfThenFlse(FrecuteMode=store, Aop+ Offset,
IfThenFlse(FrecuteMode=load-write-register or Erecute Mode=multi-load-loop, Dataln,
IfThenElse(Execute Mode=multi-store-init, Aop+Bop,undef))}))

These abbreviations make use of a new function WritingReg: modes x instructions X registers — Bool,
which indicates whether the specified register is being written by the instruction currently executing in the
specified mode. If WritingReg returns true, the desired value i1s simply the value that is about to be written
to that register; otherwise, the value is as before. Notice that WriteData only considers certain values for
EzecuteMode; these are the only modes in which a change in the register file can occur during the last step
of an execution cycle.

The problem with the status register is solved similarly. We replace the expression Carry(Status) in the
decode rule by Carry(STATUS), where STATUS is defined as:

IfThenElse (WritingStatus(Status, ExecuteMode, Ezecutelnsir),
UpdateStatus(Status, ALUop(Fzecutelnsir), Aop, Bop, ShiftCarryOp), Status)

The function WritingStatus indicates whether the instruction in the execute stage is writing to the status
register. If this is the case and the status is required during the decode stage, the required value being
written is read directly.

The proof of correctness for & and & is the same as that for £ and &4, with one slight change to the
Update Lemma. Previously, our assumption that the program was data-dependency free was used only in
one place: to assure us that values accessed from memory and registers during the decode phase of C; reflect
the values stored in phases C; through C;_;. The only possible problem arises when the decode phase of Cj
coincides with the execute phase of C;_;, where the values being modified in C;_; are used by the instruction
executing in Cj. But in this case, the new definition of Contents’ given above makes those changed values
available to C, so no problem arises.

8 &: Register File Restrictions

In our final ASM &, we take into account certain hardware restrictions on the register file. In the imple-
mentation of the ARM, the register file has two read ports and one write port. This means that at most two
registers may be read and at most one register may be written during any step of &. (The special register
PC, which is read and/or written at virtually every step of the ARM, is exempted from this requirement.)
An examination of & will show that in almost every case, &5 reads from at most two registers and writes
at most one register (other than PC) at each step. The one exception is for certain types of ALU instructions:
namely, those instructions which require a shift where the shift amount is specified by a register. Such an

27

instruction requires three registers; one for the value of Aop, one for the pre-shifted value of Bop, and one for
the amount of the shift. We indicate such instructions by means of a static function AluRegShift: instructions
— Bool.

The solution is to perform such an instruction ¢ in two steps, thereby introducing a stall cycle. During ¢’s
decode phase, the ARM uses its two read ports to calculate Bop, while ignoring Aop. This causes a change
to the decode rule, shown below in Figure 16.

Rule: Decode
if DecodeOK then
Ezecutelnstr := Decodelnstr
if not Nop(Decodelnstr) then
DestReg := DestOp(Decodelnstr)
if not AluRegShift(Decodelnsir) then
Aop := Contents’(AopReg(Decodelnstr))
endif
Bop := Shift(Source Val,Shift Type(Decodelnstr), Shift Amt, Carry(STATUS))
ShiftCarryOp := ShiftCarry(SourceVal, Shift Type(Decodelnstr), Shift Amt, Carry(STATUS))
endif
endif

Figure 16: Revised decode rule.

During the first step of ¢’s execute phase, we load the proper value into Aop; the required ALU operation
is then performed during the second step of 7’s execute phase. To distinguish this case from ALU instructions
which do not require this extra step, we re-define the abbreviation FzecuteOK to:

EzecuteMode = first-step and not AluRegShift(Ezecutelnstr)

The new rules for ALU-register-shift operations are shown below in Figure 17.

The proof of equivalence for & and & is similar to that for £ and &5; a small change to the Update
Lemma is needed to confirm that the new rules above perform the same updates to the register file.

References

[1] Acorn RISC machine (ARM) family data manual, Englewood Clifs, N.J. : Prentice Hall, 1990.

[2] E. Borger, “Annotated Bibliography on Evolving Algebras”, in Specification and Validation Methods,
ed. E. Borger, Oxford University Press, 1995, 37-51.

[3] E. Borger and S. Mazzanti, “A correctness proof for pipelining in RISC architectures.” DIMACS Technical
Report 96-22, July 1996.

[4] Stephen B. Furber, VLSI RISC architecture and organization, New York, M. Dekker, 1989.

[5] Y. Gurevich, “Logic and the challenge of computer science.” In E. Borger, editor, Current Trends in
Theoretical Computer Science, pp. 1-57, Computer Science Press, 1988.

[6] Y. Gurevich, “Evolving Algebras: An Attempt to Discover Semantics”, Current Trends in Theoretical
Computer Science, eds. G. Rozenberg and A. Salomaa, World Scientific, 1993, 266-292. (First published
in Bull. EATCS 57 (1991), 264-284; an updated version appears in [8].)

[7] Y. Gurevich, “Evolving Algebras 1993: Lipari Guide”, in Specification and Validation Methods, ed. E.
Borger, Oxford University Press, 1995, 9-36.

28

if FzecuteMode = first-step and AluRegShift(Ezecutelnstr) then
if Satisfies(Status, CondCode(FEzecutelnstr)) then
Aop := Contents’(AopReg(Erecutelnstr))
FEzecuteMode := alu-shaift
endif
endif

if EzecuteMode = alu-shift then
if WriteResult(Erecutelnstr) then

Contenis(DestReg) := ALU(Op(Ezecutelnsir), Aop, Bop, Carry(Status))

endif
if SetCondCode(FEzecutelnstr) then
Status :=

UpdateStatus(Status, Op(EzecuteInsir), Aop, Bop, Shift CarryOp)

endif
if WritesPC(FEzecutelnsir) then FzecuteMode := refilll
else FrecuteMode := first-step
endif
endif

Figure 17: ALU-register-shift rules.

[8] J. Huggins, ed., “Gurevich Abstract State Machine Home Page”, EECS Department, University of Michi-

gan, http://www.eecs.umich.edu/gasm/.

29

A Appendix: Full ARM Model

Rule: Fetch
if FetchOK then
FetchedInstr := FetchlInsir
PrevFetchedInsir := FetchedInstr
endif
where FetchOK abbreviates FrecuteMode = first-step or EzecuteMode = refilll or FrecuteMode = refill?
FetchInstr abbreviates MemoryWord(Contents(PC))
MemoryWord(z) abbreviates Word(Memory(z),Memory(z+1), Memory(z+2), Memory(z+3))

Rule: Decode
if DecodeOK then
Ezecutelnstr := Decodelnstr
if not Nop(Decodelnstr) then
DestReg := DestOp(Decodelnstr)
if not AluRegShifi(Decodelnsir) then
Aop := Contents’(AopReg(Decodelnsir))
endif
Bop := Shift(SourceVal, Shift Type(Decodelnstr),Shift Amt, Carry(STATUS))
ShiftCarryOp := ShiftCarry(Source Val,Shift Type(Decodelnsir),Shift Amt, Carry(STATUS))
endif
endif
where
DecodeOK abbreviates
not Satisfied(Status, CondCode(Ezecutelnstr)) or LastStep(Ezecutelnstr, ExecuteMode)
Decodelnstr abbreviates
IfThenElse(Execute Mode=first-step or EzecuteMode=refill2, FetchedInstr, PrevFetchedInstr)
Contents’(z) abbreviates
IfThenElse (z # PC,
IfThenElse(WritingReg(Ezecute Mode, Fzecutelnstr,z), Write Data, Contents(z)),
IfThenElse(Execute Mode=first-step, Contents(PC)+4, Contents(PC)))
WriteData abbreviates
IfThenFElse(ErecuteOK and Alulnsir(FEzecuielnsir),
ALU(Op(FEzecutelnsir), Aop, Bop, Carry(Status)),
IfThenElse(Erecute Ok and Branchlnstr(Ezecutelnstr), Contenis(PC)-4,
IfThenFlise(Frecute Mode=store, Aop+ Offset,
IfThenFlise(Fzecute Mode=load-write-register or Erecute Mode=multi-load-loop, Dataln,
IfThenElse(Execute Mode=multi-store-init, Aop+Bop,undef)))}))
Source Val abbreviates
IfThenElse(ImmBop(Decodelnstr),
Immediate Val(Decodelnstr), Contents’(BopReg(Decodelnsir}))
ShiftAmt abbreviates
IfThenElse(ImmShifi(Decodelnstr),
ImmShiftAmt(Decodelnstr), Contents’(Shift Reg(Decodelnstr)))
STATUS abbreviates
IfThenElse (WritingStatus(Status, FzecuteMode, Ezecutelnsir),
UpdateStatus(Status, ALUop(Ezecutelnsir), Aop, Bop, ShiftCarryOp),Status)

30

Rule: ExecutePC
if EzecuteOK then
if not Satisfies(Status, CondCode(Ezecutelnstr)) or not WritesPC(EzecuteInsir) then
Contenis(PC) := Contents(PC) + 4
endif
endif

where EzecuteOK abbreviates EzecuteMode = first-step

Rule: ExecuteALU
if EzecuteMode = first-step and Alulnstr(Ezecutelnstr) and not AluRegShifi(EzecuteInsir) then
if Satisfies(Status,CondCode(Fzecutelnsir)) then
if WriteResuli(EzecuteInsir) then
Contents(DestReg) := ALU(Op(EzecuteInsir), Aop, Bop, Carry(Status))
endif
if SetCondCode(Ezecutelnstr) then
Status := UpdateStatus(Status, Op(Ezecutelnsir), Aop, Bop,Shift CarryOp)
endif
endif
if WritesPC(FEzecutelnstr) then EzecuteMode := refilll
else FErecuteMode := first-step
endif
endif

Rule: ALU-RegisterShift
if FzecuteMode = first-step and AluRegShift(Ezecutelnsir) then
if Satisfies(Status, CondCode(Fzecutelnsir)) then
Aop := Contenis’(AopReg(FErecutelnstr))
FErecuteMode := alu-shift
endif
endif

if ExecuteMode = alu-shift then
if WriteResult(Erecutelnstr) then
Contents(DestReg) := ALU(Op(Ezecutelnsir), Aop, Bop, Carry(Status))
endif
if SetCondCode(FEzecutelnstr) then
Status :=
UpdateStatus(Status, Op(EzecuteInsir), Aop, Bop, Shift CarryOp)
endif
if WritesPC(FEzecutelnsir) then FzecuteMode := refilll
else FrecuteMode := first-step
endif
endif

31

Rule: ExecuteBranch
if EzecuteMode = first-step and Branchlnstr(EzecuteInsir) then
if Satisfies(Status,CondCode(Frecuielnsir)) then
Contenis(PC) := ALU(“+”, Aop, Bop, 0)
if BranchWithLinkInstr(Ezecutelnsir) then
Aop := Contenis’(PC)

Bop := 4
endif
FErecuteMode := refilll
endif
endif

if FrecuteMode = refilll then
FErecuteMode := refilll
Contenis(PC) := Contents(PC) + 4
if BranchWithLinkInstr(EzecuteInsir) then
Contenis(LinkReg) := ALU(“”,Aop,Bop,0)
endif endif
if EzecuteMode = refill2 then
EzrecuteMode := first-step
Contents(PC) := Contents(PC) + 4
endif

Rule: SingleLoad
if SingleLoadInstr(Erecutelnsir) then
if FzecuteMode=first-step and Satisfies(Status, CondCode(EzecuteInsir)) then
Contenis(AddrReg) := MemAddr
EzecuteMode := load-read-memory
Bop := FinalOffset(Ezecutelnstr)
elseif ErecuteMode = load-read-memory then
if ByteTransferInstr(Ezecutelnsir) then
Dataln := PadWord(Memory(Contents(AddrReg)))
else Dataln := MemoryWord(Contents(AddrReg))
endif
if WriteBack(FEzeculelnsir) then
Contenis(BaseOp(FEzecutelnstr)) := ALU(“+”,Aop,Bop,0)
endif
EzecuteMode := load-write-register
elseif ErecuteMode = load-write-register
Contents(DestReg) := Dataln
if WritesPC(Ezecutelnstr) then FzecuteMode := refilll
else FErecuteMode := first-step
endif
endif
endif

32

Rule: SingleStore
if SingleStorelnstr(Ezecutelnstr) then
if FzecuteMode=firsi-step and Satisfies(Status, CondCode(FEzecutelnsir))then
Contenis(AddrReg) := MemAddr
DataOut := Contenis’(DestReg)
Bop := FinalOffset(Erecutelnstr)
FEzecuteMode := store
elseif ExecuteMode = store then
if Byte TransferInstr(EzecuteInsir) then
Memory(Contents(AddrReg)) := DataOut
else AssignWord(Contents(AddrReg), DataOut)
endif
if WriteBack(FEzecutelnstr) then
Contenis(BaseOp(FEzecutelnstr)) := ALU(“+”,Aop,Bop,0)
endif
if WritesPC(FEzeculelnstr) then EzecuteMode := refilll
else ErecuteMode := first-step
endif
endif
endif

33

Rule: MultipleLoad
if MultipleLoadInsir(Ezecutelnstr) then
if FzecuteMode=first-step and Satisfies(Status, CondCode(EzecuteInsir)) then
Contents(AddrReg) := ALU(“+”,Aop, Bop,0)
Bop := FinalOffset(Ezecutelnstr)
EzecuteMode := multi-load-init
elseif ErecuteMode = multi-load-init then
if WriteBack(FEzecutelnsir) then

Contents(BaseOp(Ezecutelnstr)) := ALU(“+”,Aop,Bop,0)
endif
Dataln := MemoryWord(Contents(AddrReyg))
Contenis(AddrReg) := Contents(AddrReg) + 4
TransferReg := FirstTransfer Reg(Ezecutelnstr)
EzecuteMode := multi-load-loop
elseif ErecuteMode = multi-load-loop then
Contents(TransferReg) := Dataln
if TransferReg = LastTransferReg(FEzecutelnstr) then
TransferReg := undef
if WritesPC(FEzecutelnsir) then FzecuteMode := refilll
else FrecuteMode := first-step
endif

else

Dataln := MemoryWord(Contents(AddrRey))
Contenis(AddrReg) := Contents(AddrReg) + 4

TransferReg := NexziTransferReg(FEzecutelnsir, TransferReg)
endif

endif
endif

34

Rule: MultipleStore
if MultipleStoreInstr(Ezecutelnstr) then
if FzecuteMode = first-step and Satisfies(Status, CondCode(EzecuteInsir)) then
Contents(AddrReg) := ALU(“+”,Aop, Bop,(0)
TransferReg := FirstTransferReg(Ezecutelnstr)
DataOut := Contents’(First Transfer Reg(Erecutelnsir))
Bop := FinalOffset(Ezecutelnstr)
FEzecuteMode := multi-store-init
elseif ExecuteMode = multi-store-init then
if WriteBack(FEzecutelnstr) then

Contents(BaseOp(Ezecutelnstr)) := ALU(“+”, Aop,Bop,0)
endif

AssignWord(Contents(AddrReg), DataOut)
if TransferReg = LastTransferReg(FEzecutelnstr) then

if WritesPC(FEzecutelnsir) then FzecuteMode := refilll
else FrecuteMode := first-step
endif

else

Contenis(AddrReg) := Contents(AddrReg) + 4
TransferReg := NexztTransferReg(Ezecutelnstr, TransferReg)
DataOut := Contents’(NextTransferReg(Ezecutelnstr, TransferReyg))
EzecuteMode := multi-store-loop

endif

elseif ErecuteMode = multi-store-loop then

AssignWord(Contents(AddrReg), DataOut)

if TransferReg = LastTransferReg(FEzecutelnstr) then
if WritesPC(FEzecutelnstr) then FzecuteMode := refilll
else FrecuteMode := first-step
endif

else
Contenis(AddrReg) := Contents(AddrReg) + 4
TransferReg := NexziTransferReg(Fzecuielnstr, TransferReg)

DataOut := Contents’(NextTransferReg(Fzecutelnstr, TransferReyg))
endif

endif
endif

35

