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Abstract

In many design applications, it is commoagiice to stoe compl& hierarchical objects in a com-
pact folded form to save same space and toeduce pocessing costs for accessing the objects. In
these foldedepresentations, compteobjects ag huilt up from identical and otherwise indistinguish-
able design objects. Howey, it is often necessargspecially during theefinement of data, to distin-
guish between these identical folded objects byqralizing a subset of them. The established
practice is to gplicitly unfold the hiearchical objects and thus eate space in whicto stoe distinct
personalization data for edicobject occuence Howerer, this eplicit unfolding is costly and time
consumingresulting in a potentially minclarger structue, and substantially ineasing the costs of
querying and updating the design. Tdfere, we popose arunf ol d view opeator and povide the
basis for updating of customized values forhelaierarchical sub-object though the unfolded we We
propose alternative sttegies for the maintenance of genalization valuesgpresenting various por-
tions of the viee materialization spectrum. &\present a performancevaluation comparing these
strategies as well as theaditional eplicit unfolding appoach. Our ezaluation indicates the ade-ofs
in terms of staage and query costs and comparthe costs to do implicit unfolding digh a viev
rather than &plicit unfolding of complehierarchical objects.

Keywords: hierarchical object model, unfolding of hierarchical structures, data transformations,

object-oriented database wig, specialized vig materialization, performanceauation
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1 Intr oduction and Problem Description

Intr oduction. An increasing number of applications must be able to store,,camdyretrige
comple hierarchical objects.dl'reduce their size, especially whenyttmontain repeated sub-struc-
tures, comple hierarchical objects are often stored in a compact, folded representation. The folding
most frequently occurs along thart-of relationship, and is accomplished by representing the relation-
ship by multiple references to identical objects rather than by replicating subobjects. The result is a
compact hierarchical representation that stores the distinct objects in the idgsigitly, via occur-
rence pathsn the folded representation rather than throughi@t object instances.df example, Fig-
ure 1(a) represents a stack obteubes c1 and c2. Each cube is representeddmne6.fThe bottomate
of the cubec 1 in the stack is represented by the occurrenceqiath bt min the DAG. Similarly, the
“most-significant” full-adder (&) in the electrical design stwm in Figure 1(b) is represented implicitly
by the occurrence pa#8: : f 3 in the electrical design object. The representatioxplfat objects as
folded implicit occurrence paths is ary paverful construct, and as a consequence is commonly used
in application domains where there are repeated substructures. These domains include mechanical and
materials design, electrical and electronic design, genome databases, and graphical applications con-

taining repetitve images created by tiles and nested graphical objects, to name a fe
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Figure 1: (a) Hierarchical Graphical Object (b) Hierarchical Digital Design Object.

During the design process a useerually requires an unfolded weof the data. While modern
object-oriented database systemset at representing folded hierarchical structures [13, 22], the mean-
ing of the folding structure is not ko to the database. As a consequence these databases are not
capable of defining implicitly unfolded databasemseon a folded representation. Sadte tools gter-
nal to the database usually perform the unfoldixgji€itly, creating a separate representation [23],
resulting in the manknown problems caused by redundant data replication. Our hierarchical set model
[16] enables a databasewigystem to create an unfoldedwief the folded structures automatically

and implicitly, without creating a separate representation. Our motiksadpportunities for perfor-
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mance impreement and query optimization not possible with a transkaeed approach to unfolding.

The Personalization Problem. During the refinement of compidolded objects, applications
typically need not only to process queries on the compiigects. The also need to perform updates
through the unfolded we For example, in Figure 1(b), we may personalize the full addi&y ¢Bject
occurrencea3: : f 3 through an unfolded we by updating thesize attribute, while leging the size
attribute of all other 15 occurrences of the full adder object unchangeger$enalizatiorproblem is
concerned with answering the folllng questions:

» What data structures can allow updates of personalized attribute values in the implicit objects
created by thenf ol d operation?

» How do we organize these structures so that data can be efficiently retrieved during a representative
set of queries executed on an unfolded view?

» What are the performance trade-offs in querying the spectrum of un-materialized, partially-

materialized and fully materialized unfolded view?

In this paperwe focus on the costs to store and to query an unfoldeduhéch has been updated

(personalized).

20 (Addi6] @
fofffdd fzx:; fofffdd4 stof Add4 \ ! Add4 \
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Figure 2: (a) Unfolded Hlerarchlcal and (b) Unfolded Flat Design Descriptions of Figure 1(b).

Curr ent Practice. The traditional method for addressing the personalization problensiplic-
itly unfold hierarchical database objects to create objects in which to store the personakhat¢ion v
[23]. For example, Figure 2 depicts the unfolded representations of Figure 1(b) with the hignareh
sened (Figure 2(a)) and remed (Figure 2(b)). \0tk in [14] and [3] demonstrates approaches to main-
taining fully materialized unfolded wes. The redundant storage of folded atité@s in the unfolded
representation not only increases storage spatet also complicates data consistgmgaintenance

and dgrades query performance.

The HS System [24] is the only research system we kridhat supports an application program-
mer’s interbce (API) to an implicitly unfolded electrical design database. Besides being limited to
access via the API, HS does not\pde support for personalization of the data. Furthermore, it relies
on a special encoding of the data that mandates a completesalaof the folded design afteryan

update to the folded structure. In the commercial ECAD commuhiéye are systems such as the
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Mentor Graphics Designi®vpoint [23]. While these systems pide implicit unfolding and personal-
ization, access to the design objects is/igled by a limited industry-standard API [8], rather than a
query language, precluding opportunitiesddrhocquery specification and query optimization.

Our Contrib ution. In this paperwe present our model of folded hierarchical structures, includ-
ing operations that formally describe implicit unfolding. This model and its operations are the basis for
defining unfolded and flattened wie on comple hierarchical objects as well as the identification and
formalization of the personalization problem for folded hierarchical structures. Besides the status quo
explicit unfolding solution, we propose twapproaches to solving the problem, one adapted from the
literature — representing the un-materialized end of the spectrum, and one which we designed —
representing the partially materialized portion of the spectrum. In addition to these approaches we
designed and fine-tuned pruning and clustering techniques tovengiteir performance. gVimple-
mented these twpersonalization stragées and a fully-materializedplicit unfolding stratgy, as well
as pruning and clustering techniques in a uniform test-bed implementation in ordevide prdir
performance comparison of the approacheishiwthe test bed we ranxtensve eperiments grying
parameters such as data characteristics, datab#isedizes and percentage of personalization. In this
paper we present the results of our performamatiation along with recommendations for when the
different approaches are appropriate. These recommendations vae guddance to object database
designers considering wiematerialization stragges for domains requiring the unfold wi@peration.

Structure of This Raper. In Section 2, we define our hierarchical set model. In Section 3, we
present three alternagl solutions to the personalization problem, representing the spectrunwof vie
materialization approaches.e/Mescribe the performanceatiation process in Section 4, andiee/

the results in Section 5. Relatednk is discussed in Section 6, and we conclude with Section 7.
Table 1: Notation for Collection Types.

Addition Singleton S Defining Domains
Empty . - Combination .
X is element. X is element. N1, N, are domains.

Lists [] x::L [x] L,@L, [Nq]
nil cons append all sequences of |

Tuple <> x; T <x> T Ty <Ng, Np >

all tuples of N and N

Sets {} x1tS {x} S5US, {N1}

all sets of N

Common empty add(x,C) sng(x) comb(Cy, Cy)

2 The HierSet Model and Rersonalization.
2.1 The Model

Our HierSet model is composed @frious types of collectionsalble 1 summarizes the notation
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that we use to refer to these collections and domains defined with them. The notatiem iotal{1].

Our hierarchical set model consistH#etsfrom the domaim andAbstractiondrom the domain
a. We say that HSets are constructed as sets of Abstraaiiong,a }. For example, in Figure 3, we

have the HSet 4 consisting of three Abstractions, ={ a4, a,, az}. This composition is represented by
the three labelled edges whose soureg,i¥Ve distinguish empty HSets, callBdmitives In Figure 3,
bothngy andn, are Primitves.

We define the functio\: a - n. This function represents thabstractionOf relationship. Br
example, we say that, is anabstractionOfny, denoted by Af;) = ny,. In Figure 3, this is depicted by
an edge in the graph labeleg whose destination ig,. The membership af; in the HSeh, defines
the composition relationship betweggpandn,, namely that), owns an abstraction obynsAbstrac-
tionOf) n,. Thus there is an edge in the graph with a sourqg, @ destination ofi,, and a label ofi;.

Graph Notation Set and Function Notation

@ Na ={ 0y, 0p, ag}.
a3

A(aq)=A(ay)=np, A(az)=nc.

@ @ Np ={ay a7} ne ={as, og }.

Qs a7
G Qg

A(ag)=ng, A(07)=Ne. A(as)=ng, A(0g)=Ng-

5, s:12 s:25 |3, Value(Attr(ng , s))=12.  Value(Attr(ne , S))= 25.

(a) (b)

Figure 3: A HierSet rooted at the HSet n,. (a) Graph Notation, (b) Set and Function Notation.

ay

We distinguish a single HSet as tio®t, and refer to the root HSet, together with all other HSets
reachable from the root via tlwvnsAbstactionOf relationship as &lierSet Because a HierSet is
always constructed from composition relationships suglaesof or ownerof, a HierSet can alays be
expressed as a directedyatic graph (DAG). Cycles in the graph auld result in infinite HierSets
which are not currently of practical interest. Throughout this payewill refer to a HierSet’graphi-
cal properties and call it a HierSeAB. Figure 3 depicts a HierSeAD rooted by the HSef,.

Let x denote the domain of sequences we refer woatextsandN the set of natural numbers,
such thaty — [ N]. Given a domain of tupleQ - <x, n >, we refer to an object©d Q as anoccur-
rence The first component of an occurrence, the cdntdentifies the path in the HierSeAD that

represents the implicitly defined occurrence. The second component, the HSet, identifies tive primiti
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HSet at the end of the cortgath. or example, in Figure 3, <[1,4h4> is an occurrence of the primi-
tive ng, resulting fromny owned byng which is in turn wned byn, There clearly can be multiple
occurrences of the same priméiin a HierSet. 6 example, the occurrences <[1,4}> and <[2,4],
ng> in Figure 3 both contain the HSgf

We define the functiohD which maps each abstraction to a unique number withinviteioHSet
inN, I D:a - N. For corvenience, we definkeD for all abstractions; in Figure 3 such thatD(q;) =1i.
If each Abstraction within an HSet has a unique ID, then each occurrence path in the HierSet is guaran-
teed to hae a unique congg. This is easily preen by induction.

Let 5 denote the domain atttributes Given an attribted O 5, we define tw functionsNane : &
- String, (a 1-to-1 function) anWal ue : & - N. For corvenience, and without loss of generality
we assume that all attrite \alues are from the domalhfor the remainder of this papén Figure 3,
for example, we hee attritutess,, andsy,, both with theName s, and withVal ue 12 and 25 respec-
tively.

We define a function for primite HSetsAttr :n, Stri ng - d which is used to access the

folded attritute \alue. For example, in Figure 3Attr(ng , S)=0,

2.2 Operations on HSets
Using the notation described in Section 2.1, we poesent the definition ofavious operators
and transformations that are important to defining #piat and implicit unfolding operations.ol
help clarify these definitions we will relate them to tkareple illustrated in Figure 4.
We bain by defining what it means to vexrse an edge in the HierSeAG. Given a path to an
HSet identified by the contec, and an abstracticmwithin the HSet, we define the function CA as:
CA(c,a) = < c:ID(a), A(a) >, whee cO x, and ad a. (1)
For example, in Figure 4, we see th@A([1], d;) = < [1,1], Drawer>. For syntactic covenience, we
sometimes narite the function as:
CA(c,a) = CA(a). (2)
The functionmap(f) (S) applies the functioh to every element of the collectidhand combines the
results into a n& collection using the appropriatenb operator forS (see able 1). V¢ use therap
function to applyCA. to all abstractions in a particular HSet. This permits us to define the vecursi
Unf ol d function for a HierSet:
Unfold(< ¢c,h >) =<c¢, h > forhOn and h is a primitie. (3)
Unfold(<c, h>) = map(Unfolgkmap(CA)(h)), for hO'n and h not a primie. (4)
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The innermostrap operation in Equation 4 transforms the set of abstractions to a set of occur-
rences within the specified corteThe outermostrap recursvely unfolds each of the occurrences in
the set. The basis for the recursion is an empty HSet (w@&nés shan in Equation 3. The end result
of theUnf ol d operation is a set of occurrences of the form <c, h>, whisréhe constructed contie
path andh is a primitve HSet. Br example, Figure 4 shws the steps in unfolding the HIa¢sk,

detailing the results of each recwesunf ol d. The first leel of theUnf ol d operation map€A
over every element of the root HSet, resulting in a set of three occurre8gedlje recursie call
applies Unfold to each of the elementsSip resulting inS,; 4, S; 5, and K[3], Top>}. Because the

occurrence<[3], Top> is a primitive, it is a basis for the recursion. The final result of the Unfold is the

union of these sets as described in Figure 4. The final result contains 7 occurrences.

Unfold(<[],Desk>) = S ; 0 Sy, O {<[3], Top>}

S, = map(CA[)(Desk) = { <[1], Pedestal>,
<[2], Pedestal>, <[3], Top>}

S1,1 = map(CA[1 j)(Pedestal) = { <[1,1], Drawer>,
<[1,2], Drawer>, <[1,3], Above(dq,d5)>}

S1,2 = map(CA[z)(Pedestal) = { <[2,1], Drawer>,
<[2,2], Drawer>, <[2,3], Above(dq,d,)>}

Figure 4: Unfolding of a HierSet describing a Desk.

In the Desk HierSet, we see atample of a primitre relationshipAbove which relates all occur-
rences of thel; andd, abstractions of the dneer objects. These primit relationships are used to
describe relationships between objects in the HierSey. difeefolded and unfolded in the samaywvas
the other primities in the HierSet.

We define a functioAt tr : Q, Stri ng - & which maps an occurrence and an aitelmame to
an attrilute. This function is used to accesdues for attribtes of unfolded objectsoF example, in
Figure 4 Valug( Attr(<[1,2], Drawer>, size))= 5We can update attritbes of unfolded objects via an
update function:Updat e(Q, String, N). This function permits the update (personalization) of an
unfolded object in an unfolded weFor example, we can update the size of one of the four occurrences
of the Draver object in the deskJpdate(<[1,2], Drawer>, size 10) implies thatvalug Attr(<[1,2],
Drawer>, size))= 10Recall that all other occurrencalves remain unchanged under this update.

Having defined the unfolding and update operations, we can define what it means for a HierSet to
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be folded. A HierSet containing primié HSetsh is folded with respect the atttited nameds if:

for every c x and @ery primitve hO n, Attr(< c, h >, s) 54 Attr(h, s). (5)
This is to say that for an HSet, if all occurrences containing the same yei&ieth have the same
(i.e. same identity) attriie d, then the HierSet is fully folded. From this definition in Equation 5, we
malke the follaving obserations about possible implementations of the Attr() function:

1. If an HSet is fully folded with respect to the attribsteghen we may store the attribute with the
primitive HSet that terminates the occurrence path. This permits the attribute to be shared by all
occurrences that contain the HSet.

2. If attributes are shared as described in item 1, an update to a folded attribute results in the update
to all occurrences which share the attribute. We call this updadetasf-contextupdate. This
follows from the definition of fully folded as presented in Equation 5.

3. An update to an unfolded attribute cannot be shared as described in item 1, because there is no

space allocated in an HSet in which to store the values for unfolded attributes.

These obseations form the foundation and maition for praiding the implicit unfolding of hierar-
chical compl& objects while permitting personalization of the structures. In the remainder of this
paperwe &plore implementations of th& t r () function that optimize performance for the kinds of

gueries commonly performed on complgerarchical structures.

As we will describe in Section 4, the queries that we consider for our performahcation are
aggreation queries and queries thatveese hierarchical graphs described by a HierSet (both nodes
and edges are primis). These classes of queries are represantdtthe kinds of queries that are fre-
guently performed on hierarchically specified design objects and hierarchical grapts. Mt con-
sider indeed queries because wevkhanot yet deeloped indg structures for all materialization

stratgjies to permit us to compare theairly.

3 Materialization Methods

In this section, we describe threefelient approaches to materializing a personalized unfolded
view. First, we presentxplicit unfolding (EU), a fully materialized approach which stores personaliza-
tion data in eachxglicitly and fully unfolded object. Second, we describe a dictionary personalization
(DP) approach that uses a B+ tree structure to manage personalizes for implicitly unfolded
object occurrences. &\chose the B+ treever other dictionary methods because of yailability in
existing database systems and for its uniform performance characteristics. Third, we also present our
own partial materialization approach that upestial unfolding (PU) to personalize attilbes in an

auxiliary HierSet structure. ¥Vdesigned the PU approach to represent an approach near the middle of
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the materialization spectrum.

EU PU DP

- =  —

Fully Materialized Un-Materialized

Figure 5: The Materialization Spectrum for Unfold

3.1 Parameters
Because the performance of these proposed methods depends upon the characteristics of the data
being personalized, we briefly describe the characteristics of the HierSets and other parameters that we
will be discussing before describing the personalization approaches.
* h: height of the HierSet DAG. This quantity describes the length of the longest path from the root
HSet to a leaf (i.e., primitive HSet). Our generated HierSets also contain paths shotter than
» d: density of the HierSet. This quantity describes the average number of abstractions contained in
each HSet of the design. In our generated HierSets these abstractions refer to both primitive and
non-primitive HSets.
* n:the number of occurrences in the HierSet. This is the same as the number of paths in the HierSet

DAG. Because of uniformity in our generated HierSets, we expriesterms oth andd as:

n=d". (6)
* v, : the number of personalized values for the attribute
* We denote the size (on secondary storage) of an object pointer, an object ID, an Abstraction, and
a non-primitive HSet in our model Isyy, Sq, S, and g respectively.

* We denote the size of a primitive HSet and all of it attributes, by

3.2 Explicit Unfolding (EU)

While HierSet structures are maintained as fully-folded structures atieefrequently xplicitly
unfolded before being queried by applications needing personalization data [23]. This practice is
accomplished by storing thalues that distinguish the occurrences in a separate structure gnagmer
the personalizations into thgmicitly unfolded HierSet for use by tools that require the unfolded repre-
sentation. This process is sftoin Figure 6, where the folded structure in Figure 6(a) is joined with the
personalization alues and transformed into a fully materialized unfolded structunenshro Figure

6(b). In this @ample, the folded structure in owaenple includes one adjacgn@dj) relationship that
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is unfolded in the result to relatedvpairs of occurrences.

Personalizations I
1.7:¢4 I
3N ll
2.4:[] /
/
//
s Adj(1.4,1.7)) (Adj(2.4,2.7
, (Adi( ) (Adi( )
@ (b)
1

Figure 6: (a) Folded and (b) Unfolded Object with Objects, Personalizations and Relationships.

3.2.1 Algorithm and Structures
The unfold operation [14] results in aweHierSet that contains only unfolded primés.
Because queries in our performangaleation did not require maintenance of the hierarchical structure

in the EU representation, we also flattened the HierSet during the unfolding process (see Figure 2(b)).

/'l The recursive unfol d() operation unfolds the H erSet rooted at root
HSet : : unfol d(HSet *root, Path context) {

for(each Abstr a owned by this HSet) {

if (a->abstractionOr->isPrimtive) {
Primtive *p = root->instantiatePrimtive(a, context);
p->get Attri but evVal ues(context + a->instlD);

} else {
a- >abstracti onO - >unf ol d(root, context+a->instlD);
}

Figure 7: Unfolding a HierSet.

The algorithm shwn in Figure 7 proceeds as folls:
For each abstraction in the HSet:
1. Create a new unfolded primitive if the abstraction refers to a primitive. Use the context and
abstraction ID as the unique name for the primitive. Allocated space in the primitive tallstdre
the attributes for the primitive. Read attributes from the personalization source into the primitive.
2. Extend the current context using the abstradtiDrand pass that to the recursive call to unfold if

the abstraction refers to a non-primitive HSet.

3.2.2 FRerformance Issues

Once unfolded and flattened, a HierSdasts as a set of occurrences (tuples containing axdonte
and a primitve (see Section 2.1)). It occupies space proportional to the number of unfolded occurrences
in the HierSet. Recall from the characteristics of the folded HierSet described in Section 3.1 that the

number of occurrences isvgn byn, and the size of a primvi is gien bys,. Therefore the total size
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(i.e. storage cost) of the unfolded design isegiby ns,. Because each unfolded priméicontains

space for all possible personalizeadues, the size of the EU representation is independent of the num-

ber of actual personalizations.

Given a specific occurrence in the design, the time to access autatinithe occurrence is deter-
mined by the time to access the occurrence. This is because the unfoldetkatifites are stored
directly with the unfolded occurrences, and so, once the occurrence is obtained, tite sttibs are
immediately mailable. Havever, this does not necessarily indicate that the unfolded structure is the
most eficient. The unfolding cost and size of aglarunfolded structure conttite substantially to the
cost of performing queries on unfolded structures. Additionttigre is no clear ay to access the
unfolded occurrences by name unless anxnole the name (formed by the concatenation of the
abstraction IDs) is used. Because weehaot deeloped indices for all of the materialization stgés,

we have resered the galuation of indged queries for future ovk.

For queries that tkgerse other unfolded relationships between occurrences, iticsildifo predict
the paging performance for thepdicitly unfolded structure. The performance is dependent upan ho
the data has been clustered. The clustering that we impose upon the unfolded representation is the clus-
tering dictated by the order in which the structure is unfolded. Clustering topologically on relationships
such as Adj() in Figure 6 is kty to improe performance for tv@rsal of the relationship. Maver,

this kind of clustering requires a second pass after unfolding, andssnotconsidered.

3.3 Dictionary Personalization (DP) Using a B+ Tee

In thedictionary personalizatioDP) approach, one or more dictionaries store #hees for per-
sonalized attribtes. V& considered seral possibilities for dictionary ganization. By driding up the
personalized attrilites in diferent ways, we ary the number and sizes of the dictionaries. Thaga-v
tions are listed indble 2 with descriptions of the main distinguishing characteristics. Thextpote
tion of the occurrence (i.e., the path to the occurrence in the Hief&8tiB used as the dictionargk
and stored with the personalized atitéa Initial \alues for the un-personalized atiriés are stored in
the primitve HSets. In this &y, the entire HierSet structure can remain fully folded. During implicit
unfolding, the query processor maintains a cdrpath that can be used as a dictionasy Ksing this

key, the query processor consults the dictionary to obtineg for personalized occurrence att#s.
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Table 2: Characteristics of Different Approaches to Dictionary Personalization.

Single/Multiple Attrib utes Sliced Attrib utes Unsliced

Dictionary for « One separate dictionary for each attté » Single dictionary for all attriltes.
each HierSet « Attribute determines dictionary D = d(a). | « No search required to locate dictionary
« Contet used asdy in each dictionary » Contet/Attribute used as dictionargk
» Least @erhead; only single dictionary

Dictionary for « Each primitve has a set of dictionaries. » Each primitve has a single dictionary
each Primitive | « Attribute/Primitve determines dictionary | ¢ Primitive determines dictionary
of each HierSet | « Contet used asdy in each dictionary » Contet/Attribute used as dictionargk

« Most number of dictionaries required.

3.3.1 Algorithm and Structures

We chose a B+ tree to seras the dictionarylo lookup a personalizedalue for the attribte d
whereNane(d) = s of the occurrence [X, Y, z], p >in the HierSeh, we do the follaving:
1. Determine the dictionaryp = b(h, p, s) to search for the personalized value of attritsut€his
lookup function is maintained by the HierSet and has little cost, since the number of distinct
attribute names is likely to be small. For this reason we do not consider I/O cost to determine the
dictionary to use.
2. Search for the key.y.zin D. If the key is found, return the value stored with the key. Done.

3. Otherwise, return the attribute value stored with the primitive eleprarthe end of the patqy.z.
|

Personalization Space

A Dretionary(deimm

0.35:Z

|
|

|
:/_\
:/_\
| N Deteonatares)
|
|
|

Folded Space

ictionary(area)

0.14:Y
0.1.7: X

N
~

area

Figure 8: A Folded Description with Sliced Personalizations.

:
:

After some careful consideration we confined our performavalaaion to the DP approach that
uses a single dictionary for each atitdrepresented in the HierSet. This approach is illustrated in Fig-
ure 8, with dictionaries for personalizing the atitdsareaanddelay The slicing of attribtes into sep-

arate dictionaries has the desirabledfof limiting dictionary actiity to only those attribtes that are
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relevant to a particular querit also permits the most Rible support for diierent types of attriltes.

3.3.2 Rerformance Issues

Because the personalizatioalyes are stored in a B+ tree structure xedeby the path in the
HierSet DAG, a dictionary lookup is required fovexy access to a personalized attté The branch-

ing factorb can be rpressed as:

b= @

Sptr + S|dh + Sattr

whereDy;is the size of a disk paggy the size of an identifieh the height of the HierSetAls, s, the
size of a pointerands,y, the size of an attrilie. For our simulationsp = 100
The access time to an attiie can be>gressed in terms of the bounds on the B+ tree perfor-
mance. The number of pages accessed when looking up a personalaatoforthe attribte a with
Vv, total personalizations isvgn by:
cost = log(v,) - (8)
3.3.3 Optimizing DP Access
One of the drabacks of ap dictionary personalization approach is that the lookup cost for an
attribute \alue is dependent upon the number of personalizations — whether or weh aggurrence
has ag personalized attrilies. Under the DP approactp&ained thusdr, the query manager isnays
obligated to consult the personalization structure to determine if an occurrence has a persahadized v
for a given attrilute. Here we consider Wwao reduce these compulsory consultations.
It is common design practice for personalizations to be localized to AGs-Df the HierSet
DAG. This occurs because a designer typically refines sub-modules of a design one at a time. By pro-
viding a means to determine whether or not a sAsBontains personalizations, we can inwerper-
formance when processing queries on designs that contain localized personalizations.
Two approaches to this problem that we can identify are:
» Bit-Vector Pruning. Information about personalizations is stored in the HierSet. This requires
maintaining a bit-vector in each abstraction (1 bit per attribute) that is used to record whether or
not there are personalizations in a particular sub-DAG. The query processor determines if there are

personalizations for the attribusén a sub-DAG identified by the pathy[a, ..., g if:
(Oay, a;.bit[s] = 1), where i =1..r (9)
Personalization updates propég the bit ector setting to the root of the HierSeA®, or until a

bit=1 is encountered.
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» Prefix Pruning. A query prevents excessive lookups in the B+ tree by “peeking” into the B+ tree
using a prefix whenever traversing downward in the HierSet. If the prefix lookup indicates that
there are no personalizations in the B+ tree for that particular sub-DAG, then all subsequent
lookups while traversing the sub-DAG can be “pruned”, and thus prevented.

As we describe in our results, weatiated both schemes and found the bédter approach to be
the most dicient. The algorithm to determine a personalizalll® under bit @ctor pruning is as fol-
lows:

1. During the traversal of the HierSet DAG (i.e. moving up or down the DAG hierarchy), maintain a
stack of state variables that identify if there are personalizations along the current context path. One
stack is maintained for each attribute considered in the query. The stack is kept up to date by
consulting the abstraction to obtain the personalization bit for each attribute, combining it (via
logical and) with the current top of the stack and pushing the result on the stack.

2. If the top value on the stack is 0, return the attribute value stored in the primitive.

3. If the top of the stack indicates possible personalizations in the sub-DAG, consult the B+ tree for
all personalization lookups within the sub-DAG.

4. If the key is not found, always return the attribute value stored with the primitives in the sub-DAG

associated with the prefix.

3.3.4 Rerformance Improvements fom Pruning

The performance impwement from prefix pruning depends upon the digtiam of personaliza-
tions. For the most common pattern of personalizations, xpe& prefix pruning to impke retrieval
performance. Under certain conditions, prefix pruning may perfareshat a non-pruned approach,

because the benefits of pruning afsetfby the additional size of the b#ator storage.
If we assume an atttiibe a hasv, personalizations out aftotal possible, we can malprobabilis-
tic bounds estimates on thdestiveness of the pruning. &\kxpress the DP bitector access cost to

retriever attribute \alues as:

V.
r E% - Fa%Elogb(va) E< cost<r Hog,(v,) (10)
Vv
where Et— HaE represents the fraction of lookups notvergted by pruning.

3.4 The Partial Unfolding (PU) Strategy
Our partial unfolding (PU) stratgy represents a middle ground (in terms of materialization)
between the DP and EU approaches. In partial unfoldindyake HierSet the original folded struc-

ture — is maintained in the sameywas the DP approach (i.e., remains folded}, gersonalized
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attributes are stored in separate HierSet structures (PU HierSets). PU HierSets are initially isomorphic
to the base HierSetubeach contains all primie attributes with the same name. In order to personal-

ize a PU HierSet, wpartially unfoldit to create paths to neleaf attritute \alues. In this &y the PU
HierSet acts as a dictionary for personalizatialues. After personalization, the PU structuregjes

from the form of the base HierSetjtht still contains the same pathsarFexample, a base HierSet is
shown in Figure 9(a) with a PU HierSet, in Figure 9(b). In Figure 9(c), wes $he PU HierSet with a

single personalized occurrence [3,5]. Thevimecurrence path is slvo as a dashed line.

Folded base HierSet : . .
ed 1 PU HierSet Personalized PU HierSet
2 Primitive Attributes. :
3 For the attrilute g For the attflhélte o
2 3 )
1 2
1
42 )5 1
4 S \5
@ s
o o o o

o
(a) (b) (c)
Figure 9: (a) Base HierSet and (b) PU HierSet, (¢) PU HierSet with [3,5] Personalized.

The duplication of labels in the HierSet is permitted, since the uniqueness within a parent is still
met, and so unique paths to each leaf are still guaranteed. The partial unfolding metheeralgsose
sible adantages eer unfolding the entire HierSet:
1. The PU HierSets may be smaller than an EU HierSet, and so more of them are likely to fit into the
allocated page buffers of the database system.
2. Only those attributes that are personalized need a personalization structure, so some attributes in
the primitive cells will still benefit from being completely folded.
3. The personalization structure exhibits similar spatial and temporal locality to its base HierSet,

possibly improving paging performance.

3.4.1 Algorithms and Structures
The algorithm illustrated in Figure 10 st®the steps required to accomplish the personalization
of a single occurrence in a PU HierSet. The general procedure for this process isvas follo
1. Identify the region of the DAG which must be unfolded. An HSet along the occurrence path is
identified as the op — the closest HSet to the root with a fanin > 1.
2. For each HSet along the path between top and the leaf in the path inclusive, clone the HSet, and
link it to its parent. All abstractions in the HSet are cloned except the abstraction corresponding to

the portion of the path being personalized.
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3. Personalize the newly cloned leaf.

(b)

joriginal edge yoccurrenceto del | new edge © HSet  ® new HSet

. Locatetop by traversing the path from the root.

. Remove edge incident on top HSet (from b to c).

Clone HSet ¢ and change edge from b to new cloned c.

. Clone HSet d E!nclud!ng its edge to hg and add edge from c to d.
. Clone HSet e (including its edge to h) add edge from e to f.
Update value in f with new personalization value.

coooTE

Figure 10: Personalization of occurrence <[1,3,5,7,9], f> in HierSet.

The sequence of frames in Figure 10vehithe operations required for personalizing the occur-
rence <[1,3,5,7,9], f> in the HierSet. The figurevghidhe remwal of all paths containing the edge 3
incident on the top HSet, folled by the systematic reconstruction of all paths that contain the edge 3,
but end at a ne primitive HSet for the path [1,3,5,7,9]. This reconstruction corresponds to the creation
of copies (ersions with small changes in terms of which Absty tben) of all HSet between and

including thetop marlker and the leaf. A detailed description of the steps is included in the figure.

3.4.2 Rerformance Issues

A personalization &ue is obtained from a PU structure by refrig the path from the root of the
PU HierSet to the appropriate leaf«dd primitive, using the components of the occurrence path to
guide the traersal. Because the abstractions are clustered together with each HSet, the number of pages
that must be retrieed from disk is lilely to be bounded ale byh for an occurrence path of lendth
This is because PU HSets and privas are lightweight objects, and mydit on a disk page.

We designed the PU HierSet under tikpeetation that it wuld exhibit complimentary paging
behaior to the HierSet for which it puides personalizationalues. It alsoaids the storage of long
keys such as those used in the DP approach. This is becausgdtaeedistribted throughout the PU
HierSet DAG and are also folded and re-used by yrdifferent personalizatioralues. Because the PU
HierSet leeps attribtes folded as much as possible, it represents a middle ground in the materialization

stratgies.
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4 Performance Ewaluation Experiments

We performed anxtensve evaluation of the three personalization approachesabying operat-

ing conditions and data characteristicsee YWerformed four diérent queries on the data, namely (1)

gueries that tnzerse the complete HierSeAB, (2) queries that tvarse sub-BGs of the HierSet, (3)

gueries that trzerse single folded relationships, and (4) queries thegrsa paths of folded relation-

ships. The first, aldggr egat i on query computes an aggyate wer the entire HierSet on a single

attribute. The second, 8ub- Aggr egat e computes an agggate on a sub-BG. These are the tw

traversal queries considered in th&® clustering performancevauation described in [4]. Because

HierSets are often used to describe hierarchical graphs, we added queries whisk tree HierSet

along the folded relationships. Out third qyexiei ghbor s query traerses unfolded relationships to

all neighbor primitves, and finallyaPat hs query traverses a path of unfolded relationships across the

HierSet. These four queries are represamdaif the types of queries commonly performed on hierar-

chical graphs and hierarchical sets. Querieshiing searching for indexd \alues were not included in

our evaluation because wevanot implemented the necessary kidg structures.

4.1

Experimental Setup

In our performancevaluation, we performed the follong steps:

1.

Generated a HierSet with variable heigi)tadnd a constant density) (We used generated data so

that we could control these characteristics.

. Personalized an attribute with a variable number of personalizaiidmaused tw different

personalization patterns to personalize aiteb. In one pattern, the personalizations were
randomly distrilnted throughout the HierSet, while in the othiee personalizations were localized

to a fav sub-DAGs in the HierSet (to simulate personalization as a designer might do it).

. Clustered the design data (and personalization data, if relevant) using two different clustering

algorithms. The first algorithm clustered the DAG in depth-first order. The second employed a
hybrid version of depth-first and breadth-first clustering [4]. We refer to these as depth-first (DF)
and children-depth-first (CDF), respectively. Because breadth-first clustering has demonstrated

inferiority [4] to DF and CDF, we did not consider it in our evaluations.

. Executed four different queries against the personalized design object. In all cases, the queries

accessed personalized attributes during execution.

. Monitored the 1/O costs during the query evaluation.
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4.2 Specific Characteristics
4.2.1 Height and Density
We selected a constant density of 12 aated the height of the test HierSeAG between 2 and
6. Table 3 shws the sizes for folded and unfolded HierSets, including the number of occurrences in the

unfolded HierSet.
Table 3: Size (in 1k disk pages) of Randomly Generated DAG with Density = 12.

Height Folded Size | UnFolded Size &‘iTﬁErni’fes
2 57 25 250
3 % 100 1000
4 148 400 4000
5 214 1600 16000
6 229 6300 63000

4.2.2 Other Farameters

In the course of our simulations, waried a number of parameters.vitwer, for the results pre-
sented in this papewe fixed may of these to focus on the most relat characteristics.dF example,

we fixed the size of a disk page (andffbr page) at 4096 bytes. The sizes for Hier&dting blocks
were fixed as shan in the table in dble 4.

Table 4: Fixed Simulation Parameters.

Symbol Description Value
Dpsz HierSet Primitve Size (10 attribtes) 48 bytes
Dhsz Phsz HSet Size (both HierSet and PU HierSet) 8 bytes
Dasa Pasz Abstraction Size (both HierSet and PU HierSet) 8 bytes
Posz PU Primitve Size (1 attribte) 8 bytes
Dg, Buffer page size 4096 bytes
Ksz DP key size (concatenation of 4 byte IDs) 40 bytes
5 Results

We conducted a number of focusegheriments to determine the storage and I/O costs for the dif-
ferent personalization approaches. In the folhy subsections, we present the goal of eagier
ment, a description of the conditions of theperiment, a plot slwing the results, and a brief

interpretation of these results.
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5.1 HierSet Sizes on Secondary Storage
5.1.1 Design Size vs. HierSetAls Height

One clear justification fordeping HierSets folded is the possible storagénga. T measure

these sa@ngs, we constructed HierSets (EU, DP, and PU) — both unpersonalized and 50% personalized

on one attribte. The resulting sangs are shan in the plots of Figure 11.
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Figure 11: (a) HierSet size vs. DAG Height. (b) Magnified region of plot.

Notice that the DP size with 50% personalizations is proportional to the size of the HierSet under

EU, though smallei\e also see that the PU structurevehigimilar size characteristics to the DP,

except that the 50% personalized HierSet under PU is considerably smaller than the DP implementation
for HierSets with [AG height greater than 5.
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Figure 12: (a) Design Size vs. Number of Personalizations (b) Magnified.

5.1.2.1 Rrsonalization Schemes Compad
The seconddctor contriloting to the HierSet size is the number of personalizations. Because both

DP and PU gne with the number of personalizations, we consider thdsetefwhen ealuating the
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approaches. The plot in Figure 12 wiscsize adantages under DP foraral attritutes personalized

up to 25%. PU compareavbrably for up to 10 attriltes when compared to EU (the horizontal line),
containing 10 attribtes. DP gras linearly with the number of personalizations. The slope of the line is
determined by the size of theyis used to indeinto the B+ tree. Use ofel compression techniques

should reduce the size of thesgk and thus reduce the slope of the eurv

5.1.2.2 The Effect of Brsonalization Distribution on PU Size
We obsered that the PU approach is sensitio the vay personalizations are distutied through-

out the occurrences in the HierSeke Wmpared the sizes of the PU structures under localized and ran-

domly dispersed personalizations, as illustrated in Figure 13.
340 T T T T T T T

320 -

300 |

280

260

PU Personalizations (Localized) <—
240 PU Personalizations (Unlocalized) =— |
[«

220 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Number of Personalizations

Figure 13: Size of PU for Random and Localized Personalizations.

Size of HierSet and PU HierSet (1k pages)

When updates are localized to suB&s in the HierSet, the resulting PU structure remains
mostly folded, and as a consequence remains compact. On the other hand, if personalizations are ran-
domly scattered throughout the occurrences in the HierSet, the resulting PU structges, isdang
been mostly unfolded. The sizes regmge as the representations approach complete unfolding. It is
common in design to refine localized portions of a design, sxpecethe linear bek&r to occur in

practice.

5.2 1/0 Performance Comparison
5.2.1 Contribution of I/O Buffer Allocation to Performance
We tested the sensiily of our four queries to the number of allocatedfér pages by»ecuting
the query on a HierSet with 4000 personalizations. Figure Misstie DP and PU structures perfor-
mance impreing substantially as theuier allocation approaches the representation size. Ingimnre
in which these tw representation are “stad’ for pages, theperform \ery badly Fortunately both
the DP and PU representations are ngdfitismall compared to the EU representation, so an adequate

amount of lffer space is ligly to be mailable.
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Figure 14: (a) Path (b) Neighbors (c) Aggregate (d) Sub-Aggregate queries.

5.2.2 Rersonalization I/O Compared
We also gecuted the queries whilarying the number of personalizations. Figure 15vshihe
relative performance of PU and DP for the Neighbor and Sub-ggtgajueries. The PU scheme out-

performs the DP for the Sub-Aggede, lut there is no clear winner for the Neighbor quéigure

15(a) demonstrates the non-uniformwtto (and corresponding performance) of the PU representation.
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Figure 15: PU and DP Personalization I/O (a) Neighbors Query (b) Sub-Aggregate.
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5.3 Optimizing DP Performance
5.3.1 Pefix Pruning and Bit Vector Pruning

As described in Section 3.3.3, the DP approach can benefit by using pruning to reduce the number
of accesses to the B+ treee\bmpared the performance of the lgictor and the prefix pruning for a
number of queries. In general the bictor performed betteprimarily because of reduced adi in

the B+ tree accesses. This slight performance edge is illustrated in Figure 16
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Figure 16: Comparison of Prefix and Bit Vector Pruning.

We measured thefettiveness of bit &ctor pruning on thearious queries. ¥notice an impnee-
ment for the paths queriut no impravement for the agggation query The lack of impreement for
the aggrgation query is because the aggton query corresponds to an in-ordevéraal of the paths

in the HierSet BG, and so parallels the in-order aredyeficient traversal of the DP structure.
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Figure 17: Effectiveness of Bit Vector Pruning for (a) Paths query and (b) Aggregation query.

5.3.2 The Effect of ersonalization Update Rtterns on Pruning Rerformance.

The pruning optimization &rs some promise for imprimg the performance of queries that

access personalized data.wéwer, we noticed ariations in the ééctiveness of the pruning. &\shav
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the variation in the plot of Figure 18. This plot st®clearly that the performance of the pruning tech-

nique is dependent on\Wwavell the personalizations are grouped into s#=B of the HierSet.
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Figure 18: Paths Query with Local and Random Personalizations.

5.3.3 The Effect of Rrsonalization Update Rtterns DP Rerformance

We found that the update patterns had a substantial impact on the performance of the DP

approach. This is due to thewthe personalizations are grouped in the B+ tree whgrathdnserted.

A more localized set of personalizations results in a more compact and more “intelligently clustered”

B+ tree. Note the personalization I/O aswhd-igure 19 for both thiei ghbor s andSub- Aggr e-

gat i on queries for the diérent patterns of updates.
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Figure 19: Sensitivity to Update Patterns for (a) Neighbors and (b) Sub-Aggregation Queries.

5.4 Optimizing the PU Approach

Because we had controler the vay that the PU HierSetag clustered we were able to measure

the efects of clustering on the query performance. In tRjgedament, we measured the performance

variation of the PU approach for both the CDF and DF clusterings. The resulting plowvisisHeig-
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ure 20, indicating that the CDF clustering yields the best performance f@attes query However,

the benefits of CDF clustering are diminished by randomly digéibpersonalizations.
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Figure 20: Paths Query Performance for CDF and DF Clustering.

6 Related Work

Relational DatabasesAs an alternatie indirection solution, thewnsandowns-abstaction-of
relationships could be stored using relational tables. In this representationyénsatraf the @O-
DAG is accomplished via a join on the relationshivérsal of the ariable length pathsxeending
from the root of the HierSet to the leaf priméiiwould be accomplished via a recwussjoin. Although
a general recung join could compute a set of primigs which are reachable from the root, the general
join process does not retain the path information. Thus, casting the HierSet into a traditional relational
model le@es us without the requisite path information. This path information is essential ¢als®lv
personalization problem, because the path is used to formmtlirtd personalization indices. The path
also imparts the requisite identity to the resulting occurrence, another impadentrissing from a
general recurse query

Work in [10] presentsxensions to SQL that pvae a means to specify trangdiclosure queries
while preserving the path information in a specidl'R table. The RTH table can be queried and its
contents can be accessed during the course of the uettyermore, this information could potentially
be used to formulatesks to be used to access personalization data, though it has nokpleeacdein
[10]. All of these operationsaould have to be donexplicitly, and all of the necessary prsions would
also be required to pvile access to unpersonalizedues as well — as already piaed for in the solu-
tion we present in thisevk. One ley strength of our model is that captures the intended semantics of a
commonly used structure and uses a highly optimized method to access both personalized and unper-
sonalized data stored in the structure. Additionally it does so via a query mechanism that can fully

exploit the folded nature of the data to aseisuperior performance.
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Database \fews. Earlier work in OODB database wies has established data models, object alge-
bras, update policies and materialization styige all motvated by the desire to prde either real or
virtual restructuring of data for database applications [1,27]. Much of the formalization of gafatzle

types can be found in [7].

Determining hw to update materialized wies is discussed in [5] in the corteof relational
views. Mew maintenance and materialization for a nested data model is presented in [17], along with
log structures to increase thdéi@éncy of updates. In both [5] and [17], the wig are limited to select,
project, and join (SPJ) wies. iew materialization is also implemented in the Mu#iv system [19,
20, 21]. Havever, the MultiView OODB view system [26] emplgs an object-preserving algebra as a
guery language for we definitions. OutJnf ol d operation is unique in that it is a compigew trans-

formation requiring special support for both definition and materialization.

Recent work on viev materialization has focused on applications to special giginitions and
specific domains. iéw materialization for a dedugg database used in temporal authorizations is pre-
sented in [11], while [12]>&mines vigrs and vigv materializations appropriate fouitding graphical
user interfices. In our HierSet model, we address the comalstructuring emplged in the design
domain, such as flattening hierarchical graphs angidgriransitve relationships [15]. Furthermore, a

view defined using thanf ol d operation is updatable via our solution to the personalization problem.

Electronic CAD. Work on the HS system [24] describes an API capable of implicitly flattening
netlist data. Updates to the implicitly flattened data are limited, and require a re-initialization of the
database. W supporin-contextupdates (to implicitly defined occurrences) via our solution to the per-
sonalization problem. Walso preide out-of-contextupdates (to all occurrences in a sub) via

direct manipulation of the HierSetds. The HS system does not address the personalization problem.

Research on hierarchical attite grammars [14] presented incremental update schemes to propa-
gate changes from a folded representation toxalioitly unfolded representation. Ourork supports
such propaagtion without requiring the maintenance of aplieitly materialized unfolded representa-
tion. The FICOM system [3] maintains comypleonstraints acrossakious abstraction domainsuytb
also requires that the tndistinct representations are fully materialized. FICOM addresses update prop-
agation in both directions,ut the same problems of space and performanegead remain.

Recent research in enabling technology for electronic designvirake has focused on informa-
tion modeling of folded and unfolded design [6,8,28]. These models are used to define AR de
data structure generators, or to formalize tkehange of data between systemswier, there is no
published verk relating hav the information models can be used as the basis for sophisticated vie

definitions within an object-oriented databaséthVdur HierSet model and personalizations, we pro-
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vide principled and optimizable support for modeling the relationships mandated by these information

models.

7 Conclusions

7.1 General Contributions
We hare made the folling contritutions in this paper:

* We have identified and formalized the personalization problem for an unfolded view of folded
hierarchical structures which commonly occur in many application domains.

» We proposed two approaches to solving the problem, our partial unfolding approach (PU), which
tries to keep personalization values folded as long as possible, and the dictionary personalization
approach (DP), which adapts existing index techniques from the literature to solve the problem.

* We implemented these two personalization strategies and a fully-materialized explicit unfolding
(EV) strategy, as well as pruning and clustering techniques in a uniform test-bed implementation
in order to provide a fair performance comparison of the approaches.

» Within the test bed we ran extensive experimental tests varying parameters such as data
characteristics, database buffer sizes and percentage of personalization. A summary of results is

given below.

7.2 Performance Ewaluation Results

Our results indicate that either the PU or the DP approach are superior to the EU approach for full
to partial personalizations of up to ten atités. This means that either the PU or DP approach are pre-
ferred for use early in the refinement process of the data. The perfornagnoetgeen EU and PU/DP
is even more substantial when we consider thatywpreries may access unpersonalized aitiedy and
so would perform well gen if other attribtes are fully personalized.

Our results sha the PU approach to be slightly better than the DP approach. AdditighallyU
approach dérs substantially better performance when the personalizations are localized toAGub-D
in the HierSet which is of practical significance since it is common in design practice to refine localized
portions of a design. ®improsed the performance of the DP approach by usingdgitov pruning to
avoid unnecessary lookups during query processing. While, we foundfé¢lctvehess of the pruning
was diminished when personalizations were randomly diséndl this is not a typical scenario for

applications that use HierSets.

8 Future Work

Based upon ounx@erimental results, we belie that the size of thesiks used in the DP approach
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limits the efectiveness of the DPn the future, this could be addressed by useygckmpression tech-

niques or perhapwen prefix B-trees to reduce the DP disk footprint and ingtD performance.

In this work, we h&e evaluated the query retrial costs for the personalization structures. A

future study could include update/quergrkloads.

We are in the process ofwadoping ravrite rules for other kinds of queries on the HierSet struc-
ture. These narite rules may present opportunities for optimization which benefit some personalization
approaches more than otherse Wan to consider thesactors as we delop approaches to query opti-

mization within the HierSet model.
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