
1 of 28

Evaluating View Materialization Strategies for Complex
Hierar chical Objects*

Matthew C. Jones and Elke A. Rundensteiner
Software Systems Research Lab

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI, 48105-2122

{mjones,rundenst}@eecs.umich.edu

Phone: 313-936-2971 Fax: 313-763-1503

Abstract

In many design applications, it is common practice to store complex hierarchical objects in a com-
pact folded form to save storage space and to reduce processing costs for accessing the objects. In
these folded representations, complex objects are built up from identical and otherwise indistinguish-
able design objects. However, it is often necessary, especially during the refinement of data, to distin-
guish between these identical folded objects by personalizing a subset of them. The established
practice is to explicitly unfold the hierarchical objects and thus create space in which to store distinct
personalization data for each object occurrence. However, this explicit unfolding is costly and time
consuming, resulting in a potentially much larger structure, and substantially increasing the costs of
querying and updating the design. Therefore, we propose anunfold view operator and provide the
basis for updating of customized values for each hierarchical sub-object through the unfolded view. We
propose alternative strategies for the maintenance of personalization values, representing various por-
tions of the view materialization spectrum. We present a performance evaluation comparing these
strategies as well as the traditional explicit unfolding approach. Our evaluation indicates the trade-offs
in terms of storage and query costs and compares the costs to do implicit unfolding through a view
rather than explicit unfolding of complex hierarchical objects.

Keywords: hierarchical object model, unfolding of hierarchical structures, data transformations,

object-oriented database views, specialized view materialization, performance evaluation

* This work is supported in part by the NSF RIA grant #IRI-9309076, NSF NYI grant #IRI-94-57609, and the University of Michi-
gan Faculty Award Program. We are also grateful to Digital Equipment Corporation for fellowship support during early develop-
ment of this work.

2 of 28

1 Intr oduction and Problem Description

Intr oduction. An increasing number of applications must be able to store, query, and retrieve

complex hierarchical objects. To reduce their size, especially when they contain repeated sub-struc-

tures, complex hierarchical objects are often stored in a compact, folded representation. The folding

most frequently occurs along thepart-of relationship, and is accomplished by representing the relation-

ship by multiple references to identical objects rather than by replicating subobjects. The result is a

compact hierarchical representation that stores the distinct objects in the designimplicitly, via occur-

rence paths in the folded representation rather than through explicit object instances. For example, Fig-

ure 1(a) represents a stack of two cubes c1 and c2. Each cube is represented by 6 faces. The bottom face

of the cubec1 in the stack is represented by the occurrence pathc1::btm in the DAG. Similarly, the

“most-significant” full-adder (FA) in the electrical design shown in Figure 1(b) is represented implicitly

by the occurrence patha3::f3 in the electrical design object. The representation of explicit objects as

folded implicit occurrence paths is a very powerful construct, and as a consequence is commonly used

in application domains where there are repeated substructures. These domains include mechanical and

materials design, electrical and electronic design, genome databases, and graphical applications con-

taining repetitive images created by tiles and nested graphical objects, to name a few.

During the design process a user eventually requires an unfolded view of the data. While modern

object-oriented database systems excel at representing folded hierarchical structures [13, 22], the mean-

ing of the folding structure is not known to the database. As a consequence these databases are not

capable of defining implicitly unfolded database views on a folded representation. Software tools exter-

nal to the database usually perform the unfolding explicitly, creating a separate representation [23],

resulting in the many known problems caused by redundant data replication. Our hierarchical set model

[16] enables a database view system to create an unfolded view of the folded structures automatically

and implicitly, without creating a separate representation. Our model offers opportunities for perfor-

Figure 1: (a) Hierarchical Graphical Object (b) Hierarchical Digital Design Object.

Add4

FA

Add16

CU

c1 c2

bottom top

n w

Stack

a0 a1 a2
a3 c0

f0
f1 f2 f3

c1

20 30Blue

Key

n - attribute

x0 - owns partCube

xxx - non-Primitive
XX - PrimitiveFace

(a) (b)

s e

3 of 28

mance improvement and query optimization not possible with a translator-based approach to unfolding.

The Personalization Problem. During the refinement of complex folded objects, applications

typically need not only to process queries on the complex objects. They also need to perform updates

through the unfolded view. For example, in Figure 1(b), we may personalize the full adder (FA) object

occurrencea3::f3 through an unfolded view by updating thesize attribute, while leaving thesize

attribute of all other 15 occurrences of the full adder object unchanged. Thepersonalization problem is

concerned with answering the following questions:

• What data structures can allow updates of personalized attribute values in the implicit objects

created by theunfold operation?

• How do we organize these structures so that data can be efficiently retrieved during a representative

set of queries executed on an unfolded view?

• What are the performance trade-offs in querying the spectrum of un-materialized, partially-

materialized and fully materialized unfolded view?

In this paper, we focus on the costs to store and to query an unfolded view which has been updated

(personalized).

Curr ent Practice. The traditional method for addressing the personalization problem is toexplic-

itly unfold hierarchical database objects to create objects in which to store the personalization values

[23]. For example, Figure 2 depicts the unfolded representations of Figure 1(b) with the hierarchy pre-

served (Figure 2(a)) and removed (Figure 2(b)). Work in [14] and [3] demonstrates approaches to main-

taining fully materialized unfolded views. The redundant storage of folded attributes in the unfolded

representation not only increases storage space, but it also complicates data consistency maintenance

and degrades query performance.

The HS System [24] is the only research system we know of that supports an application program-

mer’s interface (API) to an implicitly unfolded electrical design database. Besides being limited to

access via the API, HS does not provide support for personalization of the data. Furthermore, it relies

on a special encoding of the data that mandates a complete traversal of the folded design after any

update to the folded structure. In the commercial ECAD community, there are systems such as the

f0
f1 f2

f3

c1

a0
a3a1 a2

c0

Figure 2: (a) Unfolded Hierarchical and (b) Unfolded Flat Design Descriptions of Figure 1(b).

a1.c1

a1.f3

a1.f2a1.f1

a1.f0

(a) (b)

Add16

Add4 f0
f1 f2

f3

c1

Add4 f0
f1 f2

f3

c1

Add4 f0
f1 f2

f3

c1

Add4
a3.c1

a3.f0

a3.f1 a3.f2

a3.f3

c0
Add16

(abbreviated)

4 of 28

Mentor Graphics Design Viewpoint [23]. While these systems provide implicit unfolding and personal-

ization, access to the design objects is provided by a limited industry-standard API [8], rather than a

query language, precluding opportunities forad-hoc query specification and query optimization.

Our Contrib ution. In this paper, we present our model of folded hierarchical structures, includ-

ing operations that formally describe implicit unfolding. This model and its operations are the basis for

defining unfolded and flattened views on complex hierarchical objects as well as the identification and

formalization of the personalization problem for folded hierarchical structures. Besides the status quo

explicit unfolding solution, we propose two approaches to solving the problem, one adapted from the

literature – representing the un-materialized end of the view spectrum, and one which we designed –

representing the partially materialized portion of the spectrum. In addition to these approaches we

designed and fine-tuned pruning and clustering techniques to improve their performance. We imple-

mented these two personalization strategies and a fully-materialized explicit unfolding strategy, as well

as pruning and clustering techniques in a uniform test-bed implementation in order to provide a fair

performance comparison of the approaches. Within the test bed we ran extensive experiments varying

parameters such as data characteristics, database buffer sizes and percentage of personalization. In this

paper we present the results of our performance evaluation along with recommendations for when the

different approaches are appropriate. These recommendations can provide guidance to object database

designers considering view materialization strategies for domains requiring the unfold view operation.

Structur e of This Paper. In Section 2, we define our hierarchical set model. In Section 3, we

present three alternative solutions to the personalization problem, representing the spectrum of view

materialization approaches. We describe the performance evaluation process in Section 4, and review

the results in Section 5. Related work is discussed in Section 6, and we conclude with Section 7.

2 The HierSet Model and Personalization.

2.1 The Model

Our HierSet model is composed of various types of collections. Table 1 summarizes the notation

Table 1: Notation for Collection Types.

Empty
Addition

x is element.
Singleton

x is element.
Combination

Defining Domains
N1, N2 are domains.

Lists []
nil

x::L
cons

[x] L1 @ L2
append

[N1]
all sequences of N1

Tuple < > x ; T < x > T1.T2 < N1, N2 >
all tuples of N1 and N1

Sets { } x ↑ S { x } S1 U S2 { N1 }
all sets of N1

Common empty add(x,C) sng(x) comb(C1, C2)

5 of 28

that we use to refer to these collections and domains defined with them. The notation is taken from [1].

Our hierarchical set model consists ofHSets from the domainη andAbstractions from the domain

α. We say that HSets are constructed as sets of Abstractions,η → { α }. For example, in Figure 3, we

have the HSetηa consisting of three Abstractions,ηa = { α1, α2, α3 }. This composition is represented by

the three labelled edges whose source isηa. We distinguish empty HSets, calledPrimitives. In Figure 3,

bothηd andηe are Primitives.

We define the functionA: α → η. This function represents theabstractionOf relationship. For

example, we say thatα1 is anabstractionOfηb, denoted by A(α1) = ηb. In Figure 3, this is depicted by

an edge in the graph labeledα1 whose destination isηb. The membership ofα1 in the HSetηa defines

the composition relationship betweenηa andηb, namely thatηa owns an abstraction of (ownsAbstrac-

tionOf) ηb. Thus there is an edge in the graph with a source ofηa, a destination ofηb, and a label ofα1.

We distinguish a single HSet as theroot, and refer to the root HSet, together with all other HSets

reachable from the root via theownsAbstractionOf relationship as aHierSet. Because a HierSet is

always constructed from composition relationships such aspart-of or owner-of, a HierSet can always be

expressed as a directed acyclic graph (DAG). Cycles in the graph would result in infinite HierSets

which are not currently of practical interest. Throughout this paper, we will refer to a HierSet’s graphi-

cal properties and call it a HierSet DAG. Figure 3 depicts a HierSet DAG rooted by the HSetηa.

Let χ denote the domain of sequences we refer to ascontexts andN the set of natural numbers,

such thatχ → [N]. Given a domain of tuplesΩ → < χ, η >, we refer to an object o∈ Ω as anoccur-

rence. The first component of an occurrence, the context, identifies the path in the HierSet DAG that

represents the implicitly defined occurrence. The second component, the HSet, identifies the primitive

Figure 3: A HierSet rooted at the HSet ηa. (a) Graph Notation, (b) Set and Function Notation.

ηa

ηb ηc

ηeηd

α1 α2

α5

α3

α4 α6
α7

ηa = { α1, α2, α3 }.

δa δbs: 12 s: 25

ηb = { α4, α7 }. ηc = { α5, α6 }.

Graph Notation

 A(α1)=A(α2)=ηb, A(α3)=ηc.

A(α4)=ηd, A(α7)=ηe. A(α5)=ηd, A(α6)=ηd.

Value(Attr(ηd , s))= 12. Value(Attr(ηe , s))= 25.

Set and Function Notation

(a) (b)

6 of 28

HSet at the end of the context path. For example, in Figure 3, <[1,4],ηd> is an occurrence of the primi-

tive ηd, resulting fromηd owned byηb which is in turn owned byηa. There clearly can be multiple

occurrences of the same primitive in a HierSet. For example, the occurrences <[1,4],ηd> and <[2,4],

ηd> in Figure 3 both contain the HSetηd.

We define the functionID which maps each abstraction to a unique number within its owner HSet

in N, ID : α → N. For convenience, we defineID for all abstractionsαi in Figure 3 such thatID(αi) = i.

If each Abstraction within an HSet has a unique ID, then each occurrence path in the HierSet is guaran-

teed to have a unique context. This is easily proven by induction.

Let δ denote the domain ofattributes. Given an attributed ∈ δ, we define two functionsName : δ

→ String, (a 1-to-1 function) andValue : δ → N. For convenience, and without loss of generality,

we assume that all attribute values are from the domainN for the remainder of this paper. In Figure 3,

for example, we have attributesδa, andδb, both with theName s, and withValue 12 and 25 respec-

tively.

We define a function for primitive HSets,Attr : η, String → δ which is used to access the

folded attribute value. For example, in Figure 3,Attr(ηd , s)=δa.

2.2 Operations on HSets

Using the notation described in Section 2.1, we now present the definition of various operators

and transformations that are important to defining the explicit and implicit unfolding operations. To

help clarify these definitions we will relate them to the example illustrated in Figure 4.

We begin by defining what it means to traverse an edge in the HierSet DAG. Given a path to an

HSet identified by the context c, and an abstractiona within the HSet, we define the function CA as:

CA(c,a) = < c::ID(a), A(a) >, where c∈ χ, and a∈ α. (1)

For example, in Figure 4, we see that:CA([1], d1) = < [1,1], Dr awer>. For syntactic convenience, we

sometimes rewrite the function as:

CA(c,a) = CAc(a). (2)

The functionmap(f)(S) applies the functionf to every element of the collectionS and combines the

results into a new collection using the appropriatecomb operator forS (see Table 1). We use themap

function to applyCAc to all abstractions in a particular HSet. This permits us to define the recursive

Unfold function for a HierSet:

Unfold(< c,h >) = < c, h >, for h∈ η and h is a primitive. (3)

Unfold(<c, h>) = map(Unfold)(map(CAc)(h)), for h∈ η and h not a primitive. (4)

7 of 28

The innermostmap operation in Equation 4 transforms the set of abstractions to a set of occur-

rences within the specified context. The outermostmap recursively unfolds each of the occurrences in

the set. The basis for the recursion is an empty HSet (primitive) as shown in Equation 3. The end result

of theUnfold operation is a set of occurrences of the form <c, h>, wherec is the constructed context

path andh is a primitive HSet. For example, Figure 4 shows the steps in unfolding the HSetDesk,

detailing the results of each recursive unfold. The first level of theUnfold operation mapsCA[]

over every element of the root HSet, resulting in a set of three occurrences (S1). The recursive call

applies Unfold to each of the elements inS1, resulting inS1,1, S1,2, and {<[3], Top>}. Because the

occurrence<[3], Top> is a primitive, it is a basis for the recursion. The final result of the Unfold is the

union of these sets as described in Figure 4. The final result contains 7 occurrences.

In the Desk HierSet, we see an example of a primitive relationshipAbove which relates all occur-

rences of thed1 andd2 abstractions of the drawer objects. These primitive relationships are used to

describe relationships between objects in the HierSet. They are folded and unfolded in the same way as

the other primitives in the HierSet.

We define a functionAttr : Ω, String → δ which maps an occurrence and an attribute name to

an attribute. This function is used to access values for attributes of unfolded objects. For example, in

Figure 4,Value(Attr(<[1,2], Dr awer>, size))= 5. We can update attributes of unfolded objects via an

update function:Update(Ω, String, N). This function permits the update (personalization) of an

unfolded object in an unfolded view. For example, we can update the size of one of the four occurrences

of the Drawer object in the desk.Update(<[1,2], Drawer>, size, 10) implies thatValue(Attr(<[1,2],

Drawer>, size))= 10. Recall that all other occurrence values remain unchanged under this update.

Having defined the unfolding and update operations, we can define what it means for a HierSet to

S1 = map(CA[])(Desk) = { <[1], Pedestal>,

Desk

Top Drawer

Pedestal

size: 5

Figure 4: Unfolding of a HierSet describing a Desk.

p1p2
t3

d1
d2

Above(d1,d2)

r3

S1,1 = map(CA[1])(Pedestal) = { <[1,1], Drawer>,

S1,2 = map(CA[2])(Pedestal) = { <[2,1], Drawer>,

Unfold(<[],Desk>) = S1,1 ∪ S1,2 ∪ {<[3], Top>}�

<[1,2], Drawer>, <[1,3], Above(d1,d2)>}

<[2,2], Drawer>, <[2,3], Above(d1,d2)>}

<[2], Pedestal>, <[3], Top>}

8 of 28

be folded. A HierSet containing primitive HSetsh is folded with respect the attributed nameds if:

for every c∈ χ and every primitive h∈ η, Attr(< c, h >, s) =id Attr(h, s). (5)

This is to say that for an HSet, if all occurrences containing the same primitive HSeth have the same

(i.e. same identity) attributed, then the HierSet is fully folded. From this definition in Equation 5, we

make the following observations about possible implementations of the Attr() function:

1. If an HSet is fully folded with respect to the attributes, then we may store the attribute with the

primitive HSet that terminates the occurrence path. This permits the attribute to be shared by all

occurrences that contain the HSet.

2. If attributes are shared as described in item 1, an update to a folded attribute results in the update

to all occurrences which share the attribute. We call this update anout-of-context update. This

follows from the definition of fully folded as presented in Equation 5.

3. An update to an unfolded attribute cannot be shared as described in item 1, because there is no

space allocated in an HSet in which to store the values for unfolded attributes.

These observations form the foundation and motivation for providing the implicit unfolding of hierar-

chical complex objects while permitting personalization of the structures. In the remainder of this

paper, we explore implementations of theAttr() function that optimize performance for the kinds of

queries commonly performed on complex hierarchical structures.

As we will describe in Section 4, the queries that we consider for our performance evaluation are

aggregation queries and queries that traverse hierarchical graphs described by a HierSet (both nodes

and edges are primitives). These classes of queries are representative of the kinds of queries that are fre-

quently performed on hierarchically specified design objects and hierarchical graphs. We do not con-

sider indexed queries because we have not yet developed index structures for all materialization

strategies to permit us to compare them fairly.

3 Materialization Methods

In this section, we describe three different approaches to materializing a personalized unfolded

view. First, we present explicit unfolding (EU), a fully materialized approach which stores personaliza-

tion data in each explicitly and fully unfolded object. Second, we describe a dictionary personalization

(DP) approach that uses a B+ tree structure to manage personalized values for implicitly unfolded

object occurrences. We chose the B+ tree over other dictionary methods because of its availability in

existing database systems and for its uniform performance characteristics. Third, we also present our

own partial materialization approach that usespartial unfolding (PU) to personalize attributes in an

auxiliary HierSet structure. We designed the PU approach to represent an approach near the middle of

9 of 28

the materialization spectrum.

3.1 Parameters

Because the performance of these proposed methods depends upon the characteristics of the data

being personalized, we briefly describe the characteristics of the HierSets and other parameters that we

will be discussing before describing the personalization approaches.

• h : height of the HierSet DAG. This quantity describes the length of the longest path from the root

HSet to a leaf (i.e., primitive HSet). Our generated HierSets also contain paths shorter thanh.

• d : density of the HierSet. This quantity describes the average number of abstractions contained in

each HSet of the design. In our generated HierSets these abstractions refer to both primitive and

non-primitive HSets.

• n : the number of occurrences in the HierSet. This is the same as the number of paths in the HierSet

DAG. Because of uniformity in our generated HierSets, we expressn in terms ofh andd as:

. (6)

• va : the number of personalized values for the attributea.

• We denote the size (on secondary storage) of an object pointer, an object ID, an Abstraction, and

a non-primitive HSet in our model bysptr, sid, sa, and sh respectively.

• We denote the size of a primitive HSet and all of it attributes bysp.

3.2 Explicit Unf olding (EU)

While HierSet structures are maintained as fully-folded structures, they are frequently explicitly

unfolded before being queried by applications needing personalization data [23]. This practice is

accomplished by storing the values that distinguish the occurrences in a separate structure and merging

the personalizations into the explicitly unfolded HierSet for use by tools that require the unfolded repre-

sentation. This process is shown in Figure 6, where the folded structure in Figure 6(a) is joined with the

personalization values and transformed into a fully materialized unfolded structure shown in Figure

6(b). In this example, the folded structure in our example includes one adjacency (Adj) relationship that

Figure 5: The Materialization Spectrum for Unfold

Fully Materialized Un-Materialized

EU PU DP

n d
h≈

10 of 28

is unfolded in the result to relate two pairs of occurrences.

3.2.1 Algorithm and Structures

The unfold operation [14] results in a new HierSet that contains only unfolded primitives.

Because queries in our performance evaluation did not require maintenance of the hierarchical structure

in the EU representation, we also flattened the HierSet during the unfolding process (see Figure 2(b)).

The algorithm shown in Figure 7 proceeds as follows:

For each abstraction in the HSet:

1. Create a new unfolded primitive if the abstraction refers to a primitive. Use the context and

abstraction ID as the unique name for the primitive. Allocated space in the primitive to storeall of

the attributes for the primitive. Read attributes from the personalization source into the primitive.

2. Extend the current context using the abstractionID and pass that to the recursive call to unfold if

the abstraction refers to a non-primitive HSet.

3.2.2 Performance Issues

Once unfolded and flattened, a HierSet exists as a set of occurrences (tuples containing a context

and a primitive (see Section 2.1)). It occupies space proportional to the number of unfolded occurrences

in the HierSet. Recall from the characteristics of the folded HierSet described in Section 3.1 that the

number of occurrences is given byn, and the size of a primitive is given bysp. Therefore the total size

ηa

ηb ηc

ηeηd

α1 α2

α5

α3

α4 α6 α7

Figure 6: (a) Folded and (b) Unfolded Object with Objects, Personalizations and Relationships.

1.7:

3.5:

2.4:

Personalizations ηa

ηd ηd ηe ηd

1.4

1.7
2.4

2.7
3.5

3.6

(a) (b)

ηe ηd

Adj(α4,α7)

α8

Adj(1.4,1.7) Adj(2.4,2.7)

1.8
2.8

Figure 7: Unfolding a HierSet.

// The recursive unfold() operation unfolds the HierSet rooted at root
HSet::unfold(HSet *root, Path context) {

for(each Abstr a owned by this HSet) {
if (a->abstractionOf->isPrimitive) {

Primitive *p = root->instantiatePrimitive(a, context);
p->getAttributeValues(context + a->instID);

} else {
a->abstractionOf->unfold(root, context+a->instID);

}

11 of 28

(i.e. storage cost) of the unfolded design is given by . Because each unfolded primitive contains

space for all possible personalized values, the size of the EU representation is independent of the num-

ber of actual personalizations.

Given a specific occurrence in the design, the time to access an attribute in the occurrence is deter-

mined by the time to access the occurrence. This is because the unfolded attribute values are stored

directly with the unfolded occurrences, and so, once the occurrence is obtained, the attribute values are

immediately available. However, this does not necessarily indicate that the unfolded structure is the

most efficient. The unfolding cost and size of a large unfolded structure contribute substantially to the

cost of performing queries on unfolded structures. Additionally, there is no clear way to access the

unfolded occurrences by name unless an index on the name (formed by the concatenation of the

abstraction IDs) is used. Because we have not developed indices for all of the materialization strategies,

we have reserved the evaluation of indexed queries for future work.

For queries that traverse other unfolded relationships between occurrences, it is difficult to predict

the paging performance for the explicitly unfolded structure. The performance is dependent upon how

the data has been clustered. The clustering that we impose upon the unfolded representation is the clus-

tering dictated by the order in which the structure is unfolded. Clustering topologically on relationships

such as Adj() in Figure 6 is likely to improve performance for traversal of the relationship. However,

this kind of clustering requires a second pass after unfolding, and so was not considered.

3.3 Dictionary Personalization (DP) Using a B+ Tree

In thedictionary personalization (DP) approach, one or more dictionaries store the values for per-

sonalized attributes. We considered several possibilities for dictionary organization. By dividing up the

personalized attributes in different ways, we vary the number and sizes of the dictionaries. These varia-

tions are listed in Table 2 with descriptions of the main distinguishing characteristics. The context por-

tion of the occurrence (i.e., the path to the occurrence in the HierSet DAG) is used as the dictionary key

and stored with the personalized attribute. Initial values for the un-personalized attributes are stored in

the primitive HSets. In this way, the entire HierSet structure can remain fully folded. During implicit

unfolding, the query processor maintains a context path that can be used as a dictionary key. Using this

key, the query processor consults the dictionary to obtain values for personalized occurrence attributes.

nsp

12 of 28

3.3.1 Algorithm and Structures

We chose a B+ tree to serve as the dictionary. To lookup a personalized value for the attribute δ

whereName(δ) = s of the occurrence< [x, y, z], p > in the HierSeth, we do the following:

1. Determine the dictionary to search for the personalized value of attributes. This

lookup function is maintained by the HierSet and has little cost, since the number of distinct

attribute names is likely to be small. For this reason we do not consider I/O cost to determine the

dictionary to use.

2. Search for the keyx.y.z in D. If the key is found, return the value stored with the key. Done.

3. Otherwise, return the attribute value stored with the primitive elementp at the end of the pathx.y.z..

After some careful consideration we confined our performance evaluation to the DP approach that

uses a single dictionary for each attribute represented in the HierSet. This approach is illustrated in Fig-

ure 8, with dictionaries for personalizing the attributesarea anddelay. The slicing of attributes into sep-

arate dictionaries has the desirable effect of limiting dictionary activity to only those attributes that are

Table 2: Characteristics of Different Approaches to Dictionary Personalization.

Single/Multiple Attrib utes Sliced Attrib utes Unsliced

Dictionary for
each HierSet

• One separate dictionary for each attribute.
• Attribute determines dictionary D = d(a).
• Context used as key in each dictionary.

• Single dictionary for all attributes.
• No search required to locate dictionary.
• Context/Attribute used as dictionary key.
• Least overhead; only single dictionary.

Dictionary for
each Primitive
of each HierSet

• Each primitive has a set of dictionaries.
• Attribute/Primitive determines dictionary.
• Context used as key in each dictionary.
• Most number of dictionaries required.

• Each primitive has a single dictionary.
• Primitive determines dictionary.
• Context/Attribute used as dictionary key.

D b h p s, ,()=

Figure 8: A Folded Description with Sliced Personalizations.

A

B C

ED

1 2
3

4 5
6

7

0

Dictionary(delay)

0.3.5: Z

Dictionary(area)

0.1.4: Y
0.1.7: X

Personalization SpaceFolded Space

area area

delay delay

13 of 28

relevant to a particular query. It also permits the most flexible support for different types of attributes.

3.3.2 Performance Issues

Because the personalization values are stored in a B+ tree structure indexed by the path in the

HierSet DAG, a dictionary lookup is required for every access to a personalized attribute. The branch-

ing factorb can be expressed as:

. (7)

whereDsz is the size of a disk page,sid the size of an identifier, h the height of the HierSet DAG, sptr the

size of a pointer, andsattr the size of an attribute. For our simulations,b = 100.

The access time to an attribute can be expressed in terms of the bounds on the B+ tree perfor-

mance. The number of pages accessed when looking up a personalization value for the attributea with

va total personalizations is given by:

. (8)

3.3.3 Optimizing DP Access

One of the drawbacks of any dictionary personalization approach is that the lookup cost for an

attribute value is dependent upon the number of personalizations – whether or not a given occurrence

has any personalized attributes. Under the DP approach explained thus far, the query manager is always

obligated to consult the personalization structure to determine if an occurrence has a personalized value

for a given attribute. Here we consider how to reduce these compulsory consultations.

It is common design practice for personalizations to be localized to sub-DAGs of the HierSet

DAG. This occurs because a designer typically refines sub-modules of a design one at a time. By pro-

viding a means to determine whether or not a sub-DAG contains personalizations, we can improve per-

formance when processing queries on designs that contain localized personalizations.

Two approaches to this problem that we can identify are:

• Bit-Vector Pruning. Information about personalizations is stored in the HierSet. This requires

maintaining a bit-vector in each abstraction (1 bit per attribute) that is used to record whether or

not there are personalizations in a particular sub-DAG. The query processor determines if there are

personalizations for the attributes in a sub-DAG identified by the path [a1, a2, …, an] if:

(9)

Personalization updates propagate the bit vector setting to the root of the HierSet DAG, or until a

bit=1 is encountered.

b
Dsz

sptr si dh sattr+ +
---=

cost logb va()=

ai∀ ai .bit[s], 1=() where i = 1..n,

14 of 28

• Prefix Pruning. A query prevents excessive lookups in the B+ tree by “peeking” into the B+ tree

using a prefix whenever traversing downward in the HierSet. If the prefix lookup indicates that

there are no personalizations in the B+ tree for that particular sub-DAG, then all subsequent

lookups while traversing the sub-DAG can be “pruned”, and thus prevented.

As we describe in our results, we evaluated both schemes and found the bit vector approach to be

the most efficient. The algorithm to determine a personalized value under bit vector pruning is as fol-

lows:

1. During the traversal of the HierSet DAG (i.e. moving up or down the DAG hierarchy), maintain a

stack of state variables that identify if there are personalizations along the current context path. One

stack is maintained for each attribute considered in the query. The stack is kept up to date by

consulting the abstraction to obtain the personalization bit for each attribute, combining it (via

logicaland) with the current top of the stack and pushing the result on the stack.

2. If the top value on the stack is 0, return the attribute value stored in the primitive.

3. If the top of the stack indicates possible personalizations in the sub-DAG, consult the B+ tree for

all personalization lookups within the sub-DAG.

4. If the key is not found, always return the attribute value stored with the primitives in the sub-DAG

associated with the prefix.

3.3.4 Performance Improvements from Pruning

The performance improvement from prefix pruning depends upon the distribution of personaliza-

tions. For the most common pattern of personalizations, we expect prefix pruning to improve retrieval

performance. Under certain conditions, prefix pruning may perform worse that a non-pruned approach,

because the benefits of pruning are offset by the additional size of the bit vector storage.

If we assume an attributea hasva personalizations out ofn total possible, we can make probabilis-

tic bounds estimates on the effectiveness of the pruning. We express the DP bit vector access cost to

retrieve r attribute values as:

(10)

where represents the fraction of lookups not prevented by pruning.

3.4 The Partial Unf olding (PU) Strategy

Our partial unfolding (PU) strategy represents a middle ground (in terms of materialization)

between the DP and EU approaches. In partial unfolding, thebase HierSet –the original folded struc-

ture – is maintained in the same way as the DP approach (i.e., remains folded), but personalized

r 1
va

n
-----– 

  logb va()⋅ 
 ⋅ cost r logb va()⋅< <

1
va

n
-----– 

 

15 of 28

attributes are stored in separate HierSet structures (PU HierSets). PU HierSets are initially isomorphic

to the base HierSet, but each contains all primitive attributes with the same name. In order to personal-

ize a PU HierSet, wepartially unfold it to create paths to new leaf attribute values. In this way the PU

HierSet acts as a dictionary for personalization values. After personalization, the PU structure diverges

from the form of the base HierSet, but it still contains the same paths. For example, a base HierSet is

shown in Figure 9(a) with a PU HierSet, in Figure 9(b). In Figure 9(c), we show the PU HierSet with a

single personalized occurrence [3,5]. The new occurrence path is shown as a dashed line.

The duplication of labels in the HierSet is permitted, since the uniqueness within a parent is still

met, and so unique paths to each leaf are still guaranteed. The partial unfolding method has several pos-

sible advantages over unfolding the entire HierSet:

1. The PU HierSets may be smaller than an EU HierSet, and so more of them are likely to fit into the

allocated page buffers of the database system.

2. Only those attributes that are personalized need a personalization structure, so some attributes in

the primitive cells will still benefit from being completely folded.

3. The personalization structure exhibits similar spatial and temporal locality to its base HierSet,

possibly improving paging performance.

3.4.1 Algorithms and Structures

The algorithm illustrated in Figure 10 shows the steps required to accomplish the personalization

of a single occurrence in a PU HierSet. The general procedure for this process is as follows:

1. Identify the region of the DAG which must be unfolded. An HSet along the occurrence path is

identified as thetop – the closest HSet to the root with a fanin > 1.

2. For each HSet along the path between top and the leaf in the path inclusive, clone the HSet, and

link it to its parent. All abstractions in the HSet are cloned except the abstraction corresponding to

the portion of the path being personalized.

Folded base HierSet
2 Primitive Attributes. PU HierSet

For the attribute

Figure 9: (a) Base HierSet and (b) PU HierSet, (c) PU HierSet with [3,5] Personalized.

Personalized PU HierSet
For the attribute

1
2

3

54
1

2

3

54

1
2

3

5
4

54

(a) (b) (c)

16 of 28

3. Personalize the newly cloned leaf.

The sequence of frames in Figure 10 shows the operations required for personalizing the occur-

rence <[1,3,5,7,9], f> in the HierSet. The figure shows the removal of all paths containing the edge 3

incident on the top HSet, followed by the systematic reconstruction of all paths that contain the edge 3,

but end at a new primitive HSet for the path [1,3,5,7,9]. This reconstruction corresponds to the creation

of copies (versions with small changes in terms of which Abstr they own) of all HSet between and

including thetop marker and the leaf. A detailed description of the steps is included in the figure.

3.4.2 Performance Issues

A personalization value is obtained from a PU structure by retrieving the path from the root of the

PU HierSet to the appropriate leaf-level primitive, using the components of the occurrence path to

guide the traversal. Because the abstractions are clustered together with each HSet, the number of pages

that must be retrieved from disk is likely to be bounded above byh for an occurrence path of lengthh.

This is because PU HSets and primitives are lightweight objects, and many fit on a disk page.

We designed the PU HierSet under the expectation that it would exhibit complimentary paging

behavior to the HierSet for which it provides personalization values. It also avoids the storage of long

keys such as those used in the DP approach. This is because the keys are distributed throughout the PU

HierSet DAG and are also folded and re-used by many different personalization values. Because the PU

HierSet keeps attributes folded as much as possible, it represents a middle ground in the materialization

strategies.

1

3b

c

d

e

h

g0

1

2

3

f4

top = 1

(a) (b) (c) (d) (e)

c boriginal edge new edge HSet new HSet

Figure 10: Personalization of occurrence <[1,3,5,7,9], f> in HierSet.

a. Locate top by traversing the path from the root.
b. Remove edge incident on top HSet (from b to c).
c. Clone HSet c and change edge from b to new cloned c.
d. Clone HSet d (including its edge to h) and add edge from c to d.
e. Clone HSet e (including its edge to h) add edge from e to f.

Update value in f with new personalization value.

occurrence to del

a

1

3

2

4

6
5

7 8

A9

b

c

d

e

h

g

f

a

2

4

6
5

7 8

A9

b

c

d

e

h

g

f

a

2

4

6
5

7 8

A9

c

d

c

d

e

h

g

f

a

2

4

6
5

7 8

A9

5

8

c

d

c

d

e

h

g

a

2

4

6
5

7 8

A 9

5

8
e

7

A

1 1

c

3 b

1

3b

f

Level

9

f

17 of 28

4 Performance Evaluation Experiments

We performed an extensive evaluation of the three personalization approaches by varying operat-

ing conditions and data characteristics. We performed four different queries on the data, namely (1)

queries that traverse the complete HierSet DAG, (2) queries that traverse sub-DAGs of the HierSet, (3)

queries that traverse single folded relationships, and (4) queries that traverse paths of folded relation-

ships. The first, anAggregation query, computes an aggregate over the entire HierSet on a single

attribute. The second, aSub-Aggregate computes an aggregate on a sub-DAG. These are the two

traversal queries considered in the DAG clustering performance evaluation described in [4]. Because

HierSets are often used to describe hierarchical graphs, we added queries which traverse the HierSet

along the folded relationships. Out third query, aNeighbors query traverses unfolded relationships to

all neighbor primitives, and finally, aPaths query, traverses a path of unfolded relationships across the

HierSet. These four queries are representative of the types of queries commonly performed on hierar-

chical graphs and hierarchical sets. Queries involving searching for indexed values were not included in

our evaluation because we have not implemented the necessary indexing structures.

4.1 Experimental Setup

In our performance evaluation, we performed the following steps:

1. Generated a HierSet with variable height (h) and a constant density (d). We used generated data so

that we could control these characteristics.

2. Personalized an attribute with a variable number of personalizations.We used two different

personalization patterns to personalize attributes. In one pattern, the personalizations were

randomly distributed throughout the HierSet, while in the other, the personalizations were localized

to a few sub-DAGs in the HierSet (to simulate personalization as a designer might do it).

3. Clustered the design data (and personalization data, if relevant) using two different clustering

algorithms. The first algorithm clustered the DAG in depth-first order. The second employed a

hybrid version of depth-first and breadth-first clustering [4]. We refer to these as depth-first (DF)

and children-depth-first (CDF), respectively. Because breadth-first clustering has demonstrated

inferiority [4] to DF and CDF, we did not consider it in our evaluations.

4. Executed four different queries against the personalized design object. In all cases, the queries

accessed personalized attributes during execution.

5. Monitored the I/O costs during the query evaluation.

18 of 28

4.2 Specific Characteristics

4.2.1 Height and Density

We selected a constant density of 12 and varied the height of the test HierSet DAG between 2 and

6. Table 3 shows the sizes for folded and unfolded HierSets, including the number of occurrences in the

unfolded HierSet.

4.2.2 Other Parameters

In the course of our simulations, we varied a number of parameters. However, for the results pre-

sented in this paper, we fixed many of these to focus on the most relevant characteristics. For example,

we fixed the size of a disk page (and buffer page) at 4096 bytes. The sizes for HierSet building blocks

were fixed as shown in the table in Table 4.

5 Results

We conducted a number of focused experiments to determine the storage and I/O costs for the dif-

ferent personalization approaches. In the following subsections, we present the goal of each experi-

ment, a description of the conditions of the experiment, a plot showing the results, and a brief

interpretation of these results.

Table 3: Size (in 1k disk pages) of Randomly Generated DAG with Density = 12.

Height Folded Size UnFolded Size
Number of

Occurrences

2 57 25 250

3 96 100 1000

4 148 400 4000

5 214 1600 16000

6 229 6300 63000

Table 4: Fixed Simulation Parameters.

Symbol Description Value

Dpsz HierSet Primitive Size (10 attributes) 48 bytes

Dhsz, Phsz HSet Size (both HierSet and PU HierSet) 8 bytes

Dasz, Pasz Abstraction Size (both HierSet and PU HierSet) 8 bytes

Ppsz PU Primitive Size (1 attribute) 8 bytes

Dsz Buffer page size 4096 bytes

Ksz DP key size (concatenation of 4 byte IDs) 40 bytes

19 of 28

5.1 HierSet Sizes on Secondary Storage

5.1.1 Design Size vs. HierSet DAG Height

One clear justification for keeping HierSets folded is the possible storage savings. To measure

these savings, we constructed HierSets (EU, DP, and PU) – both unpersonalized and 50% personalized

on one attribute. The resulting savings are shown in the plots of Figure 11.

Notice that the DP size with 50% personalizations is proportional to the size of the HierSet under

EU, though smaller. We also see that the PU structure shows similar size characteristics to the DP,

except that the 50% personalized HierSet under PU is considerably smaller than the DP implementation

for HierSets with DAG height greater than 5.

5.1.2 Design Size vs Number of Personalizations

5.1.2.1 Personalization Schemes Compared

The second factor contributing to the HierSet size is the number of personalizations. Because both

DP and PU grow with the number of personalizations, we consider these effects when evaluating the

0

200

400

600

800

1000

2 3 4 5 6
H

ie
rS

et
 S

iz
e

(n
um

be
r

of
 p

ag
es

)

�

Height of Description DAG

EU
DP (Unpersonalized)

DP (50% Personalized)
PU (Unpersonalized)

PU (50% Personalized)

Figure 11: (a) HierSet size vs. DAG Height. (b) Magnified region of plot.
(a) (b)

0

1000

2000

3000

4000

5000

6000

7000

2 3 4 5 6

H
ie

rS
et

 S
iz

e
(n

um
be

r
of

 p
ag

es
)

�

Height of Description DAG

EU
DP (Unpersonalized)

DP (50% Personalized)
PU (Unpersonalized)

PU (50% Personalized)

Figure 12: (a) Design Size vs. Number of Personalizations (b) Magnified.

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500 2000 2500 3000 3500 4000

O
bj

ec
t S

iz
e

(n
um

be
r

of
 1

k
pa

ge
s)

�

Number of Personalizations

EU
DP (1 Attribute)

DP (10 Attributes)
PU (1 Attribute)

PU (10 Attributes)

220

240

260

280

300

320

340

360

380

400

0 500 1000 1500 2000 2500 3000 3500 4000

O
bj

ec
t S

iz
e

(n
um

be
r

of
 1

k
pa

ge
s)

�

Number of Personalizations

DP (1 Attribute)
DP (10 Attributes)

PU (1 Attribute)
PU (10 Attributes)

(a) (b)

20 of 28

approaches. The plot in Figure 12 shows size advantages under DP for several attributes personalized

up to 25%. PU compares favorably for up to 10 attributes when compared to EU (the horizontal line),

containing 10 attributes. DP grows linearly with the number of personalizations. The slope of the line is

determined by the size of the keys used to index into the B+ tree. Use of key compression techniques

should reduce the size of these keys, and thus reduce the slope of the curve.

5.1.2.2 The Effect of Personalization Distribution on PU Size

We observed that the PU approach is sensitive to the way personalizations are distributed through-

out the occurrences in the HierSet. We compared the sizes of the PU structures under localized and ran-

domly dispersed personalizations, as illustrated in Figure 13.

When updates are localized to sub-DAGs in the HierSet, the resulting PU structure remains

mostly folded, and as a consequence remains compact. On the other hand, if personalizations are ran-

domly scattered throughout the occurrences in the HierSet, the resulting PU structure is larger, having

been mostly unfolded. The sizes reconverge as the representations approach complete unfolding. It is

common in design to refine localized portions of a design, so we expect the linear behavior to occur in

practice.

5.2 I/O Performance Comparison

5.2.1 Contribution of I/O Buffer Allocation to Performance

We tested the sensitivity of our four queries to the number of allocated buffer pages by executing

the query on a HierSet with 4000 personalizations. Figure 14 shows the DP and PU structures perfor-

mance improving substantially as the buffer allocation approaches the representation size. In the region

in which these two representation are “starved” for pages, they perform very badly. Fortunately, both

the DP and PU representations are relatively small compared to the EU representation, so an adequate

amount of buffer space is likely to be available.

220

240

260

280

300

320

340

0 500 1000 1500 2000 2500 3000 3500 4000

S
iz

e
of

 H
ie

rS
et

 a
nd

 P
U

 H
ie

rS
et

 (
1k

 p
ag

es
)

�

Number of Personalizations

PU Personalizations (Localized)
PU Personalizations (Unlocalized)

Figure 13: Size of PU for Random and Localized Personalizations.

21 of 28

5.2.2 Personalization I/O Compared

We also executed the queries while varying the number of personalizations. Figure 15 shows the

relative performance of PU and DP for the Neighbor and Sub-Aggregate queries. The PU scheme out-

performs the DP for the Sub-Aggregate, but there is no clear winner for the Neighbor query. Figure

15(a) demonstrates the non-uniform growth (and corresponding performance) of the PU representation.

Figure 14: (a) Path (b) Neighbors (c) Aggregate (d) Sub-Aggregate queries.

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100 120 140 160 180 200 220 240

D
is

k
A

cc
es

s
(n

um
be

r
of

 p
ag

es
)

�

Number of 4k Buffer Pages

EU
DP
PU

0

500

1000

1500

2000

2500

0 100 200 300

D
is

k
A

cc
es

s
(n

um
be

r
of

 p
ag

es
)

�

Number of 4k Buffer Pages

EU
DP
PU

0

200

400

600

800

1000

0 20 40 60 80 100 120 140 160 180 200 220 240

D
is

k
A

cc
es

s
(n

um
be

r
of

 p
ag

es
)

�

Number of 4k Buffer Pages

EU
DP
PU

0

200

400

600

800

1000

0 20 40 60 80 100 120 140 160 180 200 220 240

D
is

k
A

cc
es

s
(n

um
be

r
of

 p
ag

es
)

�

Number of 4k Buffer Pages

DP
PU

(a) (b)

(c) (d)

Figure 15: PU and DP Personalization I/O (a) Neighbors Query (b) Sub-Aggregate.

0

20

40

60

80

100

120

140

160

180

1000 2000 3000 4000

P
er

so
na

liz
at

io
n

D
is

k
A

cc
es

s
(n

um
be

r
of

 p
ag

es
)

Number of Personalizations

PU SubAggregate Query
DP SubAggregate Query

(a) (b)

0

20

40

60

80

100

120

1000 2000 3000 4000

P
er

so
na

liz
at

io
n

D
is

k
A

cc
es

s
(n

um
be

r
of

 p
ag

es
)

Number of Personalizations

PU Neighbor Query
DP Neighbor Query

22 of 28

5.3 Optimizing DP Performance

5.3.1 Prefix Pruning and Bit Vector Pruning

As described in Section 3.3.3, the DP approach can benefit by using pruning to reduce the number

of accesses to the B+ tree. We compared the performance of the bit vector and the prefix pruning for a

number of queries. In general the bit vector performed better, primarily because of reduced activity in

the B+ tree accesses. This slight performance edge is illustrated in Figure 16

We measured the effectiveness of bit vector pruning on the various queries. We notice an improve-

ment for the paths query, but no improvement for the aggregation query. The lack of improvement for

the aggregation query is because the aggregation query corresponds to an in-order traversal of the paths

in the HierSet DAG, and so parallels the in-order and very efficient traversal of the DP structure.

5.3.2 The Effect of Personalization Update Patterns on Pruning Performance.

The pruning optimization offers some promise for improving the performance of queries that

access personalized data. However, we noticed variations in the effectiveness of the pruning. We show

Figure 16: Comparison of Prefix and Bit Vector Pruning.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

1000 2000 3000 4000 5000 6000 7000 8000

D
is

k
A

cc
es

se
s

(n
um

be
r

of
 p

ag
es

)

�

Number of Personalizations

Path query w/ Prefix Pruning
Path query w/ no Pruning

Path query w/ Bit Vector Pruning

Figure 17: Effectiveness of Bit Vector Pruning for (a) Paths query and (b) Aggregation query.
(a)

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 In

pu
t P

ag
es

�

Number of Personalizations

DP (w/o Pruning, Local)
DP (Pruning, Local)

DP (w/o Pruning, Non-local)
DP (Pruning, Non-local)

(b)

0

500

1000

1500

2000

2500

1000 2000 3000 4000

P
er

so
na

liz
at

io
n

D
is

k
A

cc
es

s
(n

um
be

r
of

 p
ag

es
)

Number of Personalizations

Paths Query
Paths Query with Pruning

23 of 28

the variation in the plot of Figure 18. This plot shows clearly that the performance of the pruning tech-

nique is dependent on how well the personalizations are grouped into sub-DAGs of the HierSet.

5.3.3 The Effect of Personalization Update Patterns DP Performance

We found that the update patterns had a substantial impact on the performance of the DP

approach. This is due to the way the personalizations are grouped in the B+ tree when they are inserted.

A more localized set of personalizations results in a more compact and more “intelligently clustered”

B+ tree. Note the personalization I/O as shown Figure 19 for both theNeighbors andSub-Aggre-

gation queries for the different patterns of updates.

5.4 Optimizing the PU Approach

Because we had control over the way that the PU HierSet was clustered we were able to measure

the effects of clustering on the query performance. In this experiment, we measured the performance

variation of the PU approach for both the CDF and DF clusterings. The resulting plot is shown in Fig-

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 In

pu
t P

ag
es

�

Number of Personalizations

DP (Pruning, Local)
DP (Pruning, Non-local)

Figure 18: Paths Query with Local and Random Personalizations.

Figure 19: Sensitivity to Update Patterns for (a) Neighbors and (b) Sub-Aggregation Queries.

0

100

200

300

400

500

0 50 100 150 200 250

P
er

so
na

liz
at

io
n

I/O
 (

P
ag

es
)

�

Number of Buffer Pages

DP Neighbors (Local Updates)
DP Neighbors (Random Updates)

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120 140 160 180 200 220 240

P
er

so
na

liz
at

io
n

I/O
 (

P
ag

es
)

�

Number of Buffer Pages

DP Sub-Aggr (Local Updates)
DP Sub-Aggr (Random Updates)

(a) (b)

24 of 28

ure 20, indicating that the CDF clustering yields the best performance for thePaths query. However,

the benefits of CDF clustering are diminished by randomly distributed personalizations.

6 Related Work

Relational Databases. As an alternative indirection solution, theowns andowns-abstraction-of

relationships could be stored using relational tables. In this representation, the traversal of the OAO-

DAG is accomplished via a join on the relationship. Traversal of the variable length paths extending

from the root of the HierSet to the leaf primitive would be accomplished via a recursive join. Although

a general recursive join could compute a set of primitives which are reachable from the root, the general

join process does not retain the path information. Thus, casting the HierSet into a traditional relational

model leaves us without the requisite path information. This path information is essential to solve the

personalization problem, because the path is used to form the key into personalization indices. The path

also imparts the requisite identity to the resulting occurrence, another important facet missing from a

general recursive query.

Work in [10] presents extensions to SQL that provide a means to specify transitive closure queries

while preserving the path information in a special PATH table. The PATH table can be queried and its

contents can be accessed during the course of the query. Furthermore, this information could potentially

be used to formulate keys to be used to access personalization data, though it has not been explored in

[10]. All of these operations would have to be done explicitly, and all of the necessary provisions would

also be required to provide access to unpersonalized values as well – as already provided for in the solu-

tion we present in this work. One key strength of our model is that captures the intended semantics of a

commonly used structure and uses a highly optimized method to access both personalized and unper-

sonalized data stored in the structure. Additionally it does so via a query mechanism that can fully

exploit the folded nature of the data to achieve superior performance.

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000

D
is

k
A

cc
es

se
s

(n
um

be
r

of
 p

ag
es

)

�

Number of Personalizations.

CDF (Local)
CDF (Random)

DF (Local)
DF (Random)

Figure 20: Paths Query Performance for CDF and DF Clustering.

25 of 28

Database Views. Earlier work in OODB database views has established data models, object alge-

bras, update policies and materialization strategies, all motivated by the desire to provide either real or

virtual restructuring of data for database applications [1,27]. Much of the formalization of complex data

types can be found in [7].

Determining how to update materialized views is discussed in [5] in the context of relational

views. View maintenance and materialization for a nested data model is presented in [17], along with

log structures to increase the efficiency of updates. In both [5] and [17], the views are limited to select,

project, and join (SPJ) views. View materialization is also implemented in the Multiview system [19,

20, 21]. However, the MultiView OODB view system [26] employs an object-preserving algebra as a

query language for view definitions. OurUnfold operation is unique in that it is a complex view trans-

formation requiring special support for both definition and materialization.

Recent work on view materialization has focused on applications to special view definitions and

specific domains. View materialization for a deductive database used in temporal authorizations is pre-

sented in [11], while [12] examines views and view materializations appropriate for building graphical

user interfaces. In our HierSet model, we address the complex restructuring employed in the design

domain, such as flattening hierarchical graphs and deriving transitive relationships [15]. Furthermore, a

view defined using theunfold operation is updatable via our solution to the personalization problem.

Electronic CAD. Work on the HS system [24] describes an API capable of implicitly flattening

netlist data. Updates to the implicitly flattened data are limited, and require a re-initialization of the

database. We supportin-context updates (to implicitly defined occurrences) via our solution to the per-

sonalization problem. We also provide out-of-context updates (to all occurrences in a sub-DAG) via

direct manipulation of the HierSet DAG. The HS system does not address the personalization problem.

Research on hierarchical attribute grammars [14] presented incremental update schemes to propa-

gate changes from a folded representation to an explicitly unfolded representation. Our work supports

such propagation without requiring the maintenance of an explicitly materialized unfolded representa-

tion. The FICOM system [3] maintains complex constraints across various abstraction domains, but

also requires that the two distinct representations are fully materialized. FICOM addresses update prop-

agation in both directions, but the same problems of space and performance overhead remain.

Recent research in enabling technology for electronic design frameworks has focused on informa-

tion modeling of folded and unfolded design [6,8,28]. These models are used to define APIs, to develop

data structure generators, or to formalize the exchange of data between systems. However, there is no

published work relating how the information models can be used as the basis for sophisticated view

definitions within an object-oriented database. With our HierSet model and personalizations, we pro-

26 of 28

vide principled and optimizable support for modeling the relationships mandated by these information

models.

7 Conclusions

7.1 General Contributions

We have made the following contributions in this paper:

• We have identified and formalized the personalization problem for an unfolded view of folded

hierarchical structures which commonly occur in many application domains.

• We proposed two approaches to solving the problem, our partial unfolding approach (PU), which

tries to keep personalization values folded as long as possible, and the dictionary personalization

approach (DP), which adapts existing index techniques from the literature to solve the problem.

• We implemented these two personalization strategies and a fully-materialized explicit unfolding

(EU) strategy, as well as pruning and clustering techniques in a uniform test-bed implementation

in order to provide a fair performance comparison of the approaches.

• Within the test bed we ran extensive experimental tests varying parameters such as data

characteristics, database buffer sizes and percentage of personalization. A summary of results is

given below.

7.2 Performance Evaluation Results

Our results indicate that either the PU or the DP approach are superior to the EU approach for full

to partial personalizations of up to ten attributes. This means that either the PU or DP approach are pre-

ferred for use early in the refinement process of the data. The performance gap between EU and PU/DP

is even more substantial when we consider that many queries may access unpersonalized attributes, and

so would perform well even if other attributes are fully personalized.

Our results show the PU approach to be slightly better than the DP approach. Additionally, the PU

approach offers substantially better performance when the personalizations are localized to a sub-DAG

in the HierSet which is of practical significance since it is common in design practice to refine localized

portions of a design. We improved the performance of the DP approach by using bit vector pruning to

avoid unnecessary lookups during query processing. While, we found the effectiveness of the pruning

was diminished when personalizations were randomly distributed, this is not a typical scenario for

applications that use HierSets.

8 Futur e Work

Based upon our experimental results, we believe that the size of the keys used in the DP approach

27 of 28

limits the effectiveness of the DP. In the future, this could be addressed by using key compression tech-

niques or perhaps even prefix B-trees to reduce the DP disk footprint and improve I/O performance.

In this work, we have evaluated the query retrieval costs for the personalization structures. A

future study could include update/query workloads.

We are in the process of developing rewrite rules for other kinds of queries on the HierSet struc-

ture. These rewrite rules may present opportunities for optimization which benefit some personalization

approaches more than others. We plan to consider these factors as we develop approaches to query opti-

mization within the HierSet model.

9 Acknowledgments

The authors are grateful to Pedro Marron for the implementation of the partial unfolding algo-

rithm. We would also like to thank the UM database group for reviewing earlier drafts of this work.

10References

[1] S. Abiteboul and A. Bonner, “Objects and Views,” in Proc. of the ACM SIGMOD 91,1991.
[2] B. Amann and M. Scholl, “Gram: A Graph Data Model and Query Language”,ECHT 92.
[3] R. Armstrong and J. Allen, “FICOM: A Framework for Incremental Consistency Maintenance in Multi-

Representation, Structural VLSI Databases,” in Proc. IEEE International Conference on Computer-Aided
Design (ICCAD),1992, pp. 336-343.

[4] J. Banerjee, W. Kim, S.-J. Kim and J. F. Garza, “Clustering a DAG for CAD Databases”,IEEE Transactions
on Software Engineering, 14(11):1684-99, 1988.

[5] J. Blakeley, “Efficiently Updating Materialized Views”, SIGMOD Record, 15(2):61-71, June, 1986.
[6] A. Bredenfeld, “A Generator for Graph-Based Design Representations,” in 4th International Working Con-

ference on Electronic Design Automation Frameworks, (EDAF 94) 1994.
[7] P. Buneman, S. Naqvi, V. Tannen and L. Wong, “Principles of Programming with Complex Objects and

Collection Types”,Theoretical Computer Science, 149(1995):3-48.
[8] CAD Framework Initiative, Inc., “Design Representation Electrical Connectivity Information Model and

Programming Interface,” 121, October 23, 1991.
[9] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl, “From Structured Documents to Novel Query

Facilities,” in Proc. ACM SIGMOD International Conference on Management of Data,1994.
[10] S. Dar and R. Agrawal, “Extending SQL with Generalized Transistive Closure,” in IEEE Transactions on

Knowledge and Data Engineering, 5(5):799-812, 1993.
[11] E. Ferrari, E. Bertino, C. Bettini, A. Motta and P. Samarati, “On Using Materialization Strategies for a Tem-

poral Authorization Model”, inProc. Workshop on Materialized Views: Techniques and Applications,Mon-
treal, CA, June 7 1996.

[12] N. Goyal, C. Hoch, R. Krishnamurthy, B. Meckler, M. Suckow, “(Active) View Materialization in GUI Pro-
gramming,” in Proc. Workshop on Materialized Views: Techniques and Applications,Montreal, CA, June 7
1996, pp. 56-64.

[13] S. Heiler, “An Object-Oriented Approach to Data Management: Why Design Databases Need It”, inProc.
IEEE/ACM Design Automation Conference (DAC), 1987, pp 335-40.

[14] L. G. Jones, “Fast Batch and Incremental Netlist Compilation of Hierarchical Schematics,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 10(7):922-31, 1991.

[15] M. Jones and E. A. Rundensteiner, “Extending View Technology for Complex Integration Tasks,” in Proc.
4th Intl. Working Conf. on Electronic Design Automation Frameworks, (EDAF 94), pp. 71-80, 1994.

[16] M. Jones and E. A. Rundensteiner, “An Object Model and Algebra for the Implicit Unfolding of Hierarchi-
cal Structures”, Electrical Engineering and Computer Science Dept., University of Michigan, Ann Arbor,
Tech. Rep. CSE-TR-251-95, July 1995.

[17] A. Kawaguchi, D. Lieuwen, I. Mumick and K. Ross, “View Maintenance in Nested Data Models,” in Proc.

28 of 28

Workshop on Materialized Views: Techniques and Applications,Montreal, CA, June 7 1996.

[18] Konomi, T. Furukawa, and Y. Kambayashi, “Super-Key Classes for Updating Materialized Derived Classes

in Object Bases,” in Proc. DOOD Conference, Dec. 1993.

[19] H. A. Kuno and E. A. Rundensteiner, “Materialized Object-Oriented Views in MultiView,” in Proc. Fifth
Intl Workshop on Research Issues on Data Engineering: Distributed Object Management (RIDE-DOM
’95), March 1995.

[20] H. A. Kuno and E. A. Rundensteiner, “Using Object-Oriented Principles to Optimize Update Propagation to
Materialized Views”, in Proc. IEEE International Conference on Data Engineering (ICDE), 1996, pp. 310-
317.

[21] H. A. Kuno and E. A. Rundensteiner, “The Multiview OODB View System: Design and Implementation“,
Journal of Theory and Practice of Object Systems (TAPOS), Special Issue on Subjectivity in Object-Ori-
ented Systems, John Wiley, New York, 1996.

[22] D. Maier, “Making Database Systems Fast Enough for CAD Applications”, inObject-Oriented Concepts in
Databases and Applications, W. Kin and T. H. Luchovsky eds., ACM Press, 1989.

[23] Mentor Graphics, Inc. , “Design Viewpoint Editor”, On-line Documentation, System 8.0, 1995.
[24] N. Parikh, C.-Y. Lo, N. Singhal, and K. Wu, “HS: A Hierarchical Search Package for CAD Data,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 12(1):1-5, 1993.
[25] E. A. Rundensteiner, “Design Tool Integration Using Object-Oriented Database Views,” in Proc. IEEE

International Conference on Computer-Aided Design (ICCAD),1993, pp. 104-107.
[26] E. A. Rundensteiner, “MultiV iew: A Methodology for Multiple Views in OODBs,” in Proc. IEEE Intl. Conf.

on Very Large Data Bases (VLDB), 1992, pp. 187-198.
[27] M. H. Scholl, C. Laasch, and M. Tresch, “Updatable Views in Object-Oriented Databases,” in Proc. DOOD

Conference, Germany, Dec. 1991.
[28] G. Scholz and W. Wilkes, “Information Modeling of Folded and Unfolded Design”, in Proc. European

Design Automation Conference (EDAC), 1992.

