Specifying and Constructing Schedulers
for
Workflows with Autonomous Executions®

P. Jensen' C. Wallace? N. Soparkar

Electrical Engineering & Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122
USA

{pjensen,wallace,soparkar } @eecs.umich.edu

Abstract

Workflow has become an important paradigm for distributed data and computing systems in a
wide range of application areas. In a workflow, tasks executing on autonomous, heterogeneous
systems are coordinated through data and control flow constraints. An important challenge in
workflow management is the scheduling of actions and operations performed by the concurrently
executing tasks. The legal interleavings among the tasks must be specified, and scheduling con-
trol mechanisms to ensure correct, efficient executions must be generated. Scheduling workflows
is particularly difficult because the dependencies between tasks may be application-specific and
task autonomy may place certain actions outside the control or observation of the scheduler.

We use techniques from supervisory control theory of discrete event systems for specifying
and generating scheduling controllers in workflow environments. We specify the tasks and the
intertask dependencies as finite state automata. To model task autonomy, we characterize
some of the event transitions in the task automata as beyond the control or observation of
the workflow scheduler. By applying the techniques of supervisory control theory to these
specifications, we show how the existence of schedulers may be ascertained and how schedulers
may be constructed. In cases where no controller can allow exactly the desired class of schedules,
we show how to construct a scheduler that allows the best possible approximation to the desired
class. We also address the issues of prioritized tasks and distributed workflow scheduling. Our
approach provides an effective means to model several workflow systems and to create scheduling
mechanisms to manage them.
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1 Introduction

Workflow systems have gained prominence in recent years for applications in business processes,
hospital administration, collaboration technologies, and manufacturing control, among other ar-
eas. Workflows are characterized by tasks which access and manipulate shared data resources,
with application-specific intertask dependencies. These tasks may run on autonomous, heteroge-
neous platforms, involve interactions outside the computing system, and demand diverse correct-
ness conditions for their interleaved executions. In this paper, we examine a challenging problem
in workflow, the correct and efficient scheduling of task actions — some of which may execute
autonomously.

As an example, consider a computing system to assist hospital management and administration.
A workflow designed for such a system may consist of several tasks such as entering the patient
data into a database, obtaining information on previous visits and medical history, ascertaining
insurance information, entering diagnostic information by a medical examiner, prescribing treat-
ment medicine, assessing costs and billing the patient. There may be precedence constraints (e.g.,
initiate prescribing only after diagnostics are entered) and potential data conflicts ( e.g., check the
prescribed treatment against allergies in the patient’s medical history) that proscribe certain inter-
leavings of task actions. Each task itself may consist of several actions which are ordered within
the task. Furthermore, these tasks may execute on different platforms and may have autonomous
execution characteristics (i.e., some of the actions within each task may be outside the control of
the workflow manager once the task is initiated). Data may be concurrently shared among some
of the tasks that are permitted to execute at the same time (e.g., the tasks pertaining to medical
history and insurance).

The above description indicates that not only are there intratask orderings (many of which
may be handled autonomously) but also complex intertask dependencies. Logical dependencies
arise from the access to shared data resources, and performance constraints arise from the desire to
impose the fewest restrictions on the autonomous executions. To compound the problem, some of
the actions within the individual tasks may be uncontrollable, or even unobservable, by an external
workflow scheduler. We restrict attention to constraints that can be stated mathematically within
the framework adopted by us.

Our approach to the problem of workflow scheduling is developed as follows. First, we model
workflow systems as discrete event systems. Fach task in a workflow may be regarded as a set
of discrete events ordered to execute in a pre-specified manner, and the discrete event systems
of the individual tasks is combined to model the system as a whole. Second, we use techniques
from supervisory control theory [RW89] to obtain correct and efficient schedulers that manage the
workflow system. Our approach, though far from a panacea to all workflow problems, is a step
toward understanding and solving several of the difficulties described above. We are able to state
unequivocally what is possible, and how to achieve the possible, within the purview of our model.
As such, our approach is more formal and mathematical in its treatment of workflows, and appears
to better suited to handle aspects of autonomy that arise in workflows.

Note that the scheduling control developed by us could be applied to workflow management
“on-line” or “off-line” depending on the manner in which the scheduling mechanisms are used. In
a sense, our control specifications relate to scheduling mechanisms in a manner similar to the way
serializability theory relates to the concurrency control protocols. In the discussions to follow, we

use terms such as “supervisor,” “controller,”

and “scheduler,” almost interchangeably: the terms



relate to the particular model or formalism in use, and for the purposes of the ideas presented in
this paper, their differences may be ignored. Similar comments apply to a few other terms that we
use, and their meaning is apparent from the context.

2 Related Work

The increased interest in workflow management (e.g., see [GHS95, KR95, AAAT96]) has resulted
in considerable work on scheduling for workflow, and [RS94] provides an overview of various tech-
niques. Asin our approach, the results available are tied to the model adopted and the assumptions
made.

Much of the research reported for workflow scheduling has developed from multidatabase trans-
action scheduling (e.g., see [SKS91, GRS91]). In consequence, there are several efforts that deal
with issues of commitment of autonomously executed transactions and tasks. Indeed, some of the
examples in this paper reflect this trend. While important and interesting, such research touches
on just one aspect of several for workflow systems. For instance, issues of controllability and ob-
servability (i.e., concepts that arise from the autonomy of constituent systems, as explained in the
paper) that are examined in this paper are not handled by such efforts.

Our work is more closely related to [ASSR93, ST94, Kle91, Giin93] in that we model tasks in a
workflow system as automata. For example, finite state automata are constructed in [ASSR93] to
represent dependencies in a manner similar to ours. However, the concept of supervisory control,
including controllability and observability, are not addressed. Similar is the case for [ST94] in
which the methods for specifying dependencies and scheduling is based on temporal logic. Our
methods, though based on formalisms, are different in that we adapt the well-understood techniques
of discrete event systems. In doing so, we are able to leverage several existing results, on-going
research, and tools for the study and realization of workflow scheduling.

We believe that our approach to workflow management constitutes a paradigm shift. Other
efforts have focused on a workflow scheduler which is submitted various actions, and thereafter,
schedules are generated. In contrast, our technique may be likened to a least restrictive approach.
The workflow environment is regarded as a set of spontaneously executing tasks some whose ac-
tions are controlled or observed by the workflow scheduler. Although ultimately these two views
may merge, our technique does provide an alternative, possibly better, approach to modeling and
reasoning about autonomous executions in workflow environments.

3 Workflows and Discrete Event Systems

In this section we describe workflows, introduce an illustrative example, and provide the basic
concepts from discrete event systems [RW89].

3.1 Describing Workflows

A workflow is an organized set of tasks. Tasks are semantically coherent units of work which may
be executed on diverse, heterogeneous platforms. FEach task consists of events to be executed in a
predefined order. An event is an action to be carried out on the system; for instance, a task initiation
or termination, or a data access or update. Event notifications are sent to the workflow scheduler,
which controls task executions by selectively allowing and preventing events from occurring. A



workflow scheduler is therefore passive in nature, allowing tasks to choose the events they execute
but limiting their range of choice. Some tasks may involve events that are outside the control of the
workflow scheduler. If a scheduler is notified of such an event, it cannot prevent it from occurring.

G K

G: Set of generated schedules
K: Set of allowable schedules
[]: Schedules of interest

Figure 1: Objective in basic workflow scheduling.

In Figure 1, we depict the relationship between the tasks and the scheduler. A workflow
organizes its tasks by establishing relationships between events of different tasks. These intertask
dependencies, as for the tasks themselves, are defined by the workflow designer. A scheduler must
ensure that a schedule, or sequence of events, is legal, (i.e., a schedule that satisfies both the
task specifications and the intertask dependencies). In the figure, the tasks generate the set GG
of schedules, while K represents the set of schedules allowed by the intertask dependencies. The
schedules of interest are the legal schedules, the intersection of G and K.

Consider a simple workflow TRAN S, illustrated in Figure 2. TRAN S transfers funds between
bank accounts by debiting one account and crediting the other. The workflow contains a task debit
which triggers a task credit. Both tasks involve a start event, a termination event (either commit
or abort), and an intervening precommit event. Fach task is required to be atomic: it must either
execute to completion or not execute at all. We assume that the failure of credit is tolerated but
not that of debit; no work should be committed if debit fails. Hence the task credit can complete
successfully only if debit completes successfully.

There are two intertask dependencies in this workflow. First, if debit is to start work, credit
must also start, with debit preceding credit. This trigger dependency involves both a co-occurrence
condition (i.e., if debit starts, then credit starts) and a temporal condition (i.e., if credit and debit
both start, then debit starts before credit). Second, it must be ensured that debit has completed
or will complete successfully before credit is allowed to do so. This commit dependency is a co-
occurrence condition (i.e., if eredit commits, then debit must get committed at some point).

Let s, and ¢, represent the start and commit events of credit, and let sy and ¢4 represent the
start and commit events of debit. We define the relations trigger and commsit which hold between
events. Thereafter, the dependencies may be expressed as (sq trigger s.) A (¢, commit cg).
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Figure 2: The TRAN S workflow.

3.2 Discrete Event Systems

A discrete event system (DES) is a dynamic systems in which state changes are caused by instan-
taneous occurrences of events. Workflows are modeled as DESs with the scheduler receiving event
notifications in a discrete manner. Sequences of event occurrences are represented as strings, and
a set of schedules generated by a scheduler is represented as a language.

We are interested in controlling the sequences of events that the system generates. The event
set 3 of the system is the set of all event labels, and X* represents the set of all finite strings over
Y including the empty string €. A language over Y. is simply a subset of X*. Languages are used to
represent the set of all event sequences that can be generated and the set of all legal sequences. If
a string w is a legal event sequence, then all event sub-sequences generated before w are also legal.
A string u is a prefiz of a string v € ¥* if for some w € ¥*, v = uw. The prefiz closure L of I, C ¥*
is the set of all prefixes of strings in L: {u: (Jv € ¥*)(uv € L)}. If L = L then L is prefiz-closed.
The behavior of a DES is modeled as a prefix-closed language I over an event set X.

We represent the behavior of a workflow in terms of a language generator G. G is a finite state
automaton (FSA) (Q,%,0,i, M) consisting of a finite state set @, a finite event set ¥, a partial
transition function 6 : ) X ¥ — ), an initial state : € ), and a set of marked states M C ). The
system behavior is captured by considering all sequences of transitions that start from the initial
state. We extend the function § to sequences of events: if ¢ € @, then 6(q,€¢) = ¢, and for all
we Y0 €Y, §(qwo)=0606(qg,w), o). We define the behavior of G to be L(G) = {w € ¥* :
0(i, w) defined}.

The generator’s marked states M represent states of satisfactory completion. We define the
marked behavior of G to be Ly(G) = {w € ¥* : §(i,w) € M}. While Ly (G) C L(G) always, it is
also desirable that Las(G) = L(G) (i.e., every sequence generated by G can be extended to a state
of satisfactory completion). When this is the case, we say that G is non-blocking.

Given generators A and B, we represent the concurrent execution of the generators by the
shuffle product G = A || B of these generators. The states of G consist of pairs of states A x B,
the event set is ¥4 U ¥ g, the initial state is the pair (i4,¢5), and the marked states consist of all




pairs {(s,t):s € My At € Mp}. The transition function is defined as follows:

(64(q,0),0B(r,0)) if 64(q,0) and dp(r, o) are defined;
ba((q,7),0)= < (6a(q,0),T) if 64(q,0) defined and ég(r, o) undefined;
(¢,6B(r,0)) if 64(¢q,0) undefined and é5(r, o) defined

3.3 Modeling Workflows

Each task in a workflow specifies dependencies between its events, and the workflow adds to these
with a set of dependencies that hold between events of different tasks. We define a workflow W to
be a pair (7, D), consisting of a set 7 of tasks (each specifying a set of intratask dependencies) and
a set D of intertask dependencies. Both tasks and intertask dependencies are modeled as DESs.

Each task 7" in 7 is an FSA (Q7,X7,07, 17, MT). Q7 is a finite set of states, ¥ is a finite
event set, dr is a partial function Q7 X X7 — Qr, iT € Qr, and My C Q. The event sets
of each task are disjoint: (VI',U € 7,7 # U)(X¥1r N Xy = 0). We model the “uncontrolled”
workflow by ||7er T', the product of all the tasks in the workflow. We assume that the workflow
scheduler can distinguish events in a task, so that each event occurrence is unique within a task:
(Vg,r € Qr)(Vo € X7)[(07(q,0) defined A ér(r,o) defined) — (¢ = 7).

Fach task begins with a start event s and terminates with a commit event ¢ or an abort event a.
In addition there is a precommit event p that precedes termination. As each task is atomic, it must
run to completion or not at all. Therefore the initial states and the states following termination
are the marked states. The tasks credit and debit are modeled as separate automata G, and G4
and as a single automaton G.q = G, || G4 in Figure 3. Note that while this may suggest tasks as
having only transactional semantics, the model can be extended for non-transactional procedures.

Fach dependency D in D is a DES, and in particular, an FSA. A dependency FSA has no
private event set; rather, its event set consists of the union of event sets of the task automata. Let
Y = Urer X1; then D is an FSA (@p, X, 6p,ip, Mp), where @ p is finite, 6p is a partial function
OQp XX —=Wp,ip € @p, and Mp C @p. The TRAN S workflow intertask dependencies may be
represented by the automata D; and D, as shown in Figure 4.

4 ‘Workflows under Supervisory Control

In this section, we present the supervisory control theory from [RW89] needed to frame workflow
scheduling as a supervisory control problem. We illustrate our technique for developing schedulers
with the TRAN S example of Section 3.1.

4.1 Supervisory Control Theory

We now discuss how a controller or supervisor enforces correctness conditions on DESs by a feedback
loop between the generator and the supervisor. At each event occurrence, the supervisor controls
the set of possible events by disabling certain events. The event set X is partitioned into a set X
of controllable events (those which can be disabled) and a set ¥,. of uncontrollable events (which
corresponds to autonomous, uncontrollable task actions). Asillustrated in Figure 5, when an event



Figure 3: Tasks credit and debit modeled in terms of FSAs.

o occurs, the generator G moves from its current state ¢ to state ég(q, o). After each event supplied
by G, the supervisor sends a set of events 7, the control input, to G. These are the events enabled
in G's new state d(q, ). Uncontrollable events are always enabled: ¥, C 7. The events generated
by G are constrained by the control input; each event ¢ sent from G to the supervisor is chosen
from the current value of v. We model the supervisor as a DES, and in particular as an FSA §.
The supervisor’s control input is then determined by the transition structure of 5. The supervisor
and generator run in parallel. If G is in state ¢ and 5 is in state r, then event o is enabled if and
only if ég(q,0) and és(r, o) are defined. If both are defined, then G moves to state éz(q,0) and
moves to state dg(r, o).

It is important to characterize the languages which can be realized by a supervisory controller.
If all events are controllable, the control problem is trivial, and any language generated by an
F'SA (i.e., any regular language) can be realized; at each state, the supervisor can disable the
events for which its automaton has no transition defined. For a language K to be controllable,
each uncontrollable event must lead to a path from which some sequence in K can be attained.
In particular, K is controllable if KX, N L(G) C K; for any prefix of a sequence in K, if an
uncontrollable event is added, the result is still a prefix of a sequence in K. Below, we use these
concepts to develop schedulers which generate only legal sequences.

For workflow scheduling, we seek a solution that is not only controllable but also non-blocking
To characterize the conditions under which a non-blocking solution is possible, we introduce the
notion of Lar(G) closure. A language K C Ly(G)is Lar(G)-closed if KN Ly (G) = K. To attain
La(G) closure, all the strings in K must be in Lps(G), and that any marked prefix of a string in
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Figure 5: Feedback loop of control.

K isitself in K. To avoid blocking, we must not exclude any marked prefix that leads to a desired
string in /K, else there will be no way to attain the desired string.

The results for controllability, taken from [RW87b], are summarized as follows. Fix a generator
G that generates language L(G) and marked language L/ (G).

e For nonempty K C L(G) there exists a supervisor S realizing K if and only if K is prefix-
closed and controllable.

e Ior nonempty K C L (G) there exists a supervisor S realizing K as its marked language,
and the system is non-blocking if and only if K is controllable and Las(G)-closed.

4.2 Pragmatism in Obtaining Controllers

If a given language K is found to be uncontrollable, we would like to be able to find a controllable
language K that is as close an approximation to K as possible. In workflow scheduling, this
implies finding a controller that allows as many legal schedules as possible while not allowing any
illegal schedules. The class of controllable sublanguages of K is closed under set union and has a
unique supremal element KT under set inclusion [WR88b]. We call KT the supremal controllable
sublanguage of K, and we characterize a controller realizing KT as a supremal controller for K.
If, as in workflow scheduling, dependencies implicit in K are never violated, then KT is the best
solution possible. Furthermore, if we model the generator and supervisor as FSAs, an efficient
algorithm to compute K is available.



Scheduling workflows involves enforcing a set of intertask dependencies simultaneously. If each
dependency can be expressed in terms of an FSA, a supervisor can be achieved by taking the
product of all the dependency automata. However, the result may suffer from an exponential state
space increase. To counter this, additional structure could be introduced into the model, and the
supervisor can be modularized into a set of independent dependency enforcers. The dependency
automata in D are run in parallel, and the control input is the intersection of the control inputs
of all the automata. Whether this can be done depends on whether the languages defined by the
dependencies are non-conflicting. Languages K; and K are non-conflicting if K; N Ky = K, N Ky;
for every prefix that Ky and K5 have in common, there is a word they have in common that contains
this prefix. Consider KIT and KQT , which in the best case are equal to Ky and K. For non-conflicting
languages, the | operator commutes with the intersection operator. That is, a supremal supervisor
generating (K1 N K3)! can be obtained efficiently, effecting (AIT N KQT).

In short [RW87a, WRS88a]:

o If K7 and K3 are non-conflicting, Las(G)-closed and controllable, then Ky N Ky is La(G)-
closed and controllable.

o If leT and Ix; are non-conflicting, then KIT N KQT = (KN Ky)'.

4.3 TIllustrating Supervisory Control

We now illustrate our approach by applying supervisory control theory to the TRAN S workflow.
We define our specification language of correct schedules and test it for controllability and blocking.
We then determine the controllable, non-blocking language that includes the greatest number of
legal schedules and construct a generator for this language. Finally, we test whether the supremal
controllable sublanguage can be attained using a modular control approach.

From the specifications of the generator G and the dependencies D; and D, we define the
legal language K of the workflow system. K must be a subset of each of the languages L(Dy)
and L(D.) generated by the dependency automata, and it should be a subset of the language
L(G). The desired language is K = L(G) N L(D,) N L(D,), and the desired marked language is
Ky = Ly (G)N Ly(Ds) N Lar(D,). The shuffle product G || D || D,, generating K with marked
language Kjr, is illustrated in Figure 6.

Figure 6: Generator for specification language K.



We use the results presented above to determine whether K is controllable. We can show that
Kz is not controllable (i.e., Kar¥, N L(G) € Kar) by the following counterexample. Consider the
string k = s189p1paca € Kpr. If we extend this string by adding the event ay € X,, we get the
string s182p1pacaag € Kys. Intuitively, the string k represents a schedule in which the credit task
is allowed to commit without the debit task having committed earlier. For the commit dependency
to hold between credit and debit, the debit task must then commit. However, this cannot be
guaranteed, as debit may abort instead (e.g., due to failure of the site where debit is running), an
event outside the control of the workflow scheduler.

Since K]TW # Kjr, a supremal supervisor will allow only a subset of Kj3s. Applying an algorithm

in [WR88b], we construct a generator for A]TW with marked language K]TW. We start with an FSA
Hy, a sub-automaton of GG that generates K with marked language Kps. Hy is the shuffle product
G || Ds || D, shown in Figure 6. We remove all states that are unreachable to obtain H; as
shown in Figure 7. We define an uncontrollable transition to be a pair (¢q,0) where o € ¥, and
0(q,0) is defined. Comparing the uncontrollable transitions of H; with those of G, if there is an
uncontrollable transition (¢, c) in GG which leads from a state ¢ in H; to a state r not in Hq, we must
remove ¢ from H;. One such transition, (43, aq), requires removal of state 43 and all transitions
to and from it. We then remove state 42 to obtain H, as shown in Figure 8. Comparing Hs with
(G, we find no uncontrollable transitions in G that lead from a state in Hy to a state not in Hs.
As this iteration leaves Hy unchanged, a fixed point is reached, so the algorithm terminates. Hy

generates K]Tw with marked language K]TM.

Figure 7: Generator Hy

Though the controller solution described above suffers little from a large state space, we test
whether a modular solution exists. Let K, and K. be the languages generated by the dependency
automata D, and D,. We can construct generators for K| and K;, using the algorithm of [WRS88b];
the generators are shown in Figure 9. The language resulting from the parallel use of the generators
for K] and K] is K] n K]. Next, by inspection we see that K] and K[ are non-conflicting, i.e.,
K,NK, = K,NnK.. This implies that K] n K] = (KsnN KC)T, and that the modular approach
produces the desired language K.

10



Figure 9: Generators for K] and K].

5 Extensions

To account for more complex aspects of workflow systems, we describe several extensions together
with motivating examples. In particular, to account for autonomous distributed executions, we con-
sider the issues of observability, incorporating priorities, distributed control, and limited relaxation
of dependencies.

5.1 Observability

Not only are certain events in a workflow outside the control of the workflow scheduler, but also,
certain events may occur without the scheduler’s knowledge. For example, an application may have
a limited interface with the scheduler, notifying it of only some of its actions. In such situations, a
scheduler must be able to anticipate the occurrence of unseen events, using its control to generate
legal schedules regardless of whether the unseen events occur. In this regard we incorporate the
concept of observability into the supervisory control model [CDFVS8S].

The set of events X in an uncontrolled DES is partitioned into a set of observable events 3, and
a set of unobservable events X,,,. For any schedule s generated by the concurrently executing tasks,
the supervisor observes only the subsequence P(s) (with all event occurrences in X, removed from

11



s) from the projectionP. A projection is a mapping of event sequences of an alphabet (e.g., ¥)
to event sequences of an alphabet that is a subset of the original (e.g., ¥, C X), the mapping
essentially removes events which do not exist in the range alphabet (X,) from a given sequence.
A model of the control loop, as shown in Figure 10, has a module P between the generator and
supervisor, and P is a projection which sends only observable generated events to the supervisor.

, (]

Generator

Figure 10: Feedback loop of control, incorporating observability.

We first determine whether a given specification language K is achievable by supervisory control
in the presence of unobservable events. Clearly, if the occurrence of an unobservable event requires
a change in the control input (i.e., the enabling or disabling of events) in order to achieve K, then
the supervisory control cannot achieve the language. This concept of observability suggests that a
language K is observable if for all s,s" € ¥*, (P(s) = P(s')) — (Vo € ¥.)((s,0,s") € NextAct).
The set NextAct is defined as follows: for s,s' € Sigma*,0 € X, (s,0,8') € NextAct if (so €
KAs e KAs'oe L(G)) — (s'o € K).

As an illustration, consider an example workflow consisting of two tasks New and Old. The
former may be regarded as a new application that has a full interface with the workflow scheduler,
while the latter is an older one with only a rudimentary interface. Though both applications update
data items, only New informs the scheduler of its updates, though both inform the scheduler of
termination. The interaction of these tasks involves accessing a shared variable z. New updates
x and terminates, whereas Old either updates = or an unshared variable y, and terminates. The
intertask dependency requires that a task updating z should terminate before the other updates z.

We model the tasks New and Old as FSAs, as shown in Figure 11. The event set of New
consists of the update event w!Y and the termination event ¢V, and the event set of Old consists of
the update events w? and wz? and the termination events t¢ and t?. Assume that all events are

controllable, but that w¥, w? and w? are unobservable. Qur dependency is modeled by the FSA
O

shown in Figure 12. If w occurs, then ¢V must occur before w¢

w9 occurs, then 12 must occur before w is allowed to occur.
Let K be the specification language arising from these generators, then K is shown to be

unobservable by the following counterexample. Let s = ¢, s’ = w?

is allowed to occur. Likewise, if

9 and sigma = wl. P(s) =
P(s") = ¢, and since o € Y., for K to be observable it must be the case that (s, 0,s") € NextAct.
However, this is not the case; so = wl € K, s/ = w? € K, and s'c = wluwl ¢ L(G), but
s'loc ¢ K. The intuition behind this result is that the schedules s and s’ are indistinguishable by
the scheduler, yet require different control inputs. If no event has occurred (as in s), then no event
need be disabled, but if w? has occurred (as in s), the event w2 must be disabled.

If a specification language happens to be unobservable, the options for computing adequate

12



Figure 11: Old and New tasks modeled in terms of FSAs.

schedulers are fewer since the class of observable sublanguages of a language K is not closed under
union. One way around this is to use a stronger property than observability that is closed under
union which leads to a single solution. As another approach, special characteristics of a model
can be exploited to determine the supremal observable sublanguage. A situation in which this is
possible is when X. C ¥,, (i.e., when the controllable events are all observable). In such cases, any
algorithm which computes a maximal solution is sufficient to determine the supremal observable
sublanguage. Finally, it is possible to compute a single maximal sublanguage by assigning priorities
to events during the computation, and by varying the priority assignment, different maximals may

N over w? will lead to a maximal solution involving

be obtained. In our example, giving priority to w;,

the initial disabling of w?.

5.2 Prioritized Events in Workflow

While allowing as many schedules as possible is a good general rule for obtaining satisfactory perfor-
mance, it may be desirable to avoid certain legal schedules that incur a high performance cost. The
schedules obtained by the minimally restrictive non-blocking scheduler should be further restricted,
disallowing the excessively costly schedules (see Figure 13). A similar issue is the assignment of
priorities to certain tasks or actions in the workflow. If the actions of concurrent tasks are assigned
different priorities, a scheduler should attempt to schedule the actions of higher priority first.

We represent the performance criteria or priorities as cost functions on the set of events. We

augment the workflow model with two cost functions ¢, : ¥ — RTU{0, 0} and c. : ¥ — RTU{0, 0},
mapping events to the non-negative real numbers or infinity. The function ¢, represents the cost

13
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Figure 12: Automaton representing the intertask dependency between Old and New.
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G: Set of generated schedules

K,: Set of allowable schedules
Ky: Set of desired schedules
B2 Schedules less desired

#H: Schedules of interest

Figure 13: Objective in workflow scheduling with priorities.

of executing an event in the system, while the function ¢. represents the cost of taking a control
action on an event (i.e., preventing it from occurring). We assign uncontrollable events a control
cost of infinity. The cost functions are extended to strings and languages as follows. For a language
A,, realized by a controller S, the cost for s € A,,, the cost of string s is the sum of the costs of the
events that comprise s together with the sum of the costs of control actions taken by S in achieving
s. The cost of a language A,, is equal to the highest cost string in A,,: ¢(A,,) = mazsea,,c(s).

We formulate the control problem as follows. A language K,,, C K,, is an optimal language
if for all A,, C K., e(K,,) < ¢(A,,). For a specification language K,, C L,,(G), we consider a
controller S such that the behavior under control L,,(.5/G) is non-blocking and optimal. Note that
an optimal language with finite cost is always controllable. Therefore, an optimal language is a
controllable sublanguage which allows the least costly worst case behavior. An efficient algorithm
exists to realize an optimal scheduler (e.g., see [SL93a, S1.93b]).

As an example, consider a case where a workflow has priorities assigned to certain tasks. One
possible approach to model this situation is to simply assign low execution and high control costs
for higher priority tasks, and high execution and low control costs for lower priority tasks. As
illustrated in Figure 14, consider two tasks, H and L, accessing a common data item. Both H and
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L read the data item, make some modifications, and update the data item. Task H is regarded

to be of high priority, and task L of low priority. We assign all event costs to be 0, and control

costs c.(r) = c.(wH) = 5 and ¢, () = c.(wl) = 1. In this case, the specification would require

both tasks not to read data item 2 without one of them having updated the data item. The only

optimal sublanguage of this specification, given the costs, is the language only allowing the schedule

rHwH Lyl which favors the high priority task.

H_ : L,:
H L
I'X r
L
w W,
L L
rX WX

Figure 14: Prioritized tasks.

5.3 Distributed Control

Most current workflow schedulers are centralized, whereas the environments for workflow systems
are often distributed. For such situations, efforts in distributed supervisory control of discrete
event systems may apply to distributed workflow. As an example, consider n sites participating
in a workflow with a local supervisor at each site responsible for scheduling local events. If each
supervisor sees only a subset of the possible events in the system (e.g., some sites may be oblivious
of events occurring remotely), then some events are not controllable by remote schedulers.

Figure 15 shows a model for distributed supervisory control [LW88] where, associated with each
site 7 is a supervisor 5; and a projection P;. Each supervisor §; sees only a subset Y,; of the events
in the system due to the projection P; and has control over only the events X.;. The control input
~; is a subset of ¥ such that ¥ — ¥, C v; C 3. In this model, we allow specifications to be made
over the entire event set X, to account for intertask dependencies.

For generator G, prefix-closed K C La(G), and alphabets ¥,q,...%,, C ¥ and ¥4,...%., C X,
we are to design non-blocking controllers S7,. ..., such that L(S1A...AS,/G) C K. Here each X,;
and Y. are the sets of events observable and controllable by supervisor 5;. K is the specification
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Generator

Figure 15: Feedback loop for distributed control.

language defining the constraints on the behavior of the system, and G is the generator of the
uncontrolled language. The control input (i.e., the events enabled under control of the supervisors)
is the intersection of the control inputs of each of the separate supervisors.

For distributed control, existence results are available, with the concepts of controllability
and co-observability, similar to the centralized case. There exist supervisors Sy, ..., such that
L(S1 A...ANS2/G) = K if and only if K is controllable and co-observable [RW92]. An efficient
algorithm presented in [RW93] determines whether controllers Sy, ... 5, exist which satisfy the
above conditions. When the specification K is either not controllable or not co-observable, this
typically gives rise to computationally expensive problems.

5.4 Limited Relaxation of Constraints

Often, it may not be possible to obtain the exact set of schedules of a particular specification K.
One way around this problem is a scheduler for the supremal controllable sublanguage KT which
may adversely impact the efficiency of the system by prohibiting many legal schedules. As an
alternative, we may consider a larger class of schedules that not only includes all legal schedules,
but also includes some illegal schedules. In our context, this would correspond to a relaxation of
the constraints, and constitute superlanguages in terms of set inclusion. Clearly, one would need
to restrict the relaxation while allowing controllability.

To this end, we use a complementary operation to the supremal controllable sublanguage opera-
tion. The infimal prefix-closed and controllable superlanguage of K, K!,is the unique controllable
language which allows the fewest illegal schedules. Since the prefix-closed regular languages are
closed under intersection, K1 exists in general, and there is an efficient algorithm which can com-
pute K!. Interestingly, the class of prefix-closed controllable and observable languages is closed
under intersection. Therefore, K1 exists in general, and can be computed efficiently [CDFVS8S].

6 Conclusions

We have addressed the issues in scheduling autonomous tasks in a workflow environment. We
provided a framework adapted from the well-understood domain of discrete event control systems
theory. We are able to account for autonomous executions that might occur in integrated workflow
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environments by allowing for the possibility of some task actions being uncontrollable or unob-
servable to the workflow management system. Furthermore, we have facilitated the imposition of
application-specific intertask dependencies.

Our approach is based on discrete event automata, and it provides practical mechanisms for
specifying dependencies among the tasks. Also, we addressed some of the scheduling issues that arise
in distributed workflow systems. We are able to reason about schedulability given the dependencies,
and to realize the requisite schedulers. With regard to efficiency, in the most relevant cases, we
provide the provably best possible schedulers that use the degree of concurrency as a figure of merit.

There are several issues for our approach that need to be resolved. These include failure re-
covery, handling computational intractability problems that are often unavoidable with any similar
approach, implementation techniques, etc. Several simple toolkits exist for the specification and
manipulation of discrete event systems control, and we expect to use them in conjunction with our
approach to assist in the effective development of workflow management systems.

Acknowledgments: We gratefully acknowledge the discussions we had with the several individu-
als. Most notably, Umesh Dayal, C. Mohan, Amit Sheth, and Dimitrios Georgakopolous explained
to us some of the issues involved in workflow systems. Also, Stephane Lafortune and Raja Sengupta
clarified the concepts in the supervisory control of discrete event systems.
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