Characterizing Multicast Orderings
using
Concurrency Control Theory

P.A. Jensen N.R. Soparkar A.G. Mathur

Electrical Engineering & Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122 USA

email:{pjensen,soparkar,mathur } @eecs.umich.edu

Abstract

Coordinating distributed executions is achieved by two widely used approaches: process groups
and transactions. Typically, the two represent a trade-off in terms of the degrees of consistency
and performance. By applying transaction concurrency control techniques to characterize and
design process group multicast orderings, we aim to provide aspects of both ends of the trade-
off. In particular, we propose a framework in which each message multicast is regarded as a
transaction. Appropriate message ordering protocols are devised and shown to be correct using
a variant of concurrency control theory. Also, we are able to incorporate certain aspects of
application semantics for which existing process group approaches are inadequate. Finally, our
framework provides a means to characterize the performance of orderings to allow a comparison
of different ordering protocols.

1 Introduction

Distributed applications typically require that the largely autonomous executions at the separate
sites be coordinated with one another in some way. For this purpose, there are two widely used
approaches: the process group model [6, 4] and the transaction model [1]. The process group model
is characterized by modeling the distributed system as a collection of processes that communicate
by sending (multicasting) messages. Techniques are provided for ordering concurrent messages
as well as ensuring atomicity of message delivery in the presence of process and link failures, and
changes in group membership. The transaction model is characterized by operations being grouped
into units called transactions, and techniques are provided for ordering concurrent transactions and
ensuring their atomicity. In both models there is a need to order concurrent events; in the case of
process groups it is the message multicasts that need to be ordered, while in the case of transactions
it is the concurrently executing transactions that need to be ordered. Furthermore, in both models
there is a need to ensure atomicity of these concurrent events in the presence of failures.

Some applications are better coordinated by group multicast techniques whereas others are bet-
ter suited to transactions (e.g., see [2, 5]). Generally, the multicast approach is more efficient and
provides adequate consistency criteria for some applications, and transactional systems are better
suited to cases where a high degree of consistency criteria are needed. However, there are numer-
ous other distributed applications which could benefit from a good meld of the performance and
consistency criteria (e.g., see [2, 5]). To this end, more efficient multicast techniques based on

applications semantics and advanced transaction models have been proposed. In this paper, we
examine the former approach with respect to message ordering, and to do so, we use techniques
prevalent in the latter.

We develop a framework to unify techniques for ordering concurrent message delivery with the
theory for ordering transactions using concurrency control. Our framework is based on a novel
adaptation of database concurrency control theory to message multicasts. Each message multicast
is viewed as a transaction. The message delivery module at each site delivers the message multicasts
to the application after enforcing the appropriate message ordering in a manner similar to a database
scheduler ordering operations for concurrent transactions.

Essentially, our framework provides a better understanding of the manner in which consistency
requirements for distributed applications are maintained. Since it is difficult to state consistency
requirements for different applications explicitly (as is the case in transaction systems), we begin
with an acceptable, sequential message ordering which is regarded as being correct by definition.
Thereafter, based on the manner in which certain events can commute in a distributed history, we
exhibit the correctness of other concurrent, non-sequential histories. The commutativity of events
is to be derived from application semantics, and is linked to non-conflicting actions in transaction
concurrency control theory. Note that our approach primarily helps in ratifying larger classes of
message orderings as being correct, thereby increasing the potential for improved performance.

We consider variations of standard message orderings to exhibit our approach in incorporating
(hitherto difficult [5, 12]) application semantics. We describe protocols to effect these orderings,
and using the theoretical development of our approach, we explain how they meet the required
correctness criteria. Furthermore, we consider a qualitative approach based on a characterization
of delivery delay to measure the performance for such multicast orderings. The development of our
approach closely parallels the theory of database transaction concurrency control, and it becomes
more apparent that the similarity to message multicast orderings is more than coincidental.

The remainder of our paper is organized as follows. In Section 2 we describe related work, and
follow-up in Section 3 with the rationale for applying concurrency control to message multicasts. We
present our general framework for capturing message ordering, and we explain how it is applied for
several orderings in Section 4. We demonstrate how to handle the correctness issues for multicasts in
section 5. In Section 6 we examine protocols for effecting various multicast, and discuss qualitative
performance issues in Section 7. Finally, we present our conclusions in Section 8.

2 Related Work

Cheriton and Skeen [5] discuss the kinds of ordering constraints that are appropriate for a variety
of distributed application classes. They argue for using semantic information in specifying these
various ordering. Our framework is adequate for a wide range of ordering constraints, and also
allows one to use certain application-specific semantics in specifying these constraints. Other as-
pects of orderings such as false causality and hidden channels [5, 2] can also be captured within our
framework. Essentially both of these anomalies can be alleviated by defining appropriate conflict
relations.

Schmuck [13] analyzed message ordering protocols, and also used the notion of conflicts between
events. However their approach is different in that it involves finding an appropriate linearization
operator, which maps partially ordered sets of events to totally ordered histories. Thereafter,
it becomes simple to prove the correctness of the resulting histories. In our approach, message
multicasts are viewed as transactions, and the correctness of the orderings are shown using an

adaptation of serializability theory from database concurrency control. Linearization is a very
specific approach of concurrency control theory.

Work on managing the consistency of replicas in a distributed environment is also related to
our work. Many replication schemes are based on the state-machine approach of Schneider [14],
which can be implemented using totally ordered multicasts. Replication schemes based on weaker
message orderings have been proposed, (e.g., see Birman and Joseph [3, 4], Ladin et al [7], Mishra
et al [9]). Such weaker orderings can be represented within our framework.

3 Rationale for Concurrency Theory

In order to reason about consistency or correctness requirements of distributed applications, it
is generally the case that application semantics must be understood rigorously. However, these
requirements are difficult to state explicitly, especially if they are to be used to order message
multicasts. Below, we explain our approach to handle this problem, delineate the overall rationale
for our approach, and provide some preliminary definitions.

3.1 Handling Consistency Issues

First, we assume that a set of multicast messages, if effected sequentially, will represent a consistent
sequence of state changes in the distributed application environment. That is, we make the as-
sumption that each completed multicast represents a transition of the distributed system from one
consistent state to another. Thereby, we avoid the problem of dealing explicitly with application
state consistency requirements — at least with regard to message multicasts.

Second, we identify certain “conflict” relations between the multicast primitives. These relations
indicate which events are disallowed from being freely re-ordered with respect to one another (in
order to generate interleaved, concurrent executions among the messages). Intuitively, two events
conflict if the order of their occurrence is significant with respect to consistency considerations.
For instance, for FIFO ordered message multicasts (see definition in Section 4.1), two receiving
events between messages at a given site may be regarded as conflicting if the corresponding send
events occur at the same site (whereas they would be non-conflicting otherwise). Note that these
conflict relations are either drawn from particular message orderings (e.g., FIFO and Causal), or
more generally, from the application semantics.

Third, we regard those histories of events (with respect to the multicast message primitives) in
the distributed system that arise as a consequence of commuting (with every site) the events that
are non-conflicting. That is, a given concurrent message multicast history may be regarded as being
correct (or preserving consistency) whose events can be re-ordered (without affecting the ordering
of conflicting events) to result in a serial history. In effect, we are using concurrency control theory.

Our development follows concurrency control theory closely (e.g., see [1]). In particular, each
message is treated as a transaction, the global history is treated as a distributed schedule, and
techniques similar to serializability theory are applied in our approach. Below we describe send
and the delivery modules at the constituent processes that function as a distributed scheduler to
order the message “transactions.”

3.2 Basic Definitions

We start with a few preliminary descriptions. Our model for a distributed computing system
assumes that there are no failures — although, the processes in the system are assumed to execute

gsend(ins(x))

W
QWN

gsend(upd(y)) gsend(scroll)

Figure 1: Example illustrating the gsend events in a global history

asynchronously, and the physical messages may be delayed or re-ordered.

The set of processes in the system is denoted by P = {Py, Ps,....}, and the execution of a process
is modeled as a sequence of events. An event may be any one of a global send, receive, or a local
event. A global send event, gsend, results in a physical message being sent (i.e., multicast) to all
the other processes. A receive event, rcv, is executed by a process to receive an incoming physical
message. A local event is executed by a process locally, and it does not involve the other processes.
A global history H is the “happened-before relation” [8] on the process events which we denote with
the symbol —

Consider a groupware application that allows for sharing of documents. The document being
edited is replicated at each user site. At each site the document is displayed in a window, and since
the interface is to be kept identical across the sites (to allow synchronous collaboration), the window
is also, in a sense, replicated. For ease of exposition, let the document be a set of objects z, ¥, z, etc.,
with three operations permitted: insert, update, and delete. Assume that there is one operation
permitted on the window: the scroll. As shown in Figure 1, consider three processes Py, Py, and P5
participating in a collaborative session. Process P, performs a gsend(ins(z)) event which results
in a message containing the operation ins(z) being multicast to the other processes. The message
is then received, delivered, and the associated operation is executed at each of the processes. The
other gsend events result in a similar sequence of events. The local histories correspond to the
horizontal lines together with the constituent events, and the global history corresponds to the
entire diagram.

We use the transaction-oriented concept of conflicts among events to capture the semantic in-
formation about orderings of application operations. Intuitively, two events conflict if the order of
their execution is important. Two events can commute in terms of their execution if they do not
conflict. For example, in the groupware application considered above, the pairwise conflict relations
are as follows. Two inserts, two updates, two deletes, an insert and an update, an insert and a
delete, and an update and a delete, conflict with each other if they apply to the same object. Two
scroll operations conflict with each other, but not with the update, insert or delete operations. In
Figure 1, ins(z) and del(z), and the two upd(y) operations conflict with each other, but the ins(z)
and upd(y), and del(z) and upd(y)) do not. Also, the scroll operation does not conflict with any
of the other operations. In consequence, the corresponding message events are mandated as either

Output Schedule - M essages delivered

Delivery Module

Input Schedule - M essages r eceived

Figure 2: The Delivery Module

conflicting or non-conflicting.

As messages from various processes in the system are received at a process, the messages are
delivered to the applications such that the execution of conflicting operations results in consistent
states. In order to ensure this, it may be necessary to delay some messages until certain other
messages have been delivered. Such decisions are taken by a local delivery module at each process
as shown in Figure 2. The input to a delivery module is the sequence of messages as received, and
the output of the delivery module is in an appropriate order.

4 Conflict Relations for Message Events

In a similar manner in which transactions use a conflict relation to capture commutativity of
operations, we are using a conflict relation on messages events to define how these events are
allowed to commute. These conflict relations, along with the concept of conflict equivalence, can
be used to define a class of histories. For our purposes, this class consists of all the permutations
of a given class (in this case, a serial history) achieved by commuting message events which do not
conflict. These concepts are described further in Section 5.

The purpose for this framework is to provide a mechanism to reason about classes of message
orderings. The properties for FIFO, Causal, Total are well known already, however, we wish
to consider other orderings as well. We discuss the framework in the remainder of this section as
follows. First, we present the conflict relations that capture the incidental orderings, FIFO, Causal,
Total. Then, we introduce new classes of orderings and show the conflict relations to capture these
orderings. Finally, we explain further concepts of the framework (i.e., serial histories, conflict
equivalence, and serializability graphs) which we use to reason about classes of message orderings.

4.1 Incidental Orderings

We use the term incidental to refer to classes of message orderings whose conflict relations only rely
upon incidents of communication among the processes (see [5]) , and their relationships with respect
to the happened-before relation. These are distinguished from the classes of orderings we discuss
following which use semantic information where the conflict relations are based on information
which the messages themselves contain. We consider three well-known incidental orderings here,
and for each we present a predicate (commonly found in the literature) which defines the ordering

class, and the conflict relationships which will subsequently be shown to define the same class.
o FIFO Order: Messages are delivered in sender-based FIFO order,

gsend;(m) — gsend;(m') = rcv,(m,1) — rev(m’,1)

A conflict relation on messages that captures FIFO delivery is:

1. revj(m, i) conflicts with rev;(m/, 7).

2. gsend;(m) conflicts with gsend;(m’).
o Causal Order: Messages are delivered in causal order,
gsend;(m) — gsend;(m') = rcv,(m,1) — rev.(m’, 5)

Note that if ¢ = j, then we have FIFO ordering; therefore, causal delivery implies FIFO
delivery.

The conflict relation on messages that captures causal delivery is:

1. rev.(m, 1) conflicts with rev,.(m/, 7) iff gsend;(m) — gsend;(m') or gsend;(m') — gsend;(m).
2. gsend;(m) conflicts with gsend;(m') iff gsend;(m) — gsend;(m’) or gsend;(m') —
gsend;(m).

o Total Order: The total ordering of messages ensures that messages are delivered in the same
order at all processes,

reve.(m, i) — rev(m', j) = revg(m, 1) — revg(m’, §)

The conflict relation on messages that captures total delivery is:

1. rev.(m, 1) conflicts with rev,.(m/, 5)

4.2 Semantic Incidental Orderings

We describe three classes of multicast orderings, semantic FIFO, semantic causal, and semantic
total, that we obtain by augmenting the orderings FIFFO, causal, and total respectively with semantic
information. We augment these incidental orderings with application-level semantic information by
taking into account the constituents of each message by utilizing a conflict relation derived from the
contents of the messages. This results in the classes of orderings that we term semantic incidental
orderings.

The conflict relations are the same in each case as the associated incidental ordering except for an
addition of a semantic condition. This addition is a conflict relation on messages, as opposed to the
conflict relation on the incidents of messages, which could represent, for example, the commutativity
of the operations contained in the messages. In the following we use (type(m),type(m’)) € Con
to represent this conflict relation, where type is simply a function which is some indicator of the
contents of the message, and Con is the conflict relation on the types of messages.

The relation C'on and function type are unspecified and in general they derive from application
semantics. As examples of this, we describe two situations where the semantics lead to different
relations. In the first example we consider application data values carried by particular message,

and in the second we consider particular application operations associated with messages. Note also
that it may be desirable to use different protocols for different C'on relations and type functions.
As is evident below, there are protocols which work for the first example, yet do not work for the
second example.

For data, consider a situation where each message carries an update operation for only one
particular data item X,Y,Z (each data item is replicated across all sites). Furthermore, assume
that we are not concerned with the order of operations among the different data items (e.g., updates
of X are allowed to commute with updates for Y'). Also, in order to preserve consistency, we require
that updates for a particular data item are executed in the same order at each site. In this situation
we could use semantic total ordering where the type function simply returns a value indicating what
data item the message is carrying, and the relation C'on is defined such that (typel,type2) € Con
iff typel = type2.

For operations, consider an application having one data item X (replicated at all sites) and
three operations increment, decrement, and update. In this case, it may be acceptable to al-
low increment and decrement to commute, but update should not commute with increment or
decrement. Assume that each message carries only one operation. Then, as for the previous exam-
ple, we could use semantic total ordering in this situation to preserve the consistency of X among
the sites. In this case type simply returns ¢, d, or u to indicate that a message contains increment,
decrement, update respectively, and Con = (u,u), (u,1),(u,d).

o Semantic FIFO Order:

The semantic FIFO ordering ensures that messages that are sent in FIFO order and which
conflict with each other, are delivered in FIFO order:

(gsend,(m) — gsend,(m’)) A ((type(m), type(m’)) € Con) =
revg(m, p) — rcvq(m’,p)
The conflict relation for semantic FIFO is:

1. revi(m, 7) conflicts with rev;(m/, 5) iff (type(m),type(m’)) € Con.

2. gsend;(m) conflicts with gsend;(m') iff (type(m),type(m’)) € Con.
For example, in the scenario illustrated in Figure 1, the ins(y) and del(z) operations issued
by process P, are sent FIFO, but they need not be delivered in FIFO order since the two

operations do not conflict with each other. The assumption here is that the messages invoke
the corresponding operations.

o Semantic Causal Order:

The semantic causal ordering ensures that operations that are sent in causal order and which
conflict with each other, are delivered in in causal order:

(gsend;(m) — gsend;(m')) A ((type(m),type(m’)) € Con) =
revg(m, 1) — revp(m’, j)

The conflict relation on messages that captures causal delivery is:

1. revi(m,) conflicts with rev,(m/, k) iff (type(m),type(m’)) € Con and (gsend;(m) —
gsendi(m') or gsendy(m') — gsend;(m)).
) iff (

2. gsend;(m) conflicts with gsend;(m’) iff (type(m),type(m’)) € Con and (gsend;(m) —
gsend;(m') or gsend;(m') — gsend;(m)).

For example, in Figure 1, the operation ins(z) causally precedes del(z), and since the two
operations conflict with each other, they need to be delivered in the same causal order (i.e.,
ins(z) before del(z)) at each process. On the other hand, the operation del(z) causally
precedes scroll, but since the two operations do not conflict with each other, they can be
delivered in either order at the processes.

o Semantic Total Order:

The semantic total ordering ensures that operations that conflict with each other are delivered
in the same order at all processes:

(revi(m, 3) — revi(m’ k) A ((type(m), type(m')) € Con) =
rev.(m, j) — rev.(m', k)
The conflict relation on messages that captures total delivery is:
1. revi(m,7) conflicts with rev,(m/, k) iff (type(m),type(m’)) € Con.

For example, in the scenario illustrated in Figure 1, the two update operations performed
concurrently by process P, and P5; need to be ordered identically at all processes since they
conflict with each other, but these need not be ordered identically with respect to the other
operations (such as ins(z), del(z), scroll()).

Note that the incidental orderings are special cases of their corresponding semantic incidental
orderings. In general, even the semantic incidental orderings can be regarded as being special cases
of the entire class of explicit consistency orderings which, without being defined, may be regarded
as all those orderings which maintain the consistency of the applications being considered.

5 Correctness of the Orderings

Now, we develop our framework further in order to prove properties related to the multicast order-
ing classes. This will be useful first, to show equivalence between conflict relations for the incidental
orderings and the well-known definitions, and subsequently for discussions on correctness of pro-
tocols (Section 6) and performance (Section 7). For simplicity of our discussion, we regard each
global history to be complete in that for every message in the history, all the events of each message
are included in the history.

A global history is said to be a serial history, with respect to the gsend and rcv events, if each
individual message is contained within an interval of time as measured by a physical global clock,
and distinct messages are contained in disjoint time intervals. This is illustrated for two messages
m; and m; in Figure 3; a global clock tick is assumed to occur between the dotted ovals.

Given a set of conflict relations M, two histories H; and Hy are said to be conflict equivalent,
with respect to M, if they contain the same set of events and any two conflicting events o and p

PR P
N s N

gend) (v T

Figure 3: Viewing a message multicast as a transaction

are ordered the same way in Hy and Hj (i.e., 0 — pin Hy iff o — pin H;). We use the concept
of equivalence to define more precisely the class of message orderings corresponding to a given set
of conflict relations, and to prove a theorem which is useful for establishing correctness properties
for orderings. An allowable global history H is one where, for a set of conflict relations M, H is is
conflict equivalent with respect to M, to a serial history. Given that a serial history is “correct”,
any allowable global history must be conflict equivalent to a serial global history. For a given
history H, we will find it useful to define a precedence graph, PG(H), which has the messages as
its nodes, and an edge m P2 m', iff m has an event that happened before, and conflicts with, an
event of m’.

Equivalence Theorem For a given set of conflict relations M, a global history H is conflict
equivalent wrt M to a serial history iff PG(H) is acyclic.

Proof Sketch: Similar to concurrency control theory (e.g., see [11, 1]).

(=) Given H is conflict equivalent to a serial history H,. If PG(H) is cyclic, then there exists
two messages m;, m; € PG(H) such that m; pg” m; 2 m,. Having m; rg* m; implies m; happened
before m; in H;. Having m; ® m; implies m; happened before m; in H. This is contradictory,
therefore PG(H) must be acyclic.

(<) Given PG(H) is acyclic. Let my, mg,...m,, represent the messages present in H. There is a
topological sort for PG(H), m;,, m;,,...m;, such that for any two messages where m; % my is in
PG(H), m; appears before my, in the sort. Let H, be a serial history where H, = m;, m;,...m;,.
Take any two conflicting events o; € m;,0r € m; where m; % my in PG(H). Clearly, we must
have 0; — oy in both H and H;. Therefore H is conflict equivalent to serial history H. a

Corollary 1. For a global history H and a set of conflict relations M, H is in the class of orderings
allowed by M iff PG(H) is acyclic.

Proof Sketch: Follows directly from Equivalence Theorem and definitions. a

As an illustration for exhibiting correctness, we demonstrate for the case of FIFO, that the class
of message orderings defined by the conflict relations is equivalent to the class of orderings allowed

by the known definition. The basic idea is to show, for any history H, the acyclicity of PG(H)
implies, and is implied by, the generally accepted multicast order definitions. First, let PG(H) be
acyclic, and consider two send events such that gsend;(m) — gsend;(m’). Any two events recv;(m, 1)
and rev;(m’,¢) conflict, and rev;(m,) — rev;(m’, i) must hold for an acyclic PG(H). Therefore,
the FIFO definition holds: gsend;(m) — gsend;(m') = rcv;(m, 1) — rcv;j(m', 7). For the converse,
assume the FIFO ordering definition holds for H. Now, if PG(H) is cyclic, let m; pg” my 22 mq be
a cycle in PG(H). Using the definition of FIFO ordering, it is seen that an edge m 2 m/ in PG(H)
implies gsend(m) — gsend(m’) in H. That would require gsend(m,) — gsend(mz) — gsend(m,),
which is impossible since — is a partial order. Therefore, PG(H) must be acyclic.

6 Multicast Ordering Protocols

We now discuss protocols for the message ordering classes described in the previous section. To show
that a particular protocol ensures the corresponding ordering of messages, we use our framework
as follows. We prove that a global history that evolves under the protocol will result in an acyclic
PG with respect to the corresponding message order class, thereby implying the correctness of the
protocol (by Corollary 1). Note that we assume that each site knows the conflict relations.
Protocols which ensure FIFO, Causal, and Total order message delivery are well known, and as
an illustration, we use our framework to prove the correctness of a FIFFO protocol. A simple protocol
which ensures FIFO delivery is as follows. The sender timestamps each message using a sequence
number, and then increments the sequence number. The recipients of messages deliver only in
order of the sequence numbers. In order to show that this protocol results in an acyclic PGrrro,
assume to the contrary, i.e., assume that there is a cycle in PGrrro. An edge from message
node m to m' in PGprro implies that gsend(m) — gsend(m'), by the conflict definitions and

the fact that the protocol timestamps ensure that for any two messages, rcv;(m) — revi(m') &
%

gsend(m) — gsend(m'). The existence of a cycle in PGrrro, m 2" my 2 my implies that
gsend(my) — gsend(mgy) — gsend(my), which is impossible considering that the happened-before
relation is a partial order. Therefore, the protocol ensures that PGrrro is acyclic.

Now, we turn our attention to semantic incidental orderings. Consider first the orderings per-
mitted with consideration given to affected data items. For each of the timestamp based protocols
for FIFO, Causal, and Total orderings, the timestamps can be augmented with the identity for the
data item in question. Moreover, for every data item, a different timestamp counter is maintained.
With this, we can ensure correct orderings for the case where each message pertains to a particular
data item. FEvents for messages which pertain to the same data item are not allowed to commute,
whereas events pertaining to different data items may commute. Qur framework facilitates proving
that the protocols would work correctly in the manner shown above for the case of FIFO ordering.
In this paper, we do not provide protocols for the cases where a message may pertain to more than
a single data item. Note that while the protocols for the simple case of a single data item per
message is similar to maintaining separate message groups, it is not easy to characterize the more
complex cases using other traditional techniques.

Now consider the cases for operation based semantic incidental orderings. We provide protocols
for all three semantic incidental orderings for a subset of the conflict relations. In particular, we
consider the case where the conflict relation C'on among the messages is an equivalence relation, and
forms equivalence classes. That is, receive events pertaining to messages within an equivalence class
are not allowed to commute, whereas other receive events may do so. The protocols are essentially

10

the same as for the case of separate data items described above. In fact, the protocols for the data
item based conflict relations may be seen to be special cases of the corresponding operation based
ones. Again, except as an illustrative protocol below, in this paper we do not provide protocols
for more complex cases of conflict relations (e.g., those involving mixed data and operation based
conflicts etc.).

Although we do not discuss more complex protocols in this paper, we provide an example of a
generic semantic causal ordering multicast protocol, and argue for its correctness. The key idea
of the semantic causal ordering protocol is to make the causal ordering protocol cognizant of the
conflict relations. Now, causal delivery can be effected, in principle, by piggy-backing on each
message the causal history of that message [15]. To ensure semantic causal ordering, the delivery
of a message is delayed only if a message in its causal history has not been delivered (i.e., causal
ordering) and the receive events at that site for the two messages conflict. The argument to show
that this protocol results in an acyclic PG is similar to the case for FIFO: Assume to the contrary
there is a cycle my Py my 22 my where gsend;(mq) — gsend;(my) and revg(my, i) — revp(me, J).
The protocol would not allow receives processed in this order, and rcvg(mq,7) would be delayed
until after revg(me, j). Therefore, the protocol would ensure an acyclic PG.

7 Performance Characterization

It is difficult to gauge the performance benefits of different ordering protocols quantitatively as
they are affected by the particular platform, physical communication media, network topology etc..
Instead, we propose here a qualitative means to characterizing the performance of the ordering
protocols. This allows comparison of the protocols in a manner that is application and operating
environment independent. The characterization is based on two metrics: the number of message
phases required to achieve the necessary ordering, and the degree of delay encountered by the
message at the delivery modules. FFurthermore, we extend our reasoning to cases where reliability
issues are considered within our performance characterization.

7.1 Message Phases

The protocols described above involve message phases to procure the necessary control information
in order to send a message, and also, to send the message itself. Both FIFO and causal message
delivery can be accomplished using a single phase. A message, along with a “timestamp” is sent to
one or more destinations. The delivery module at the destination can look at the timestamp and
decide whether to deliver the message or whether it should be delayed.

Total ordering, on the other hand, requires two phases of communication. The first phase involves
requesting a “timestamp” which fixes the position of that message in the total order. The second
phase involves distributing the message along with the timestamp obtained to each process. The
delivery modules at each process can then look at the timestamp and deliver the message in the
right order. It is possible to show, using knowledge-theoretic arguments, in a manner similar to
[10], that these number of message phases is minimal and it is not possible to do any better.

7.2 Delivery Delay

Consider the delivery module as a scheduler which takes a message sequence as input and produces
an output message sequence such that the specified tests indicated in our protocols hold for each
message that is output. We refer to the projection of the global history at each local site as

11

Semantic Incidental
Explicit Consistency

|
|
I ncidental |
l
|

Figure 4: A general hierarchy of event ordering classes

the schedule at the site. The scheduler executes in an online manner in that it examines the next
arriving message and delivers it if permissible. Also, a delivery module should impose the minimum
delay on an arriving sequence, which is characterized by requiring that the arriving sequence be
altered minimally: As in [11], for message sequences z, and y, of length n each, let the metric
d(zy,yn) be defined as n — ¢(z,,, y,), where ¢(z,,y,) is the length of the longest common prefix of
x, and y,. Let S4 be a scheduler for an acceptable class A of sequences delivered, and let I be the
domain of input sequences. A scheduler for A may be regarded as a function, S4 : I — A, such
that d(z,S54(z)) = min{d(z,y):y € A}. That is, 54 leaves sequences A € I unchanged, and the
set A may be regarded as those schedules that are minimally delayed by 54. Our characterization
could use a more refined metric for schedules not in A, but our approach suffices for the coarse
qualitative characterization we are providing here.

In principle, our characterization provides an indication of the availability of delivery schedulers
as well (e.g., as in [11]). For a class A of message sequences, A has an efficient scheduler S, iff
the prefixes of the schedules in A can be recognized in polynomial time in the number of input
messages. For, if a new message m arrives after a sequence s of messages has been output, an
efficient check whether the sequence s concatenated with m is among the prefixes of A indicates
whether m may be output without delay. Conversely, submitting a candidate for a prefix of the
sequences in A to a scheduler 54 would produce the same sequence as an output, and that may be
checked efficiently, if the candidate sequence is indeed a prefix for the sequences in A.

Note that using our characterization, the larger the class of schedules A not delayed, the “better”
is the delivery scheduler. For example, a delivery scheduler for causal orderings would be better than
that for FIFO orderings. Similarly, the semantic incidental delivery schedulers would be superior
to the corresponding incidental ones. QObviously, the explicit consistency approaches would be
better than the others — assuming that it is possible to obtain the requisite delivery schedulers.
Figures 4 and 5 represent the containment relationships between the classes (where the explicit
consistency class represents the most liberal schedules).

7.3 Reliability Issues

An interesting aspect of these schedulers ties-in the reliability of multicasts, the delivery delays, and
the feasibility of a protocol for a particular class of schedules. Consider a distributed application
designed to withstand situations where a requested multicast is not effected, and the multicast
attempt is abandoned or “aborted”. If it were permissible to abort any message for which all the
receive events could not be processed, a protocol can be derived (in principle) for any given class
of orderings by using precedence graph testing (much the same as for transactions — see [1]). The

12

Semantic FIFO

Semantic Causal

Semantic Total

Figure 5: Relation of the three operation ordering classes to each other

idea is for delivery modules to maintain a global PG, and for each receive event, check to see
whether a cycle is generated in the graph. If the graph remains acyclic, the event is executed (i.e.,
the message is delivered). If a cycle does result, to maintain acyclicity, aborting a message may be
necessary. Of course, this is only an illustrative example — a delivery module of this nature may
be highly inefficient.

Note that the concept of “atomicity” in transaction systems relates to reliability in message
multicasts: a multicast system ensures reliability only if all the receive events can be executed,
and thereby, all the recipients have the message delivered to them. The availability of aborts
in transaction systems allows the scheduler to operate “optimistically” in that all schedules that
could possibly be extended without loss of consistency are permitted; and if something goes wrong,
appropriate transactions are aborted. This facilitates a larger class of schedules — much in the
same way that our approach in the context of multicasts would allow.

8 Conclusions

There are two widely used models for distributed computing: the process group model and the
transaction model. In both models, there is a need to order concurrent events. In the process
group model concurrent message multicasts need to be ordered, while in the transaction model,
concurrently executing transactions need to be ordered. We presented a framework that applies
the techniques from transaction concurrency control to ordering concurrent messages in the process
group model Our framework regards each message multicast as a transaction. The message delivery
module at each site delivers the message multicasts to the application after enforcing the appro-
priate message ordering constraints in a manner similar to a concurrency control scheduler. Our
framework provides easier incorporation of application semantics within the process group model,
and a qualitative characterization of the performance of different orderings.

References

[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Conirol and Recovery in Database

Systems. Addison-Wesley, Reading, MA, 1987.

[2] K. Birman. A Response to Cheriton and Skeen’s Criticism of Causal and Totally Ordered Communica-
tion. ACM Operating System Review, 28(1):11-21, Jan. 1994.

13

[3]

[4]

[5]

[13]
[14]

[15]

K. P. Birman and T. A. Joseph. Low-Cost Management of Replicated Data in Fault-Tolerant Distributed
Systems. ACM Trans. on Computer Systems, 4(1):54-70, Feb. 1986.

K. P. Birman and T. A. Joseph. Reliable Communication in the Presence of Failures. ACM Trans. on
Computer Systems, 5(1):47-76, Feb. 1987.

D. R. Cheriton and D. Skeen. Understanding the Limitations of Causally and Totally Ordered Com-
munication. In Proc. of the 14th ACM Symp. on Operating Systems Principles, pages 44-57, Asheville,
NC, Dec. 1993.

D. R. Cheriton and W. Zwaenepoel. Distributed Process Groups in the V Kernel. ACM Trans. on
Computer Systems, 3(2):77-107, May 1985.

R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing High Availability Using Lazy Replication.
ACM Trans. on Computer Systems, 10(4):360-391, Nov. 1992.

L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Comm. of the ACM,
21(7):558-565, July 1978.

S. Mishra, L. L. Peterson, and R. D. Schlichting. Implementing Fault-Tolerant Replicated Objects Using
Psync. In Proc. of IEEE 8th. Symp. on Reliable Distributed Systems, pages 42-52, Seattle, WA, Oct.
1989.

P. Panangaden and K. Taylor. Concurrent common knowledge: defining agreement for asynchronous
systems. Distributed Computing, 6(2):73-94, 1992.

C. Papadimitriou. Serializability of Concurrent Database Updates. Journal of the ACM, 26(4):631-653,
October 1979.

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-To-End Arguments in System Design. ACM Trans. on
Computer Systems, 2(4):277-288, Nov. 1984.

F. Schmuck. The Use of Efficient Broadcast Protocols in Asynchronous Distributed Systems. Technical
Report TR CS88-928 (Ph.D. Thesis), Computer Science Dept., Cornell University, Aug. 1988.

F. B. Schneider. Implementing Fault-Tolerant Services using the State-Machine Approach. ACM Com-
puting Surveys, 22, Dec. 1990.

R. Schwarz and F. Mattern. Detecting causal relationships in distributed computations: in search of
the holy grail. Distributed Computing, 7:149-174, 1994.

14

