
Schema Version Removal: Optimizing Transparent

Schema Evolution Systems �

Viviane M. Crestana, Amy J. Lee Elke A. Rundensteiner y

Dept. of Elect. Eng. and Computer Science Computer Science Depart ment

University of Michigan Worcester Polytechnic Institute

1301 Beal Avenue 100 Institute Road

Ann Arbor, MI 48109-2122 Worcester, MA 01609

fviviane,amyleeg@eecs.umich.edu rundenst@cs.wpi.edu

Powerful interoperability-enabling solutions for software application integration must allow applications
to evolve and data requirements to change, while minimizing such changes on other integrated applications.
The transparent schema evolution system (TSE), that we developed at the University of Michigan, accom-
plishes evolution through schema versioning, where a schema version is a dynamic object-oriented view.
When the TSE system receives a view schema change request, the system computes a new view schema that
reects the desired change instead of modifying the old view schema in place, therefore preserving existing
view schemas for old applications. This generation of a potentially large number of schema versions over
time results in an excessive build-up of classes and underlying object instances, not all being necessarily still
in use. Since our view system provides us with materialized views, a degradation of system performance
due to update progagation is expected in a situation where we have no-longer utilized view schemas in the
system. Also, a larger number of view schemas will result in storage overhead costs. In this paper, we
address this problem using consistent schema removal techniques. First, we characterize four potential prob-
lems of schema consistency that could be caused by removal of a single virtual class; and then outline our
solution approach for each of these problems. Second, we demonstrate that view schema removal is sensitive
to the order in which individual classes are processed. Our solution to this problem is based on a formal
model, called the dependency model, of capturing all dependencies between classes as logic clauses and of
manipulating them to make decisions on class deletions and nondeletions while guaranteeing the consistency
of the schema. Third, based on this formal model, we have developed and proven consistent a dependency
graph (DG) representation and an associated set of rules for DG generation, reduction, and transformation.
A �rst preliminary version of the latter has been successfully implemented in our Schema Version Removal
(SVR) tool. Fourth, we present a cost model for evaluating alternative removal patterns on DG. Lastly, we
report our preliminary experimental studies that demonstrate the impact of our schema version removal on
the performance of the TSE system.

KEYWORDS: Transparent Schema Evolution, Object-Oriented Views, Interoperability, Object Databases,
Evolving Software Applications, Performance Evaluation.

�This work was supported in part by the NSF RIA grant #IRI-9309076, NSF NYI grant #IRI 94-57609, and the University
of Michigan Faculty Award Program. We would also like to thank our industrial sponsors, in particular, AT&T, Illustra, IBM,
and Intel. Viviane M. Crestana is also grateful for support for her graduate studies from the Conselho Nacional de Pesquisa
CNPq and from the IBM Toronto, The Center for Advanced Studies.

yWhile this work was done, the author was at the University of Michigan.

1 Introduction

1.1 Motivation

The general goal of this work is to develop powerful interoperability-enabling solutions for the integration of
software applications [12, 13, 17]. These mechanisms must allow applications to evolve and exibly change
their data requirements, while minimizing or even eliminating the impact of such change on other integrated
applications. In this vein, we are developing a Transparent Schema Evolution system called TSE [15, 16],
which simulates schema evolution (SE) using object-oriented views on top of GemStone 1. TSE combines
SE with schema versioning where a schema version is a dynamic (object-oriented) view of the integrated
global schema. When TSE receives a schema change request, the system computes a new view schema with
the desired semantics; while preserving all existing view schemas (and thus old applications). This approach
allows old application programs to continue to run against the schema they were designed for; and thus
achieves interoperability of applications with diverse and even changing requirements.

While the TSE approach o�ers numerous advantages over traditional schema versioning systems, it may
result over its lifetime in an excessive generation and revision of schema versions (view schemas). When a
new view schema is computed it often adds new customized classes necessary for this view (this may cause
the global schema and with it the set of underlying object instance representations to become larger and
larger). In this sense, information is never deleted from the global schema. However, over time, old view
interfaces may become obsolete for various reasons. One reason may be that we have successfully migrated
all application code to a newer view. Another reason may be that a global error correction a�ected all
existing views, and thus caused their replacement.

In this paper, we thus address this problem of excessive buildup of schema versions. The main goal of
this work is the e�ective schema version removal (SVR) of redundant or out-of-use view schemas in TSE -
without impacting existing applications. Removing faulty or non-current view schemas will make it easier
for the application developer to determine which view schema to run against. As our experimental studies
(Section 9) con�rm, performance improvements will be achieved for the propagation of updates from a base
class to its derived classes, given fewer materialized derived classes.

1.2 Problem Description

Removal of such view schemas { even if they are no longer in use { could have potential side e�ects on
other view schemas and thus would not be transparent to the users. One di�culty here is caused by the
fact that we allow de�nition of virtual classes based on other existing, possibly virtual, classes, and thus
removal of one virtual class could cause other virtual classes to become unde�ned. Further, all view classes
(whether base or virtual) from di�erent view schemas are integrated together into a uni�ed global schema [18].
This o�ers advantages, such as that virtual classes in the TSE system participate in the actual inheritance
hierarchy and thus behave just like base classes. In fact, virtual classes in TSE can independently de�ne
additional attributes and methods. However, it now raises the issue that virtual classes may serve as source of
inheritance for other classes, and thus their removal cannot be accomplished without �rst resolving possible
side-e�ects caused this removal.

In traditional SE systems [3, 21], there is no schema version for individual users, but one schema is
shared by all. In such systems, the semantics are to propagate all user-initiated changes to the whole
schema. For example, a delete-class(C) command causes the deletion of properties from all of C's subclasses,
if inherited from C. In many systems, e.g., O2 [21], we often have the additional precondition that the delete
only proceeds if the class C is empty. In SVR, we are instead trying to achieve garbage-collection semantics,
namely, our goal is to optimize the performance of the system without adversely impacting the rest of the
schema, i.e., other applications and users. And, if we decide to proceed with this delete task, then we must
remedy the undesired side-e�ect by, for instance, migrating methods from the to-be-deleted class C to its
subclasses to make them local there, if needed, and rede�ning existing virtual classes derived from this class
C, if any exist. These strategies for preservation have no correspondence in conventional SE systems, while
they are critical for addressing our view removal problem.

Since we want the remaining schema to be una�ected by the schema version removal, the �rst issue that
we have to deal with is consistency of the schema. Also, in our system, we want to delete a set of classes,
and not only undo a virtual class. Conicts arise when trying to remove multiple classes as we demonstrate
in Section 5 and in this paper we develop several strategies for detection of those conicts. Finally, if we

1Gemstone is a trademark of GemStone Systems, Inc.

1

detect a conict between the removal of classes, we need a measure for the quality (cost) of a schema so
that we can decide which is the best class to be removed, i.e., which class if removed will result in the best
schema. Best schema here is used in the sense of allowing for e�cient query or update processing.

1.3 Our Schema Version Removal (SVR) Approach

In this paper, we �rst characterize several potential schema consistency problems that could be caused by
removal of a single virtual class, such as type-e�ect, derivation-dependency, etc. (these were problems we
initially identi�ed in an earlier workshop paper [8]). Then we outline our strategies for solving each of these
problems. Key ideas here include strategies for the rede�nition of virtual classes and for the migration of
properties for preservation. Furthermore, we demonstrate that view schema removal is sensitive to the order
in which classes are processed. Our solution for this multiple class removal problem includes the development
of a formalmodel of capturing all dependencies between class deletions and nondeletions as logic clauses. The
consistency of the resulting schema can then be guaranteed as long as at least one valid variable assignment
exists for all clauses. While a preliminary sketch of the formal model was �rst introduced in an earlier
conference paper [7], this paper we now present the complete formal model, called the Dependency Model.

Based on the Dependency Model, we have developed a dependency graph (DG) representation capturing
these class interdependencies. The graph representation is more suitable for implementation in our SVR tool.
Sets of associated rules for DG generation and transformation that reduce these interdependencies by making
decisions about deletion and non-deletion of classes are presented. Using our dependency model and Boolean
logic, we prove those rules to be consistent. In the process of operating with the DG, our system will also
identify conditions of mutually exclusive removal, namely where removal of one virtual class will prevent
removal of others in the future.

To address the problem that view schema removal is sensitive to the order in which individual classes
are processed, in this paper we now establish a cost model that guides the removal process by selecting
among alternative removal patterns on DG in terms of their associated view maintenance costs. Our schema
removal strategies assure consistency, in the sense that no other class and/or class relationships in the global
schema as well as in all other view schemas are unexpectedly a�ected and that the resulting schema meets
all schema invariants. Based on these concepts, we have implemented a �rst simple prototype of the SVR
tool on top of TSE system [15, 16].

Lastly, in this paper, we also report on experimental studies we have conducted to validate our approach.
Our evaluation supports on the one hand the view removal assumptions underlying our SVR approach, and
on the other hand it also demonstrates the impact of the SVR removal strategies on the performance of the
TSE system.

1.4 Outline for Remainder of the Paper

The remainder of the paper is structured as follows. In Section 2, we present related work, while in Section
3 we give an overview of the underlying TSE and MultiView systems. A discussion on the issues related
to schema consistency when removing a class from the schema, as well as solutions for each one of the
issues is given in Section 4. In Section 5, we consider deletion of not only one, but several classes in the
schema. Solutions for the multiple class removal, namely the dependency model and the dependency graph
approach, are presented in Sections 6 and 7 respectively. A cost model for measuring e�ciency of the schema
is proposed in Section 8, while our performance studies are presented in Section 9. Section 10 summarizes
our contributions and presents our future work.

2 Related Work

Several other approaches towards transparent schema evolution using views have been recently presented
in the literature [4, 5, 10]. However, none have considered the schema removal problem as characterized in
this paper. Like other view systems presented in the literature [19], in the formal model of views described
in [10], the virtual classes are not integrated in the global schema. Therefore, removal of a virtual class in
such a system does not impose any constraints regarding consistency of the global schema, since the view
schema and the global base schema are not integrated. In the approach described in [10], a view schema is
composed of only virtual classes, and therefore, in order to have a base class in a view schema, they provide a
identity virtual class that has the same type and extent as the base class. This approach, while avoiding the

2

integration, and therefore further removal consistency problem, has the serious drawback of duplication of
information. In systems where the virtual classes are integrated in the global schema [2, 17, 20], code-reuse
as well as sharing of data is assured. Our work addresses the removal of such integrated virtual classes.

In systems using conventional versioning rather than object-oriented view mechanisms [1], schema re-
moval is likely to be less of an issue. Typically, complete copies of class versions are created, without being
integrated into one global schema, resulting in a duplication of methods and thus no true interdependencies
such as we have in our case. Similarly, the object instances associated with di�erent schema versions are
typically copies of their source data objects. This duplication of state would allow for the removal of one of
these copies with less or no side-impact { however at the cost of an enormous storage overhead and poten-
tial problems of value inconsistencies between di�erent object versions over time. Some versioning systems
however provide code reuse and sharing of data. In the work by [14], class versions are placed in one global
schema, where versions of a particular class forms a sub-hierachy in the global schema, enabling the sharing
of object instances among di�erent versions. In such an approach, removal of class versions has side-e�ects
on the remaining schema and thus, would have to be done carefully. As far as we know, the issues of removal
have not been considered in the context of [14].

Our work is also related to the issue of schema consistency, e.g., Orion [3] or O2 [21, 9]. We both
must establish what constitutes a consistent schema, and must assure that transformation operations indeed
result in a consistent �nal schema. However, the objectives as well as the strategies of achieving these
goals are rather distinct. Namely, while the purpose of traditional schema evolution systems is to actually
perform the schema evolution operation speci�ed by the user and to propagate it along the class hierarchy,
the SVR system would only perform version cleanup updates assuring that they are non-intrusive and
are not propagated to other classes. The delete-class example discussed in Section 1.1 clearly brings out
these di�erences. Consequently, techniques we introduce in this paper to optimize schema removal, such
as establishing an ordering for class removal processing, have not been developed for conventional schema
evolution.

3 The TSE System

In the TSE system [15, 16], each user 2 de�nes his own customized interface of the shared database im-
plemented as a materialized object-oriented view schema in the underlying MultiView system [12, 17]. All
the schema change requests are made by the developer against the customized view schema to which the
developer has access (Figure 1 (a)). The TSE system computes a new view schema that reects the desired
change (Figure 1 (b)) instead of modifying the old view schema in place. This approach allows old application
programs (program1) to continue to run against the schema they were designed for (VS1).

The TSE system is built on top of the MultiView OO view system [12, 17] { which is one of the �rst fully
implemented object-oriented view systems to provide updatable and incrementally maintained materialized
object-oriented views [12, 13]. MultiView includes the incorporation of virtual classes into the global schema
as �rst-class database citizens, assuring that properties shared among base and virtual classes are de�ned
exactly once in the global schema. This not only assures code-reuse but also allows the values of properties
shared among a base object and all its derived virtual instances to be stored only once.

MultiView supports a full range of virtual classes de�ned by a single object algebra operator, such as
select, hide, union, etc. [17]. MultiView's materialized views [12] allow for fast retrieval of all instances from
TSE, regardless whether the class we are retrieving the instance from is a base or virtual class. This shields
users from the overhead of interoperating via an object repository potentially shared by many other users.
In MultiView, a view schema is composed of a set of view classes (both base or virtual) and relationships
among them. Each view class V in a view schema VS corresponds to a class C (either base or virtual) in the
global schema GS, with C denoted by GS-class(V).

Throughout the paper we will be using the example of the university database depicted in Figure 2
(a). Suppose we have an initial view schema (Figure 2(b)) against which a developer issues two subsequent
schema change operations, namely to delete the nationality property from the Person class and to delete the
gpa property from the Student class. These two schema change requests create the view schemas presented
in Figure 3 (a). In order to generate these view schemas, new virtual classes were created and the global
schema was restructured (Figure 3 (b)). This example shows one of the schema change operators that the
TSE system supports, namely the delete-attribute operator. A complete reference on the schema change
operators supported by the TSE system can be found in [15, 16].

2The user here is a sophisticated user, i.e., a developer, and not an end user.

3

stored data STORED
DATA

User/Application
 Program1

User/Application
 Program2

virtual data1

view schema VS1

SCHEMA

SPECIFY SCHEMA
 CHANGE

global schema GS

stored data
MODIFIED
STORED
DATA

EXTENDED
SCHEMA

User/Application
 Program1

User/Application
 Program2

view schema VS2

virtual data2

virtual data1

view schema VS1

remove

remove

add

add

add

add

SCHEMA CHANGE
is REALIZED BY
VIEW GENERATION

BEFORE: AFTER:

global schema GS

VIEW VS2
IMPLEMENTS
THE REQUESTED
SCHEMA
CHANGE
ON VIEW VS1

(a) (b)

Figure 1: The TSE system approach

Person

name

Teaching
Staff lecture

address
nationality

Student

UnderGrad Grad

gpa

level advisor

stid

Person

name

Grad advisor

address
nationality

Student gpa
stid

(a) Global Schema GS.

Legend

Class Name

<Name>

is−a relationshipproperty

<attr.>

Class

(b)View Schema VS1.

Figure 2: The University Database Example.

4

Teaching
Staff lecture

 View VS3

Requested Schema Change:

delete_attribute gpa from Student

Person

name

Grad advisor

address

Student
stid

 View VS2

Requested Schema Change:

delete_attribute nationality from Person

Person

name

Grad advisor

address

Student gpa
stid

(a) Two View Schemas VS1 and VS2.

Person
nationality

UnderGrad

Student

Gradlevel

name
address

advisor

stid

gpa

Grad’

Student’

Student’’

Grad’’

Person’
 View VS2

 View VS3

 View VS1

(b) Integrated Global Schema GS.

Figure 3: The university database after TSE operations

5

4 Single Class Removal: Problems and Solutions

In this section we �rst describe the problems associated with removing a single class, then outline solution
strategies for these problems based on schema restructuring, and lastly present the class-removal algorithm
that integrates the strategies.

4.1 Constraints for Schema Removal

The purpose of our TSE system is to provide schema evolution in a transparent manner so old schemas are
not a�ected. Following the same idea, we want to achieve a transparent removal of unused schemas. By
that, we mean that all other view schemas (and their associated applications) should be una�ected by the
removal of a given view schema. The invariants of the global schema can be summarized by:

� SI1 There is one class called root in the global schema that is a superclass of all classes in the schema.

� SI2 The IS-A hierarchy is a connected DAG.

� SI3 A class always inherits all properties de�ned in its superclasses, except for the overridden prop-
erties. Consequently, the type of a class is de�ned by its locally de�ned properties and the inherited
properties.

� SI4 By the single-source principle, a given property in the schema graph is de�ned only once in one
class as a local property; and other classes must inherit it from this class.

� SI5 The derivation chain between virtual classes and their source classes is always acyclic.

� SI6 A virtual class is speci�ed as (and thus implements) only one object-algebra operator.

To assure transparent removal, i.e., that other schemas are not a�ected, SVR also needs to guarantee:

� TR1 Every class in the global schema that corresponds to a view class in any view schema should
be maintained in the global schema and should have exactly the same type and extent as before the
removal.

� TR2 For any two classes C and D in a view schema for which there is an IS-A edge from C to D, the
relationship C IS-A D is still valid in the global schema.

By guaranteeing the two conditions stated above, we can guarantee that the view schemas will be
una�ected (for a description of how view schemas are derived from GS see [12, 17]).

4.2 Problems of Class Removal

When removing a view schema, we would like to remove every class that participates in the view schema
from GS. We are referring here to the removal of base or virtual classes from the global schema, since the
view classes by themselves are just proxy objects in the view schema. The �rst concern is however to assure
that no other view schemas will be a�ected. Since di�erent view schemas share classes in the global schema,
we have to make sure that we do not delete those shared classes. Also, when deleting a class we have to
make sure that the resulting global schema is still in a consistent state after the removal, i.e., it still satis�es
all the schema invariants.

The problems can be classi�ed as follows:

� P1. shared-class problem: Classes that are shared by di�erent view schemas still in use should not
be deleted.

� P2. ISA-hierarchy problem: The DAG of the remaining schema should be consistent as well as
the type and extent of all remaining classes should not be a�ected to guarantee invariants SI1 through
SI4.

� P3. derivation-dependency problem : All the derivation dependencies are still valid according to
schema invariants SI5 and SI6.

6

� P4. unde�ned-reference problem: No reference is made to an object or method that belongs to
the class you are deleting.

In the sections that follow, we will be discussing and providing solutions to each of these problems. As
mentioned before, the problem of removing schemas can be reduced down to to the problem of removing a
particular class (base or virtual) from the underlying global schema. Therefore, in the following discussions,
we will be analyzing the removal of a particular class, regardless of which view schema this class used to
participate in.

4.3 Solution to the Shared-Class Problem

Since classes could be shared by di�erent view schemas, we need a way to identify whether a given class is
incorporated in other view schemas. We have identi�ed two alternatives as potential solutions :

� Visit all view schemas in the system to see which view schemas use the class of interest.

� Cache information with each class about its usage in di�erent view schemas.

We avoid the �rst alternative because the number of view schemas can be potentially very large. The
drawback of the second alternative is basically its space requirements and some maintenance costs. Two
ways to encode the information for the second solution are: (1) For each class in the global schema, keep a
backward reference to view schemas that the class participates in; (2) Keep a reference counter with each
class that keeps track of how many view schemas the class participates in. We have selected the second
approach for SVR, since it can save signi�cant space and the detailed information of who uses which class is
not being used by SVR.

4.4 Solution to the ISA-Hierarchy Problem

The ISA-hierarchy problem deals with the invariants SI1 through SI4. When removing a class from the
global schema, we have to make sure none of the other classes' type and extent is changed and that the
global schema is still connected. Each class in the schema must maintain its set of super- and subclasses
(except for the one being deleted) that it had before the deletion to assure the maintenance of its properties
(both inherited or locally de�ned ones). To guarantee that the set of superclasses will be maintained, after
we remove a given class, we have to make sure its subclasses are connected with its superclasses. This is
done by adding an IS-A edge between each direct-subclass and each direct-superclass that are not indirectly
connected through any other class (this is important or else we would violate SI2).

Guaranteeing that the type will be una�ected is more complex (we will refer to this as the type-e�ect
problem). By SI3, the type is de�ned by its local properties and its direct-superclasses' type. Therefore,
when removing a class from the schema we have to check whether the class has some local properties that
may be used to de�ne its subclasses' type. One key observation to help us address the type-e�ect problem is
given next.

Theorem 1 If there exists a class in the global schema that has its type a�ected by the deletion of another
class from the schema, this class is a subclass (not necessarily a direct-subclass) of the one being removed,
and there exists at least one direct-subclass of the class we are deleting that has its type a�ected. Furthermore,
if none of the direct-subclasses has its type a�ected, then no class in the schema has its type a�ected.

Proof: The type of a class is determined by the locally de�ned properties and the inherited properties
(SI3). Since a class can only inherit properties from its superclasses, the only classes a�ected are the sub-
classes. Now, suppose that by removing a class C, none of its direct-subclasses (SB1; SB2; : : : ; SBn) have
their type changed. We know that the type of any class in the schema can be determined by its locally
de�ned properties and the type of its direct-superclasses (since they can only inherit properties through the
class hierarchy). Therefore any class in the schema other than C; SB1; SB2; : : : ; SBn have their type unaf-
fected since their direct-superclasses have the same type (note our assumption that SB1; SB2; : : : ; SBn have
their type una�ected), and since their locally de�ned properties are still the same. Now we have to prove
that if there exists a class in the global schema that has its type a�ected, there exists at least one direct-
subclass that has its type a�ected. We prove this by contradiction, using the previous result, i.e., if none

7

of the direct-subclasses had their type a�ected, then no class in the schema would have their type a�ected. 2

By Theorem 1, to determine whether there will be classes that have their type a�ected, we just need to
check the direct-subclasses. The three di�erent situations that can happen when removing a class are the
following:

1. The class we are deleting has no subclass: in this case the type-e�ect problem will not occur when
deleting the class, because there is no class that inherits the locally de�ned properties.

2. The class does have subclasses, but does not have locally de�ned properties: since the subclasses do not
directly inherit any properties from the class we are deleting, deleting the class will not change the
type of its subclasses, provided we link its subclasses to its superclasses as explained before.

3. The class has subclasses and locally de�ned properties: in this case, we have to make sure the type
of the subclasses will not change after the deletion. Since the class will be removed and its local
properties are not de�ned anywhere else, we should de�ne them somewhere. We cannot migrate them
to the superclasses or else it would change their type. The solution is to migrate the properties to
the direct-subclasses. However, if the class has more than one direct-subclass we cannot migrate the
properties to each one of them, otherwise we would violate SI4. Going back to our university database
example, in Figure 4 the delete of class Person' must thus be rejected, since the properties name and
address are inherited by both Person and Student" classes.

Teaching
Staff lecture

Person
nationality

UnderGrad

Student

Gradlevel

name
address

advisor

stid

gpa

Grad’

Student’

Student’’

Grad’’

Person’

Figure 4: Example of Type-E�ect Problem - Deleting Person' Class.

Therefore, we can establish a simple rule for removal of a class with regard to the ISA-hierarchy problem.

Strategy 1 If the class C has more than one direct-subclass it cannot be deleted unless C has no locally
de�ned properties. In case C has only one direct-subclass, say D, and a deletion occurs, the existing local
properties of C should migrate to D. If the class has no subclasses or it has no locally de�ned properties, it
can be deleted without a�ecting subclasses. In case C is deleted, its direct-subclasses, if any, should still be
subclasses of the superclasses of the original class C. For that we add IS-A edges when necessary.

4.5 Solution to Derivation-Dependency Problem

The derivation-dependency problem is concerned with the issue that the removal of a source class C may
cause all its dependent derived classes V C to be unde�ned | i.e., may leave them without a derivation
function to correctly compute their derived extent. Also any operation dealing with the extent of a derived
class (e.g., create instance or update a value) is forwarded to the source class. In this sense, if a source
class is deleted without analyzing the derived class, an error may occur when a derived class forwards the
operation to its source class. To solve this problem we have to rede�ne the derived classes (including possibly
changing their source class) in accordance with SI5 and SI6. If the deletion cannot be performed without
violating SI5 and SI6 the delete operation must be rejected.

8

Strategy 2 Let V C be a virtual class derived from a source class C. Then, the solution we propose is to
delete the class V C as long as there exists another class C0 in the global schema that could become the source
for V C to allow for rede�nition of V C 3.

When specifying a virtual class by an object algebra operator such as hide, select, union, etc. [17], the
type and extent of the derived class may or may not be the same as those of the source class. In order to
determine the situations where the delete cannot be performed, we classify our object algebra operators used
for view speci�cation.

De�nition 1 A type-preserving object algebra operation is an operation where the new derived class pre-
serves the type of its source class. A type-augmenting (type-reducing) object algebra operation is an
operation where the the type of the derived class is a sub-type (super-type) of the source class' type.

De�nition 2 An extent-preserving object algebra operation is an operation where the new derived class
preserves the extent of its source class. An extent-augmenting (extent-reducing) object algebra operation
is an operation where the extent of the derived class is a super-set (subset) of the source class' extent.

The basic problem then is to determine whether and if so how we can rede�ne the derived classes. As
an example if we want to rede�ne a hide class C0 we �rst would have to �nd a new source that:

� is a subtype of type C0 since hide is type-reducing; and

� have the same extent as C0 since hide is extent-preserving.

One example of successfully rede�ning a hide class is shown in Figure 5. Here the hide class Grad00 �nds
a new source in Grad and thus a successful rede�nition of Grad00 can take place when the original source
Grad0 is deleted.

Now the problem we need to address is where to look for the new source. Potentially we could investigate
all the classes in the global schema. However, due to the MultiView model of types of virtual classes, it is
possible to signi�cantly limit our search, as stated in Theorem 2.

Theorem 2 If there exists a class C0 in the global schema that can be a new source for a virtual class V C
(in place of C), then there exists at least one super- or subclass of the original source C that can also be a
new source. Furthermore, if none of the super- or subclasses of C can be a new source for a virtual class
V C then there exists no class in the global schema that can.

The above theorem can intuitively be shown by the following argument given for the hide example. For
the other virtual classes the reasoning is analogous. Suppose we want to rede�ne the hide class HC, where
the original source class is OS. Let SB denote a subclass of OS and SP a superclass of OS. Hide is a type-
reducing operation, therefore OS is a subtype of HC. All subclasses of OS are subtypes of it, and therefore,
also subtypes of HC. Regarding the type, all subclasses of OS are potential new sources for HC. Assume then
that SB is not a new source for HC, then extent(SB) is not the same as extent(OS). Since the extent of a
subclass is always a subset of the extent of the superclass, extent(SB) and the extent of all subclasses of SB
are smaller than the extent of OS. Therefore neither SB nor SB's subclasses can be a new source hence the
downward search can be terminated. In regard to the upward search there are two di�erent reasons why SP
cannot be a new source. First, if SP is not a subtype of the hide none of SP's superclasses will be a subtype
either. The second reason relating to the extent is analogous to the reasoning in the previous paragraph. If
extent(SP) is not the same as the extent(OS), and SP, being a superclass, is a superset of OS, extent(SP)
and the extent of all superclasses of SP are bigger than the extent of OS. Therefore neither SP nor SP's
superclasses can be a new source and the upward search can be terminated.

Strategy 3 The strategy thus is to start looking for a new source for V C rede�nition from the direct-
subclasses of the original source and go downwards, and from the direct-superclasses of the original source
and go upwards. If we cannot �nd one, we should stop our search, because no other class in the schema will
be a new source.

3a simplifying assumption we make is that a virtual class, when being rede�ned, does not change its VC type.

9

Teaching
Staff lecture

Person
nationality

UnderGrad

Student

Gradlevel

name
address

advisor

stid

gpaStudent’

Student’’

Grad’’

Person’

(b)

Grad’’ = hide gpa and
 natioanlity from Grad’

Teaching
Staff lecture

Person
nationality

UnderGrad

Student

Gradlevel

name
address

advisor

stid

gpa

Grad’

Student’

Student’’

Grad’’

Person’

Grad’’ = hide gpa from Grad’

Grad’ = hide nationality from Grad

(a)

derivation dependency
relationship

isa relationship

Legend

before removal of Grad’ class after removal of Grad’ class

Figure 5: Example - Deleting Class Grad0 and Rede�ning Grad00 Class.

4.6 Solution to the Unde�ned Reference Problem

The unde�ned reference problem is a classical problem that occurs when deleting a class that is being
referenced in some form (by using its methods, as domain, etc.) by some other object in the schema.
In [9] the approach recommended for solving the unde�ned reference problem (in particular, behavioral
consistency) is to build a method-dependency graph that can be constructed by evaluating the code of each
method. This is very expensive and may not be a feasible solution in practice.

In SVR the context is somewhat di�erent because classes are not arbitrarily deleted from the schema. A
class will only be deleted when this class is not used in any view schema (i.e., no user has access to this class).
Like other view systems [4], MultiView assumes closed view schemas [17]. The closure criterion ensures that
all classes that are being used by the type interface of any class in a view schema are also de�ned within
the view. With this assumption, if a class A is not de�ned in any view schema, that means that no other
class in any view schema references objects of class A (otherwise class A would be in the view schema as
well). Given this closed-view assumption, we will thus never have an unde�ned reference after deleting a
non-shared class.

4.7 Basic Algorithm to Remove a Class

Incorporating the strategies to solve the problems pointed out in the previous sections, we now outline an
algorithm that removes a single class from the global schema without violating the schema invariants.

Algorithm RemoveClass (C)
01 if C is shared then return
02 if C has locally-de�ned properties and

C has more than one direct-subclass then return
03 for each D 2 derived-classes(C) do
04 if cannot �nd new-source for D then return
05 for each D 2 derived-classes(C) do rede�ne D
06 if C has locally-de�ned properties then
07 C' := direct-subclass (C)
08 migrate properties of C to C'
09 for each SB 2 direct-subclasses(C) do
10 for each SP 2 direct-superclasses(C) do
11 if not (SB IS-A* SP) then
12 add-edge SB IS-A SP
13 remove class C

10

When the RemoveClass algorithm is applied to a consistent schema, the resulting global schema (and
view schemas derived from it) are all consistent. The �rst invariant (SI1) is not violated because the root
class being included in all view schemas and therefore being a shared class will not be removed. The SI4
invariant (single-source principle) could be violated when adding locally de�ned properties to a class. The
only time we do this is when migrating properties from the class we are removing to its subclass (lines 6-8).
However, the migration is done only if the class we are removing has only one direct-subclass (test at line
2). Therefore SI4 is not violated. The IS-A hierarchy is still acyclic and connected (SI2) due to steps at
lines 9 through 12. The step at line 11 guarantees that the subclasses are still connected to C's superclasses.
Since we are adding an IS-A edge from SB to SP and SB was already a subclass (indirectly) of SP, and the
original schema was not acyclic, this edge cannot cause a cycle. SI5 and SI6 are not violated because of the
way the rede�nition is done.

5 Interdependencies Problems of Multiple Class Removal

In the previous section, we presented the approach used to delete a single class from the schema. Care is
taken so the �nal schema will be consistent, and if the class cannot be deleted without violating consistency,
the deletion is not performed. The assumption there was to attempt to delete a class assuming that all
other classes in the schema would remain in the global schema. In this section, we now identify problems
of multiple class removal, since in our system, we want to delete all (or as many as possible) classes from
the to-be-removed view schema VS rather than just one. One simple solution one might attempt to address
this problem is to just look at each class separately, and decide if it could be deleted given the state of the
global schema at the time of deletion. The algorithm can be de�ned as: \for each class V 2 View Schema
VS do RemoveClass (GS-class(V))", with the RemoveClass() function de�ned in the previous section.

The main drawback of this solution is that the con�guration of the resulting global schema is dependent
on the sequence in which the classes are examined. This problem can be easily illustrated with an example
(refer back to Figure 5 (a)). Suppose we want to delete classes Student0 and Grad0. If the sequence followed
is Student0, Grad0, then the deletion of class Student0 would be prohibited. If the sequence followed is
Grad0, Student0, the type-e�ect problem will be resolved because by the time class Student0 is checked, the
Grad0 class does not exist anymore. Of course that is not the only condition to be checked when trying to
delete a class, but assuming that the tests on lines 01 and 04 are not satis�ed, the type-e�ect problem would
be the only condition to be met. It thus appears that if we only had the type-e�ect problem to deal with,
then the best solution is to start from the leaves of the global schema DAG.

The derivation-dependency problem is analogous. You might not be able to delete a source class because
it has some derived class that cannot be rede�ned; however, later it may be discovered that you can delete
the derived class. In this case the best sequence would be to start from the derived classes and then look for
the source classes. So for the derivation-dependency problem the best approach could be top-down for hide
classes or bottom-up for re�ne classes. If we consider these problems together there appears to be not one
best sequence (top-down vs. bottom-up) to follow in all situations.

In both these cases, by deleting one class, we were able to delete another class that we could not have
deleted previously. One might argue that since we want to delete as many classes as possible, no matter
which class we start from, we just have to keep iterating until no more changes are made. However, there
exist another kind of pairwise dependency between two classes. Namely, after you remove a class, you might
not be able to remove another class that you could have removed before. This type of conict happens in
the derivation-dependency as well as in the type-e�ect problem.

To illustrate this idea, let us go back to the original University database example shown in Figure 2 (a).
Suppose that in the process of customizing an interface to some application, we had the following virtual
classes created:

� Student2 as hide stid from Student
� TA as intersect Student2 with TeachingSta�
� Student3 as hide nationality from Student2
� Student4 as hide gpa from Student3

11

Person nationality

name
address

Student2

IC

stid

UnderGrad

Student

Gradlevel advisor

gpaStudent3

Student4

Teaching
Staff

lecture

TA

Figure 6: Example - Extension to Schema in Figure 2 (a).

The global schema that results from the addition of these virtual classes is shown in Figure 64. In this
case, suppose we detected that classes Student2 and Student3 are not being used by any view schema and
therefore can be removed.

Conict 1 (type-e�ect problem) : When we analyze the two classes Student2 and Student3 separately,
both of them satisfy the criteria for deletion without causing the type-e�ect problem. Namely, Student2 has
no locally de�ned properties, so its deletion will not change the type of its subclasses, and Student3 has
locally de�ned properties but has only one subclass, so its properties can be migrated. However, if we delete
Student2, its direct-subclasses, TA and Student will become direct-subclasses of Student3. Therefore, when
we try to remove Student3, it does not satisfy the criteria for deletion anymore, because it has locally de�ned
properties and two direct-subclasses. Conversely, if we delete Student3 �rst, its property gpa gets migrated
to Student2 class. Consequently, when we try to delete Student2, it has locally de�ned properties and two
direct-subclasses, so it can no longer be deleted.

Conict 2 (derivation-dependency problem) : Removing Student2 by itself causes no problem since
TA can be rede�ned from Student3. Removing Student3 by itself also does not cause any problem once
Student4 can be rede�ned from Student2 or Student. However, if we want to remove both Student2 and
Student3, there is no class from which we could rede�ne the class TA. This is due to the fact that if we
rede�ne TA from Student, TA will have an extra property, stid, and if we rede�ne TA from Student4, TA
will not inherit the gpa property. Therefore, removal of one of these two classes implies that the other cannot
be removed (unless TA is also selected for removal).

6 The Dependency Model

To overcome the di�culties presented in the previous section, we approach the search order problem by
�rst detecting all possible conicts between deletions of classes. For this purpose, we have developed a
formal model based on Boolean logic, called the Dependency Model. Each dependency between deletion of
classes is represented by a clause, where a clause consists of literals, negated or not, and the conjunction and
disjunction operators (^;_ respectively). Each particular clause that represents dependency between classes
must be satis�ed to ensure the consistency of the global schema. The basic idea of the dependency model
is to associate with each class Ci in the global schema, a variable Di that indicates whether a class will be
deleted or not. A clause that corresponds to the example illustrated in Section 5 (Conict 1 and Conict
2), is: (DStudent2_DStudent3), where DStudent2 is 1 if Student2 is deleted and 0 otherwise, and DStudent3 is
1 if Student3 is deleted and 0 otherwise. In order to satisfy this clause, we need either DStudent2 or DStudent3

to be zero, i.e., we cannot have both equal to 1, or equivalently, we cannot delete both classes. We represent
each such dependency with a clause. By making sure that all clauses are satis�ed simultaneously, we are
guaranteed to have a consistent �nal global schema.

4Note that some IntermediateClasses (namely, IC in this example) were created to provide schema consistency (as explained
in [17]).

12

The advantage of having the dependencies encoded is that we can analyze the impact of removing classes
in the �nal schema without actually modifying it. We could experiment with di�erent deletion patterns and
check whether all consistency requirements are met. We can potentially explore all possible con�gurations
of the �nal schema and decide among them which one is the best (given some cost function that would
minimize the cost of our schema). This approach is exponential in the size of the schema, but later on we
show how we can improve upon this potentially ine�cient perfomance.

Since we want to \experiment" with the di�erent possible deletion patterns, by setting a variableDi = 1
our model indicates the e�ects that this deletion would have on the remaining schema. Therefore, in the
process of \experimenting" with one deletion pattern, we mark classes as:

� non-deletable: if Ci cannot be deleted without violating the consistency requirements, or if Ci is shared.
In this case, its corresponding variable Di is set to 0.

� deletable: if Ci can be deleted without violating the consistency requirements and it is not shared. In
this case, its corresponding variable Di is set to 1.

We now explain the types of dependencies between classes captured by the dependency model.

6.1 Type-e�ect problem

Recall from Section 4, that a class cannot be deleted if it has more than one subclass and it has locally de�ned
properties. As we have shown in Section 5, a conict might arise between classes to be removed (see Conict
1). A class may conict with its direct-superclasses (case of Student2 conicting with Student3) or with its
direct-subclasses (case of Student3 conicting with Student2). Furthermore, as classes are removed from
the schema, the ISA-hierarchy changes and therefore the dependencies between classes change. So a class
might conict with other subclasses that were not its direct-subclasses in the original schema. Remember
that we want to be able to detect whether the deletion of a class will a�ect the deletion of other classes in
the schema. A class C can be deleted without a�ecting the deletion of other classes regarding the type-e�ect
problem if the class satis�es one of the following:

� condition 1: The class C will never have more than one direct-subclass. If it is possible that the class
C has more than one direct-subclass, its deletion may cause the non-deletion of a direct-superclass (as
in the case where deletion of Student2 causes the non-deletion of Student3). If the class will always
have at most one direct-subclass no matter what classes are removed from the schema, it will not a�ect
its superclasses, SPi, or subclasses, SBi.

Proof: (a) When class C is deleted, it will link at most one subclass to the superclass SPi, so the
number of direct-subclasses of the superclass SPi will not increase. Suppose, by contradiction, that
we were able to delete SPi before the deletion of C, and that the deletion of C caused SPi to be
non-deletable. If SPi is non-deletable due to the type-e�ect problem, it is because it has locally de�ned
properties and it has more than one direct-subclass. But if it has more than one direct-subclass, it
already had more than one direct-subclass before the deletion of C, and therefore it could not have
been deletable before the deletion of C. So, either SPi had more than one direct-subclass before the
deletion of C, and therefore was non-deletable before the deletion of C, or SPi is still deletable. 2

(b) Suppose, by contradiction, that we were able to delete SBi before the deletion of C, and that the
deletion of C caused SBi to be non-deletable. If SBi is non-deletable due to the type-e�ect problem,
it is because it has locally de�ned properties and it has more than one direct-subclass. However, if
it has more than one direct-subclass, considering that SBi is the only direct-subclass of C (since by
hypothesis C will never have more than one direct-subclass), if SBi is removed, C will have as direct-
subclasses SBi's direct-subclasses which are more than one. But that violates our initial hypothesis
that C will never have more than one direct-subclass no matter what classes are removed from the
schema. So, either SBi was non-deletable before the deletion of C, or SBi has only one direct-subclass,
and therefore it is still deletable. 2

13

� condition 2: The class C will never have locally de�ned properties. If it is possible that the class C
has locally de�ned properties, its deletion may cause the non-deletion of a direct-subclass (as shown
in Section 5 when deletion of Student3 causes the non-deletion of Student2). If the class C will never
have locally de�ned properties no matter what classes are removed from the schema, it will not a�ect
its superclasses, SPi or subclasses, SBi.

Proof: (a) Suppose, by contradiction, that we were able to delete SPi before the deletion of C, and that
the deletion of C caused SPi to be non-deletable. If SPi is non-deletable due to the type-e�ect problem,
it is because it has locally de�ned properties and it has more than one direct-subclass. However, if it
has locally de�ned properties and it was deletable before the deletion of C, its local properties will be
migrated to C, and this violates our initial hypothesis that C will never have locally de�ned properties
no matter what classes are removed from schema. So, either SPi was non-deletable before the deletion
of C, or SPi has no locally de�ned properties, and therefore it is still deletable. 2

(b) If C will never have locally de�ned properties no matter what classes are removed from the schema,
it cannot cause any conict with a direct-subclass, SBi. Suppose, by contradiction, that we were able
to delete SBi before the deletion of C, and that the deletion of C caused SBi to be non-deletable.
If SBi is non-deletable due to the type-e�ect problem, it is because it has locally de�ned properties
and it has more than one direct-subclass. However, if it has more than one direct-subclass, and it
was deletable before the deletion of C, it could not have had locally de�ned properties. That means
that properties were migrated from C. However, this violates our initial hypothesis that C will never
have locally de�ned properties no matter what classes are removed from schema. So, either SBi was
non-deletable before the deletion of C, or SBi is still deletable. 2

� condition 3: The class C at any point in time has only one direct-subclass and this direct-subclass has
locally de�ned properties: If the class C has only SBi as its direct-subclass and SBi has locally de�ned
properties, SBi can be deleted provided it has only one direct-subclass to migrate the properties to.
So, in case SBi is deleted, SBi's direct-subclass will be the only direct-subclass of C and will also have
locally de�ned properties (because SBi 's local properties were migrated to it). Therefore the same
reasoning will apply. As a consequence, class C will never have more than one direct-subclass, and this
is a special case of condition 1.

In order to capture the type-e�ect dependency, we associate with each class Ci the following Boolean
variables 5:

� Di indicates the label of the class Ci: 1, if it is marked deletable; 0, if it is marked nondeletable.

� LPi indicates whether Ci has locally de�ned properties. Its value is 1 ifCi has locally de�ned properties,
and 0 otherwise.

� NPi indicates whether Ci will ever have properties locally de�ned. NPi = 1 if Ci will never have
properties locally de�ned no matter what combinations of deletions take place, and NPi = 0 otherwise
(note that if LPi = 1, then NPi = 0).

� OSi indicates whether Ci will ever have more than one direct-subclass. OSi = 1 if Ci will always
have at most one direct-subclass, no matter what combination of deletions takes place, and OSi = 0
otherwise.

� STi indicates whether all the classes in the subtree rooted by Ci are marked deletable (STi = 1), or
not (STi = 0).

5Note that the D's are the only true decision variables. The LP 's are just characteristics of a class, and the NP 's, OS's and
ST 's are computed from D's and LP 's.

14

We can guarantee condition 1 (and condition 3 which is a special case) for class Ci if OSi = 1. Now,
OSi = 1 if and only if Ci has no subclass, or Ci has only one subclass Cj and (OSj = 1 or Dj = 0 or
LPj = 1).

We can guarantee condition 2 for class Ci if: Ci has no locally de�ned properties and will not get
any property migrated to it. We can guarantee the last part if 8Cj direct-superclass of Ci, either Cj is
non-deletable (Dj = 0) or NPj = 1.

Note that, if OSi = 0 and NPi = 0 we cannot delete the class Ci without a�ecting deletion of other
classes (regarding the type-e�ect problem), and we might not even be able to delete Ci. We express this
requirement in our model as the following:

Requirement R1: OSi ^NPi) Di, or equivalently, (OSi _NPi _Di), where:

� OSi = (STi1 ^ STi2 ^ � � � ^ STin) _((OSi1 _Di1 _ LPi1) ^ STi2 ^ � � � ^ STin)
_(STi1 ^ (OSi2 _Di2 _ LPi2) ^ � � � ^ STin) _ � � � _ (STi1 ^ STi2 ^ � � � ^ (OSin _Din _ LPin))

� NPi = LPi ^ (Din+1 _NPin+1) ^ (Din+2 _NPin+2) ^ � � � ^ (Din+m _NPin+m)

� STij = (Dij ^ STij1 ^ STij2 ^ � � � ^ STijn); 8j 2 f1::ng

where Ci1 : : :Cin are the direct-subclasses of Ci, Cin+1 : : :Cin+m are the direct-superclasses of Ci, and
Cij1

: : :Cijn
are the direct-subclasses of Cij .

6.2 Derivation-dependency problem

Recall that if a derived class is not deleted, we have to keep in the �nal schema graph a class that can be
a source for this derived class. Let Ci be the derived class, Ci1 be the old source, and Ci2 ; :::; Cin be the
alternative sources. We express this requirement in our model as the following:

Requirement R2: (Di) Di1 _Di2 _ � � � _Din), or equivalently, (Di _Di1 _Di2 _ � � � _Din).

6.3 Discussion

Therefore, in order to represent all consistency requirements, we have a requirement of type R1 for each
class in the schema and a requirement of type R2 for each derived class in the schema. A valid schema would
be one that satis�es all the clauses. We know that such an assignment exists, namely, the one that forces
all the classes to remain in the schema, because the schema is already in a consistent state (also, notice that
if every class is non-deletable, i.e. Di = 0; 8i, all clauses are satis�ed, since there is a negated D variable in
every clause). This assignment is obviously not the best one, since we would not be optimizing the schema.
Another alternative is to try all possible assignments and verify whether all clauses are satis�ed (exponential
in the size of the schema). This is also not optimal in terms of computational e�ort, since we know that
some assignments are impossible, and therefore we do not have to take them into account.

Consider, for instance, the example in Figure 6. We know that we cannot remove Student2 and
Student3, so we do not have to consider the assignment DStudent2 = 1 and DStudent3 = 1. Our ap-
proach is then to assign one variable at a time and to substitute the value of this variable in all clauses.
If we had, for example, a clause that expressed the dependency between Student2 and Student3, namely:
(DStudent2 _ DStudent3), as soon as we decided to assign 1 to DStudent2, by substituting its value in the
clause, we have: (1_DStudent3) = (0_DStudent3) = (DStudent3). Therefore, the only assignment that would
satisfy this clause is DStudent3 = 0, and so we do not have to consider DStudent3 = 1.

7 The Dependency Graph Approach

We have developed and implemented a hypergraph representation of this formalmodel, called the dependency
graph (DG), that allows us to represent the dependencies between classes using di�erent types of dependency
edges, and incrementally decide which classes to delete, while recording the e�ect on the other classes of the
schema. We have found this graph representation, while equivalent to the formal model, to be more suitable
for implementation in our SVR tool.

15

7.1 The Dependency Graph Model

In our SVR system, we thus solve the search order problems, outlined in Section 5, by �rst explicitly encoding
all the information from the type-e�ect and derivation-dependency constraints in a compact representation
called the dependency graph - DG. The DG is then analyzed to determine the best classes to delete. This
approach allows di�erent search strategies to be applied to maximize the number of classes that can be
deleted (or any other such cost function). The �nal structure of DG is not dependent on the order that
classes are visited because we are not changing the global schema in the process of building DG.

The dependency graph model is a hypergraph DG = (N;E), with N the set of nodes and E the set of
dependency links. Our DG represents all constraints that must be satis�ed in order to guarantee consistency
of the schema, i.e. all clauses developed to describe the dependencies based on the formal model. Each
node n in DG corresponds to a class C that we wish to delete (here we use the terms node and class
interchangeably). We represent each consistency requirement between classes in a compact form using a link
e 2 E between a class (origin class) and sets of classes (destination set); with the consistency requirement
encoded in the link type. Each link is denoted as link-type(C1; fC2; C3; : : : ; Cng; fCn+1; Cn+2; : : : ; Cn+mg))
where Ci 2 DG corresponds to the class Ci 2 GS. The second destination set is empty in most types of
links, and we omit it when this is the case.

Recall that in the process of making decisions about which class to delete (or marking classes as deletable
or non-deletable), we substitute the values of the variablesD and we might end up with a di�erent dependency
between classes. We examine all possible dependencies, and we associate a name with each one of them,
which identi�es the link type in our dependency graph. Let us start by describing the dependencies that
relate to the type-e�ect problem.

� The �rst dependency is the one described in Section 6 (requirement R1): (OSi _ NPi _Di), where
OSi depends on the subclasses and NPi depends on the superclasses. Therefore we represent this
dependency by a link:

OSorNP (Ci; fCi1; Ci2; : : : ; Cing; fCin+1 ; Cin+2 ; : : : ; Cin+mg)

This link states that the class Ci can be deleted if either OSi or NPi are 1, where OSi and NPi are
computed by the formula given in Section 6.

� Since the link OSorNP states that class Ci can be deleted if either OSi or NPi are 1, if we determine
that NPi = 0, we need OSi = 1 in order for the class Ci to be deletable. Therefore the consistency
requirement is reduced down to: (Di _OSi). We represent this dependency by a link:

OSonly((Ci; fCi1; Ci2; : : : ; Cing)

This link states that class Ci can be deleted if OSi = 1, where OSi is computed by the formula given
in Section 6.

� The link OSorNP states that class Ci can be deleted if either OSi or NPi are 1. If we know that
OSi = 0, we need NPi = 1 in order for the class Ci to be deletable. Therefore the consistency
requirement is reduced down to: (Di _NPi). We represent this dependency by a link:

NPonly((Ci; fCin+1; Cin+2 ; : : : ; Cin+mg)

This link states that class Ci can be deleted if NPi = 1, where NPi is computed by the formula given
in Section 6.

The �rst two links (OSorNP and OSonly) are both satis�ed if OSi = 1. Recall that OSi is 1 if either
the class has no subclass or if it will have only one subclass. If along our process we determine that one
of Ci's subclasses will not be deleted, we know that OSi will be 1 only if all other subtrees are deleted.
Therefore we might come across a dependency such as: a class can be deleted only if a set of subtrees is also
deleted. We then have two other dependencies related to the type-e�ect problem:

� The link OSorNP states that class Ci can be deleted if either OSi or NPi are 1. If we determine
that one subclass Ck will not be deleted (Dk is 0), we need all subtrees corresponding to the other
subclasses to be deleted in order for OSi to be 1. Therefore the consistency requirement is reduced
down to: (Di _ (STi1 ^ STi2 ^ � � � ^ STin) _NPi). We represent this dependency by a link:

STorNP ((Ci; fCi1; Ci2; : : : ; Cing; fCin+1; Cin+2 ; : : : ; Cin+mg)

16

� The link OSonly states that class Ci can be deleted if OSi = 1. If we determine that one subclass
Ck will not be deleted (Dk is 0), we need all subtrees, correspondent to the other subclasses to
be deleted in order for OSi to be 1. Therefore the consistency requirement is reduced down to:
(Di _ (STi1 ^ STi2 ^ � � � ^ STin)). We represent this dependency by a link:

STonly((Ci ; fCi1; Ci2 ; : : : ; Cing)

The above links cover all the possible dependencies that relate to the type-e�ect problem. Let us now
examine the dependencies that refer to the derivation-dependency problem.

� The �rst dependency relating to the derivation-dependency problem is the one described in Section 6
(requirement R2): (Di _Di1 _Di2 _ � � � _Din), where Ci is the derived class, Ci1 is the old source,
and Ci2 ; :::; Cin are the alternate sources. We represent this dependency by a link:

remainPropagate(Ci; fCi1; Ci2; : : : ; Cing)

This link states that if class Ci remains in the schema, at least one of the classes in fCi1; Ci2; : : : ; Cing
should also remain.

� Since the link remainPropagate states that if class Ci remains in the schema, at least one of the source
classes should also remain, if we know that class Ci will remain (i.e., it is non-deletable), at least one
of the sources should remain. Therefore the requirement is: (Di1 _Di2 _ � � � _Din). We represent this
dependency by a link:

minimalRemaining(Ci1 ; fCi2; : : : ; Cing)

This link states that, to guarantee consistency, at a minimum at least one class among those in
fCi1; Ci2; : : : ; Cing should remain (i.e., should be non-deletable).

Therefore, there are seven di�erent types of links, each one representing one type of dependency between
classes. Two of them relate to the derivation-dependency problem, and the other �ve relate to the type-e�ect
problem.

7.2 The DG Generation Rules

As explained in Section 6, in order to represent all consistency requirements, we must have a requirement
of type R1 for each class in the schema and a requirement of type R2 for each derived class in the schema.
Therefore, we generate DG by visiting each class in the schema and adding the corresponding links. The
algorithm is as follows:

Algorithm GenerateDG (GS)
01 for each Ci 2 GS do
02 add a node Ci to DG
03 for each Ci 2 GS do
04 if Ci has subclasses
05 if Ci has local properties
06 add link OSonly to DG:

OSonly(Ci; fCi1; Ci2 ; : : : ; Cing)
6.

07 else
08 add link OSorNP to DG:

OSorNP (Ci; fCi1; Ci2; : : : ; Cing; fCin+1; Cin+2 ; : : : ; Cin+mg)
7

09 if Ci is a derived class
10 detect all classes in GS that can be a source class for Ci

11 add link remainPropagate to DG
remainPropagate(Ci; fCi1; Ci2; : : : ; Cing)

8

6fCi1 ;Ci2 ; : : : ;Cing are the direct-subclasses of Ci
7fCi1 ;Ci2 ; : : : ;Cing are the direct-subclasses of Ci and fCin+1 ; Cin+2 ; : : : ;Cin+m g are the direct-superclasses of Ci.
8fCi1 ;Ci2 ; : : : ;Cing) are the classes found in step 10.

17

7.3 Preprocessing Phase: Reducing the Dependency Graph

Once we have all the dependencies between classes in the schema encoded in DG, we need to determine a safe
way to delete classes that will not violate the consistency of the schema, i.e., that don't violate any of the
requirements represented in DG. Equivalently, in the formal model corresponding to DG, this means that we
want to �nd a `good' assignment for the variables Di in such a way that all of our clauses are satis�ed. As
discussed in Section 6 one approach could be to try every possible assignment and verify if the consistency
requirements are met. This approach is exponential in the size of the schema and therefore not practical. We
can improve on this approach by noticing that some classes will not be deleted regardless of the dependency
links in the graph, namely the shared classes. Similarly, some classes in our schema might not depend on the
deletion or non-deletion of any other class nor cause the deletion of any class, therefore we should be able to
delete them regardless of the deletion of other classes. This process will reduce the size of our dependency
graph and consequently the combinations of deletions and non-deletions that we have to consider.

We proceed with this DG reduction process by �rst analyzing the classes and determining which ones
will be deleted, which ones will not, and how they a�ect the other classes in the schema. Initially, all classes
are unmarked. After some investigation, a class may become marked. In case the class Ci is marked, its label
may be:

� non-deletable: if Ci cannot be deleted without violating the consistency requirements, or if Ci is
shared.

� deletable: if Ci can be deleted without violating the consistency requirements and it is not shared.

Note that we determine the label of a class based on the global schema structure and consistency
requirements, and based on the label of the other classes in the schema as we will further describe below.
If a class Ci is unmarked, then this is equivalent to no value having been assigned to Di. When we label
a class Ci non-deletable, we assign the value 0 to Di, and when we label a class Ci deletable, we assign the
value 1 to Di.

The preprocessing phase begins initially with all classes being unmarked. After determining which
classes Ci are shared, we can mark them non-deletable (i.e., we set Di to 0). Furthermore, we can determine
which classes do not depend on other classes in order to be deleted and do not a�ect deletion of other classes.

Theorem 3 Consider a class Ci in a global schema GS. Let CR be the set of consistency requirements of
the dependency model of GS. If CR is such that the decision variable Di corresponding to Ci does not appear
in any clause negated, and there exists an assignment A1 of decision variables Dj ; 8j such that Cj 2 GS
that satis�es all clauses in CR and Di = 0, then there exists an assignment A2 of decision variables Dj ; 8j
such that Cj 2 GS that satis�es all clauses in CR and Dj in assignment A2 is equal to Dj in assignment
A1, except for Di, i.e., Di = 1.

Proof: Consider a class Ci such that Di does not appear in any clause negated. Let c 2 CR be a clause.
If c does not involve Di, it will not be a�ected. Suppose c involves Di and suppose, by contradiction, that
when Di = 0, c = 1 and when Di = 1, c = 0. If c = 1, by replacing Di's the value from 0 to 1 we make a
conjunction or disjunction of literals that was true become false. However, if Di is not negated, if V _Di = 1
when Di = 0, then V _Di = 1 when Di = 1. Also, if V ^Di = 0 when Di = 1, then we must have V ^Di = 0
when Di = 0. Therefore, we cannot make a conjunction or disjunction of literals that was true to become
false, and therefore if c is false when Di = 1 it must be the case that c was false when Di = 0. 2

According to Theorem 3, if we have an assignment A1 that satis�es all clauses and Di = 0, we can
construct an assignment A2 where all the variables are the same, except for Di = 1. Since deleting a class
reduces the cost of the schema, and the schemas GS1 and GS2 which would be generated based on the
assignments A1 and A2 respectively only di�er by GS2 not containing class Ci. Hence, GS2 is \cheaper"
than GS1. Since A2 is also satis�ed and therefore a valid assignment, it is preferable over A1. Therefore if
we detect a class Ci such that Di does not appear in any clause negated, we mark Ci deletable.

Equivalently, for the dependency graph, a variable correspondent to a class does not appear negated in
any clause provided it does not appear:

� anywhere in a OSorNP link

� anywhere in a OSonly link

� anywhere in a NPonly link

18

� in the origin or second destination set of a STorNP link

� in the origin of a STonly link

� in the origin of a remainPropagate link

� anywhere in a minimalRemaining link

Therefore, in the preprocessing phase, we mark a class C0 deletable if it does not appear in any of the
situations described above.

7.4 The DG Transformation Rules

Now the question is: what happens to the links in the graph once we have determined that particular classes
will or will not be deleted?. By deciding whether particular classes are deleted or not, we can reduce our set
of consistency requirements. This is equivalent to reducing the set of classes for which a decision has to be
made, and reducing the number of links, once some of them become redundant. Marking a class deletable
or non-deletable might cause as a side-e�ect the marking of other classes. We represent this formally with
transformation rules based on the labels of classes and existing links. Once we mark a class Ci, we are
assigning a value to Di. In this sense, the clauses may be simpli�ed by plugging into them the value of Di

in the place of the variable name Di.
We provide transformation rules that reect the decision about marking a class non-deletable or deletable.

In order to cover all possible transformations, we have to consider what happens to the dependency between
classes that is encoded in the link type, when the origin class is marked, or when a class in the destination
set is marked. In case the link has two destination sets (e.g., OSorNP), we have separate rules for when a
class from each destination set becomes marked.

Here we give a small subset of the rules to give the avor of the type of rules, while the complete set
can be found in Appendix A. We �rst give transformation rules for when a class is marked non-deletable
and then transformation rules for when a class is marked deletable.

Transformation Rules in case a class becomes non-deletable:

1. If OSorNP (Ci; fCi1; Ci2; : : : ; Cing; fCin+1; Cin+2 ; : : : ; Cin+mg) and Ci is non-deletable:

The link states a condition for Ci to be deleted. Since Ci is non-deletable the link is not needed.
Therefore: remove the link.

Proof: By substituting Di by 0 in the original clause: (OSi _NPi _Di) = (OSi _NPi _ 1) = 1. That
means that the clause is satis�ed no matter what the values of OSi and NPi are. Therefore the link
can be removed.

2. If OSorNP (Ci; fCi1; Ci2; : : : ; Cing; fCin+1; Cin+2 ; : : : ; Cin+mg) and Cij is non-deletable for some j 2
f1::ng:

The link states that Ci can be deleted (since it has no local properties, otherwise we would have
generated OSonly instead), but it can a�ect deletion of super and subclasses. If we know that one
subclass will remain in the schema, if class Ci has any property migrated to it, it can only be deleted
if all other subtrees are completed deleted. Therefore, we substitute the link by:

STorNP (Ci; fCi1; : : : ; Cij�1 ; Cij+1 ; : : : ; Cing; fCin+1 ; Cin+2; : : : ; Cin+mg)

Proof: The original clause is: (OSi _NPi _Di), where
OSi = (STi1 ^ STi2 ^ � � � ^ STin) _((OSi1 _Di1 _ LPi1) ^ STi2 ^ � � � ^ STin)
_ � � � _ (STi1 ^ � � �STij�1 ^ (OSij _Dij _ LPij) ^ STij+1 ^ � � � ^ STin)

_ � � � _ (STi1 ^ STi2 ^ � � � ^ (OSin _Din _ LPin)). If Dij = 0, then STij = 0. By substituting STij by
0 we get:
OSi = (STi1^� � �STij�1^0^STij+1^� � �STin)_� � � _((OSi1_Di1_LPi1)^� � �STij�1^0^STij+1^� � �STin)
_ � � � _ (STi1 ^ � � �STij�1 ^ (OSij _ 1 _ LPij) ^ STij+1 � � � ^ STin)

_ � � �_ (STi1 ^� � �STij�1 ^0^STij+1 � � �^ (OSin _Din _LPin)) = (STi1 ^� � �STij�1 ^STij+1 � � �^STin).
So, the new clause is:
((STi1 ^ � � �STij�1 ^ STij+1 � � � ^ STin) _NPi _Di) which is the link given above.

19

note: if in the original link there was only one subclass , i.e. n = 1, and so j = 1, then we could remove
the link.

Proof: The original clause is: (OSi _NPi _Di), where
OSi = (STi1) _ (OSi1 _Di1 _ LPi1)). By substituting STi1 by 0 and Di1 by 0, we get:
OSi = (0 _ (OSi1 _ 1 _ LPi1)) = 1. Therefore, the clause (OSi _ NPi _ Di) = (1 _ NPi _ Di) = 1.
Therefore the clause is true no matter what the values of NPi and Di are. So we can remove the link.

10. If STorNP (Ci; fCi1; Ci2; : : : ; Cing; fCin+1; Cin+2 ; : : : ; Cin+mg) and Ci is non-deletable:

The link states a condition for Ci to be deleted. Since Ci is non-deletable the link is not needed.
Therefore: remove the link.

Proof: By substituting Di by 0 in the original clause:

((STi1 ^STi2 ^ � � �^STin)_NPi _Di) = ((STi1 ^STi2 ^ � � �^ STin)_NPi _ 1) = 1. That means that
the clause is satis�ed no matter what the values of STi1 ; STi2 ; : : : ; STin and NPi are. Therefore the
link can be removed.

15. If remainPropagate(Ci; fCi1; Ci2 ; : : :Cing) and Ci is non-deletable:

The link states that if Ci is not deleted (i.e., if Ci remains in the global schema), at least one of the
classes Ci1 ; : : : ; Cin should remain. Therefore, this link is translated into a link that represent this de-
pendency between classes Ci1 ; : : : ; Cin and does not include class Ci: minimalRemaining(Ci1 ; fCi2; : : : ; Cing)

Proof: By substituting Di by 0 in the original clause:
(Di _ Di1 _ Di2 _ � � � _ Din) = (0 _ Di1 _ Di2 _ � � � _ Din) = (Di1 _ Di2 _ � � � _ Din) which is
the minimalRemaining link given above. Note that, the minimalRemaining link corresponds to
an or-ed clause of negated Di's, and therefore, it would be also correct to transform the link to:
minimalRemaining(Ci2 ; fCi1; Ci3; : : : ; Cing), for example.

note: a special case happens when there is only one class in the destination set (say Ci1). Since at
least one of the classes in the destination set should remain and Ci1 is the only one, Ci1 should remain.
Therefore: Ci1 is non-deletable.

Proof: By substituting Di by 0 in the original clause: (Di _Di1) = (0 _Di1) = (Di1)) Di1 = 0:

16. If remainPropagate(Ci; fCi1; Ci2 ; : : : ; Cing) and there exists one j; j 2 f1::ng such that Cij is non-
deletable:

The link states that if Ci is not deleted, at least one of the classes Ci1 ; Ci2; : : : ; Cin should remain.
Since Cij will remain, the link is not needed. Therefore: remove the link.

Proof: by substituting Dij by 0 in the original clause:

(Di _Di1 _ � � �Dij _ � � � _Din) = (Di _D
1
_ � � �Dij�1 _ 1 _Dij+1 _ � � � _Din) = 1. That means that

the clause is satis�ed no matter what the values of Di; Di1 ; : : : ; Dij�1 ; Dij+1 ; : : : ; Din are. Therefore,
we can remove the clause/link.

Transformation Rules in case a class is deletable:

31. If remainPropagate(Ci; fCi1; Ci2 ; : : : ; Cing) and Ci is deletable:

The link states that if Ci is not deleted, at least one of the classes Ci1 ; Ci2; : : : ; Cing) should remain.
Since Ci is deletable, the link is not needed. Therefore: remove link.

Proof: by substituting Di by 1 in the original clause: (Di _Di1 _Di2 _ � � � _Din) = (1 _Di1 _Di2 _

� � � _Din) = 1. That means that the clause is satis�ed no matter what the values of Di1 ; : : : ; Din are.
Therefore, we can remove the link.

20

33. If minimalRemaining(Ci ; fCi1; Ci2; : : : ; Cing) and Ci is deletable:

The link states that if Ci is deleted, at least one of the classes fCi1; Ci2; : : : ; Cing should remain. So,
now the dependency is among the classes fCi1 ; Ci2; : : : ; Cing. Therefore, this link is translated into
another link that represents this dependency between classes fCi1; Ci2; : : : ; Cing.

minimalRemaining(Ci1 ; fCi2; : : : ; Cing.

Proof: by substituting Di by 0 in the original clause:

(Di _Di1 _ � � �_Din) = (0_Di1 _� � �_Din) = (Di1 _� � �_Din) which is the minimalRemaining link
given above.

7.5 The Decision-Making Phase

When there are no conicts between which classes to remove (as explained in Section 5) we can completely
determine during the preprocessing phase which classes to delete and which classes not to delete. When there
exist interdependencies between multiple class removal options, i.e., several classes remain \unmarked", then
a decision must be made about which class to give a higher preference for deletion over others. We should
note that, if we arbitrarily mark classes as deletable, we might be forcing other classes to be marked �non-
deletable. Even worse, it might happen that if we mark a class deletable we cannot �nd an assignment for
the other variable that would satisfy all the constraints. Recall that we had the guarantee that at least one
assignment would be possible, namely, marking all classes non-deletable. Therefore, in the decision-making
phase, we can mark classes as deletable and still guarantee that there will be an assignment of variables that
results in a consistent state, if when marking a class deletable (and therefore setting its corresponding D
variable to 1), we are still left with a set of clauses that have at least one negated D variable in a disjunction.
With that, we guarantee that, by marking all the classes that are left as non-deletable, we have the schema
in a consistent state.

Equivalently, for the dependency graph, a variable that, if set equal to 1, will cause the remaining clause
to have no negated D variable, is corresponds to a class appearing in one of the following links:

� in the origin of a OSonly link, or

� in the origin of a STonly link, or

� in the destination set of a remainPropagate, in case it is the only class in the destination set.

Therefore, if we want to guarantee that after marking a class deletable there will still be a feasible
assignment, we should not mark classes that appear in the links given above. This way of marking classes is
heuristic. If we have a way of measuring optimality, an issue which will be addressed in Section 8, we could
compare two schemas and determine which one is best. In such a situation, we would want to examine all
possible schemas to decide on the best one. Note that this approach would be exponential in the size of
unmarked classes, and not in the size of the global schema. Given that the preprocessing phase would mark
at least all the shared classes, the size of the problem that we want to examine is at most the size of the
schema version we are removing. Also, once we mark one given class, we can apply the transformation rules
given in Section 7.4, since marking a class might a�ect other classes. With that, we also reduce the set of
combinations we have to examine.

7.6 The Overall View Class Removal Process

Figure 7 depicts a owchart of the overall process for determining classes to delete. It ties together the
interactions among the di�erent tasks outlined earlier in this section. After creating the DG using the
DG-Generation rules detailed in Section 7.2 we start the preprocessing phase discussed in Section 7.3. The
preprocessing phase �nishes when we exit the test \any rule applied" with a NO answer for the �rst time.

After the preprocessing phase, we have to make decisions of which classes to mark (See the bottom
box of the owchart in Figure 7 marked \Select a class ...".). In Section 7.5, we presented di�erent options
of how to select classes to mark. This selection strategy in the most simplest case could be to randomly
pick a class to delete { which obviously is not an optimal solution. As an alternative, one could employ an
exhaustive search strategy { namely, to consider all possible combinations of deletions and pick the one with
the \smallest cost". It is this second alternative that we propose to employ in our system with the notion

21

 Global Schema and
Schema Version to be removed

DG Creation:

visit classes in
schema and add
dependency links

Detect shared
classes and
mark them

non−deletable
deletable

Check rules for
safe deletion and
mark classes

non−deletable
deletable

or

Apply transformation
rules to mark
classes

 any
 class
unmarked
 ?

Select a class
to be deleted:
mark it

deletable
N

Y

 any
 rule
applied
 ?

N

Y

 END−
All decisions made

Figure 7: The Overall Process for Determining Classes to Delete.

of the \smallest cost" of a schema graph as determined by the cost model introduced in the Section 8. We
explain the overall process with the following 2 examples.

Example1: Figure 8 illustrates the overall process with the schema given in Figure 6. Suppose the
classes Student2 and Student3 in Figure 6 are no longer used in views and we thus want to remove them.
Following the algorithm given in Section 7.2, we generate links of type OSorNP to classes Student4 and
Student2 and links of type OSonly to classes IC, Person, Student3, TeachingStaff and Student. Those
links go from each class to its direct-subclasses (and direct-superclasses in the case of a OSorNP link). No
links relating to type-e�ect problem are added to classes TA, UnderGrad and Grad since they don't have
subclasses. For each of the derived classes we add a remainPropagate link after determining which classes
are eligible for being a source class. Figure 8 (a) shows the remainPropagate links generated. We omit the
OSorNP and OSonly links for simplicity of the �gure.

remainPropagate

minimalRemaining

gpa

Student2

Student3

TA

gpa

Student2

Student3

Teaching
Staff lecture

Person
nationality

name
address

stid

gpa

UnderGrad

Student

Gradlevel advisor

Student2

Student3

IC

TA

Student4

Legend for dependency edges:

(a) Dependency Graph with derivation−dependency edges.
(c) The Final Reduced DG.

(b) DG before applying rule # 15.

Figure 8: Initial and Reduced Dependency Graph Representations for the Schema in Figure 6.

The preprocessing phase starts by marking every class other than Student2 and Student3 as non-
deletable. Then, using the fact that the classes IC, Person, Student4, TeachingStaff and Student are
non-deletable and rules # 1 and # 4, we are left with the following links regarding type-e�ect:

22

� OSorNP (Student2; fTA; Studentg; fStudent3; P ersong)

By using rule # 2 and the fact that TA and Student are non-deletable we reduce the link to:

NPonly(Student2; fStudent3; P ersong). Then, by using rule # 3 and the fact that Person is non-
deletable we reduce the link to: NPonly(Student2; fStudent3g). Finally, by applying rule # 9, since
NPStudent3 = 0, we have:

minimalRemaining(Student2; fStudent3g).

� OSonly(Student3; fStudent2g

By using rule # 6 and the fact that STStudent2 = 0; OSStudent2 = 0; LPStudent2 = 0, we are left with:

minimalRemaining(Student3; fStudent2g).

Now, with regards to the remainPropagate links, since Student and Teaching�Staff are non-deletable
by applying rule # 16, we are left with only one link (see Figure 8 (b)). Lastly, by applying rule # 15, and
the fact that TA is non-deletable, we are left with the link: minimalRemaining(Student2; fStudent3g).
Therefore, we get the �nal reduced graph shown in Figure 8 (c). This DG indicates that removing Student2
will preclude us from removing Student3, and vice versa.

Example2: In the example in Figure 9(a), AtomicPart is a base class; APSel1, APSel2, APSel3, and
Inter4 are virtual classes of type Select (the �rst three) and Intersect (the last one). Suppose that APSel1,
APSel2 and APSel3 become obsolete and we wish to remove them from the global schema. In the DG
generation stage, we create the following links:

1. OSonly(AtomicPart; fAPSel1; APSel3g)

2. OSorNP (APSel1; fAPSel2g; fAtomicPartg)

3. OSorNP (APSel3; fInter4g; fAtomicPartg)

4. OSorNP (APSel2; fInter4g; fAPSel1g)

5. remainPropagate(APSel1; fAtomicPartg)

6. remainPropagate(APSel2; fAPSel1; AtomicPartg)

7. remainPropagate(APSel3; fAtomicPartg)

8. remainPropagate(Inter4; fAPSel3g)

9. remainPropagate(Inter4; fAPSel1; APSel2g)

(b) Dependency Graph.

select predicate:

x

docId
y

Inter4

select predicate:
 x<3874887757

select predicate:
 y<2158507603

AtomicPart

y<2158507603
 and
docId< 4200000000

(a) Global Schema GS1.

APSel2

APSel3

APSel2

APSel1

APSel1

Figure 9: Example of Global Schema and Associated Dependency Graph.

In the preprocessing phase, we �rst mark the classes AtomicPart and Inter4 non-deletable. Then by
using rule #4, we remove the 1st link, by using rule #3 we remove the 2nd and 3rd links, and rule #2

23

allows us to remove the 4th link. Then using the fact that AtomicPart is non-deletable, we can use rule
#16 to remove links 5, 6 and 7. Since Inter4 is non-deletable, we use rule #15 (the special case) and
mark APSel3 as non-deletable. Finally, we can use rule #15 and the fact that Inter4 is non-deletable to
change link 9 to: minimalRemaining(APSel1; fAPSel2g)9 . The resulting DG graph (Figure 9(b)) shows
the interdependency between the removal of these two classes. That is, if APSel1 is removed, then APSel2
cannot be removed, and vice versa.

8 Cost Model for Guiding the Class Removal Process

We can easily see that for the examples given in the previous section, a simple decision criterion of selecting
the deletion that results in a schema with the minimal number of classes is useless, since both resulting
schemas would have the same number of classes (for both examples). Thus, we propose to use a cost model
that models the quality of the schema to guide our decision about which removal to execute.

8.1 The Overall Cost Evaluation Process

Let GS denote a global schema that consists of classes C = f C1, C2, . . . , Cn g, and let the resulting
global schema after removing a class Ci be GSjCi, where i 2 [1,n]. Now, assume both Ci and Cj, where i,
j 2 [1,n] and i 6= j, can be removed individually without violating the consistency requirements, but their
removal is mutually exclusive. In these circumstances, a more sophisticated decision criterion for guiding
the class removal order, namely a cost model for evaluating the goodness of the alternative global schemas
GSjCi and GSjCj is needed. That is, we choose to remove a class that results in a global schema with lower
costs. Since the focus of this paper is on materialized view systems, we consider the view maintenance costs
10. Our MultiView system utilizes materialized virtual classes [12, 13], therefore updates on base or virtual
classes have to be propagated to all dependent derived classes in order to keep the materialized view classes
consistent. In this paper, we consider insert, delete, and change-attribute operations on base classes 11.

Let COSTGS be the view maintenance costs associated with the global schema GS. Then our strategy
is to remove Ci, i� COSTGSjCi < COSTGSjCj . Otherwise, we remove Cj. Let baseClasses(GS) be the base
classes in the schema GS, and derivedClasses(Ci) be the classes in the derivation hierarchy rooted at Ci. The
propagation cost for the operation x at a base class Ci, denoted as propCost(x;Ci), is equal to the actual
update cost at the base class Ci and the summation of the update costs of the classes in derivedClasses(Ci),
where x can be insert, delete, or change-attribute operation. The view maintenance cost of a schema GS is
de�ned as follows:

COSTGS =
P

Ci2baseClasses(GS)
f (propCost(insert; Ci) � numInserti)+

(propCost(delete; Ci) � numDeletei)+P
a: attribute of Ci

(propCost(change; a; Ci) � numChangea;i)g:

(1)

where numInserti; numDeletei, and numChangea;i are the number of insert, delete, and change-attribute
updates operated on Ci.

Note that one type of update operation may cause the same type and/or other types of update operations
to be triggered for its derived classes. For example, inserting an object into the �rst source class of a Di�erence
class may cause the object to be inserted into the Di�erence class, if the object is not already in the second
source class. On the other hand, inserting an object into the second source class of a Di�erence class may
cause the object to be deleted from the Di�erence class, if the object is also in the �rst source class. However,
an insert operation will never cause its derived classes to change their attribute values. We summarize these
insert propagation e�ects in Equation 2 below. Similarly, the delete propagation e�ects are summarized in

9This link is also equivalent to minimalRemaining(APSel2; fAPSel1g).
10Retrieval itself from a class Ck can be considered to be identical in both GSjCi and GSjCj - independent from other

classes in the respective schemas when all classes are materialized. We do not consider the costs of restructuring the global
schema required to correctly remove a class Ci either, because such a schema version removal operation is a one-time cost that
potentially could be done during non-peak hours or even o�-line.

11While our MultiView system allows updates on virtual classes as well, such updates are delegated by our system to the
underlying source classes for the updated view classes. Hence, updates on virtual classes can be reduced to updates on base
classes, and hence their discussion is omitted here for simplicity.

24

Equation 3. Note that changing an object's attribute value on a source class of a Select class may cause all
three types of update operations to be triggered for the Select class. It may cause the object to be inserted
into the Select class, if the select predicate was evaluated to be false before the attribute value change and to
be true after the change. It may cause the object to be deleted from the Select class, if the select predicate
was evaluated to be true before the attribute value change and to be false after the change. Finally, it may
cause the attribute value change on the Select class, if the select predicate is evaluated to be true both before
and after the attribute value change. If the select predicate is evaluated to be false both before and after
the attribute value change, then it does not a�ect the Select class at all. These e�ects are summarized in
Equation 4.

propCost(insert; Ci) = cost(insert; Ci) +
X

Ck2derivedClasses(Ci)

(cost(insert; Ck) + cost(delete; Ck)): (2)

propCost(delete; Ci) = cost(delete; Ci) +
X

Ck2derivedClasses(Ci)

(cost(delete; Ck) + cost(insert; Ck)): (3)

propCost(change; a; Ci) = cost(change; a; Ci)+
X

Ck2derivedClasses(Ci)

fcost(insert; Ck)+cost(delete; Ck)+cost(change; a; Ck)g:

(4)

An individual insert, delete or change-attribute operation at a given class Ck (without considering the
propagation costs) is:

1. cost(insert; Ck) = PIk � costinsert

2. cost(delete; Ck) = PDk � costdelete

3. cost(change; a; Ck) = PCk(a) � costchange�attr(a)

where PIk is the probability of adding a new type of the class Ck to an existing object, PDk is the
probability of deleting the class type Ck from an existing object, PCk(a) is the probability of changing
the value of an attribute a of an object in the class Ck, and costinsert; costdelete, and costchange�attr(a)
represent the costs to insert a new object into a class, the costs to delete an object from a class, and the
costs to change the value of attribute a of an object, respectively. These parameters costinsert; costdelete,
and costchange�attr(a) are assumed to be given 12.

In order to compute the propagation costs for each type of update operation, we need to know how
often an update on a base class is propagated to its derived class. For this, we need to know the parameters
PIk; PDk, PCk(a), and PMjji for each base class (which are assumed to be given by the developer). PMjji

is the probability that an object belongs to Cj given that the object belongs to Ci, and it is needed to
calculate PIk and PDk for a derived class Ck assuming Ci and Cj are its source classes. The same set of
parameters PIk; PDk, and PCk(a) is computed for each of the derived classes as detailed next.

8.2 Determination of Propagation Probabilities for Virtual Classes

In this section, we will show how the values of PIk; PDk; PCk(a) , and PMjjk introduced above for base
classes are calculated for virtual classes. These parameters are derived iteratively through the derivation
chain(s), while updates are performed on its rooted base class(es). The table in Figure 10 summarizes
the propagation probabilities; with each row capturing one virtual class type Ck and its four associated
parameters PIk; PDk; PCk(a), and PMjjk in columns 2, 3, 4 and 5, respectively. If there are two source
classes for the derived class, denoted by Ci1 and Ci2, we assume for simplicity that only one of the source
classes is operated upon by an insert/delete/change-attribute at each time.

12The parameters costinsert; costdelete; and costchange�attr(a) are implementation dependent.

25

VC type Insert Delete Change-attribute Membership
PIk PDk PCk(a) PMjjk

Hide = PIi = PDi = PCi(a) = PMjji

Re�ne = PIi = PDi = PCi(a) = PMjji

Select = PIi � Selk+ = PDi � Selk+ = PCi(a) � Selk � Selk � PMjji � Selk or
(1� Selk) � Selk � PCi(a) (1 � Selk) � Selk � PCi(a) = 0 or 1

Union = PIi1 � (1� PMi2ji1) = PDi1 � (1� PMi2 ji1) = PCi1 (a) � PMjji1 + PMjji2 � PMi1ji2

Intersect = PIi1 � PMi2 ji1 = PDi1 � PMi2ji1 = PCi1 (a) � PMjji1 � PMjji2

Di� (Ci1) = PIi1 � (1� PMi2 ji1) = PDi1 � (1� PMi2 ji1) = PCi1 (a) � PMjji1 � (1� PMi2ji1)
Di� (Ci2) = PDi2 � PMi1 ji2 = PIi2 � PMi1 ji2 0 � PMjji1 � (1� PMi2ji1)

Figure 10: Propagation Probabilities Parameters for Derived Classes.

For a Hide virtual class (row 1 of the table), for example, the class extent of the Hide class is the same
as its (direct) source class, and hence whenever an object is added into (deleted from) its source class, the
object is also added into (deleted from) the Hide class. Thus the �rst row of the table is: PIk = PIi,
PDk = PDi, PCk(a) = PIi(a), and PMjjk = PMjji. Similarly we get the propagation probabilities for the
Re�ne derived class (row 2 of the table).

In order to compute the parameters for a Select derived class Ck, we need to know the selectivity (Selk
) of the select predicate. Note that changing an attribute value of a source class of a Select class may cause
all three kinds of update operations to happen to the Select class.

1. PIk = (1� Selk) � Selk � PCi(a), where a is an attribute used in the select predicate
Explanation: An object of the source class, originally having the select predicate evaluated to false,
changes its attribute value, and the select predicate evaluated to true afterwards 13.

2. PDk = (1� Selk) � Selk �PCi(a), where a is an attribute used in the select predicate
Explanation: An object of the source class, originally having the select predicate evaluated to true,
changes its attribute value, and the select predicate evaluates to false afterwards.

3. PCk(a) = PCi(a) � Selk � Selk
Explanation: the change-attribute operation operated on an object needs to be propagated to the
Select class only when the object is in the Select class before and after the change-attribute operation
(with probability Selk).

(b) Case 1: PM = 1.j|k(a) Relationship between
Ci and C j

C jCi C jCi

Ck
(d) Case 3: 0 < PM < 1(c) Case 2: PM = 0.j|k j|k

C jCiC jCi

CkCk

Figure 11: Di�erent cases for Calculating Multiple Membership Probability PM .

There is no straightforward way to calculate the multiple membership probability PM for the Select
class. Let's use Figure 11 to illustrate the intrinsic di�culties associated with deriving PM . As shown in
Figure 11, there are three situations that may occur. Figure 11(a) shows the relationship between Ci and
Cj; while the Select class Ck de�ned on Ci will be represented by a smaller circle inside Ci. We use the
shaded area to represent the area that an object belongs to Ck and also belongs to Cj. Figure 11(b) shows

13When the select predicate is de�ned upon multiple attributes, changing the attribute value a of an object in the source
class and causing the object to be inserted into the Select class happens only when a is the only attribute causing the select
predicate to evaluate to false.

26

the case where PMjjk = 1, i.e., Ck is totally contained in Cj (note PMjji is less than one here). Figure
11(c) shows that PMjjk = 0, when Ck and Cj do not overlap, although PMjji is greater than zero. Finally
Figure 11(d) shows the situation when Ck and Cj partially overlap, hence 0 < PMjjk < 1. To simplify our
work without knowing the exact relationship between area1 = Ci \ Cj and area2 = the location of Ck, we
�rst check whether (1) area2 is contained in area1, (2) area1 and area2 are disjoint, or (3) area1 and area2
partially overlapped. For case 1, we set PMjjk to 1; and for case 2, we set PMjjk to 0. However, if it is
case 3, we make the assumption that the locations of area1 and area2 are independent in order to be able
to determine a value for PMjjk. Given this assumption, we have PMjjk � PMjji � Selk for case 3.

Operating upon any of the source classes when the VC type is Union or Intersect gives us the same
results of the parameters, because the order of the operands does not a�ect the resulting derived class.
Hence, we show only one of the two symmetric cases in rows 5 and 6. However, updates upon the �rst or
second source classes of a Di�erence class matter, since Di�erence is not symmetric (row 7). Note there is
no straightforward way to calculate the multiple membership probability PM for these derived classes. We
make a similar assumption about independence for the Union, Intersect, and Di�erence classes.

9 Experimental Evaluation

9.1 Experimental Setup

In this section, we discuss experiments we have run to evaluate our SVR tool. Goals of this evaluation include
to demonstrate that (1) removing obsolete materialized virtual classes indeed reduces the overall incremental
view maintenance costs, and (2) the cost model introduced in the previous section guides us to choose the
most e�ective class removal patterns. The initial version of SVR, which had a simpler dependency graph
model [8], was successfully implemented on top of MultiView. While currently working on enhancing the
implementation of the �rst SVR prototype tool, we ran simulation experiments on top of the earlier system.
Our test cases are built upon the small OO7 benchmark [6], which we have extended with virtual classes
{ as there is currently no available OO benchmarking testbed for object-oriented views [11]. As depicted
in Figure 12(a), the AtomicPart and Document classes from the OO7 benchmark contain 10,000 and 500
object instances, respectively. For each experiment, we run the same set of update operations ten times on
the global schema and report the average run time. All experiments are conducted on GemStone14 running
on SUN Sparc-10 workstation with a 48MB main memory.

9.2 Experiment One

In this experiment (Figure 12(a)), AtomicPart and Document are the base classes; APSel1 is a Select class
de�ned upon AtomicPart; APSel2 is a Select class de�ned upon APSel1; and DocSel is a Select class
de�ned upon Document. The goal of this experiment is to determine whether decreasing the number of
virtual classes in the global schema indeed decreases the view maintenance costs of our TSE system - as
assumed by the overall approach presented in this paper.

First, we ran change-attribute operations 15 on 1% of the extent of the AtomicPart and Document
classes, and measured the run time to propagate the update e�ects to all their derived classes. Assume that
APSel1 and DocSel have become obsolete over time, and we wish to remove these out-of-date virtual classes.
Applying the class removal techniques introduced earlier, we conclude that removing these virtual classes
does not violate any of the consistency constraints and there exists no interdependency problems. Let us
assume APSel1 is removed �rst and we run the same set of update operations on the resulting GS2 (Figure
12(b)), and measure the view update propagation time for it. Note in Figure 12(b), APSel2 is rede�ned
with the name APSel2�, when its original source class APSel1 is removed from GS1, and with AtomicPart
as its new source as determined by our virtual class rede�nition strategy. Next we removed DocSel, and
again measured the run time for the same set of update operations for the resulting GS3 (Figure 12(c)).

Figure 13 shows the results of this test case with run times measured in milliseconds. The results
con�rm that the view maintenance costs decrease when the total number of classes decreases, given the same
workload. We have run various experiments with di�erent types of virtual classes, such as Hide, Select, and
Intersect, all of which have the same �ndings. These results support our goal of removing as many obsolete

14The GemStone OODB is a registered trademark of GemStone Inc.
15Note that in this case the change-attribute may also cause objects to be added to (or deleted from) a Select class.

27

Root

AtomicPart Document

DocSelAPSel1

APSel2

x
y

docId
id

x<3,874,887,757

y<2,158,507,203

id<435,696,658

x<3,874,887,757
 and
y<2,158,507,203

Root

AtomicPart Document

DocSel

x
y

docId
id

id<435,696,658

APSel2*

x<3,874,887,757
 and
y<2,158,507,203

Root

AtomicPart Document
x
y

docId
id

APSel2*

(a) Global Schema GS1. (b) Global Schema GS2. (c) Global Schema GS3.

Figure 12: Global Schema Used in Test Case 1.

GS1 GS2 GS3
Num of total classes 6 5 4

Running time (milliseconds) 22566.7 6799.5 6406.2

Figure 13: The Results of Experiment 1.

materialized virtual classes as possible, when their safe removal has been determined by our dependency
model.

9.3 Experiment Two

In this experiment, we have a simple global schema with a base class, AtomicPart, and a Select virtual class.
We vary the selectivity factor of the Select virtual class and run a random set of change-attribute updates (to
guarantee that a certain percent of updates, approximately equal to the selectivity factors, propagates to the
derived classes). This experiment is designed to demonstrate that our cost model is reliable, meaning that
the quality of the global schemas measured by our cost model correctly reects the runtime experimental
results.

AtomicPart

Sel80

(a) Global Schema
 GS80.

selectivity=80%:

AtomicPart AtomicPart AtomicPart

Sel60

selectivity=60%: selectivity=40%:

Sel40 Sel20

selectivity=20%:

(a) Global Schema
 GS20.

(a) Global Schema
 GS40.

(a) Global Schema
 GS60.

Figure 14: Global Schema Used in Test Case 2.

This experiment is run with four di�erent selectivity factors: 80%, 60%, 40%, and 20%, and we name the
corresponding global schema as GS80, GS60, GS40, andGS20 respectively (Figure 14). Let us now elaborate
on the calculation of the change-attribute propagation costs. For this purpose, we need to compute the
propagation probabilities of insert, delete, and change-attribute on the Select virtual class. We set the basic

28

parameters PIAtomicPart = 0; PDAtomicPart = 0; PCAtomicPart(a) = 1; 8 a : an attribute of AtomicPart.
Now, we compute PI, PD, and PC for Sel80, Sel60, Sel40, and Sel20 using the cost model introduced in
Section 8. We get:

1. PISel80 = 0 � 0:8 + (1� 0:8) � (0:8) � 1 = 0:16

2. PDSel80 = 0 � 0:8 + (1� 0:8) � (0:8) � 1 = 0:16

3. PCSel80(a) = 1 � 0:8 � 0:8 = 0:64

4. PISel60 = 0 � 0:6 + (1� 0:6) � (0:6) � 1 = 0:24

5. PDSel60 = 0 � 0:6 + (1� 0:6) � (0:6) � 1 = 0:24

6. PCSel60(a) = 1 � 0:6 � 0:6 = 0:36

7. PISel40 = 0 � 0:4 + (1� 0:4) � (0:4) � 1 = 0:24

8. PDSel40 = 0 � 0:4 + (1� 0:4) � (0:4) � 1 = 0:24

9. PCSel40(a) = 1 � 0:4 � 0:4 = 0:16

10. PISel20 = 0 � 0:2 + (1� 0:2) � (0:2) � 1 = 0:16

11. PDSel20 = 0 � 0:2 + (1� 0:2) � (0:2) � 1 = 0:16

12. PCSel20(a) = 1 � 0:2 � 0:2 = 0:04

Hence, we get 16:

COSTGS80 =
P

8a: attribute of AtomicPart propCost(change; a; AtomicPart) � numChangea;AtomicPart

=
P

8a: attribute of AtomicPart

P
c2[AtomicPart;Sel80]

fcost(insert; c) + cost(delete; c) + cost(change; a; c)g
= 1+ 0:16 + 0:16 + 0:64 = 1:96

Other global schemas GS60, GS40, and GS20 have the same actual updates costs on the AtomicPart
class, and the only di�erence lies on the Select classes with di�erent selectivity factors. The propagation
costs of all the global schemas are reported in Figure 15. To con�rm the validity of the �nding achieved
by the cost model, we now evaluate the costs on our real system. We �rst run a random set of change-
attribute updates on the AtomicPart base class (on 1% of the AtomicPart extent) having a certain percent
of updates, approximately equal to the selectivity factors, propagate to the Select class, then we measure
the view maintenance costs. As illustrated in Figure 15, the run time results coincide with the results we
get from using our cost model.

Global Schema GS80 GS60 GS40 GS20
Selectivity Factor 80% 60% 40% 20%

View Maintenance Cost 1.96 1.84 1.64 1.36
Running time (milliseconds) 6471 6377 4833 3177

Figure 15: The Results of Experiment 2.

29

select predicate:

x

docId
y

Inter4

select predicate:
 x<3874887757

select predicate:
 y<2158507603

AtomicPart

y<2158507603
 and
docId< 4200000000

(a) Global Schema GS1.

APSel2

APSel3

select predicate:

x

docId
yAtomicPart

y<2158507603
 and
docId< 4200000000

select predicate:

x

docId
y

select predicate:
 x<3874887757

AtomicPart

y<2158507603
 and
docId< 4200000000

select predicate:
 x<3874887757
 and
 y<2158507603

APSel3

APSel1

APSel3

APSel1

 APSel2*

(b) Global Schema GS2. (c) Global Schema GS3.

Inter4* Inter4**

Figure 16: Global Schema Used in Test Case 3.

9.4 Experiment Three

This experiment is designed to explore the usage of our cost model. For Figure 9(a), let us we assume that
APSel1 and APSel2 have become obsolete over time and we wish to remove them from the global schema,
if possible. After consulting the dependency graph DG (Figure 9(b)), we �nd that there exists a mutual
interdependency between the removal of these two classes. We hence use our cost model to guide the class
removal.

Let us assume the workload consists of only change-attribute operations on 1% of the AtomicPart
extent, i.e., the
numChangea;AtomicPart in Equation (1) is 100 change-attribute updates (1% of the 10000 objects), and
numInserti and numDeletei are both zero. We get:

COSTGS2 =
P

8a: attribute of AtomicPart propCost(change; a; AtomicPart) � numChangea;AtomicPart

=
P

8a: attribute of AtomicPart

P
c2[AtomicPart;APSel2�;APSel3;Inter4�]

fcost(insert; c) + cost(delete; c) + cost(change; a; c)g

COSTGS3 =
P

8a: attribute of AtomicPart propCost(change; a; AtomicPart) � numChangea;AtomicPart

=
P

8a: attribute of AtomicPart

P
c2[AtomicPart;APSel1;APSel3;Inter4��]

fcost(insert; c) + cost(delete; c) + cost(change; a; c)g

Comparing the two cost functions listed above, the only di�erence is that GS2 has APSel2� and Inter4�
and GS3 has APSel1 and Inter4 � � instead (Figure 16(b) and (c)). Now, we compute the change-attribute
propagation costs for these four classes. We begin with the parameters PIAtomicPart = 0; PDAtomicPart = 0,
PCAtomicPart(a) = 1; 8 a an attribute of AtomicPart, SelAPSel1 = 90%, and SelAPSel2� = 45%. Then we
compute PI, PD, PC, and PM for APSel1, APSel2�, Inter4�, and Inter4 � �. The computed values are:

1. PIAPSel1 = 0 � 0:9 + (1� 0:9) � (0:9) � 1 = 0:09

2. PDAPSel1 = 0 � 0:9 + (1� 0:9) � (0:9) � 1 = 0:09

3. PCAPSel1(a) = 1 � 0:9 � 0:9 = 0:81

4. PIAPSel2� = 0 � 0:45 + (1� 0:45) � (0:45) � 1 = 0:2475

5. PDAPSel2� = 0 � 0:45 + (1� 0:45) � (0:45) � 1 = 0:2475

6. PCAPSel2�(a) = 1 � 0:45 � 0:45 = 0:2025

7. PIInter4� = 0:2475 � 0:98 = 0:24255

16We assume that the values of costinsert, costdelete, and costchange�attr(a) are approximately the same.

30

8. PDInter4� = 0:2475 � 0:98 = 0:24255

9. PCInter4�(a) = 0:2025

10. PIInter4�� = 0:09 � 0:49 = 0:0441

11. PDInter4�� = 0:09 � 0:49 = 0:0441

12. PCInter4��(a) = 0:81

Because cost(insert; APSel1)+cost(delete; APSel1)+cost(change; a; APSel1)+ cost(insert; Inter4��)
+
cost(delete; Inter4��)+cost(change; a; Inter4��) = 1:8882 and cost(insert; APSel2�)+cost(delete; APSel2�)+
cost(change; a; APSel2�)+ cost(insert; Inter4�)+cost(delete; Inter4�)+cost(change; a; Inter4�) = 1:3851,
if we consider that the values of costinsert; costdelete and costchange�attr(a)

17 are approximately the same,
we will have COSTGS3 > COSTGS2. Also, if we were to take into account insertions and deletions of objects
in the AtomicPart class, PIi 6= 0 and PDi 6= 0 the probability of inserting (deleting) an object in (from)
APSel1 would be much higher than APSel2�, and this would make the di�erence between COSTGS3 and
COSTGS2 even larger. Therefore, we choose to delete APSel1.

Global Schema GS GS2 GS3
with Class APSel2* APSel1
Selectivity Factor 45.32 % 90.16 %
Num of total classes 6 5 5

Running time (milliseconds) 27023.5 10908.9 16793.4

Figure 17: The Results of Experiment 3.

To con�rm the validity of the �nding achieved by the cost model, we now evaluate the costs on our real
system. We �rst measure the view maintenance costs associated with GS1 while running a set of change-
attribute updates on the AtomicPart base class (on 1% of the AtomicPart extent). Then we measure the
view maintenance costs for the case that APSel1 is removed and for the case that APSel2 is removed. As
illustrated in Figure 17, the run time results are proportional to the results we get from using our cost model.

10 Conclusions

10.1 Contributions

In this paper, we provide a characterization of the virtual class removal problem in the context of Multi-
View/TSE. Results of this work should improve the e�ciency of transparent schema evolution systems such
as TSE [15], and thus increase their utility as mechanisms for enabling interoperability, in the sense that it
provides a mechanism for removal of schema versions in systems where the virtual classes are integrated in
the class hierarchy [2, 17, 20]. We characterize four potential schema consistency problems for single class
removal, and present a solution for each of these problems. Key ideas here are virtual class rede�nition
strategies to address the derivation-dependency problem and promotion of properties to address the type-
e�ect problem. We demonstrate that view schema removal is sensitive to class ordering. Our solution for
this multiple class removal problem is based on a formal model, called the dependency model, of capturing
all dependencies between class deletions and nondeletions as logic clauses. This model allows us to guaran-
tee the consistency of the resulting schema in the sense that a schema is consistent as long as the chosen
variable assignment is valid { where a variable assignment corresponds to a decision for each class in the
global schema as to whether it should be deleted or not. Based on this formal model, we have developed and
proven consistent a dependency graph (DG) representation and associated set of rules for DG generation,
reduction, and transformation. Once alternative removal patterns on the dependency graph are identi�ed

17At this point, we have not run experiments to give an approximate value for costinsert; costdelete and costchange�attr(a)
yet.

31

that cannot allow for the removal of a virtual class without preventing the removal of another, we require a
strategy for deciding which mutually exclusive selection to make. To address this problem, we have presented
a cost model for evaluating alternative removal patterns on DG and thus guiding the decision process of
class removal.

In this paper, we also present results from the experiments we have conducted on top of the Multi-
View/TSE system. In the small example provided in Section 9 (see Figure 13), we were able to improve
the e�ciency of a sequence of update operations by 70% by removing 2 classes. The simulations also indi-
cated that our cost model provides us with good guidance of which class to remove in order to optimize the
schema. Finally, we have implemented a preliminary version of the SVR system that removes classes and
guarantees that the �nal schema is still consistent. This prototype version does however not yet incorporate
the complete dependency graph model and in particular the transformation rules as detailed in this paper.

10.2 Future Work

In the future, a new version of the SVR implementation needs to be developed to incorporate the complete
dependency graph as described in this paper, with all the transformation rules. Another area that needs
future work is with regard to the cost model. Extensive experimental studies would have to be run to get an
approximation of the values for costinsert, costdelete and costchange�attr(a) for MultiView. Since these values
are implementation dependent, these types of experiments would have to be re-run if our cost model were
to be applied to some other view system. With a good estimate for those values, one can then integrate the
proposed cost model into the SVR tool.

One capability that could be added to MultiView/SVR is to allow a deleted class's operator to be
combined with another class's operator. These multiple operator classes require relaxing assumption SI6.
Combining operators will decrease the number of stored classes, and therefore improvements in the e�ciency
of our schema are likely to occur, as shown in our preliminary test cases. Adding multiple operators will
require changes to the classi�cation system of MultiView [17, 18] so that the new multiple operator classes
can be properly placed in the global schema as well as changes in the view maintenance algorithm [12, 13].
The work described in this paper still applies for a system where multiple operator classes are allowed. The
changes we envision need to be done to our solution presented in this paper are with regards to the way new
sources are found (the algorithm itself), and the way rede�nition is done.

Acknowledgements. Thank you to Harumi Kuno and Young-Gook Ra, who built the MultiView and
the TSE systems, for providing us with a valuable platform for developing the SVR tool. We also thank them
as well as the other members of our University of Michigan Database Group for discussions and suggestions
on an early draft of this paper.

References

[1] Report on the Object-Oriented Database Workshop: Panel on Schema Evolution and Version Manage-
ment. In SIGMOD Records, Vol 18, No.3, September 1989.

[2] S. Abiteboul and A. Bonner. Objects and views. SIGMOD, pages 238{247, 1991.

[3] J. Banerjee, W. Kim, H. J. Kim, and H. F. Korth. Semantics and implementation of schema evolution
in object-oriented databases. SIGMOD, pages 311{322, 1987.

[4] E. Bertino. Integration of heterogeneous data repositories by using object-oriented views. International
Workshop on Interoperability in Multidatabase Systems, pages 22{29, April 1991.

[5] Svein Erik Bratsberg. Uni�ed class evolution by object-oriented views. In Proc. 12th Intl. Conf. on the
Entity-Relationship Approach, pages 423{439, 1992.

[6] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The OO7 benchmark. SIGMOD, 1993.

[7] V. Crestana, A. Lee, and E. A. Rundensteiner. Sustaining software interoperability via shared, evolving
object repositories: System optimization and evaluation. To appear in CASCON'96, 1996.

32

[8] V. Crestana and E. A. Rundensteiner. Consistent view removal in transparent schema evolution systems.
Sixth Int. Workshop on Research Issues on Data Eng., Interop. of Nontraditional DBMSs, (RIDE'96,
IEEE), 1996.

[9] C. Delcourt and R. Zicari. The design of an integrity consistency checker (ICC) for an object oriented-
database system. In P. America, editor, ECOOP, pages 97{117, 1991.

[10] J. Garcia-Molina E. Bertino, B. Catania and G. Guerrini. A formal model of views for object-oriented
database systems. (unpublished), 1996.

[11] H. A. Kuno and E. A. Rundensteiner. New benchmark issues for object-oriented view systems. In
OOPSLA Workshop on Object-Oriented Database Benchmarking, October 1995.

[12] H. A. Kuno and E. A. Rundensteiner. The MultiView OODB view system: Design and implementation.
In Harold Ossher and William Harrison, editors, Accepted by Theory and Practice of Object Systems
(TAPOS), Special Issue on Subjectivity in Object-Oriented Systems. John Wiley New York, 1996.

[13] H. A. Kuno and E. A. Rundensteiner. Using object-oriented principles to optimize update propagation
to materialized views. In IEEE International Conference on Data Engineering, pages 310{317, 1996.

[14] M. A. Morsi, S. B. Navathe, and H. J. Kim. A schema management and prototyping interface for an
object-oriented database environment. In F. Van Assche, B. Moulin, and C. Rolland, editors, Object-
Oriented Approach in Information Systems, pages 157{180. Elsevier Science Publishers B. V. (North
Holland), 1991.

[15] Y. G. Ra and E. A. Rundensteiner. A transparent object-oriented schema change approach using view
schema evolution. In IEEE International Conference on Data Engineering, pages 165{172, March 1995.

[16] Y. G. Ra and E. A. Rundensteiner. A transparent schema evolution system based on object-oriented
view technology. to be published in IEEE Transactions on Knowledge and Data Engineering, 1996.

[17] E. A. Rundensteiner. MultiView: A methodology for supporting multiple views in object-oriented
databases. In 18th VLDB Conference, pages 187{198, 1992.

[18] E. A. Rundensteiner. A classi�cation algorithm for supporting object-oriented views. In International
Conference on Information and Knowledge Management, pages 18{25, November 1994.

[19] C. Souza dos Santos, S. Abiteboul, and C. Delobel. Virtual schemas and bases. In International
Conference on Extending Database Technology (EDBT), 1994.

[20] M. H. Scholl, C. Laasch, and M. Tresch. Updatable views in object-oriented databases. In Proceedings
of the Second DOOD Conference, December 1991.

[21] R. Zicari. A framework for O2 schema updates. In 7th IEEE International Conf. on Data Engineering,
pages 146{182, April 1991.

33

A DG Transformation Rules

Transformation Rules in case a class becomes non-deletable:

1. If OSorNP (Ci; fCi1; Ci2; : : : ; Cing; fCin+1; Cin+2 ; : : : ; Cin+mg) and Ci is non-deletable:

The link states a condition for Ci to be deleted. Since Ci is non-deletable the link is not needed.
Therefore: remove the link.

Proof: By substituting Di by 0 in the original clause: (OSi
W
NPi
W
Di) = (OSi

W
NPi
W
1) = 1. That

means that the clause is satis�ed no matter what the values of OSi and NPi are. Therefore the link
can be removed.

2. If OSorNP (Ci; fCi1; Ci2; : : : ; Cing; fCin+1; Cin+2 ; : : : ; Cin+mg) and Cij is non-deletable for some j 2
f1::ng:

The link states that Ci can be deleted (since it has no local properties, otherwise we would have
generated OSonly instead), but it can a�ect deletion of super and subclasses. If we know that one
subclass will remain in the schema, if class Ci has any property migrated to it, it can only be deleted
if all other subtrees are completed deleted. Therefore, we substitute the link by:

STorNP (Ci; fCi1; : : : ; Cij�1 ; Cij+1 ; : : : ; Cing; fCin+1 ; Cin+2; : : : ; Cin+mg)

Proof: The original clause is: (OSi
W
NPi
W
Di), where

OSi = (STi1
V
STi2

V
� � �
V
STin)

W
((OSi1

W
Di1

W
LPi1)

V
STi2

V
� � �
V
STin)W

� � �
W
(STi1

V
� � �STij�1

V
(OSij

W
Dij

W
LPij)

V
STij+1

V
� � �
V
STin)

W
� � �
W
(STi1

V
STi2

V
� � �
V
(OSin

W
Din

W
LPin)). If Dij = 0, then STij = 0. By substituting STij by

0 we get:
OSi = (STi1

V
� � �STij�1

V
0
V
STij+1

V
� � �STin)

W
� � �
W
((OSi1

W
Di1

W
LPi1)

V
� � �STij�1

V
0
V
STij+1

V
� � �STin)W

� � �
W
(STi1

V
� � �STij�1

V
(OSij

W
1
W
LPij)

V
STij+1 � � �

V
STin)

W
� � �
W
(STi1

V
� � �STij�1

V
0
V
STij+1 � � �

V
(OSin

W
Din

W
LPin)) = (STi1

V
� � �STij�1

V
STij+1 � � �

V
STin).

So, the new clause is:
((STi1

V
� � �STij�1

V
STij+1 � � �

V
STin)

W
NPi
W
Di) which is the link given above.

note: if in the original link there was only one subclass , i.e. n = 1, and so j = 1, then we could remove
the link.

Proof: The original clause is: (OSi
W
NPi
W
Di), where

OSi = (STi1)
W
(OSi1

W
Di1

W
LPi1)). By substituting STi1 by 0 and Di1 by 0, we get:

OSi = (0
W
(OSi1

W
1
W
LPi1)) = 1. Therefore, the clause (OSi

W
NPi
W
Di) = (1

W
NPi
W
Di) = 1.

Therefore the clause is true no matter what the values of NPi and Di are. So we can remove the link.

3. If OSorNP (Ci; fCi1; Ci2; : : : ; Cing; fCin+1; Cin+2 ; : : : ; Cin+mg) and Cij is non-deletable for some j 2
fn+ 1::n+mg:

The link states that Ci can be deleted (since it has no local properties, otherwise we would have
generated OSonly instead), but it can a�ect deletion of super and subclasses, in case it was possible
that properties were migrated to it. If a direct-superclass will not be deleted, we know that class Ci will
not get any properties migrated from Cij . However, we still have to account for the other superclasses.
Therefore, change link to:

OSorNP (Ci; fCi1; Ci2; : : : ; Cing; fCin+1 ; : : : ; Cij�1 ; Cij+1 ; : : : ; Cin+mg)

Proof: The original clause is: (OSi
W
NPi
W
Di), where

NPi = LPi
V
(Din+1

W
NPin+1)

V
� � �
V
(Dij

W
NPij)

V
� � �
V
(Din+m

W
NPin+m). By substituting Dij

by 0, we get:
NPi = LPi

V
(Din+1

W
NPin+1)

V
� � �
V
(1
W
NPij)

V
� � �
V
(Din+m

W
NPin+m)

34

= LPi
V
(Din+1

W
NPin+1)

V
� � �
V
(Din+m

W
NPin+m). So, the new clause is:

(OSi
W
NPi
W
Di), where NPi is the clause computed above. This clause is equivalent to the link given

above.

note: if in the original link there was only one superclass, i.e. m = 1, so j = n + 1 then we could
remove the link.

Proof: The original clause is: (OSi
W
NPi
W
Di), where

NPi = LPi
V
(Din+1

W
NPin+1). By substituting Dij by 0 and LPi by 0 (since Ci does not have any

local property up to the moment, otherwise the link OSonly would have been generated instead), we
get: NPi = 1

V
(1
W
NPin+1) = 1. Therefore, the clause (OSi

W
NPi
W
Di) = (OSi

W
1
W
Di) = 1.

Therefore the clause is true no matter what the values of OSi and Di are. So we can remove the link.

4. If OSonly(Ci ; fCi1; Ci2; : : : ; Cing) and Ci is non-deletable:

The link states a condition for Ci to be deleted. Since Ci is non-deletable the link is not needed.
Therefore: remove the link.

Proof: By substituting Di by 0 in the original clause: (OSi
W
Di) = (OSi

W
1) = 1. That means that

the clause is satis�ed no matter what the value of OSi is. Therefore the link can be removed.

5. If OSonly(Ci ; fCi1; Ci2; : : : ; Cing) and Cij is non-deletable for some j 2 f1::ng:

The link states that Ci can be deleted provided it has only one subclass (since it has local properties).
If we know that one subclass will remain in the schema, class Ci can be deleted only if all other
subclasses' subtrees are also deleted. Therefore, we change the link to:

STonly(Ci; fCi1; : : : ; Cij�1 ; Cij+1 ; : : : ; Cing)

Proof: The original clause is: (OSi
W
Di), where

OSi = (STi1
V
STi2

V
� � �
V
STin)

W
((OSi1

W
Di1

W
LPi1)

V
STi2

V
� � �
V
STin)W

� � �
W
(STi1

V
� � �STij�1

V
(OSij

W
Dij

W
LPij)

V
STij+1

V
� � �
V
STin)

W
� � �
W
(STi1

V
STi2

V
� � �
V
(OSin

W
Din

W
LPin)). If Dij = 0, then STij = 0. By substituting STij by

0 we get:
OSi = (STi1

V
� � �STij�1

V
0
V
STij+1

V
� � �STin)

W
� � �
W
((OSi1

W
Di1

W
LPi1)

V
� � �STij�1

V
0
V
STij+1

V
� � �STin)W

� � �
W
(STi1

V
� � �STij�1

V
(OSij

W
1
W
LPij)

V
STij+1 � � �

V
STin)

W
� � �
W
(STi1

V
� � �STij�1

V
0
V
STij+1 � � �

V
(OSin

W
Din

W
LPin))

= (STi1
V
� � �STij�1

V
STij+1 � � �

V
STin). So, the new clause is:

((STi1
V
� � �STij�1

V
STij+1 � � �

V
STin)

W
Di) which is the link given above.

6. If OSonly(Ci ; fCi1; Ci2; : : : ; Cing) and for some j 2 f1::ng, STij = 0, LPij = 0 and OSij = 0:

The link states that Ci can be deleted provided it has only one subclass (since it has local properties).
If we know that one subclass (still unmarked), will have more than one subclass (indicated by STij = 0
and OSij = 0), and has no local properties (therefore could be deleted), when we delete Ci (if we do
so) will prevent us from deleting Cij , since Cij will have local properties migrated to it, and it has
more than one subclass (indicated by OSij = 0). Therefore, we can substitute the above link the two
following links:

STonly(Ci; fCi1; : : : ; Cij�1 ; Cij+1 ; : : : ; Cing)

minimalRemaining(Ci ; fCijg)

Proof: The original clause is: (OSi
W
Di), where

OSi = (STi1
V
STi2

V
� � �
V
STin)

W
((OSi1

W
Di1

W
LPi1)

V
STi2

V
� � �
V
STin)

35

W
� � �
W
(STi1

V
� � �STij�1

V
(OSij

W
Dij

W
LPij)

V
STij+1

V
� � �
V
STin)

W
� � �
W
(STi1

V
STi2

V
� � �
V
(OSin

W
Din

W
LPin)). By substituting STij by 0, LPij by 0 and OSij by

0, we get:
OSi = (STi1

V
� � �STij�1

V
0
V
STij+1

V
� � �STin)

W
� � �
W
((OSi1

W
Di1

W
LPi1)

V
� � �STij�1

V
0
V
STij+1

V
� � �STin)

W
� � �
W
(STi1

V
� � �STij�1

V
(0
W
Dij

W
0)
V
STij+1 � � �

V
STin)

W
� � �
W
(STi1

V
� � �STij�1

V
0
V
STij+1 � � �

V
(OSin

W
Din

W
LPin))

= (STi1
V
� � �STij�1

V
Din

V
STij+1 � � �

V
STin). So, the new clause is:

((STi1
V
� � �STij�1

V
Din

V
STij+1 � � �

V
STin)

W
Di), which can be decomposed into:

((STi1
V
� � �STij�1

V
STij+1 � � �

V
STin)

W
Di)
V
(Din

W
Di), which corresponds to the two links given

above.

7. If NPonly(Ci; fCin+1 ; Cin+2 ; : : : ; Cin+mg) and Ci is non-deletable:

The link states a condition for Ci to be deleted. Since Ci is non-deletable the link is not needed.
Therefore: remove the link.

Proof: By substituting Di by 0 in the original clause: (NPi
W
Di) = (NPi

W
1) = 1. That means that

the clause is satis�ed no matter what the value of NPi is. Therefore the link can be removed.

8. If NPonly(Ci; fCin+1 ; Cin+2 ; : : : ; Cin+mg) and Cij is non-deletable for some j 2 fn+ 1::n+mg:

The link states that Ci can be deleted (since it has no local properties) but it can a�ect deletion of
superclasses, in case it was possible that properties were migrated to it. If a direct-superclass will not
be deleted, we know that class Ci will not get any properties migrated from Cij . However, we still
have to account for the other superclasses. Therefore, change link to:

NPonly(Ci; fCin+1; : : : ; Cij�1 ; Cij+1 ; : : : ; Cin+mg)

Proof: The original clause is: (NPi
W
Di), where

NPi = LPi
V
(Din+1

W
NPin+1)

V
� � �
V
(Dij

W
NPij)

V
� � �
V
(Din+m

W
NPin+m). By substituting Dij

by 0, we get:
NPi = LPi

V
(Din+1

W
NPin+1)

V
� � �
V
(1
W
NPij)

V
� � �
V
(Din+m

W
NPin+m)

= LPi
V
(Din+1

W
NPin+1)

V
� � �
V
(Din+m

W
NPin+m). So, the new clause is:

(NPi
W
Di), where NPi is the clause computed above. This clause is equivalent to the link given above.

9. If NPonly(Ci; fCin+1 ; Cin+2 ; : : : ; Cin+mg) and for some j 2 fn+ 1::n+mg NPij = 0:

The link states that Ci can be deleted (since it has no local properties) but it can a�ect deletion of
superclasses, in case it was possible that properties were migrated to it. If the NP of a direct-superclass
is 0, it means that the superclass, if deleted, will migrate the properties to Ci, and therefore prevent
Ci from being deleted. So, we can substitute the link above by:

NPonly(Ci; fCin+1; : : : ; Cij�1 ; Cij+1 ; : : : ; Cin+mg)

minimalRemaining(Ci ; fCijg)

Proof: The original clause is: (NPi
W
Di), where

NPi = LPi
V
(Din+1

W
NPin+1)

V
� � �
V
(Dij

W
NPij)

V
� � �
V
(Din+m

W
NPin+m). By substituting NPij

by 0, we get:
NPi = LPi

V
(Din+1

W
NPin+1)

V
� � �
V
(Dij

W
0)
V
� � �
V
(Din+m

W
NPin+m)

36

= LPi
V
(Din+1

W
NPin+1)

V
� � �
V
(Dij)

V
� � �
V
(Din+m

W
NPin+m). So, the new clause can be rewritten

as:
(LPi

V
(Din+1

W
NPin+1)

V
� � �
V
(Dij�1

W
NPij�1)

V
� � �
V
(Dij+1

W
NPij+1)

V
� � �
V
(Din+m

W
NPin+m)

V
Dij)
W
Di)

which is the same as:
(LPi

V
(Din+1

W
NPin+1)

V
� � �
V
(Dij�1

W
NPij�1)

V
� � �
V
(Dij+1

W
NPij+1)

V
� � �
V
(Din+m

W
NPin+m))

W
Di)

V
(Dij

W
Di) which corresponds to the two links given above.

10. If STorNP (Ci; fCi1; Ci2; : : : ; Cing; fCin+1; Cin+2 ; : : : ; Cin+mg) and Ci is non-deletable:

The link states a condition for Ci to be deleted. Since Ci is non-deletable the link is not needed.
Therefore: remove the link.

Proof: By substituting Di by 0 in the original clause:

((STi1
V
STi2

V
� � �
V
STin)

W
NPi
W
Di) = ((STi1

V
STi2

V
� � �
V
STin)

W
NPi
W
1) = 1. That means

that the clause is satis�ed no matter what the values of STi1 ; STi2 ; : : : ; STin and NPi are. Therefore
the link can be removed.

11. If STorNP (Ci; fCi1; Ci2; : : : ; Cing; fCin+1 ; Cin+2; : : : ; Cin+mg) and Cij is non-deletable for some j 2
f1::ng:

The link states that Ci can be deleted (since it has no local properties, otherwise we would have
generated OSonly instead), but it can a�ect deletion of super and subclasses. The link also states that
one of the subclasses of Ci will not be deleted, and that is why we have ST instead of OS. Therefore,
if one more subclass will not be deleted, Ci will have at least 2 subclasses in the remeaining schema.
And so, it can only be deleted if it does not get any property migrated to it. Consequently, we change
the link to:

NPonly(Ci; fCin+1; Cin+2 ; : : : ; Cin+mg)

Proof: The original clause is: (STi1
V
STi2

V
� � �
V
STin)

W
NPi
W
Di). If Dj = 0, then STj = 0. By

substituting STj by 0 in the above clause, we get: (0
W
NPi
W
Di) = (NPi

W
Di) which is the above

link.

12. If STorNP (Ci; fCi1; Ci2; : : : ; Cing; fCin+1 ; Cin+2; : : : ; Cin+mg) and Cij is non-deletable for some j 2
fn+ 1::n+mg:

The link states that Ci can be deleted (since it has no local properties, otherwise we would have
generated OSonly instead), but it can a�ect deletion of super and subclasses, in case it was possible
that properties were migrated to it. If a direct-superclass will not be deleted, we know that class Ci will
not get any properties migrated from Cij . However, we still have to account for the other superclasses.
Therefore, we change link to:

STorNP (Ci; fCi1; Ci2 ; : : : ; Cing; fCin+1; : : : ; Cij�1 ; Cij+1 ; : : : ; Cin+mg)

Proof: The original clause is: (STi1
V
STi2

V
� � �
V
STin)

W
NPi
W
Di) where

NPi = LPi
V
(Din+1

W
NPin+1)

V
� � �
V
(Dij

W
NPij)

V
� � �
V
(Din+m

W
NPin+m). By substituting Dij

by 0, we get:
NPi = LPi

V
(Din+1

W
NPin+1)

V
� � �
V
(1
W
NPij)

V
� � �
V
(Din+m

W
NPin+m)

= LPi
V
(Din+1

W
NPin+1)

V
� � �
V
(Din+m

W
NPin+m). So, the new clause is:

(STi1
V
STi2

V
� � �
V
STin)

W
NPi
W
Di), where NPi is the clause computed above. This clause is equiv-

alent to the link given above.

note: if in the original link there was only one superclass, i.e. m = 1, so j = n + 1 then we could
remove the link.

37

Proof: The original clause is: (STi1
V
STi2

V
� � �
V
STin)

W
NPi
W
Di) where

NPi = LPi
V
(Din+1

W
NPin+1). By substituting Dij by 0 and LPi by 0 (since Ci does not have any

local property up to the moment, otherwise the link STonly would have been generated instead), we get:
NPi = 1

V
(1
W
NPin+1) = 1. Therefore, the clause (OSi

W
NPi
W
Di) = (STi1

V
STi2

V
� � �
V
STin)

W
1
W
Di) =

1. Therefore the clause is true no matter what the values of ST 's and Di are. So we can remove the
link.

13. If STonly(Ci ; fCi1; Ci2; : : : ; Cing) and Ci is non-deletable:

The link states a condition for Ci to be deleted. Since Ci is non-deletable the link is not needed.
Therefore: remove the link.

Proof: By substituting Di by 0 in the original clause:

((STi1
V
STi2

V
� � �
V
STin)

W
Di) = ((STi1

V
STi2

V
� � �
V
STin)

W
1) = 1. That means that the clause

is satis�ed no matter what the values of STi1 ; STi2 ; : : : ; STin are. Therefore the link can be removed.

14. If STonly(Ci ; fCi1; Ci2; : : : ; Cing) and Cij is non-deletable for some j 2 f1::ng:

The link states that Ci can be deleted provided all the subtrees of classes Ci1 ; Ci2; : : : ; Cin are also
deleted. If one of this classes is non-deletable (Cij), then Ci can not be deleted. Therefore: mark Ci

non-deletable.

Proof: The original clause is: (STi1
V
STi2

V
� � �
V
STin)

W
Di). If Dj = 0, then STj = 0. By substi-

tuting STj by 0 in the above clause, we get: (0
W
Di). Therefore, the only way to satisfy the above

clause is by making Di = 0.

15. If remainPropagate(Ci; fCi1; Ci2 ; : : :Cing) and Ci is non-deletable:

The link states that if Ci is not deleted (i.e., if Ci remains in the global schema), at least one of the
classes Ci1 ; : : : ; Cin should remain. Therefore, this link is translated into a link that represent this de-
pendency between classes Ci1 ; : : : ; Cin and does not include class Ci: minimalRemaining(Ci1 ; fCi2; : : : ; Cing)

Proof: By substituting Di by 0 in the original clause:
(Di

W
Di1

W
Di2

W
� � �
W
Din) = (0

W
Di1

W
Di2

W
� � �
W
Din) = (Di1

W
Di2

W
� � �
W
Din) which is the

minimalRemaining link given above. Note that, the minimalRemaining link corresponds to an or-ed
clause of negatedDi's, and therefore, it would be also correct to transform the link to: minimalRemaining(Ci2 ; fCi1; Ci3

for example.

note: a special case happens when there is only one class in the destination set (say Ci1). Since at
least one of the classes in the destination set should remain and Ci1 is the only one, Ci1 should remain.
Therefore: Ci1 is non-deletable.

Proof: By substituting Di by 0 in the original clause: (Di

W
Di1) = (0

W
Di1) = (Di1)) Di1 = 0:

16. If remainPropagate(Ci; fCi1; Ci2 ; : : : ; Cing) and there exists one j; j 2 f1::ng such that Cij is non-
deletable:

The link states that if Ci is not deleted, at least one of the classes Ci1 ; Ci2; : : : ; Cin should remain.
Since Cij will remain, the link is not needed. Therefore: remove the link.

Proof: by substituting Dij by 0 in the original clause:

(Di

W
Di1

W
� � �Dij

W
� � �
W
Din) = (Di

W
D

1

W
� � �Dij�1

W
1
W
Dij+1

W
� � �
W
Din) = 1. That means

that the clause is satis�ed no matter what the values of Di; Di1 ; : : : ; Dij�1 ; Dij+1 ; : : : ; Din are. There-
fore, we can remove the clause/link.

17. If minimalRemaining(Ci ; fCi1; Ci2; : : : ; Cing) and Ci is non-deletable:

The link states that if Ci is deleted, at least one of the classes Ci1 ; Ci2; :::; Cin should remain. Since Ci

will not be deleted, the information in the link is not needed. Therefore: remove the link.

38

Proof: by substituting Di by 0 in the original clause: (Di

W
Di1

W
� � �Din) = (1

W
Di1

W
� � �Din) = 1.

That means that the clause is satis�ed no matter what the values of Di1 ; : : : ; Din are. Therefore, we
can remove the clause/link.

18. If minimalRemaining(Ci ; fCi1; Ci1; : : : ; Ci1g) and there exists one i; i 2 f1::ng such that Cij is non-
deletable:

The link states that if Ci is deleted if at least one of the classes Ci1; Ci2; :::; Cin should remain. Since
Cij will remain, there is no restriction on the deletion of Ci with respect to the dependency represented
in this link. Therefore: remove the link.

The proof is the same as the previous one, except that we substitute Dij by 0 instead of substituting
Di by 0.

39

Transformation Rules in case a class is deletable:

We will give rules for deletion of classes, only considering the case where the remaining set of links,
after marking the given class deletable, are guaranteed to have an assignment, namely, all classes being mark
non-deletable, as discussed in Section 7.5. If we do not guarantee a feasible assignment, there is no reason
for giving transformation rules. Instead, we would try out all possible combinations and check validity by
substituting the values of the D variables in the corresponding clauses.

19. If OSorNP (Ci; fCi1; Ci2; : : : ; Cing; fCin+1; Cin+2 ; : : : ; Cin+mg) and Ci is deletable:

The link states that Ci can be deleted if will always have only one subclass (OSi = 1) or if will never
have any properties migrated to it (NPi = 1). Guaranteeing that there will be only one subclass is
impossible in the general case, because there might be some consistency requirement that is not met
when deleting the other subclasses. So, we want to guarantee NPi = 1. Therefore, we mark every
class in fCin+1 ; Cin+2; : : : ; Cin+mg as non-deletable, unless the corresponding NPij is 1.

Proof: By substituting Di by 1 in the original clause: (OSi
W
NPi
W
Di) = (OSi

W
NPi
W
0) =

(OSi
W
NPi). Since we cannot guarantee OSi, we guarantee NPi. NPi is given by: NPi = LPi

V
(Din+1

W
NPin+1)

V
� � �

Therefore, we need Dij = 0 or NPij = 1; 8j 2 fn+ 1::n+mg, which is the condition stated above.

20. If OSorNP (Ci; fCi1; Ci2; : : : ; Cing; fCin+1 ; Cin+2 ; : : : ; Cin+mg) and Cij is deletable for some j 2 f1::ng:

The link states that Ci can be deleted (since it has no local properties, otherwise we would have
generated OSonly instead), but it can a�ect deletion of super and subclasses. If one subclass is
deleted, as an e�ect of this deletion, its direct-subclasses will be connected to class Ci. Therefore, we
substitute the link by:

OSorNP (Ci; fCi1; : : : ; Cij�1 ; Cij1
; : : : ; Cijn

; Cij+1 ; : : : ; Cing; fCin+1; Cin+2 ; : : : ; Cin+mg)

where Cij1
; : : : ; Cijn

are the direct-subclasses of Cij .

21. If OSorNP (Ci; fCi1; Ci2; : : : ; Cing; fCin+1; Cin+2 ; : : : ; Cin+mg) and Cij is deletable for some j 2 fn +
1::n+mg:

The link states that Ci can be deleted (since it has no local properties, otherwise we would have
generated OSonly instead), but it can a�ect deletion of super and subclasses. If one superclass is
deleted, as a side e�ect, some properties might be migrated to Ci. In this is the case, we change the
link to:

OSonly(Ci; fCi1; Ci2; : : : ; Cing)

If this is not the case (i.e., no properties migrated), we change the link to:

OSorNP (Ci; fCi1; : : : ; Cing; fCin+1 ; : : : ; Cij�1 ; Cijn+1
; : : : ; Cijn+m

; Cij+1 ; : : : ; Cin+mg)

where Cijn+1
; : : : ; Cijn+m

are the direct-superclasses of Cij .

22. If OSonly(Ci ; fCi1; Ci2; : : : ; Cing) and Ci is deletable:

The link states a condition for Ci to be deleted. Since we cannot guarantee that OSi = 1. We do not
give this transformation rule.

23. If OSonly(Ci ; fCi1; Ci2; : : : ; Cing) and Cij is deletable for some j 2 f1::ng:

The link states a condition for Ci to be deleted. If one subclass is deleted, as an e�ect of this deletion,
its direct-subclasses will be connected to class Ci. Therefore, we substitute the link by:

OSonly(Ci; fCi1; : : : ; Cij�1 ; Cij1
; : : : ; Cijn

; Cij+1 ; : : : ; Cing)

where Cij1
; : : : ; Cijn

are the direct-subclasses of Cij .

40

24. If NPonly(Ci; fCi1; Ci2; : : : ; Cing) and Ci is deletable:

The link states that Ci can be deleted if it will never have any properties migrated to it (NPi = 1).
Therefore, we mark every class in fCin+1 ; Cin+2 ; : : : ; Cin+mg as non-deletable, unless the corresponding
NPij is 1.

25. If NPonly(Ci; fCi1; Ci2; : : : ; Cing) and Cij is deletable for some j 2 fn + 1::n +mg: The link states
that Ci can be deleted if it will never have any properties migrated to it (NPi = 1).

The link states that Ci can be deleted if it will never have any properties migrated to it (NPi = 1). If
one superclass is deleted, as a side e�ect, some properties might be migrated to Ci. In this is the case,
we can no longer delete Ci. Therefore: mark Ci as non-deletable.

If this is not the case (i.e., no properties migrated), we change the link to:

NPonly(Ci; fCin+1; : : : ; Cij�1 ; Cijn+1
; : : : ; Cijn+m

; Cij+1 ; : : : ; Cin+mg)

where Cijn+1
; : : : ; Cijn+m

are the direct-superclasses of Cij .

26. If STorNP (Ci; fCi1; Ci2; : : : ; Cing; fCin+1; Cin+2 ; : : : ; Cin+mg) and Ci is deletable:

The link states that Ci can be deleted if all subtrees of classes Ci1 ; Ci2; : : : ; Cin are deleted, or if Ci

will never have any properties migrated to it (NPi = 1). Guaranteeing that there all the subtrees will
be deleted is impossible in the general case, because there might be some consistency requirement that
is not met when deleting the other subclasses. So, we want to guarantee NPi = 1. herefore, we mark
every class in fCin+1 ; Cin+2 ; : : : ; Cin+mg as non-deletable, unless the corresponding NPij is 1.

Proof: By substituting Di by 1 in the original clause: (OSi
W
NPi
W
Di) = (OSi

W
NPi
W
0) =

(OSi
W
NPi). Since we cannot guarantee OSi, we guarantee NPi. NPi is given by: NPi = LPi

V
(Din+1

W
NPin+1)

V
� � �

Therefore, we need Dij = 0 or NPij = 1; 8j 2 fn+ 1::n+mg, which is the condition stated above.

27. If STorNP (Ci; fCi1; Ci2; : : : ; Cing; fCin+1; Cin+2 ; : : : ; Cin+mg) and Cij is deletable for some j 2 f1::ng:

The link states that Ci can be deleted (since it has no local properties, otherwise we would have
generated STonly instead), but it can a�ect deletion of super and subclasses. If one subclass is
deleted, as an e�ect of this deletion, its direct-subclasses will be connected to class Ci. Therefore, we
substitute the link by:

STorNP (Ci; fCi1; : : : ; Cij�1 ; Cij1
; : : : ; Cijn

; Cij+1 ; : : : ; Cing; fCin+1; Cin+2 ; : : : ; Cin+mg)

where Cij1
; : : : ; Cijn

are the direct-subclasses of Cij .

28. If STorNP (Ci; fCi1; Ci2; : : : ; Cing; fCin+1 ; Cin+2; : : : ; Cin+mg) and Cij is deletable for some j 2 fn +
1::n+mg:

The link states that Ci can be deleted (since it has no local properties, otherwise we would have
generated OSonly instead), but it can a�ect deletion of super and subclasses. If one superclass is
deleted, as a side e�ect, some properties might be migrated to Ci. In this is the case, we change the
link to:

STonly(Ci; fCi1; Ci2; : : : ; Cing)

If this is not the case (i.e., no properties migrated), we change the link to:

STorNP (Ci; fCi1; : : : ; Cing; fCin+1; : : : ; Cij�1 ; Cijn+1
; : : : ; Cijn+m

; Cij+1 ; : : : ; Cin+mg)

where Cijn+1
; : : : ; Cijn+m

are the direct-superclasses of Cij .

29. If STonly(Ci ; fCi1; Ci2; : : : ; Cing) and Ci is deletable:

The link states a condition for Ci to be deleted. Since we cannot guarantee that alll subtrees will be
deleted, this clause might be violated later on. So, we do not give this transformation rule.

41

30. If STonly(Ci ; fCi1; Ci2; : : : ; Cing) and Cij is deletable for some j 2 f1::ng:

The link states a condition for Ci to be deleted. If one subclass is deleted, as an e�ect of this deletion,
its direct-subclasses will be connected to class Ci. Therefore, we substitute the link by:

STonly(Ci; fCi1; : : : ; Cij�1 ; Cij1
; : : : ; Cijn

; Cij+1 ; : : : ; Cing)

where Cij1
; : : : ; Cijn

are the direct-subclasses of Cij .

31. If remainPropagate(Ci; fCi1; Ci2 ; : : : ; Cing) and Ci is deletable:

The link states that if Ci is not deleted, at least one of the classes Ci1 ; Ci2; : : : ; Cing) should remain.
Since Ci is deletable, the link is not needed. Therefore: remove link.

Proof: by substitutingDi by 1 in the original clause: (Di

W
Di1

W
Di2

W
� � �
W
Din) = (1

W
Di1

W
Di2

W
� � �
W
Din) =

1. That means that the clause is satis�ed no matter what the values of Di1 ; : : : ; Din are. Therefore,
we can remove the link.

32. If remainPropagate(Ci; fCi1; Ci2; : : : ; Cing) and there exists one j; j 2 f1::ng such that Cij is deletable:

The link states that if Ci is not deletable, at least one of the classes Ci1 ; Ci2; : : : ; Cin should remain. In
order to maintain consistency, we are still dependent on the deletion of the classes Ci1 ; : : : ; Cij�1 ; Cij+1 ; : : : ; Cin.
Therefore: we change the link to:

remainPropagate(Ci; fCi1; : : : ; Cij�1 ; Cij+1 ; : : : ; Cin

Proof: by substituting Dij by 0 in the original clause:

(Di

W
Di1

W
� � �Dij

W
� � �
W
Din) = (Di

W
Di1

W
� � �Dij�1

W
0
W
Dij+1

W
� � �
W
Din) =

(Di

W
Di1

W
� � �Dij�1

W
Dij+1

W
� � �
W
Din) which is the remainPropagate link given above.

33. If minimalRemaining(Ci ; fCi1; Ci2; : : : ; Cing) and Ci is deletable:

the link states that if Ci is deleted, at least one of the classes fCi1; Ci2 ; : : : ; Cing should remain. So,
now the dependency is among the classes fCi1 ; Ci2; : : : ; Cing. Therefore, this link is translated into
another link that represents this dependency between classes fCi1; Ci2; : : : ; Cing.

minimalRemaining(Ci1 ; fCi2; : : : ; Cing.

Proof: by substituting Di by 0 in the original clause:

(Di

W
Di1

W
� � �
W
Din) = (0

W
Di1

W
� � �
W
Din) = (Di1

W
� � �
W
Din) which is the minimalRemaining

link given above.

34. If minimalRemaining(Ci ; fCi1; Ci2; : : : ; Cing) and there exists one j; j 2 f1::ng such that Cij is
deletable:

The link states that if Ci is deleted, at least one of the classes Ci1 ; Ci2; : : : ; Cin should remain. In order
to maintain consistency, we are still dependent on the deletion of the classes Ci1 ; : : : ; Cij�1 ; Cij+1 ; : : : ; Cin.
Therefore: we change the link to:

minimalRemaining(Ci ; fCi1; : : : ; Cij�1 ; Cij+1 ; : : : ; Cin

The proof is the same as the previous one, except that we substitute Dij by 1, instead of substituting
Di.

42

