A Case Stud y of a Har dware-Managed TLB
in a Multi-T asking En vironment

Chih-Chieh Lee, Richard A. Uhlig, and Trevor N. Mudge

Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, Michigan
{leecc, uhlig, tnm}@eecs.umich.edu

Abstract

There have been vegrfew performance studies of Harare-managed translation look-aside buffers
(TLBs).The majoregason is the lack of effent and accurate analysis tools. Newer operating systems,
applications, and the popularity of the clientsg&r model of computation place aegter buden than their
predecessors on menyasystem components such as TLBs. Thus it is becomiegmpmiant to measug
the performance of memposystems under such workloads. In this work, we implemented a trap-driven
simulator in an operating system to emulate a variety of TLBs. Using this tool, eableto evaluate the
performance of a range of TLBs under these newer workloadse3hlésrshow that in der to impove the
TLB performance, we should efully map pages into the TLB, appendqass identiéirs to avoid fishing
the TLB contentséquently or resere pat of the TLB for a paicular sewer piocess.

1 Intr oduction

It is widely recaynized tha the selection of an optimal tiavare system desigrprimatrily the design of
the Cental Process Unit (CPU) and the das,is highly dependent on the sofare daracteistics tha the
hadware system is to supporFor example main fame systems ardesigned to supgodaabase
applicaions, while vector mabines,or super computerare designeddr massre or intensie computing
workloads suh as mé&ix computdion. Ead hadware system should be designed to supfioe pimary
software running on and the haware/software interfice is perhas one of the most wcial perbrmance
factoss a hadware designer should cowint.

Typical leboratory evaludions of the hadware/software interbice hae undestandaly leaned tward
being eficient both in time and mogebut may no longer be adeque. Hamdware designes usual take a
single and sharprogram as a test on the systemyttege developing and use theesults of these simple
expeliments to guide their design of futusystemsAs a consequencéheir matines mg perform well
only under some #ficial circumstances gt perbrm questionaly under a eal ewnironment. This is
especialy true for the computer systems designed geneal pumposes,sud as pesonal computer and
workstaions. Meanwile, these gneal pupose systems actualhare dominded the computer miaet
because theare moe widely used than & supecomputes in the distibuted netwrk ervironments tha
are typical of husiness,academic and eseath ervironments. Therefore, the perbrmance of the
hardware/software interbice in todg's widely used computer peisonal computer and verkstaions,
strongly demands sfitient,and—if possite—efficient ekamindion.

The lagest dispaty between the simpleui attificial working ervironment and the complited hut real
one is thathe ldter involves nulti-tasking A multi-tasking emironment is a computing einonment tha
allows moe than one pm:eséto simultaneoust shae a computes rare resouces,sud as the CPU and
cades.To allow processes to shathe esouces,some &ir stiategies nust «ist to arbitate and witch the
active' process among the competgoilhis function of witching processes can irtduce unepected
effects thamay not be disceered in the taditionally expeiimental ernironment. Meanwile, multi-tasking
is becoming ina@asingy popular since the cuent tends in soft@re design,sud as object-dented
programs, microkemel opesating systemsand dient-server models,can gnegste piocess witching moe
frequenty. Numepous peliminary studies hee indicded tha hadware perbrmance can be deaded gedly
in the pesence of miti-tasking [Nale93,Chen94 Nagle94]. It is thus becoming impant to econsider
the hadware of moden computes in light of these énds.

Hardware designhes ma alread/ realize the impaotance of testing maines ly putting them under a mer
realistic enironment. Havever, the dificulty and &pensve cost of the x@elimental methodolgy restains
designes from doing it. To overcome this poblem, an eficient method of waluaing the system
performance under a uiti-tasking enironment has beengosed i Uhlig, et al, which is temed*“trap-
driven simulation”[Uhlig94a,Uhlig94b]. In this stug, we extended this n& method to a ditrent lut even
more popular hatware achitectue and collected some inésting esults.

In order to emphasethe nulti-tasking erironment,we incoporated the opeting system (OS) because
the OS is pmairily responsile for manging processedVe instumented the OS and alled moe than one
process toun in the systemtabne time While these ppcesses ere unning we collected some gtstics
and also did simlations for hadware components of intest.With this expeiiment,we can gamine \arious
hardware design options and sy> a better onef computer designgr

i. When a pogram is unning we call it a“process”.
ii. “active” refers to the pocess thiis using the CPUtahe moment.

1/27

In paticular, we studied a hdware component thas most lilely to be afected ly the nulti-tasking
ervironment:the tansldion look-aside bffer (TLB). The pupose of thelLB is to speed up the viral-to-
physical adiress tansldion for the vitual memoy system l stoing the most ¢y used tansldion
information for a pocess. Because accessinginfaion from thisTLB usually takes one lock cycle, if
this kuffer can cpture the majaty of the transldion informaion most of the timethe perbrmance of the
system will be gealy enhancedHowever, since as indicéed dove, the hadware designes confgure their
TLBs accoding to single-pocess gpeliment, the TLBs may not be &le to function vell as epected in a
multi-tasking emironment.

The achitectue we ae working on in this stud is the Intel i486 miaprocessarwhich has an ontap
32-enty TLB, organizd in 4-vay set assoctave [Intel92]. The 1486 micoprocessor is unique because its
TLB is manged ty hadware instead of softare, as is the case withg@ious stug [Uhlig 94a]. In adiition,
the Intel i486 based mhine has shad a signitant potion of pesonal computer mket, where thee ae a
large amount of softare available, including multi-tasking pograms,suc as Lirux andwindow 95.

Therefore, this work explores the pedrmance of the i486'SLB in suppoting the adress tansldion
under a mlti-tasking emironment ve huilt. To measue perbrmance we implemented a dp-driven TLB
simulator in Mad 3.0,a miciokemel opegting systempon an i486-based panal computeiMoreover, to
magnify the impotance of adress tansldion, we did not use simple testggrams,sud as SPEC92yhich
are usual used to ealuage system pedrmance Instead we developed &ient-sewer style vorkloads tha
stress theTLB by switching between seeral tasks fequenty. This report discusses the implemetitan of
theTLB simulator and pesents theasults fom these test erkloads.

The opanizaion of the emainder of thisaport is as bllows: Section 2 outlinesetaed work. Section 3
descibes the design of theapr-diiven simulator. Section 4 pesents the gliminary results and angses of
our peliments. Section 5 psents some colutling emaks and poposes of our futerwork.

2 Related Work

Because this wk is an @aluaion of hadware perbrmance under a uiti-tasking erironment,previous
similar studies dcusing on haware perbrmance under shcervironments desee review. In adlition,
because thexpeimental method used in thisork is ciitical to the success of this kind ofadudion,
previous studies wolving similar methods aralso eviewed hee.

2.1 Similar Multi-tasking Ev aluations

Only in the last ten gas haie reseathers bayun to stugt hadware perbrmance under niti-tasking
ervironments or compable software stuctures. In theseacent studiedwo kinds of softvare stuctures ae
commony investigeted: (1) a nev-genertion opeeting system,sud as a miaskemel OS and (2) a me
applicaion, sud as X windav and nulti-media gplications. In these studiefjrthemore, the ealudion of
hardware perbrmance is gmaiily focused on memgrsystem pedrmance

Studies of a miagkemel OS sud as Mab 3.0, have consistenyl demonsisted tha cade andTLB
misses occur mer frequenty with the micokemel OS than with #ditional OS stictures [Chen93a,
Nagle93,Nagle94].A miss is,simply, an &ent which cahes orTLBs do not contain the tlarequested ¥
cental process unit (CPU)and theefore CPU has to spend neodock cycles to gt the déa from main
memok. The moe misses & the worse the care andTLB performance is dgraded because the pase
of the cabe andTLB design is to disfy most of the CP$ dda requests towaid expensive main memor

2127

accessedAs an eample of TLB performance studied\agle found tha this higher fequeng of misses is
primaiily due to the diision of the micokemel OS into moe subsets-omore adiress spaces-thanear
found in taditional OS stictures.As a esult,the pah of invoking an OS sefce becomes lorag, which, in
turn, stresses the che andlTLB more than does thedditional OS sticture.

Studies of both X winde and nulti-media gplications shaved tha these milti-tasking workloads
degrade TLB performance considably [Chen93h Chen94].This degyraddion occus because thesewe
applicaions consult seers or OS sefices moe frequenty than do the &ditional benbmaks. Meanvhile,
switching piocess contents bedésn the pplications and the seers pioompts a puging of theTLB content,
to ensue the adress tansldion valid. This puging will disallow theTLB to be fully utilized

2.2 Similar Experimental Methods

To evaluge hadware perbrmance under oiti-tasking emironmentswe need tools thaare cgpdle of
monitoiing system actities with minimal disturbance to the system under y@islThe most common
monitoling tools ae code annotin systems surc aspixie [Smith91]. These a& puely software-based
because thework by inseting monitoing code diectly into executdle images of pograms.This piocess
of inseting code is calledannotaion” When the annotad pogram is eecuted the inseted code can
recod program actvities into a pedetemined fle for post-anaisis.

In addition to puely software-based toolhaidware-assisted toolf monitoing system actities also
exist. For exkample Nagle et al. [Nagle92] hae developed a monitang tool by combining a lgic analzer,
which is a hadware item,with an instumented OS &mel, which is a softvare item.This monitomg tool
probes the systemub and ecods the system diatics in its evn buffer. Because it déctly probes the
system bs, this tool is cpable of collecting system aeities completel. However, once the too$ kuffer
becomes fullthe system undervestication needs to be stalled so thiae huffer contents can Belumped”
to files. This dumping is necessaron the one handecause otherwise the systentistiés cannot be
collected On the other handhe stall is detmental to the xpeliment because it discontias the system
execution and thefore distots the system betamr. Unfortunaely, the tools tuffer is usuall small,
compaed to the amount of systemtittics collected dung program execution; thusstalls occur fequenty
and the system under meamment is distded by the expeliment.

The tools mentionedbave, both those puly software-based and those thee hadware-assistedhave
some impatant shotcomings.Although it monitos gplicaions adequizly, pixie only works well in
monitoling single pocess actity and cannot gature events poduced in an OShecause it isery had to
annotae the opeating system. Ngle’s tool equires both a laye kuffer in the monitang tool and a method
of stalling the system compleyeland corectly. These a seious shotcomings if nulti-tasking
ervironments a to be studiedio stug the nulti-tasking erironmentwe must be ale to both monitor OS
actiities and lee the system functioning undisturbed (not stalled) ashnas possile. A limited sized
buffer and therefore, the necessity of équent system stalls vigably changes the system betiar.

To overcome these shtmomings, Uhlig et al. [Uhlig94b] deeloped a tp-driven sinulator, called
Tapeworm tha can cature events duing opesting system actity efficiently and corectly. Futhemore,
these gents can be pressed on-theyfl thereby avoiding the needdr huffering and stalling Tapewvorm,
moreover, is puely software-based It does simlation by setting teps on all memaor locaions in the
workload's adress space thacorespond to thewvents under styd Therfore, eath time ary of those
memoy regions being tapped is accessediapenvorm can be ware of it because agp occus. Within eat
trap, Tapeworm meay set or tear tiaps aain on the accessed memgiace to contl the pogress of the

3/27

expeliment. Becaus&apewvorm is cgable of cgturing multi-tasking and OS émel actvities, we modifed
it into the monitoing tool for our work.

This work extends pevious work using Tapewvorm. In the vork of Uhlig et al., Tapewvorm was used to
study instiuction cabes and softare-manged TLBs in MIPS R3000-based systems. Implementing
Tapaworm on i486-based mhmes,which emply haidware-manged TLBs, represents a e area of stugt
that will also (1) demonséte the potability of the Tapeworm and (2) allav us to compag the perdrmance
of Tapeworms on diferent undellying hadware plaforms. In adiition to thd, as the most populaegeal
pumpose makine i486-based mdines suppdrmore intensiely interactve workloads than do MIPS
R3000-based mames.These wrkloads ae requiing mole opesting system setces because thedo
more input/output actities, but the perbrmance of these evkloads on the i486 mames ae still unknavn.

An third contibution of this stug, thetefore, is to gve initial perbrmance ealudion for these intexsting
and frequenty more popular wrkloads.

3 Experimental Method

We tested our #p-diiven, Tapeworm-basedTLB simulator on a Gsaway 2000 i486-based pswnal
computer with a Mat 3.0 opeating system. Using thisdp-drivenTLB simulator, we can count theumber
of TLB misses and hencevaduae theTLB performance and designattie-ofs in TLB structures under a
multi-tasking emironment.

In this sectionwe desdbe ourTapevorm-based ¥pelimental method in detail.ifst, we desdbe the
software ervironment of our xpetiments, which is composed of seral userlevel programs and the
undetying opegting systemMach 3.0. Because M&c3.0 is the gry program which males the rmlti-
tasking emironment in our xpeiment sophisticeed we focus on gplaining its stucture in the section
belov. In paticular, we desdbe its module and da stucture tha we used ér our peliments,namey
PMAP andpv_list Secongwe discuss the haware evironment of our gpeiiments.We focus pimarily on
the memoy management unit (MMU) of the i486 mioprocessarin paticular, we discuss the i48§'two-
level page table stucture and hadware-manaedTLB.

After having descibed our softvare and hadware expelimental emironmentswe explain theTapevorm
algorithm in detail. Lastl, we mention some pblems we encountexd when we were implementing
Tapeworm on our i486 matine and pospose some solutions.

3.1 Mach 3.0 Micr okernel

Mach 3.0 epresents a ve geneetion of OS which is called'microkemel; as opposed to theatditional
monolithic OS sud as UNIX BSD In this sectionwe first desdbe the stucture of a micokemel OS ly
using Mat 3.0 as anxample Then we desdbe those module and @astucture in Mad 3.0 which we
used br our petiment,the PMAP module and they_listdaa stucture.

3.1.1 Monolithic vs. Microkernel

In the tditional opeating system desigrall the OS elated codes & implemented in a single d@ss
spaceThis way of implementéion is rather staight-forward and allevs piogrammes to easit begin writing
the codes. Hwmever, as the OS isequired to povide moe and mae functions and seices,the OS code
grows huger and mg contain seeral times the amount of code it initialinay have had This gowth males

4127

the OS hat to maintain.Thus,the needdr a nev implementéion of OS codes has become grapunt to
programmes.

To sole this maintenance @oem, OS pogrammes hae tied to male the OS system meistuctural.
One of theseteempts is the miakemel opeating system. Miocokemel not ony provides the bendfiof
lower-cost maintenance of hagopeating systems,but it also povides a mog paverful protection
medanism and is mer suitdle for distibuted computing anronments. Hwaever, the elaed issues of
constucting OS in a miakemel is bgond the concer of this work, so we would like to efer reades to
some elevant ieports rather than to iye detailed discussion reefRashid 89]

A typical example of the miakemel is Mat 3.0 [Rashid 89]. Mdt 3.0 eports and implements a small
number of“essential” abstractions tha include interprocess commmicaion (IPC), threads,and vitual
memoy. Mach 3.0 maes highetlevel opesting system seices, like the UNIX sever and the MDOS
sewver, to sparted adiress spacegjsualy user adress spaces. Under this OSusture, a user psgram
running under Mat 3.0 mg contact the UNIX seer, which is in another user ddess spagehrough the
Mach kemel's IPC &cility.

3.1.2 The module f or handling ph ysical mapping—PMAP

To allow for wide use with as mgndifferent computer @hitectues as possie, Mach 3.05 virtual
memoy system is paitioned into mahine-indgpendent and mame-dgendent Igers. Most of the viual
memok modules a implemented in the mhine-indgendent Iger so thathey do not need to be modfi
while being implemented on é&rent matines.This easy pdaebility makes the OS mar maketéble, as it
can easil be adated to \arious hadware achitectues.

In contast,the d@endent Iger is mabine-specifi. The dgpendent Iger of the vitual memoy system is
contained in the PMAP modyleshich handles all viual-to-plysical adiress tansldions [Rashid88]The
PMAP module eaes a uniqgugmapdaa stucture for ead task. Every pmapdaa stucture also has its
own unique handleumber which—if it can be detected—can be used to deiee the actie task adress
space The pmap daa stucture caries the vitual-to-plysical adiress tansldion information for the
comesponding taskTo manipulée the adress tansldion information, the PMAP module pwides the
interfacespmap_ceate, pmap_desy, andpmap_entePmap_enters the ony interface though which the
page tdble enties (PTE) can behangd and all PTE modifigions can be inteepted a this interfice In
our work, Tapeworm is a sparte code module hoekl on togpmap_enter

3.1.3 pv-list data structure

The PMAP module also pvides another useful tiastucture for Tapewvorm, pv_list which recods the
inverse adress tansldions, namey, the mgpings of plysical-to-vitual pages. By @ing thioughpv_list
Tapavorm can easyl find all valid PTEs and then setrs on these pisical paes.

3.2 Intel i486 Memor y Management Unit

Intel's 1486 micoprocessor is afrady a very popular micoprocessor used inumeious pesonal
computer modelsThe 14865 design gal is to easyl accommodie single-usemulti-processing computing
ervironments aicompdible perbrmance lgels. For this gal, it has a bilt-in memoy manaement unit
(MMU) to effectively suppot the vitual memoy system of the OSIn this sectionwe eplain the

i. In Mach 3.0,"“task” is synolymous with“process.

5/27

medanism the 486 pwides br virtual memoy systemwhich is called‘two-level page teble.” Also, we
descibe an aditional micioprocessor component the i48@IMU uses to speed up this rhaaism,which
is the on-bip, transldion-look-aside bffer (TLB).

3.2.1 Two-level page table

The i486 povides a pging mehanism to suppowirtual memoy multi-tasking opeating systemsThe
i486 uses a [teble to tanslde virtual adiresses to prsical adiressesThis paye teble is hiearchically
composed of tlme componentghe page diectoly, the page tablesand thepage framesEwery virtual
address equires two-level transldion to et its coresponding pysical adiress,i.e. from thepage diectoly
to the page subdectoriesand fom the page tablesto the page framesTherefore, this pae tale is
consideed two-level paye table. (Figure 3.1)All memory-resident elements of this gatdle are the same
size, 4k bytes.

3.2.2 Hardware-managed TLB

To speed up the \iral-to-plysical adiress tansldion, the 14865 MMU emplys a hadware-manged
TLB to cade the adress tansldion for the mostecenty accessed mes.This TLB has 32 entes tha are
organized as 8 sets with 4ay set assoctavity. The 14865 TLB does not distinguish code andaadiress
transldions; it does notaseve special@om for kemel adiress space; and it does not usecpss identiéirs
(PID) to distinguish adiess spaces. If BLB miss occus, the cental process unit (CPU) will seeln for the
corresponding m@ping enty in the pae teble and place it dectly in theTLB without informing the OS

The OS howvever, may modify a pge tale associted with an actie process asesult of eitherwapping
pages,writing pages,or changng page potections. If the OS modds a pge tele, it has to flish theTLB to
maintain consisterycbetween theTLB and the pge teble. To flush theTLB, the OS needs teeload a
processpage directoly base adress into a conttt register in the CPU (ig 3.1) to ivalidae allTLB entries.
Because the OS manodify the pge table frequenty, this flushingTLB can occur mantimes duing a
program eecution in the i486.

3.3 The Trap-Driven TLB Sim ulator—T apeworm

Since the i48& TLB is managed ky hadware, all TLB misses a& vieved as halware esents thaare
transpaent to softvare. In spite of thissome opattions, sud as a pge fault, can help gposeTLB misses
to the OSThe basic idea witliapenvorm is to brce a pge fault hgppen on edtTLB miss so thaall TLB
misses & viside to the OS &mel. To do this,all pages ae first maked irvalid except those pges whose
PTEs ae held in a specifikemel-contolled dda stucture. We use this specifidda stucture to sinulate the
TLB, and can &y the siz, set assoctivity, etc, of this enulated TLB structure for different stug
pumoses.

The 14865 page table enty (PTE) is a one-ard item (32 bits) and is ganized as shen on kg. 3.2.The
lowest bit of the PTE is the &ent (P) bitwhich indicaes whether this PTE isalid or not.When aTLB
miss occus, hadware automécally seaches the pge table for the PTE caesponding to this missing
virtual adiress.To recall,a miss is anvent which theTLB does not hold the darequested yp CPU If the
P bit of this PTE is 1this PTE is walid, the hadware simpy stoles this PTE into th&LB and esumes
nomal execution.All of these actions arirvisible to the OSIf the P bit is Othe PTE is not afid, which
indicaes the pge pointed i this PTE is notesiding in the pysical memoy and a pge fault exception
needs to beanested In a pge fault exception, the OS isesponsite for biinging in the &ulting pae from

6/27

-|
BASE ADDRESs! DP'RECTORY PAGE FRAME

of the PAGE DIRECTORY of a PROCE(

! CPU |
f 31 22 12 0 :
| —|>| DIRECTORY| PAGE TABLE| OFFSET[|
Virtua !
| Address ; PHYSICAL MEM
|
' |
|
I 10 v :
: | ADDRESS
| I
[/ y
I : 0 +
| Q .
| : Level-2
: g >
' | " PAGE TABLE
! 0| Level-1
i |CONTROL REQ ! L~
|
|
[

Fig. 3.1 The i486 tw o-level paging mec hanism

31 12 1210 9 8 7 6 5 4 3 2 1 0
| os PIPIUIR |,
PAGE FRAME ADDRESS 31..12 pESERVED O O|D|A|c|W][-]|--
D|T |S |W
P: Present PWT: Page Write Through
R/W: Read/Write Protection PCD: Page Cache Disable
U/S: User/System Protection A: Access D: Dirty
NOTE: The Bit 9 is used as the TapeWoiw\() Bit

Fig. 3.2The i486’s page table entry (PTE) format

the“backing stoege,” which is usualy a disk,and setting the P bit of the cesponding PTE to 1. OS ma
also be equird to @ict a paje to mak rom for the incoming pge. In a word, the P bit seres as a
coodinaing point for the hadware and the opeting system in the magament of the viual memoy
system. (k9. 3.3)

7127

Hardware TLB Physical Memory Disks
PTEs
> [
11
R > [0
ngual N— Page Faul
ress H/W TLB miss PTEs
Trap into
,./"'_‘_ OS & Tapeworr
< P=1 | P=0 \
N L4
PTE =

Fig. 3.3 The i486’s suppor t for vir tual memor y

To implementTapenvorm, however, we need tw bits in the PTEdr coodination because tee entities
work together nav, which are the hadware, OS andTapewvorm. P bit is one of these twcoodinaing bits;
the other one can be obtainedrfr one of the tlee OS esewved bits as shwn in Fgure. 3.2.We will refer to
it as theTW bit in this work.

The P bit is nv used to indicte if the PTE is alid in the emlated TLB, while theTW bit is used to
indicae if the PTE is alid in OS Table 1is a summar of all the possile stauses of a PTE and itsge In

™
Bit P Bit Status Description
0 0 Invalid PTE is invalid both in Tapeworm and in the OS. Its page is in the backing storage, and not
present in physical memory
0 1 Forbidden This PTE is not allowed because its page is in the emulated TLB but not present in physical
memory, which is not realistic.
1 0 OS_valid PTE is invalid in the Tapeworm, but it is valid in the OS. Its page is in physical memory, but
not present in the emulated TLB
1 1 TW_valid PTE is valid both in Tapeworm and in the OS. Its page is both in the emulated TLB and in
physical memory

Table 1: Page status in Tapeworm

8127

Emulated TLB Physical Memon Disks

Hardware TLB (part of Physical Mem
- — PTEs
— N /
> , [0
1ol >l [/
—> 4 [o_To]
Virtual N~ - IO Emul ted TL Page Faul
Address H/W TLB miss mis PTEs
¥
P=1
< 3
) 7
TW=0
T
PTE W =
Trap into

OS & Tapeworrnr

Fig. 3.4 Tapeworm on the 486

sucd a sbeme when a miss occarin the hadware TLB, i486 hadware contoller will first examine the
ermulated TLB for the missing PTE. If this PTE ibsent in the eodated TLB, its P bit nust be 0. It means
this page staus nust be Irvalid or OS_alid. Since P is Othis missing PTE will cause agmfault exception
into OS Tapeworm will be invoked a this moment anded theTW bit of the missing PTE. If itfW bit is
1, it means the g staus is OS_ualid, andTapevorm can bing this PTE into the eatated TLB directly
from the plgsical memoy and do someeplacement if necessarOtherwiseTapenvorm passes thisafilting
event to the OS émel for handling because it is aier page fault. (Hg. 3.4)

When implementingfapewvorm, it is necessarto keep tradk of the umber ofTW_valid PTEs in the
entire system dr the enulated TLB. As mentioned in Section 3.ye can ahieve this ly monitoiing
pmap_enteractvities. If pmap_entervalidaes a ne PTE, Tapeworm must put this ne& PTE in the
enmulated TLB and possity replace some othé@W_valid PTE,if this is hecessgrto creae space

3.4 Some Problems with Implementing Tapeworm on i486 Mac hines

We encountexd thee poblems listed bele when we implementedapevorm on an i486 mdine We
solved some of these @ilems,and hae some suggstions ér solving thoseeamaining

e Simulating the eplacement polig
¢ Invalidaing kemel adiress pges

e Counting the total instictions eecuted

9/27

No
Are all four PTEs in the set vali——>» Replace non-valid PT

Yesl

BitO=0"?
Yes No
Bitl=0"7? Bit2=0"?
Yes No Yes No
Replace Replace Replace Replace
PTE #0 PTE #1 PTE #2 PTE #3

NOTE: The TLB is 4-way set associativ

Fig. 3.5 The i486’s pseudo LR U replacement polic y

3.4.1 Simulating the replacement polic 'y

By using unddying hadware, Tapeworm filters out hits in the emlated TLB and pocesses oglthe miss
events. Because of thiditéring caability, Tapeworm is nuch faster than otherpproaces [Uhlig94b].
However, becaus@apevorm recods onl the miss eents,its recod of workloads (tasks jrcessed in the
TLB) is incomplete Thus, it cannot simlate those eplacement policies hich dgpend on the full histgrof
references,sud as the leastcenty-used (LRJ) algorithm. Fortunaely, most modear microprocesscs’
TLB designs do not ¢eend on the LR algorithm but on a pseudo-LB replacement polig, which
Tapeworm can sinnlate. This replacement polig is simpler and mch less &pensve for implementtion
because it does not need the felierence histoy. Futhemore, this pseudo-LR policy can still perbrm
well because it does not tw avay the mostecenty used enty.

The 1486 adopts the pseudoURis the eplacement polig for its TLB and on-tip cahe Specifcally,
for ead set of thelLB it uses ory three bits to identify the mosecenty used eny and the enjr to be
likely replaced out (fg. 3.5). (in contast to an LK policy, which uses six bits).

To sinmulate this pseudo-LB policy in Tapenvorm, we chose one of the memisein eab set as the not-
most-ecenty-used (NMRJ) candidae for tha set.We labeled this selected membeictim.” As long as e
guamanteed the victim is a NMR we could eplace it vheneer an enty slot of the eralated TLB needs to
be redaimed To ensue thd the victim wvas NMRUJ, we set a @p on the victimWhen the victim \as
referenced we caught thiseference ly a fault exception, and then leared its tep and selected another gntr
from the same set as thexngctim. For example suppose the emfeted TLB is N-way set assoctéavity, one
entry of eat set is set adp on while othes ae not. If a &ult occus on the victimwe exchange ary one of

10/27

The Emulated TLB has FIFO ptr victim
M sets with ¥
N set associativity ith set: | C | c| | c| | Cl | S |

. c: clear tra
N-1 entries lentry g et trap

Supposed the missing PTE (mi) is mapped into the ith set.

If FIFO_ptr->PTE is invalid
FIFO_ptr->PTE = mi

else if mi = victim
swap FIFO_ptr->PTE with victim

else
victim = FIFO_ptr->PTE
FIFO_ptr = mi
miss ++

Fig. 3.6 Tapeworm’s strategy f or NMRU replacement polic y

the N-1 enties of the same set with thactim. Through this vay, we can guantee thanext time when a
new PTE is ¢aiming a slotthe victim enty is ésolutey not the NMRJ (Fig. 3.6).

Another way to emulate the pseudo-LR replacement polig is as bllows. Ewery valid PTE of the i486
has arAccess (A) bitWheneer the CPU accesses a PTyill set theA bit of tha PTE.Tapevorm could
petiodically clear theA bits of all PTEs in the ealated TLB by using the ock interupts. By detanining
an gpropriate length ér the interupt perod, Tapenvorm can lee suficient histoy of referencesThen it
can tell vhich enties of the emlated TLB were not efered duing the last péod, and hence can
detemine which enty should be éplaced outThis methogdcompaed to the one mentioned justaee, has
fewer fault exceptions because all of the elated TLB enties ae not set #ps on. Havever, it may
introduce anothen@rhead peiodically cleating theA bits of all the ermlated TLB entries. Morover, this
method mg not be aplicable for theTapeworm-based cdwe sinulator if the enulated cabe daa stucture
does not pavide sud anAccess bit.

3.4.2 Invalidating the kernel pa ges

WhenTapenvorm was implementedurthemore, some &ulting memoy addresses wre not estatable.
Hence somedmel pages cannot be segfrs on At ead time whenTapaevorm begins, all the page frames in
the plysical memoy should be imalidaed frst in oder tha the enulated TLB can work correctly. All page
frames in user alless spaces can beatidaed without side-éécts. Havever, some paiions of the kemel
address space cannot bevafidated This occured in par because the i486 CPU yngeneete moe than
one memaoy reference in an instiction. In some caseshe second or tar memoy references a not
restatable if a paye fault exception occus in pevious memoy references.These memar references &
mainly touching the hadware dda stuctures esiding in the &mel space sicas theTask Contol Blocks.

11/27

So some pdions of the kmel space cannot beaudlted on.This poblem was not disceered when
Tapawvorm was implemented on MIPS ntanes because these rates ae RISC stylewhich issues oy
one memoy reference in edt instiuction.

3.4.3 Counting the total instructions e xecuted

Tapeworm only intercepts the miss vent, theefore it neither counts the totalmber of instuctions
executed nor obtains thetio of misses to total insictions,the “miss ratio.” For fair compaison, we ony
compaed the esults fom the same wrkload curently. To male an &actly quantitve compaison of TLB
performance aass benkemaks or mabines,we would need to collect thellowing stdistics: the rumber
of total instuctions of eals workload, the cost of seiicing aTLB miss, and the cost of secing a pae
fault. Given the mmber of total instrctions,we could calcule the missatio and hence & can compar
results aarss benkemaks. After obtaining the cost of séacing aTLB miss,we could measerthe potion
of the memoy stall g/cles due to th@LB performance dgraddion and compar the i486T LB performance
with TLBs on other matnes br these test arkloads.

The impotant paametes mentioned faove can be obtained thugh hadware devices,sud as Monster
developed ly Nagle [Negle92] and times with high esolution. Some mioprocessas even povide on-dip
instruction countes to male it easier to count total ingtitions of a wrkload Unfortunaely, the i486 does
not povide sut a counterso an aditional hadware device is necessgr Our pesent dbrt is to install
Monster on the i486 mame and collect thebave mentioned stistics.

4 Experiments and Anal yses

In this section,we pesent our mliminaly expeimental esults to demonsie the poblemaic
performance of hadware components under auftitasking erironmentAs mentioned pviously, we focus
primaiily on the 486 TLB performance To adieve our &peiment’s goal, we huilt two multitasking
ervironments as tests. One is a DOSeenning a LOUS spead sheet and the othemipeg_playboth
are under Mab 3.0 opesgting system.

4.1 Mach DOS Server (MDOS) and LO TUS

The frst multitasking e