Limited Dual Rth Execution

Gary Tyson Kelsey Lick Matthew Farrens
Electrical Engineering and Department of Department of
"Computer Science Department Computer Science Computer Science
The Unversity of Michigan Unversity of California, Dais University of California, Rierside
Ann Arbor, Ml Riverside, CA Davis, CA 95616
(tyson@eecs.umich.edu) (klick@cs.edu) (Arrens@cs.ucds.edu)
Abstract

This work presents aybrid branch predictor scheme that uses a limited form of dual petht®on
along with dynamic branch prediction to impeoexeution times. The ability to eecute devn both
paths of a conditional branch enables the branch penalty to be miniminesiehaelying exclusively on
dual path eecution is infeasible due because instruction fetch raiesxteed the capability of the
pipeline to retire a single branch before others must be proceBsedsing confidence information,
available in the dynamic branch prediction state tables, a limited form of dual Eattien becomes
feasible. Thigeduces theurden on the branch predictor by aling predictions of v confidence to be
avaded.

In this study we present awespproach to gther branch prediction confidence with little or no
overhead, and use this confidence mechanism to determine whether duaiepatioe or branch predic-
tion should be usedComparing this ybrid predictor model to the dynamic branch predictomsha dra-
matic decrease in misprediction rate, which translates to an reduction in runtimer @%. These
results imply that dual pattkecution, which often is thought to be axcessiely resource consuming
method, may be aavthy approach if restricted with an appropriate predicting set.

1. Introduction

Changes in control fle (branches) are a well-kmm impediment to high performancénd as
pipelines deepen and issue widths increase, this problem is increasing in impofegaeenalty for
fetching davn the wrong path (the branch mispredict penalty) is becoming a substantial fractieratf o
performance loss.

One way to eliminate the branch mispredict penalty isvimdafetching devn the wrong pathThis
fact has led toxdensve work on imprwing the quality of branch predictors in order to wlkhe proces-
sor to speculately execute past branches with a highgdee of confidenceAnother way to aoid paying
the branch mispredict penalty is to fetch instructions from bothaththfough and tayet locations, guar
anteeing that the machine iseeuting the correct stream of instructioriBhis approach is not me- the
IBM 3168 and 3033 mainframes used a similar approach back in the lates Ji@g@uctions were
fetched from both pathsubthe instructions from only one path could be decoded xaudited) [1].

Unfortunately given the knavn distritution of branch instructions and the number of instructions
that are often "in flight" in a current processibris inevitable that another branch instruction will be
encountered by one (or both) of the streams before the initial branch condition isdegedwiding suf-
ficient resources to continue to split and fetch on each of thegdmamches can clearly lead to a

cascading ééct, requiring an xponentially increasing amount of harane and potentially significantly
impeding the progress of the correct stream.

In order to limit the cost necessary to support multiple pagbugion, Uht [2] proposed a technique
called Disjoint Eager Eecution (DEE) which limits the number of concurrexgoaiting paths by using a
selector to decide which paths teeute. Theselectors are based on statically calculated probabilities.

However, dudies of the characteristics of branch heta[3] indicate that certain branches are
much more dficult to predict than othersThe fact that diferent branches can be predicted witliedént
accuracies leads to the possibility of avrepproach, "Limited Dual &h Execution" (LDPE), in which
hardware support is praded to allev the processor to split and fetchwdotwo (but only two) paths.The
decision on whether or not to fork will be based on the prediction agoofreiee branch - if the accunac
of the predictor for a gen branch is high enough, then no forking will be done.

In this paper we will describe LDPE in more detail, and oorkvon finding an optimal set of pat-
terns, based on reference count and misprediction rate, to use as a liaatongdr LDPE. Finally, we

will present some simulation results and our future ptans.

2. Limited Dual-Path Execution

Limited Dual-Rath Execution vorks by preiding suficient hardvare to support the simultaneous
fetching and ®ecution of 2 (and only 2) distinct instruction streamdsbox diagram of the technique is
presented in Figure IThis figure shas that the interesting parts of LDPE lie between the BHR and Cur
rent Predictor of a 24&l branch predictor (a 2l branch predictor is assumed sinceytiave been
shawvn to pravide the highest prediction accuracies).

The technique wrks as follavs: ThePC of a branch instruction is presented to the Branch History
Ragister (the first leel of the branch predictor) as usu&lowever, the pattern that comes out of the BHR
is not sent directly to the predictor - instead, hambdnchecks to see if the pattern is in our predicting set,
which consistof those patterns which are anticipated toehgood prediction accurgc If it is, the
branch is considered highly predictable, and the pattern isafded on to the secondvé of the

PC Pattern Yes Prediction
] BHR PREDICTING CURRENT
SET PREDICTOR
No
Yes No
DPE T<T +R

Figure 1 Limited Dual-Path Execution

! Another significant problem with dual patkeeution is that the front-end instruction fetch stage of
the pipeline must be duplicatedyven the heay demands on the ICache, duplication of this resources
seems prohibitie. Fortunately recent impreements in the design of processor fetch mechanisms [4] im-
ply that a more restriate form of dual pathecution is feasible We will not, however, explore front end
issues in this paper

predictor Howeva, if the pattern is not in the predicting set, then it is a branch that is consid@cedt dif
to predict accuratelyand an attempt will be made todie fetching devn both paths at this pointf the
hardware is not currently fetching dm both paths, then it will lggn doing so.If dual-path fetchings in

progress, then the pattern is sent on to the seceedghedictor and a gular prediction will occuf

The benefits of this scheme come from reducing (or limiting) the occurrence of TeEe pat-
terns that are predicted well continue to be predicted rather than using DPE resources, and the patterns
that are belieed to mispredict often are aled to eecute devn both paths eliminating the prediction
(and frequently a misprediction).

Clearly this approach relies hélg on the ability to distinguish between branches that are highly
accurately predicted (ke ahigh confidencdeand branches that are poorly predictedvéhalow confi-
dencd. Inthe follonving section we will gplore this question in more detail.

3. AssigningConfidence to Branch Pediction

Hybrid branch predictors [5] use selectors to determine which component is more confident in its
prediction. Inthe technique described in theyoeis section, confidences are assigned to the branch pat-
terns and a selecting seasvbe used to determine whether to predict or perform dualxegtitien. This
technique is substantially éfent than that used by Jacobsen et al [[Btheir work, extra hardvare was
added to kep track of the performance of the branch predidioi.DPE we are proposingx&acting
more information from theexsting hardware.

3.1. Experimental System

The initial experiments for this research were conducted using Ul&BREPmodel 170E systems.
The data ws @thered using a tracing toolwid#oped at SUN Microsystems Laboratories called Shade,
which provides ehaustve dynamic information at the instructionvig by dynamically translating the
code of the application into host machine code while incorporating analysis code to generate the traces.
This nev code is then directlyxecuted to emulate and trace the application.

3.2. ImplementedBranch Predictors

Four different types of branch predictors were implemented in ordesmlioate hov the accurag of
different programs were fatted by diferences in aariety of current prediction schemeshe first and
simplest predictor implements a gEddress scheme in whicliegy static branch is gen its avn two-bit
saturating up/den counter The second scheme simulates gshare(12), with énatly used to kep track
of the first leel of history. This requires a pattern history table of size 4096xediby the lover 12 bits
of the branch address XORed with the patté€eshare has been found to askidigh accuracies without
the high cost needed for maather predictors. [5].

The last tvo predictors studied areaviations of the tw-level adaptve £heme. BotiPAg and FAs
are implementedPAg uses a peaddress branch historygister table, and the depth of the history bits
was varied between 8, 12, and 16 bits which thenedeénto a global PHT PAs(6,16) leeps 6 bits of
history for each branch addredsach BHR hashes to one of 16 PHT$ere were assumed to be no con-
tention among the BHRs with yof the predictors.

2 Note that this is a conceptual diagram - if the branch prediction logic is limiting the magti@e c
time, then the Current Predictor and the Predicting Set lookup could occur in parallel and the signal gen-
erated could simply be an "accept/reject" of the output of the Current Predictor).

3.3. Descriptionof Benchmarks

The benchmarks analyzed were those from the SPEC95 Sikenf the intger benchmarks and
three of the floating point benchmarks were usatthough compeessis included in the Spec95 suite,
Berkeley compress &rsion 5.9 was used due to problems with running the SPEG®Sian. Eaclhpro-
gram vas run to completion.

Table 1 shavs maty basic statistics of each of the programs us€de table lists the input files
used, the total number of instructionseuted, the number of conditional branch instructions, the total
number of branchescecuted, and the percent of branches that &€EN. Only the branches that are
executed at least once will bexamined, since these are the branches tfattahe accuracof a branch
predictor

Table 2 shavs the misprediction rate for each program when using the predictors: 2¢8)P
PAg(12), Ag(16), As(6,16), and gshare(12)'he mispredictions gen for gcc are the aerage for the
five parate inputsit can be seen that as the number of history bits increases iddghscReme, the
accuray increases. Increasinige depth of history that is maintained alfomore patterns to be fiifen-
tiated, enabling a predictor to find the best prediction per pattern.

3.4. BranchCharacteristics

The benchmark programsghebit mary interesting characteristics that often depend upon the nature
of the program.The intger benchmarks typically use more branch instructions than the floating point
benchmarks, witlycc having a \ery lage working set of actie kranch instructionsOn the other hand,
the floating point programs tend teeeute a small number of instructions agmumber of timesFor
example, inperl, only 80 branch instructions (less than 3% of the total branch instructions) are responsi-
ble for over 80% of all the gecuted branchesThis phenomena indicates that it might be beneficial if a
branch predictor could tget the fev branches that are responsible for the majority of Xeelgions.

Table 1. Detailed Benchmark Information

Total # of Branch Dtal %
. Instruction Instructions Branch
Program Inpufile . .

Executions (mecuted at Executions

- - Taken

(in millions) least once) (in millions)
go 9stone2l.in 34423 7263 4296 59.24
compress in 81 1364 12 71.12
li * 57924 1880 9830 50.07
ijpeg penguin.ppm 42619 2407 3534 67.73
perl primes.pl 15450 2902 2284 54.41
gcc linsn-recog.i 599 14782 113 57.50
gcc lccep.i 1344 21438 253 59.89
gce emit-rtl.i 173 18771 31 55.01
gcc rgclass.i 127 18660 23 56.70
gce plow.i 241 14969 45 56.80
swim swim.in 273176 876 725 99.20
apsi 394597 1806 17112 64.63
fpppp natoms.in 396365 980 5297 66.12
gccaverage 497 17724 93 57.18
intaverage 25183 5100 3345 60.01
fpaverage 354713 1221 7994 76.65
totalaverage 135026 3807 4799 65.56

Table 2. Misprediction Rates

Program 2-pit HAg(8) BAg(.12) I?\g(.le) HAS(G.,16) gshare(12)
% misp %misp %misp %misp %misp %misp
go 20.444 20.037 19.150 15.284 20.938 27.251
compress 11.815 10.955 10.550 10.154 10.601 10.006
li 10.738 5.301 3.880 2.560 5.207 4.896
ijpeg 9.051 6.239 5.905 5.571 6.294 5.855
perl 4.255 0.037 0.025 0.020 0.042 2.131
gcc 9.925 8.184 6.399 5.153 8.780 11.638
swim 0.266 0.197 0.197 0.197 0.197 0.213
fpppp 15.869 7.093 4.319 3.410 7.222 5.600
int average 11.04 8.46 7.65 6.46 8.64 10.30
fp average 8.06 3.64 2.26 1.80 3.71 291
total average 10.30 7.25 6.30 5.29 7.41 8.45

An examination of the distrilition of mispredictions among branches vgbothat gen fewer
branches are responsible for the majority of mispredicti&ios perl, less than 2% of all branch instruc-
tions, 55 branches, createen90% of the total mispredictionsThis agin emphasizes the importance of
identifying the branches that are generating thgeltrdisturbances in the prediction accyrathus, it is
extremely \aluable to the accurpof a predictor if the branches which are referenced often we high
misprediction rates are disawed and tageted for special processing (e.g. dual padcaion).

Increasing the depth of history alle more patterns to be fiifentiated; havever, mary of these
new patterns may not be referenced oftdrhe characteristics of branchesamined preiously can also
be seen when looking at patterna. perl, using the predictor &(12), 4 distinct patterns correspond to
over 90% of the total referencedt has been shen [7] that branches are highly biasediacd a particular
pattern or direction and since branches may map to more than one pattern throughaautien ef a
program, tageting patterns can encompass more branch references and branch mispredictions.

3.5. TheRelationship Between Accuracy and Ceerage

Both accurag and coverage (the percent of total references encompassed by the patterns) play a
major role in deciding which patterns to include in the predicting Geten that there is not an infinite
set of resources tovedys allav fanouts without delayt would be best to only include patterns in the pre-
dicting set that achie an average accuracabove a @rtain threshold.However, the higher the accurac
threshold is set, the more patteral belov that accurag and compete fordhout resources.

If two branches compete for limited dual-pate&ution resources, then the first branch to be started
will be allocated the resourcegeedless of the prediction accuracies of their respegttterns. Thusa
less accurate pattern may be forced to be predicted because the resources are already filled with a more
accurately predicted patterithis can lead to a reduction inevall accurag when the predicting set does
not contain enough patterns, implying that theecage is too smallA compromise needs to be made
between choosing patterns with high accuracies and those that cregee@enage. Includingoatterns
with a high percentage of the total referencesild reduce he often fanouts wuld be attempted.
Choosing a predicting set thatgats either accurgr coverage, while being optimal in the local point
of view, may not imprae oveall performance.

Figure 2 illustrates the relationship between acquemd corerage for each benchmarlds the
number of patterns in the predicting set increases, the agalrgas and the a@rage increasesThese
curves were obtained by sorting the patterns according to agcamdcthen the accurgand coverage
were determined as each patterasvadded into the predicting séthese curgs assume that those pat-
terns that are not in the predicting set wilvéahe resources toahout. Sincethe cwerage cure

-5-

increases quick|ythe predicting set can remain small, with the hope of not compromising the gccurac
greatly If the correct patterns could be identifigd,could achige an overall accurag of over 95% with

60% cwerage. Thids a dramatic increase from its normaeall accurag of just over 80% (translating

to over a 75% drop in misprediction rate)Thus, the importance of choosing the optimal patterns can be
seen.

3.6. Analysisof Patterns and the Pedicting Set

There are a fe different approaches that can be used to obtain the predictinBatetns can be
analyzed in all the benchmarks and a set can be chosen that should perform well for all programs.
Another approach auld be to chose a separate set for each benchiénke this method should attain
higher accuracies for each program, a generic predicting set is Breadile. Theollowing describes
the technigues used to obtain one predicting set for all benchmarks.

When choosing the most beneficial patterns to include in the predicting set for both theyarwirac
coverage concerns, it is helpful to look for trends among the patterns across the benchioadash
benchmark, tw lists of patterns were crucial to determining the predicting set; patterns sorted in order of
references and patterns sorted in order of acgur@he list of the top referenced patternsesded a
noticeable trendTable 3 lists the top 20 referenced patterns for each benchrimagiery benchmark the
top two referenced patterns were those that contained either all ones or all zeros, meaning that the history
is exclusively TAKEN or exclusvely NOT-TAKEN. Thesepatterns will be referred to as thévays-

go compress 1
Accuracy and Coverage Curves Accuracy and Coverage Curves

100

90

—— Cum. Acc. 80

—&—Cum. Cov. 70

Accuracy and Coverage Curves

N
1<
=}

©
a

——Cum. Acc.
—&—Cum. Cov.

©
o

©
o

% Accuracy
©
o
% Coverage
% Accuracy
@
S
% Coverage
% Accuracy
% Coverage

)
a

©
S

85

o =] o
=3 =3 153
> > >

1990 +
4000 +

o
-3
-3
«

1990 |
4000
1990
2990 1
4000

o
153
-3
N

of Predicted Patterns # of Predicted Pattern: # of Predicted Patterns

@

perl

100 100

99.995

99.99

99.985

92 T20 99.98

90 + + + + 0 99.975

990
1990
2990
3990

990
1990
2990 +
3990

990
1990
2990 T
3990

990 +
1990
2990 +
3990

o o =}
=3 > I3
=) > I3
- « ™

=}
I3
&>

=] =} =3 =3
S S =3 =]
= I @ <

Q =]
= =3
o) @

Figure 2 Relationship Between Cuerage and Accuracy

taken pattern and thalways-not-taken pattern, respeaciely.

This trend implies that these patterns are beneficial to treeage component for choosing the pre-
dicting set. Fortunately looking at the list of patterns thatveathe best accuracies, thavays-talen and
always-not-talen patterns are found in the top 1% of all patterns for most of the benchmarks and in the
top 5% for all benchmarksThus, the alays-talen and alays-not-talen patterns are slous candidates
for the predicting set; tlyehave good prediction accurgicas well as good ceerage. Wheranalyzing
these tw lists, the necessity of using both accyrand coerage together is clear; manf the most
accurate patterns obtain such a high acguilae to \ery low reference counts.

Another interesting characteristic found in the sorted patterns is that patterns with only a single
NOT-TAKEN (zero state) branch oftenvmaa ligh reference count and actéefairly high accuracies.
This set of patterns is referred to as alraost-always-talen patterns. Thiphenomena led to the classi-
fication of patterns into sets based on the numbeABEN paths in the historyThese sets were ana-
lyzed through graphs that shed hav they compared in terms of references and accuracies.

Figure 3 shws these graphs for three benchmagksjjpeg, and fpppp Each point gies the accu-
ragy or reference for the set of patterns wKhnumber of AKEN branches.For example, the pattern
000100010000000@ould be included in the set of patterns withRKEN branches.The orerall accu-
ragy is dso shavn on the graphs for comparisoifhe graphs shwn use data obtained by the predictor
PAQ(16). Thesegraphs redirm the wisdom of including the \abhys-talen pattern and the vedys-not-
taken pattern in the predicting set since these patterns consistentlyeatilgieer accuracies than the
overall accurag. Both go andijpeg shav that the almost-alays-talen patterns also g a higher accu-
ragy than the werall accurag. Thus the patterns with only one RKDAKEN path in their history are

included in the predicting set.

Some of the benchmarks shthat the almost-alays-not-talen pattern set (those containing only
one TAKEN branch in a stream of NI@TAKEN branches) also achies high accurag. While this is not

true for all the benchmarks, these patterns were chosen to be included in the predicting set due to the

Table 3. Pdterns in Programs

go ijpey perl gcc swim apsi fpppp
111111122222 1111112222212 1121222221121 112221111111 1111111111110 1111111111110 111101111111
000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 0000POOOO000
110111011101 101010101010 101101101101 010101010101 011111111111 101010101010 1011p0111011
101110111011 010101010101 110110110110 101010101010 111111111110 010101010101 1101p1011101
111011101110 111101111111 011011011011 0111222211111 111122211101 010101010010 111041101110
011101110111 111110111111 101001100010 111111111110 101111111111 010010101010 0111p1110111
011111111111 111111011111 010100110001 111110111111 111111111011 1111101112121 1011p1i101101
111111111220 111111101111 001010011000 111111011111 110111111111 111111011111 110140110110
111111011122 0111111122121 100110001010 111101111111 111011111111 101010010010 01101011011
111110111111 111112111110 000101001100 111122101111 1111222110111 010101001001 0101p1010101
111111111201 011111110111 110001010011 111011111111 111111011111 010100100101 101010101010
101111111222 111011111210 100010100110 111111110111 111111101111 101001001010 1101p0111011
111111101111 101111111011 010011000101 1011221211111 1111012111111 100101010100 011041101110
111101111122 1101111111201 011000101001 110111111111 111110111111 001010101001 110141011011
110111111222 1011111122121 001100010100 111111111011 101010101010 101010100100 1011pi1110111
1111111110112 110111111111 101010101010 111111111101 010101010101 010010010101 0111pi1110110
1111111101212 1111111121201 010101010101 000000000001 101110111011 100100101010 11101101101
111011111111 111011111111 111110111111 100000000000 011101110111 001001010101 111041011101
010101010101 111111110111 111111011111 000000100000 110111011101 111101111110 0111p1101110
101010101010 1111112112011 111101111111 000001000000 111011101110 011111101111 1011p0110111

simplicity of the circuit that could identify these patteriiie references to these patterns will also help
limit the number of énouts attemptedA few benchmarks, such dgppp which do not hee good accu-
ragy for the almost-alays-not-talen patterns, do not reference this pattern set often enough for Vteto ha
a regdive dfect on the accurgof the nev hybrid predictor

Peaks can be seen in mjaof the programs for the pattern sets that wek&HN during half the
history and NO-TAKEN for half. After further ekamination, it vas found that the patterns that alternate
between AKEN and NO-TAKEN paths were responsible for the majority of references in this pattern
set. Thesgatterns will be referred to as the alternating patte8isce these patterns can be predicted
well (The werall accurag of the half AKEN/half NOT-TAKEN is brought dan by those patterns
which are not alternating), theéoo are included in the predicting sdthus, the predicting set used in the
following sections of this paper will contain thevays-talen pattern, the walys-not-talken pattern, the
almost-alvays-talen and almost-alays-not-talen patterns, and the alternating patterns.

The accurag and corerage that occur due to the chosen predicting set isrsio Table 4. The
table shws the percentages for each parameagying the history depth between 8, 12, 16 bithe
actual RAg(x) accurag, without using ap fanouts, is shen for comparison.As more history is main-
tained, the ceerage decreases, attemptingaodut more oftenThe accuragis sen to increase with the
history These graphs assume that there wgayd a DPE resourcevalable when needed, making the
only patterns to be predicted those in the predicting Gaten ample resources, it is clear that there
would be a ery beneficial increase in accuyaitie to this ne hybrid predictor

ijpe! .
of 1s in Pattern vs. Accuracy go # of 1s in Pattern vs. Accuracy ipeg #of 1s in Pattern vs. Accuracy foppp

=
15)
3

»-

100 100 g
K Overall Accuracy,

g Overall Accuracy
90
Overall Accuracy 1
80 +
\\M ol)

60 +

©
=]

©

a

% Accuracy
e}
o
% Accuracy
% Accuracy

~
=]

60 ; ; ; 50 . ; ; 85 ; ;
0 4 8 12 16 0 4 8 12 16 0 4 8 12 16
#of 1s in Pattern #of 1s in Pattern #of 1s in Pattern

of 1s in Pattern vs. References 9 # of 1s in Pattern vs. References Ipeg # of 1s in Pattern vs. References foppp
1800 2500
1600 +
1400 +
1200 +
1000 +
800

!
600
400
200
NN

; ; ; 0 + 0
0 4 8 12 16 0 4 8 12 16 0 4 8 12 16
#of 1s in Pattern #of 1s in Pattern # of 1s in Pattern

2000 +

1500 +

(in millions)

1000 +

500

References (in millions)
References (in millions)

References

Figure 3 Pattern Sets Based on the Number of AKEN Paths

Table 4. Accuray and Coverage Assuming Unlimited DPE Resources

Program DPE/Ag(8) Pg(8) DPE/RAgG(12) Rg(12) DPE/Rg(16) R\g(16)
9 % Cov % Acc % Acc % Cov % Acc % Acc % Cov % Acc % Acc
go 59.091 | 94.734 79.963 49.688 97.290 80.850 44559 | 98.247 84.716

compress 78.330 96.252 89.045 71.011 97.62@9.450 65.781| 98.602 89.846
li 75.185 | 98.690 94.699 71.714 99.449 96.120 70.535| 99.623 97.440

ijpeg 88.277 99.099 93.761 84.394 98.804 94.095 81.563| 99.200 94.429
perl 90.637 | 99.983 99.963 90.60q 99.988 99.975 90.581| 99.991 99.980
gcc 81.881 | 96.987 91.816 76.420 98.285 93.601 73.156| 98.823 94.847
swim 99.947 | 99.803 99.803 99.938 99.803 99.803 99.929| 99.803 99.803
fpppp 63.131| 98.191 92.907 59.145 99.238 95.681 57.497| 99.534 96.590

3.7. Fanout Constraints

The frequeng of fanouts, or dual pathxecution, is dependent on the amount of resourcaiable
and the time it tads for a branch to be resetl, Inorder to accurately simulate the corregtle count,
one would need a full pipeline model and the resulild be implementation dependemie will later
shaw the results of our approach on a full pipeline simuldiatr for nav, branch resolution will be based
on instruction countthis enables a companai analysis of alternate approaches to selecting the predict-
ing set, while woiding the complgities required for a completece level simulation. After this initial
analysis, we will erify the results with full simulations of selected configurations.

When determining whether to alca pattern that is not in the predicting set &améut, the branch
resolution time is compared to the number of branches thkatdiaurred since the lasariout. Iffanouts
occurs too close togethdhen a prediction is forcedA resolution equal t@ corresponds to the require-
ment that at least vbranches must be predicted betweamoluts. Irthis paper the &fcts of the branch
resolution time is analyzed as #@nes from one to six.

4. Evaluating Limited DPE Performance

As mentioned prgously, the predicting set thatas used in this @rk containedhe alvays-talen,
always-not-talen, almost-alays-talen, almost-abays-not-talen, and alternating patternghis set will
be referred to as tHixedpredicting set since it does not change with the benchmark being Tisedol-
lowing sections gie Smulation results for the DPEAg predictor The first section uses thedik predict-
ing set, while the second section uses an alternate method for partitioning patterns, between the DPE and
predicting set, based on profiling information.

4.1. TheFixed Predicting Set

The misprediction rates forAl§ and DPE/Rg are shwn in Figure 4 (The results fapsiare not
reported due to errors in the DPE runghe depth of history maintained ianied between 8, 12, and 16.
The branch resolution isavied from 1 up to 6. These wariations are referred to as H(R), where H is the
number of history bits and R is the branch resolutibinus, 12(5) wuld imply that the DPEAR predic-
tor uses 12 bits to maintain the branch history and 5 branches are required to occur bewveen f

This figure shws that ss the branch resolution decreases, the misprediction also decreases.
shorter branch resolution alls more &nouts to occur and thus more patterns with poor prediction accu-
racies do not hee o predict. Lookingatli with a history depth of 12 and a branch resolution of 1, there
is a reduction of wer 78% in the misprediction ratelncreasing the resolution to 6 whiledping the
same number of history bitsvgs a eduction of the misprediction rate by 33%hus, @en using a reso-
lution of 6, approximately 30 instructions betweanduts, a significant increase in performance is seen.

-9-

compress X o i
% Misprediction

% Misprediction 90 % Misprediction
25 12
@EPAg

BEDPE/PAG

BEPAg
B DPE/PAG

20

15

o B N W A O O

8(1)
8(3)
8(5)

12(1)

12(3)

12(5)

16(1)

16(3)
8(1)
8(3)
8(5)

12(1)

12(3)

12(5)

16(1)
16(3)
(5)
8(1)
8(3)
8(5)
12(1)
12(3)
12(5)
16(1)
16(3)

T 16

R) H

ijpeg perl gce

O RPN WH OO N ® O

ok N W A O o N

8(1)
8(3)
8(5)

12(1)
12(3)
12(5)
16(1)
16(3)
16(5)
8
8|
8|
12
12
12
16(1,
16(3
16(5)
8(1)
8(3)
8(5)

12(1)

12(3)

12(5)

16(1)

16(3)

16(5)

swim foppp

0.20

0.10

0.05

O Fr N WA GO O N ®

0.00

8(1)
8(3)
8(5)

12(1)

12(3)

12(5)

16(1)

16(3)

16(5)

8(1)
8(3)
8(5)
12(1)
12(3)
12(5)
16(1)
16(3)
16(5)

Figure 4 Misprediction Comparison of Ag and DPE/PAg

This allovs the use of DPEven with minimal resources to be beneficial.

When analyzing the results of thegbnid DPE predictgrthe maleup of the predicting set should not
be ignored. The performance of theyhrid predictor is dependent on the accyraed coserage of the
predicting set.If the accurag is kept too high, the aerage will be reduced and there will often be con-
tention for the DPE resources between patterns; forcing a pattern withpeeltiction to predict because
a pattern with a higher accumabas finned out prdously taking the resourcelhus the ceerage of the
predicting set is alsoevy important.

Figure 5 shars the percent of patterns that were actually ablartout. Thigpercentage is in terms
of patterns that were contending for the DPE resources, those not in the predictlompketg at a his-
tory depth of 12 and a branch resolution of 1, thedfigredicting set as able to perform between 60%
and 94% of all&nouts, with an\arage of 77%.Increasing the branch resolution to 6, between 23% and
83% of all inouts were gen DPE resources, with arvarage of 41%. Thus, hev much cost is to be
devoted to dual pathxecution and the branch resolutionvRaa hrge afect on the ceerage of the pre-
dicting set.

Table 5 shavs the number ofahouts gecuted and the percentage of tota¢@itions that woided
prediction for history depths of 8 and 12&n average of 16% of the total branches had patterns that were
allowed to finout when the history depth is 12 and the resolution Ehlis, the fied predicting set does
a good job of limiting the occurrence of dual paieaution.

-10 -

compress % of Fanouts Allowed

100
920
80
70

o
g % of Fanouts Allowed
100

% of Fanouts Allowed

60
50
40
30
20
10

8(1)
8(3)
8(5)

12(1)

12(3)

12(5)

16(1)

16(3)

16(5)
8(1)
8(3)
8(5)

12(1)
12(3)
12(5)
16(1)
16(3)
16(5)
8(1)
8(3)
8(5)
12(1)
12(3)
12(5)
16(1)
16(3)
16(5)

gce

100

8(1)
8(3)
8(5)

12(1)

12(3)

12(5)

16(1)

16(3)
16(5)

8(1)

8(3)

8(5)
12(1)
12(3)
12(5)
16(1)
16(3)
16(5)

8(1)
8(3)
8(5)

12(1)

12(3)

12(5)

16(1)

16(3)
16(5)

foppp

8(3)

8(5)
12(1)
12(3)
12(5)
16(1)
16(3)
16(5)

g
&

8(3)

8(5)
12(1)
12(3)
12(5)
16(1)
16(3)
16(5)

g
&

Figure 5 Analysis of Fanouts Allowed

4.2. Pofile-based Pedicting Sets

A second approach to creating the predicting st wsed for comparisoi predicting set \as cre-
ated especially for each benchmarRrofiling was used in order to decide which patterns should be
included in the predicting seThe patterns were sorted in order of decreasing agcanackept in a file
along with their corresponding referenc&¥hen the program &s run, the desired werage vas speci-
fied for that run.At the start of a run, the profiled pattern file is readStarting from the most accurate
pattern, patterns were included into the predicting set until the desivexhge vas met. A bit corre-
sponding to the patternas set if the patternag added to the predicting s@then eecution of the pro-
gram continued, and when a branch occured, the bit associated with the branch patteneckd. If
the pattern s in the predicting set, then the patteaswredicted; otherwise dual patteaition was
attempted as before.

The adantage to using this scheme for creating the predicting set is that each benchmark only
includes those patterns that it hasvjpesly found to achiee the highest accurgc Patterns that may per
form well in maty other benchmarks,ub not on this one, will not be includednother adantage is that
the coverage can be adjusted easily to resti@etring out to only those patterns that really require it due
to their poor prediction accunac The caverage from the figd predicting set gen before \aries among
benchmarks. Adravback to this scheme is that the program must be run prior to applicatmirtien in
order to determine the predicting set.

-11 -

Table 5. Number of Rnouts and the Percentage of téaTExecutions

DPE/PAgQ(8)
Resolution =1 | Resolution =2 | Resolution =3 | Resolution =4 | Resolution =5 | Resolution =6
#Fans | %lIlot | #Fans | %Tot | #Fans | %Tot | #Fans | %Tot | #Fans | %Tot | #Fans | %Tot

go 1199 | 27.9 906 211 745 17.3 616 14.3 531 12.3 469 10.9
compress 230| 17.9 2.26 17.6 1.71 13.3 1.32 10. 1.24 9.6 1.08 8.4

Program

[¢Y)

li 2060 20.9 1671 17.0 1443 14.7 1281 130 1043 10.6 953 9.7
ijpeg H1 9.9 319 9.0 241 6.8 202 5.7 184 52 164 4.6
perl 184 8.1 184 8.0 155 6.8 135 5.9 126 55 126 55
gcce 16.2 14.2 13.3 11.7 11.2| 9.9 9.7 8.6 8.7 7.7 7.9 7.0

swim 037 | 005 | 037 | 005/ 037 009 036 005 035 005034 | 005
foppp 1214 | 229 | 961 | 18.1| 738| 139 670 126 588 111529 | 10.0

DPE/PAgQ(12)
Resolution =1 | Resolution =2 | Resolution =3 | Resolution =4 | Resolution=5| Resolution =6
#Fans | %Tlot | #Fans | %Tot | #Fans | %Tot | #Fans | %Tot | #Fans | %Tot | #Fans | %Tot

go 1393 | 32.4 1021 23.8| 826 19.2 674 15.7 576 13.4 506 11.8
compress 2.86| 22.2 2.70 21.0 2.06 16.0 1.59 12.8 1.46 11.41.26 9.8
li 2212 225 1820 185 1532 15.6 137y 14,0 1114 11.31018 10.36

Program

iipeg 437 | 124 | 385 | 109| 285 81 238 6.7 215 6.1| 189 5.3
perl 184 | 81 183 8.0 154 6.7 135 5.9 126 55 126 5.5
gcc 200 | 176 | 161 | 142| 133| 117 113 99 | 100 | 88| 89 7.8

swim 0.42 0.05 0.42 0.05 0.41 0.05 0.44 0.05 0.39 0.p50.37 0.05
fpppp 1308 | 24.7 1023 19.3| 774 14.6 687 12.9 602 11.4 549 10.4

Six different benchmarks were run with profile-based predicting $#esfound that when fixing
the branch resolution, the misprediction rate decreases and then increaseswesape isoaried. Ifthe
coverage is too lw, then patterns with {@ prediction accuracies may be forced to predict since there is a
lot of contention for the DPE resourcd§the caverage is too high, then the DPE resources are not being
used enough and patterns witlvleccuracies are being included in the predicting set and thus are being
forced to predict.

Each benchmark has itsvo ideal coerage for each length of branch resolutidtar example,ijpeg
performs best when the branch resolution is 2, when therage is 85, whilggo performs best with a
coverage of 50.gccperforms best at a eerage of 70 when the branch resolution is 1, 2 and 3, yet bene-
fits from a coerage of 85 when the resolution increases toTAus, the architectural limits of DPE
resources should be considered when choosingenaae.

When comparing the misprediction rate for the ideab@me and that of the eerage obtained by
using the fied predicting set, we found that the rates do aof by much.Often the tw coverages are
even fairly close togetherFor a resolution of 2,ompesshas an ideal a@rage of 70 and achies a mis-
prediction rate of 4.07The fixed predicting set has awvaage of 71 and achies a msprediction of
4.29. Theseorrespond to decreases in misprediction rate of the [NgESheme of 78.7% and 77.6%
respectiely. The closeness in thewwages and the misprediction rates imply that thedfiredicting set
does a good job of identifying the patterns that are good predictors and that those patterns really do not
vary much with the benchmarkl hus, profiling may not be necessary

4.3. Ewaluating the Performance of LDPE on Cycle Tme

Branch prediction rates\@ a @od first approximation of thexpected performance impact of the
limited dual path xecution scheme, Wi to fully evaluate the capabilities of this scheme it must be inte-
grated into a processor pipelinin order to galuation the performance of thglhrid DPE mechanism on
the overall execution time of an application, wauilt a ¢/cle level simulator based on the SimpleScalar

-12 -

tool set. The tool set emples the SimpleScalar instruction set, which is a (virtual) MIP8-#ikhitec-

ture. All programs were compiled with GNU GCCe(gion 2.6.2), GNU GAS érsion 2.5), and GNU
GLD (version 2.5) with maximum optimization (-O3) and loop unrolling enabled (-funroll-loops}.

Fortran codes were first coerted to C using AT F2C \ersion 1994.09.27.

We smulated the recution of an agresgt aut-of-order pipeline gry similar to that of the Pentium
Pro (without the need to translate CISC instructio$)e pipeline is capabile of issuing up to 4 instruc-
tions per gcle and perform a single branch predictionrg cycle. Conditionabranch instructions taka
minimum of 12 gcles to complete (other branch latencies weauated, lut space limitations require us
to shav one pipeline configuration).

Table 6 shavs the number ofycles necessary toxecute each of the listed benchmark programs.
The second column siws the number ofycles necessary assuming perfect branch prediction, the third
column the number ofycles required using the LDPE technique, the fourth column the numbgeles ¢
needed if using an unmodified 2«kbranch predictor ¢Rg), the fifth column the percent sidowvn over
the minimum for the LDPE case, and the sixth the percewtdsion for the Ag case. This table shas
that limited dual pathxecution is capable of greatly reducing the branch mispredict peledting to a
substantial impreement in IPC.

5. Conclusions

This work presents aybrid branch predictor scheme that uses dual patuéon and a predicting
set based on patterns tdeetively reduce the branch penalty in high performance proces®¥énie dual
path eecution is in theory beneficial in eliminating branch penattis generally unrealizable due to the
excessve hardware cost requiredCombining DPE with another current prediction scheme can limit the
times that adnout would occur reducing the cost.

When limiting DPE, it is beneficial toraluate when the prediction is belel to be a ®und one and
to allow the DPE resources to be used when the predictionely lik be wrong.In order to accomplish
this, a predicting set is created to select when to predict and wheectdeedovn both paths, creating a
partial coverage predictor This work taigets patterns since branches are biased to a particular path or pat-
tern. Theaccurag and reference count of each pattern is used to assign a confidence to that pattern,
which determines whether that pattern should be predicted or should attempidt@ grediction by
executing davn both paths.

Using the pattern confidences, a partialecage predictor can be implementeth the past,
branches ha dther alvays been predicted or arevee predicted. Theadea of a partial carage predic-
tor takes a predictor that is kmm to typically predict well and limits the time it predicts to those high
accurayg cases. Theredicting sets described in this paper do a good job of allocating the DPE resources
and allav the strengths of both the predictor and dual paéswion to remain, while also reducing the

Table 6. Cycle Time Comparison of LDPE to Perfect Prediction aAd P

Cycles Required Cycles Required Cycles Required % Increase in % Increase in
Program Using Using Using Ag Execution Tme BExecution Tme
Perfect Prediction LDPE (forLDPE) (forPAg)
compress 1924374 1989416 2357989 3.38 22.53
gcc 256463944 303700801 415954749 18.42 62.19
go 526541349 609912176 884465133 15.83 67.98
li 498301747 651088394 884971198 30.66 77.60
perl 8932741 10598949 12931283 18.65 44.76

-13-

negative wsts of DPE.

Comparing the DPEwrid predictor model to the single scheme approdap Bramatic decreases
in misprediction rate were seenThe FAg(16) cave an aerage misprediction of 5.29%.The
DPE/FAQ(16)/1 gwves an average misprediction of 2.11% and the DPE/2-bit(16)/1 aekia mspredic-
tion rate of 3.08%.These correspond to decreases of 60% and 36% reshectihich translates to an
improvement of 10% to 20% inxecution time. These results imply that dual patkeeution which often
is thought to be a resource consuming method may bertaywapproach if restricted with a predicting
set.

6. Future Work

The proposedybrid branch predictor scheme can greatly help increase the performance of proces-
sors. Whileit is clear that this scheme prdes an increase in prediction accyrager current schemes,
assumptions were made throughout tkpegiments that should be addressed in order to furtditate
the results of this predictor approadfuture vork in this area will eliminate some of these assumptions.

. Other tybrid dual path wecution \ariations should be studied’he current predictors used in this
study were Rg and two-bit, hawvever, ather current predictors might pre useful if combined with
DPE.

. The cost of implementing of dual patkeeution was not lookd into for this study The cost of
varying the branch resolution time should also be studiatbwing these costsould allov a better
comparison between predictors to find the best predictor farea gist.

. In this study execution was limited to tw instruction streams at a timé&he efects of allaving
more instruction streams txeeute simultaneously euld be an interesting analysi$his essen-
tially allows for instructions that are an unresavbranch path to bexeeuted, creating more
instructions to fill the pipeline, kever also creating the possibility for mgmmore results to be
found to be useless later

7. Bibliography

[1] W.D. Conners, J. Flodwski and S.K. Btton, "The IBM 3033: An Inside Look," In Datamation,
pages 198-218, May 1979.

[2] AugustusK. Uht and \fay Sindagi, "Disjoint Eager Eecution: Anoptimal form of speculate
execution,” in Proceedings of the 28th Annual International Symposium onokfighitecture
(MICRO-28),pages 313-325, No 1995

[3] Gary Tyson, "The Hects of Predicated Exution on Branch Prediction”, Ri7th Annual Interna-
tional Symposium on Miecarchitecture, pages 196-205, No 30-Dec. 2, San Jose, CA, 1994

[4] E.Rotenbeg, S. Bennett, and J.E. Smith,r&€e CacheA Low Lateny Approach to High Band-
width Instruction Fetching," ir?9th Annual International Symposium on Miarchitecture, Pais,
France, Dec. 1996

[5] ScottMcFarling, "Combining Branch PredictorsTechnical Report TN-36DEC-WRL, June 1993.

[6] Erik Jacobsen, Eric Rotenlgerand James E. Smith, "Assigning Confidence to Conditional Brnach
Predictions”, in29th Annual International Symposium on Marchitecture, pages 142-152,
December 1996.

[7] Kelsegy Lick and Gary yson, "Hybrid Branch Prediction Using Limited DuahtR Execution”,
Department of Computer Sciencechnical Report #UCR-CS-96-7, Waisity of California, Rver-
side, Nowember 1996.

-14 -

