
Limited Dual Path Execution

Gary Tyson Kelsey Lick Matthew Farr ens
Electrical Engineering and Department of Department of

ˆComputer Science Department Computer Science Computer Science

The University of Michigan University of California, Davis University of California, Riverside
Ann Arbor, MI Riv erside, CA Davis, CA 95616

(tyson@eecs.umich.edu) (klick@cs.ucr.edu) (farrens@cs.ucdavis.edu)

Abstract

This work presents a hybrid branch predictor scheme that uses a limited form of dual path execution
along with dynamic branch prediction to improve execution times. The ability to execute down both
paths of a conditional branch enables the branch penalty to be minimized; however, relying exclusively on
dual path execution is infeasible due because instruction fetch rates far exceed the capability of the
pipeline to retire a single branch before others must be processed.By using confidence information,
available in the dynamic branch prediction state tables, a limited form of dual path execution becomes
feasible. Thisreduces the burden on the branch predictor by allowing predictions of low confidence to be
avoided.

In this study we present a new approach to gather branch prediction confidence with little or no
overhead, and use this confidence mechanism to determine whether dual path execution or branch predic-
tion should be used.Comparing this hybrid predictor model to the dynamic branch predictor shows a dra-
matic decrease in misprediction rate, which translates to an reduction in runtime of over 20%. These
results imply that dual path execution, which often is thought to be an excessively resource consuming
method, may be a worthy approach if restricted with an appropriate predicting set.

1. Intr oduction

Changes in control flow (branches) are a well-known impediment to high performance.And as
pipelines deepen and issue widths increase, this problem is increasing in importance.The penalty for
fetching down the wrong path (the branch mispredict penalty) is becoming a substantial fraction of overall
performance loss.

One way to eliminate the branch mispredict penalty is to avoid fetching down the wrong path.This
fact has led to extensive work on improving the quality of branch predictors in order to allow the proces-
sor to speculatively execute past branches with a high degree of confidence.Another way to avoid paying
the branch mispredict penalty is to fetch instructions from both the fall-through and target locations, guar-
anteeing that the machine is executing the correct stream of instructions.This approach is not new - the
IBM 3168 and 3033 mainframes used a similar approach back in the late 1970’s (instructions were
fetched from both paths, but the instructions from only one path could be decoded and executed) [1].

Unfortunately, giv en the known distribution of branch instructions and the number of instructions
that are often "in flight" in a current processor, it is inevitable that another branch instruction will be
encountered by one (or both) of the streams before the initial branch condition is resolved. Providing suf-
ficient resources to continue to split and fetch on each of these new branches can clearly lead to a

- 1 -

cascading effect, requiring an exponentially increasing amount of hardware and potentially significantly
impeding the progress of the correct stream.

In order to limit the cost necessary to support multiple path execution, Uht [2] proposed a technique
called Disjoint Eager Execution (DEE) which limits the number of concurrent executing paths by using a
selector to decide which paths to execute. Theselectors are based on statically calculated probabilities.

However, studies of the characteristics of branch behavior [3] indicate that certain branches are
much more difficult to predict than others.The fact that different branches can be predicted with different
accuracies leads to the possibility of a new approach, "Limited Dual Path Execution" (LDPE), in which
hardware support is provided to allow the processor to split and fetch down two (but only two) paths.The
decision on whether or not to fork will be based on the prediction accuracy of the branch - if the accuracy
of the predictor for a given branch is high enough, then no forking will be done.

In this paper we will describe LDPE in more detail, and our work on finding an optimal set of pat-
terns, based on reference count and misprediction rate, to use as a limiting factor for LDPE.Finally, we

will present some simulation results and our future plans.1

2. Limited Dual-Path Execution

Limited Dual-Path Execution works by providing sufficient hardware to support the simultaneous
fetching and execution of 2 (and only 2) distinct instruction streams.A box diagram of the technique is
presented in Figure 1.This figure shows that the interesting parts of LDPE lie between the BHR and Cur-
rent Predictor of a 2-level branch predictor (a 2-level branch predictor is assumed since they hav ebeen
shown to provide the highest prediction accuracies).

The technique works as follows: ThePC of a branch instruction is presented to the Branch History
Register (the first level of the branch predictor) as usual.However, the pattern that comes out of the BHR
is not sent directly to the predictor - instead, hardware checks to see if the pattern is in our predicting set,
which consistsof those patterns which are anticipated to have good prediction accuracy. If i t is, the
branch is considered highly predictable, and the pattern is forwarded on to the second level of the

BHR
PC Pattern PREDICTING Yes

No

CURRENT Prediction

T < T + R
Yes No

DPE

SET PREDICTOR

f

Figure 1: L imited Dual-Path Execution

1 Another significant problem with dual path execution is that the front-end instruction fetch stage of
the pipeline must be duplicated; given the heavy demands on the ICache, duplication of this resources
seems prohibitive. Fortunately, recent improvements in the design of processor fetch mechanisms [4] im-
ply that a more restrictive form of dual path execution is feasible.We will not, however, explore front end
issues in this paper.

- 2 -

predictor. Howev er, if the pattern is not in the predicting set, then it is a branch that is considered difficult
to predict accurately, and an attempt will be made to begin fetching down both paths at this point.If the
hardware is not currently fetching down both paths, then it will begin doing so.If dual-path fetchingis in

progress, then the pattern is sent on to the second level predictor and a regular prediction will occur.2

The benefits of this scheme come from reducing (or limiting) the occurrence of DPE.Those pat-
terns that are predicted well continue to be predicted rather than using DPE resources, and the patterns
that are believed to mispredict often are allowed to execute down both paths eliminating the prediction
(and frequently a misprediction).

Clearly this approach relies heavily on the ability to distinguish between branches that are highly
accurately predicted (have ahigh confidence) and branches that are poorly predicted (have a low confi-
dence). In the following section we will explore this question in more detail.

3. AssigningConfidence to Branch Prediction

Hybrid branch predictors [5] use selectors to determine which component is more confident in its
prediction. Inthe technique described in the previous section, confidences are assigned to the branch pat-
terns and a selecting set was be used to determine whether to predict or perform dual path execution. This
technique is substantially different than that used by Jacobsen et al [6].In their work, extra hardware was
added to keep track of the performance of the branch predictor. In LDPE we are proposing extracting
more information from theexistinghardware.

3.1. ExperimentalSystem

The initial experiments for this research were conducted using UltraSPARC model 170E systems.
The data was gathered using a tracing tool developed at SUN Microsystems Laboratories called Shade,
which provides exhaustive dynamic information at the instruction level by dynamically translating the
code of the application into host machine code while incorporating analysis code to generate the traces.
This new code is then directly executed to emulate and trace the application.

3.2. ImplementedBranch Predictors

Four different types of branch predictors were implemented in order to evaluate how the accuracy of
different programs were affected by differences in a variety of current prediction schemes.The first and
simplest predictor implements a per-address scheme in which every static branch is given its own two-bit
saturating up/down counter. The second scheme simulates gshare(12), with twelve bits used to keep track
of the first level of history. This requires a pattern history table of size 4096 indexed by the lower 12 bits
of the branch address XORed with the pattern.Gshare has been found to achieve high accuracies without
the high cost needed for many other predictors. [5].

The last two predictors studied are variations of the two-level adaptive scheme. BothPAg and PAs
are implemented.PAg uses a per-address branch history register table, and the depth of the history bits
was varied between 8, 12, and 16 bits which then indexed into a global PHT. PAs(6,16) keeps 6 bits of
history for each branch address.Each BHR hashes to one of 16 PHTs.There were assumed to be no con-
tention among the BHRs with any of the predictors.

2 Note that this is a conceptual diagram - if the branch prediction logic is limiting the machine cycle
time, then the Current Predictor and the Predicting Set lookup could occur in parallel and the signal gen-
erated could simply be an "accept/reject" of the output of the Current Predictor).

- 3 -

3.3. Descriptionof Benchmarks

The benchmarks analyzed were those from the SPEC95 suite.Six of the integer benchmarks and
three of the floating point benchmarks were used.Although compressis included in the Spec95 suite,
Berkeley compress version 5.9 was used due to problems with running the SPEC95 version. Eachpro-
gram was run to completion.

Table 1 shows many basic statistics of each of the programs used.The table lists the input files
used, the total number of instructions executed, the number of conditional branch instructions, the total
number of branches executed, and the percent of branches that are TAKEN. Only the branches that are
executed at least once will be examined, since these are the branches that affect the accuracy of a branch
predictor.

Table 2 shows the misprediction rate for each program when using the predictors: 2-bit, PAg(8),
PAg(12), PAg(16), PAs(6,16), and gshare(12).The mispredictions given for gcc are the average for the
five separate inputs.It can be seen that as the number of history bits increases in the PAg scheme, the
accuracy increases. Increasingthe depth of history that is maintained allows more patterns to be differen-
tiated, enabling a predictor to find the best prediction per pattern.

3.4. BranchCharacteristics

The benchmark programs exhibit many interesting characteristics that often depend upon the nature
of the program.The integer benchmarks typically use more branch instructions than the floating point
benchmarks, withgcc having a very large working set of active branch instructions.On the other hand,
the floating point programs tend to execute a small number of instructions a large number of times.For
example, inperl, only 80 branch instructions (less than 3% of the total branch instructions) are responsi-
ble for over 80% of all the executed branches.This phenomena indicates that it might be beneficial if a
branch predictor could target the few branches that are responsible for the majority of the executions.

Table 1. Detailed Benchmark Information

Total # of Branch Total
Instruction Instructions Branch

%

Executions (executed at Executions
(in millions) least once) (in millions)

Taken
Program InputFile

go 9stone21.in 34423 7263 4296 59.24
compress in 81 1364 12 71.12
li * 57924 1880 9830 50.07
ijpeg penguin.ppm 42619 2407 3534 67.73
perl primes.pl 15450 2902 2284 54.41
gcc 1insn-recog.i 599 14782 113 57.50
gcc 1cccp.i 1344 21438 253 59.89
gcc emit-rtl.i 173 18771 31 55.01
gcc regclass.i 127 18660 23 56.70
gcc explow.i 241 14969 45 56.80
swim swim.in 273176 876 725 99.20
apsi 394597 1806 17112 64.63
fpppp natoms.in 396365 980 5297 66.12

gccaverage 497 17724 93 57.18
intaverage 25183 5100 3345 60.01
fpaverage 354713 1221 7994 76.65
totalaverage 135026 3807 4799 65.56

- 4 -

Table 2. Misprediction Rates

2-bit PAg(8) PAg(12) PAg(16) PAs(6,16) gshare(12)
% misp %misp %misp %misp %misp %misp

Program

go 20.444 20.037 19.150 15.284 20.938 27.251
compress 11.815 10.955 10.550 10.154 10.601 10.006
li 10.738 5.301 3.880 2.560 5.207 4.896
ijpeg 9.051 6.239 5.905 5.571 6.294 5.855
perl 4.255 0.037 0.025 0.020 0.042 2.131
gcc 9.925 8.184 6.399 5.153 8.780 11.638
swim 0.266 0.197 0.197 0.197 0.197 0.213
fpppp 15.869 7.093 4.319 3.410 7.222 5.600

int average 11.04 8.46 7.65 6.46 8.64 10.30
fp average 8.06 3.64 2.26 1.80 3.71 2.91
total average 10.30 7.25 6.30 5.29 7.41 8.45

An examination of the distribution of mispredictions among branches shows that even fewer
branches are responsible for the majority of mispredictions.For perl, less than 2% of all branch instruc-
tions, 55 branches, create over 90% of the total mispredictions.This again emphasizes the importance of
identifying the branches that are generating the largest disturbances in the prediction accuracy. Thus, it is
extremely valuable to the accuracy of a predictor if the branches which are referenced often or have high
misprediction rates are discovered and targeted for special processing (e.g. dual path execution).

Increasing the depth of history allows more patterns to be differentiated; however, many of these
new patterns may not be referenced often.The characteristics of branches examined previously can also
be seen when looking at patterns.In perl, using the predictor PAg(12), 4 distinct patterns correspond to
over 90% of the total references.It has been shown [7] that branches are highly biased toward a particular
pattern or direction and since branches may map to more than one pattern throughout the execution of a
program, targeting patterns can encompass more branch references and branch mispredictions.

3.5. TheRelationship Between Accuracy and Coverage

Both accuracy and coverage (the percent of total references encompassed by the patterns) play a
major role in deciding which patterns to include in the predicting set.Given that there is not an infinite
set of resources to always allow fanouts without delay, it would be best to only include patterns in the pre-
dicting set that achieve an average accuracy above a certain threshold.However, the higher the accuracy
threshold is set, the more patterns fall below that accuracy and compete for fanout resources.

If two branches compete for limited dual-path execution resources, then the first branch to be started
will be allocated the resources regardless of the prediction accuracies of their respective patterns. Thus,a
less accurate pattern may be forced to be predicted because the resources are already filled with a more
accurately predicted pattern.This can lead to a reduction in overall accuracy when the predicting set does
not contain enough patterns, implying that the coverage is too small.A compromise needs to be made
between choosing patterns with high accuracies and those that create a large coverage. Includingpatterns
with a high percentage of the total references would reduce how often fanouts would be attempted.
Choosing a predicting set that targets either accuracy or coverage, while being optimal in the local point
of view, may not improve overall performance.

Figure 2 illustrates the relationship between accuracy and coverage for each benchmark.As the
number of patterns in the predicting set increases, the accuracy drops and the coverage increases.These
curves were obtained by sorting the patterns according to accuracy and then the accuracy and coverage
were determined as each pattern was added into the predicting set.These curves assume that those pat-
terns that are not in the predicting set will have the resources to fanout. Sincethe coverage curve

- 5 -

increases quickly, the predicting set can remain small, with the hope of not compromising the accuracy
greatly. If the correct patterns could be identified,go could achieve an overall accuracy of over 95% with
60% coverage. Thisis a dramatic increase from its normal overall accuracy of just over 80% (translating
to over a 75% drop in misprediction rate).Thus, the importance of choosing the optimal patterns can be
seen.

3.6. Analysisof Patterns and the Predicting Set

There are a few different approaches that can be used to obtain the predicting set.Patterns can be
analyzed in all the benchmarks and a set can be chosen that should perform well for all programs.
Another approach would be to chose a separate set for each benchmark.While this method should attain
higher accuracies for each program, a generic predicting set is more versatile. Thefollowing describes
the techniques used to obtain one predicting set for all benchmarks.

When choosing the most beneficial patterns to include in the predicting set for both the accuracy and
coverage concerns, it is helpful to look for trends among the patterns across the benchmarks.For each
benchmark, two lists of patterns were crucial to determining the predicting set; patterns sorted in order of
references and patterns sorted in order of accuracy. The list of the top referenced patterns revealed a
noticeable trend.Table 3 lists the top 20 referenced patterns for each benchmark.In every benchmark the
top two referenced patterns were those that contained either all ones or all zeros, meaning that the history
is exclusively TAKEN or exclusively NOT-TAKEN. Thesepatterns will be referred to as thealways-

Accuracy and Coverage Curves

80

85

90

95

100

0

99
0

19
90

29
90

40
00

of Predicted Patterns

%
 A

cc
u

ra
cy

0
10
20
30
40
50
60
70
80
90
100

%
 C

o
ve

ra
g

eCum. Acc.

Cum. Cov.

go
Accuracy and Coverage Curves

85

90

95

100

0

99
0

19
90

29
90

40
00

of Predicted Patterns

%
 A

cc
u

ra
cy

0
10
20
30
40
50
60
70
80
90
100

%
 C

o
ve

ra
g

e

Cum. Acc.

Cum. Cov.

compress
Accuracy and Coverage Curves

95
95.5

96
96.5

97
97.5

98
98.5

99
99.5
100

0

99
0

19
90

29
90

40
00

of Predicted Patterns

%
 A

cc
u

ra
cy

0
10
20
30
40
50
60
70
80
90
100

%
 C

o
ve

ra
g

e

Cum. Acc.

Cum. Cov.

li

90

92

94

96

98

100

0

99
0

19
90

29
90

39
90

0

10

20

30

40

50

60

70

80

90

100
ijpeg

99.975

99.98

99.985

99.99

99.995

100

0

99
0

19
90

29
90

39
90

0

10

20

30

40

50

60

70

80

90

100
perl

90

92

94

96

98

100

0

99
0

19
90

29
90

39
90

0

10

20

30

40

50

60

70

80

90

100
gcc

99.5

99.6

99.7

99.8

99.9

100

0

10
0

20
0

30
0

40
0

50
0

60
0

0
10
20
30
40
50
60
70
80
90
100
swim

98

99

100

0

99
0

19
90

29
90

39
90

0
10
20
30
40
50
60
70
80
90
100
apsi

95

96

97

98

99

100

0

99
0

19
90

29
90

39
90

0
10
20
30
40
50
60
70
80
90
100
fpppp

Figure 2: Relationship Between Coverage and Accuracy

- 6 -

takenpattern and thealways-not-takenpattern, respectively.

This trend implies that these patterns are beneficial to the coverage component for choosing the pre-
dicting set. Fortunately, looking at the list of patterns that have the best accuracies, the always-taken and
always-not-taken patterns are found in the top 1% of all patterns for most of the benchmarks and in the
top 5% for all benchmarks.Thus, the always-taken and always-not-taken patterns are obvious candidates
for the predicting set; they hav egood prediction accuracy as well as good coverage. Whenanalyzing
these two lists, the necessity of using both accuracy and coverage together is clear; many of the most
accurate patterns obtain such a high accuracy due to very low reference counts.

Another interesting characteristic found in the sorted patterns is that patterns with only a single
NOT-TAKEN (zero state) branch often have a high reference count and achieve fairly high accuracies.
This set of patterns is referred to as thealmost-always-taken patterns. Thisphenomena led to the classi-
fication of patterns into sets based on the number of TAKEN paths in the history. These sets were ana-
lyzed through graphs that showed how they compared in terms of references and accuracies.

Figure 3 shows these graphs for three benchmarks,go, ijpeg, and fpppp. Each point gives the accu-
racy or reference for the set of patterns withX number of TAKEN branches.For example, the pattern
0001000100000000would be included in the set of patterns with 2 TAKEN branches.The overall accu-
racy is also shown on the graphs for comparison.The graphs shown use data obtained by the predictor
PAg(16). Thesegraphs reaffirm the wisdom of including the always-taken pattern and the always-not-
taken pattern in the predicting set since these patterns consistently achieve higher accuracies than the
overall accuracy. Both go and ijpeg show that the almost-always-taken patterns also give a higher accu-
racy than the overall accuracy. Thus the patterns with only one NOT-TAKEN path in their history are
included in the predicting set.

Some of the benchmarks show that the almost-always-not-taken pattern set (those containing only
one TAKEN branch in a stream of NOT-TAKEN branches) also achieves high accuracy. While this is not
true for all the benchmarks, these patterns were chosen to be included in the predicting set due to the

Table 3. Patterns in Programs

go ijpeg perl gcc swim apsi fpppp

111111111111 111111111111 111111111111 111111111111 111111111111 111111111111 111111111111
000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000
110111011101 101010101010 101101101101 010101010101 011111111111 101010101010 101110111011
101110111011 010101010101 110110110110 101010101010 111111111110 010101010101 110111011101
111011101110 111101111111 011011011011 011111111111 111111111101 010101010010 111011101110
011101110111 111110111111 101001100010 111111111110 101111111111 010010101010 011101110111
011111111111 111111011111 010100110001 111110111111 111111111011 111110111111 101101101101
111111111110 111111101111 001010011000 111111011111 110111111111 111111011111 110110110110
111111011111 011111111111 100110001010 111101111111 111011111111 101010010010 011011011011
111110111111 111111111110 000101001100 111111101111 111111110111 010101001001 010101010101
111111111101 011111110111 110001010011 111011111111 111111011111 010100100101 101010101010
101111111111 111011111110 100010100110 111111110111 111111101111 101001001010 110110111011
111111101111 101111111011 010011000101 101111111111 111101111111 100101010100 011011101110
111101111111 110111111101 011000101001 110111111111 111110111111 001010101001 110111011011
110111111111 101111111111 001100010100 111111111011 101010101010 101010100100 101101110111
111111111011 110111111111 101010101010 111111111101 010101010101 010010010101 011101110110
111111110111 111111111101 010101010101 000000000001 101110111011 100100101010 111011101101
111011111111 111011111111 111110111111 100000000000 011101110111 001001010101 111011011101
010101010101 111111110111 111111011111 000000100000 110111011101 111101111110 011101101110
101010101010 111111111011 111101111111 000001000000 111011101110 011111101111 101110110111

- 7 -

simplicity of the circuit that could identify these patterns.The references to these patterns will also help
limit the number of fanouts attempted.A few benchmarks, such asfpppp, which do not have good accu-
racy for the almost-always-not-taken patterns, do not reference this pattern set often enough for it to have
a neg ative effect on the accuracy of the new hybrid predictor.

Peaks can be seen in many of the programs for the pattern sets that were TAKEN during half the
history and NOT-TAKEN for half. After further examination, it was found that the patterns that alternate
between TAKEN and NOT-TAKEN paths were responsible for the majority of references in this pattern
set. Thesepatterns will be referred to as the alternating patterns.Since these patterns can be predicted
well (The overall accuracy of the half TAKEN/half NOT-TAKEN is brought down by those patterns
which are not alternating), they too are included in the predicting set.Thus, the predicting set used in the
following sections of this paper will contain the always-taken pattern, the always-not-taken pattern, the
almost-always-taken and almost-always-not-taken patterns, and the alternating patterns.

The accuracy and coverage that occur due to the chosen predicting set is shown in Table 4. The
table shows the percentages for each parameter varying the history depth between 8, 12, 16 bits.The
actual PAg(x) accuracy, without using any fanouts, is shown for comparison.As more history is main-
tained, the coverage decreases, attempting to fanout more often.The accuracy is seen to increase with the
history. These graphs assume that there is always a DPE resource available when needed, making the
only patterns to be predicted those in the predicting set.Given ample resources, it is clear that there
would be a very beneficial increase in accuracy due to this new hybrid predictor.

of 1s in Pattern vs. Accuracy

60

70

80

90

100

0 4 8 12 16
of 1s in Pattern

%
 A

cc
u

ra
cy

go

Overall Accuracy

of 1s in Pattern vs. References

0
100
200
300
400
500
600
700
800
900

1000

0 4 8 12 16

of 1s in Pattern

R
ef

er
en

ce
s

(i
n

 m
ill

io
n

s)

go

of 1s in Pattern vs. Accuracy

50

60

70

80

90

100

0 4 8 12 16
of 1s in Pattern

%
 A

cc
u

ra
cy

ijpeg

of 1s in Pattern vs. References

0

200

400

600

800

1000

1200

1400

1600

1800

0 4 8 12 16

of 1s in Pattern

R
ef

er
en

ce
s

(i
n

 m
ill

io
n

s)

ijpeg

of 1s in Pattern vs. Accuracy

85

90

95

100

0 4 8 12 16
of 1s in Pattern

%
 A

cc
u

ra
cy

Overall Accuracy

of 1s in Pattern vs. References

0

500

1000

1500

2000

2500

0 4 8 12 16

of 1s in Pattern

R
ef

er
en

ce
s

(i
n

 m
ill

io
n

s)

fpppp

fpppp

Overall Accuracy

Figure 3: Pattern Sets Based on the Number of TAKEN Paths

- 8 -

Table 4. Accuracy and Coverage Assuming Unlimited DPE Resources

DPE/PAg(8) PAg(8) DPE/PAg(12) PAg(12) DPE/PAg(16) PAg(16)
% Cov %Acc %Acc %Cov % Acc %Acc %Cov % Acc %Acc

Program

go 59.091 94.734 79.963 49.688 97.290 80.850 44.559 98.247 84.716
compress 78.330 96.252 89.045 71.011 97.62089.450 65.781 98.602 89.846
li 75.185 98.690 94.699 71.716 99.449 96.120 70.535 99.623 97.440
ijpeg 88.277 99.099 93.761 84.394 98.804 94.095 81.563 99.200 94.429
perl 90.637 99.983 99.963 90.606 99.988 99.975 90.581 99.991 99.980
gcc 81.881 96.987 91.816 76.420 98.285 93.601 73.156 98.823 94.847
swim 99.947 99.803 99.803 99.938 99.803 99.803 99.929 99.803 99.803
fpppp 63.131 98.191 92.907 59.145 99.233 95.681 57.497 99.534 96.590

3.7. Fanout Constraints

The frequency of fanouts, or dual path execution, is dependent on the amount of resources available
and the time it takes for a branch to be resolved. Inorder to accurately simulate the correct cycle count,
one would need a full pipeline model and the results would be implementation dependent.We will later
show the results of our approach on a full pipeline simulator, but for now, branch resolution will be based
on instruction count;this enables a comparative analysis of alternate approaches to selecting the predict-
ing set, while avoiding the complexities required for a complete cycle level simulation. After, this initial
analysis, we will verify the results with full simulations of selected configurations.

When determining whether to allow a pattern that is not in the predicting set to fanout, the branch
resolution time is compared to the number of branches that have occurred since the last fanout. Iffanouts
occurs too close together, then a prediction is forced.A resolution equal to2 corresponds to the require-
ment that at least two branches must be predicted between fanouts. Inthis paper the effects of the branch
resolution time is analyzed as it varies from one to six.

4. Evaluating Limited DPE Performance

As mentioned previously, the predicting set that was used in this work containedthe always-taken,
always-not-taken, almost-always-taken, almost-always-not-taken, and alternating patterns.This set will
be referred to as thefixedpredicting set since it does not change with the benchmark being used.The fol-
lowing sections give simulation results for the DPE/PAg predictor. The first section uses the fixed predict-
ing set, while the second section uses an alternate method for partitioning patterns, between the DPE and
predicting set, based on profiling information.

4.1. TheFixed Predicting Set

The misprediction rates for PAg and DPE/PAg are shown in Figure 4 (The results forapsi are not
reported due to errors in the DPE runs.).The depth of history maintained is varied between 8, 12, and 16.
The branch resolution is varied from 1 up to 6.These variations are referred to as H(R), where H is the
number of history bits and R is the branch resolution.Thus, 12(5) would imply that the DPE/PAg predic-
tor uses 12 bits to maintain the branch history and 5 branches are required to occur between fanouts.

This figure shows that ss the branch resolution decreases, the misprediction also decreases.A
shorter branch resolution allows more fanouts to occur and thus more patterns with poor prediction accu-
racies do not have to predict. Lookingat li with a history depth of 12 and a branch resolution of 1, there
is a reduction of over 78% in the misprediction rate.Increasing the resolution to 6 while keeping the
same number of history bits gives a reduction of the misprediction rate by 33%.Thus, even using a reso-
lution of 6, approximately 30 instructions between fanouts, a significant increase in performance is seen.

- 9 -

% Misprediction

0

5

10

15

20

25
8(

1)

8(
3)

8(
5)

12
(1

)

12
(3

)

12
(5

)

16
(1

)

16
(3

)

16
(5

)

PAg

DPE/PAg

go

H(R)

0

1

2

3

4

5

6

7

8

9

8(
1)

8(
3)

8(
5)

12
(1

)

12
(3

)

12
(5

)

16
(1

)

16
(3

)

16
(5

)

gcc

% Misprediction

0

1

2

3

4

5

6

8(
1)

8(
3)

8(
5)

12
(1

)

12
(3

)

12
(5

)

16
(1

)

16
(3

)

16
(5

)

PAg

DPE/PAg

li

H(R)

0

1

2

3

4

5

6

7

8(
1)

8(
3)

8(
5)

12
(1

)

12
(3

)

12
(5

)

16
(1

)

16
(3

)

16
(5

)

ijpeg

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

8(
1)

8(
3)

8(
5)

12
(1

)

12
(3

)

12
(5

)

16
(1

)

16
(3

)

16
(5

)

perl

0.00

0.05

0.10

0.15

0.20

8(
1)

8(
3)

8(
5)

12
(1

)

12
(3

)

12
(5

)

16
(1

)

16
(3

)

16
(5

)

swim

0

1

2

3

4

5

6

7

8

8(
1)

8(
3)

8(
5)

12
(1

)

12
(3

)

12
(5

)

16
(1

)

16
(3

)

16
(5

)

fpppp

% Misprediction

0

2

4

6

8

10

12

8(
1)

8(
3)

8(
5)

12
(1

)

12
(3

)

12
(5

)

16
(1

)

16
(3

)

16
(5

)

PAg
DPE/PAg

compress

H(R)

Figure 4: M isprediction Comparison of PAg and DPE/PAg

This allows the use of DPE even with minimal resources to be beneficial.

When analyzing the results of the hybrid DPE predictor, the makeup of the predicting set should not
be ignored.The performance of the hybrid predictor is dependent on the accuracy and coverage of the
predicting set.If the accuracy is kept too high, the coverage will be reduced and there will often be con-
tention for the DPE resources between patterns; forcing a pattern with a low prediction to predict because
a pattern with a higher accuracy has fanned out previously taking the resource.Thus the coverage of the
predicting set is also very important.

Figure 5 shows the percent of patterns that were actually able to fanout. Thispercentage is in terms
of patterns that were contending for the DPE resources, those not in the predicting set.Looking at a his-
tory depth of 12 and a branch resolution of 1, the fixed predicting set was able to perform between 60%
and 94% of all fanouts, with an average of 77%.Increasing the branch resolution to 6, between 23% and
83% of all fanouts were given DPE resources, with an average of 41%.Thus, how much cost is to be
devoted to dual path execution and the branch resolution have a large affect on the coverage of the pre-
dicting set.

Table 5 shows the number of fanouts executed and the percentage of total executions that avoided
prediction for history depths of 8 and 12.An average of 16% of the total branches had patterns that were
allowed to fanout when the history depth is 12 and the resolution is 1.Thus, the fixed predicting set does
a good job of limiting the occurrence of dual path execution.

- 10 -

% of Fanouts Allowed

0
10
20
30
40
50
60
70
80
90

100

8(
1)

8(
3)

8(
5)

12
(1

)

12
(3

)

12
(5

)

16
(1

)

16
(3

)

16
(5

)

compress

0

10

20

30

40

50

60

70

80

90

100

8(
1)

8(
3)

8(
5)

12
(1

)

12
(3

)

12
(5

)

16
(1

)

16
(3

)

16
(5

)

ijpeg

0

10

20

30

40

50

60

70

80

90

100

8(
1)

8(
3)

8(
5)

12
(1

)

12
(3

)

12
(5

)

16
(1

)

16
(3

)

16
(5

)

perl

0

10

20

30

40

50

60

70

80

90

100

8(
1)

8(
3)

8(
5)

12
(1

)

12
(3

)

12
(5

)

16
(1

)

16
(3

)

16
(5

)

gcc

% of Fanouts Allowed

0
10
20
30
40
50
60
70
80
90

100
8(

1)

8(
3)

8(
5)

12
(1

)

12
(3

)

12
(5

)

16
(1

)

16
(3

)

16
(5

)

go
% of Fanouts Allowed

0
10
20
30
40
50
60
70
80
90

100

8(
1)

8(
3)

8(
5)

12
(1

)

12
(3

)

12
(5

)

16
(1

)

16
(3

)

16
(5

)

li

0

10

20

30

40

50

60

70

80

90

100

8(
1)

8(
3)

8(
5)

12
(1

)

12
(3

)

12
(5

)

16
(1

)

16
(3

)

16
(5

)

swim

0

10

20

30

40

50

60

70

80

90

100

8(
1)

8(
3)

8(
5)

12
(1

)

12
(3

)

12
(5

)

16
(1

)

16
(3

)

16
(5

)

fpppp

Figure 5: Analysis of Fanouts Allowed

4.2. Profile-based Predicting Sets

A second approach to creating the predicting set was used for comparison.A predicting set was cre-
ated especially for each benchmark.Profiling was used in order to decide which patterns should be
included in the predicting set.The patterns were sorted in order of decreasing accuracy and kept in a file
along with their corresponding references.When the program was run, the desired coverage was speci-
fied for that run.At the start of a run, the profiled pattern file is read in.Starting from the most accurate
pattern, patterns were included into the predicting set until the desired coverage was met. A bit corre-
sponding to the pattern was set if the pattern was added to the predicting set.Then execution of the pro-
gram continued, and when a branch occured, the bit associated with the branch pattern was checked. If
the pattern was in the predicting set, then the pattern was predicted; otherwise dual path execution was
attempted as before.

The advantage to using this scheme for creating the predicting set is that each benchmark only
includes those patterns that it has previously found to achieve the highest accuracy. Patterns that may per-
form well in many other benchmarks, but not on this one, will not be included.Another advantage is that
the coverage can be adjusted easily to restrict fanning out to only those patterns that really require it due
to their poor prediction accuracy. The coverage from the fixed predicting set given before varies among
benchmarks. Adrawback to this scheme is that the program must be run prior to application execution in
order to determine the predicting set.

- 11 -

Table 5. Number of Fanouts and the Percentage of the Total Executions

DPE/PAg(8)

Resolution = 1 Resolution = 2 Resolution = 3 Resolution = 4 Resolution = 5 Resolution = 6
Fans %Tot # Fans %Tot # Fans %Tot # Fans %Tot # Fans %Tot # Fans %Tot

Program

go 1199 27.9 906 21.1 745 17.3 616 14.3 531 12.3 469 10.9
compress 2.30 17.9 2.26 17.6 1.71 13.3 1.32 10.3 1.24 9.6 1.08 8.4

li 2060 20.9 1671 17.0 1443 14.7 1281 13.0 1043 10.6 953 9.7
ijpeg 351 9.9 319 9.0 241 6.8 202 5.7 184 5.2 164 4.6
perl 184 8.1 184 8.0 155 6.8 135 5.9 126 5.5 126 5.5
gcc 16.2 14.2 13.3 11.7 11.2 9.9 9.7 8.6 8.7 7.7 7.9 7.0

swim 0.37 0.05 0.37 0.05 0.37 0.05 0.36 0.05 0.35 0.05 0.34 0.05
fpppp 1214 22.9 961 18.1 738 13.9 670 12.6 588 11.1 529 10.0

DPE/PAg(12)

Resolution = 1 Resolution = 2 Resolution = 3 Resolution = 4 Resolution = 5 Resolution = 6
Fans %Tot # Fans %Tot # Fans %Tot # Fans %Tot # Fans %Tot # Fans %Tot

Program

go 1393 32.4 1021 23.8 826 19.2 674 15.7 576 13.4 506 11.8
compress 2.86 22.2 2.70 21.0 2.06 16.0 1.59 12.3 1.46 11.4 1.26 9.8

li 2212 22.5 1820 18.5 1532 15.6 1377 14.0 1114 11.31018 10.36
ijpeg 437 12.4 385 10.9 285 8.1 238 6.7 215 6.1 189 5.3
perl 184 8.1 183 8.0 154 6.7 135 5.9 126 5.5 126 5.5
gcc 20.0 17.6 16.1 14.2 13.3 11.7 11.3 9.9 10.0 8.8 8.9 7.8

swim 0.42 0.05 0.42 0.05 0.41 0.05 0.40 0.05 0.39 0.05 0.37 0.05
fpppp 1308 24.7 1023 19.3 774 14.6 687 12.9 602 11.4 549 10.4

Six different benchmarks were run with profile-based predicting sets.We found that when fixing
the branch resolution, the misprediction rate decreases and then increases as the coverage is varied. If the
coverage is too low, then patterns with low prediction accuracies may be forced to predict since there is a
lot of contention for the DPE resources.If the coverage is too high, then the DPE resources are not being
used enough and patterns with low accuracies are being included in the predicting set and thus are being
forced to predict.

Each benchmark has its own ideal coverage for each length of branch resolution.For example,ijpeg
performs best when the branch resolution is 2, when the coverage is 85, whilego performs best with a
coverage of 50.gccperforms best at a coverage of 70 when the branch resolution is 1, 2 and 3, yet bene-
fits from a coverage of 85 when the resolution increases to 4.Thus, the architectural limits of DPE
resources should be considered when choosing a coverage.

When comparing the misprediction rate for the ideal coverage and that of the coverage obtained by
using the fixed predicting set, we found that the rates do not vary by much.Often the two coverages are
ev en fairly close together. For a resolution of 2,compresshas an ideal coverage of 70 and achieves a mis-
prediction rate of 4.07.The fixed predicting set has a coverage of 71 and achieves a misprediction of
4.29. Thesecorrespond to decreases in misprediction rate of the DPE/PAg scheme of 78.7% and 77.6%
respectively. The closeness in the coverages and the misprediction rates imply that the fixed predicting set
does a good job of identifying the patterns that are good predictors and that those patterns really do not
vary much with the benchmark.Thus, profiling may not be necessary.

4.3. Evaluating the Performance of LDPE on Cycle Time

Branch prediction rates give a good first approximation of the expected performance impact of the
limited dual path execution scheme, but to fully evaluate the capabilities of this scheme it must be inte-
grated into a processor pipeline.In order to evaluation the performance of the hybrid DPE mechanism on
the overall execution time of an application, we built a cycle level simulator based on the SimpleScalar

- 12 -

tool set. The tool set employs the SimpleScalar instruction set, which is a (virtual) MIPS-like architec-
ture. All programs were compiled with GNU GCC (version 2.6.2), GNU GAS (version 2.5), and GNU
GLD (version 2.5) with maximum optimization (-O3) and loop unrolling enabled (-funroll-loops).The
Fortran codes were first converted to C using ATT F2C version 1994.09.27.

We simulated the execution of an agressive out-of-order pipeline very similar to that of the Pentium
Pro (without the need to translate CISC instructions).The pipeline is capabile of issuing up to 4 instruc-
tions per cycle and perform a single branch prediction every cycle. Conditionalbranch instructions take a
minimum of 12 cycles to complete (other branch latencies were evaluated, but space limitations require us
to show one pipeline configuration).

Table 6 shows the number of cycles necessary to execute each of the listed benchmark programs.
The second column shows the number of cycles necessary assuming perfect branch prediction, the third
column the number of cycles required using the LDPE technique, the fourth column the number of cycles
needed if using an unmodified 2-level branch predictor (PAg), the fifth column the percent slowdown over
the minimum for the LDPE case, and the sixth the percent slowdown for the PAg case.This table shows
that limited dual path execution is capable of greatly reducing the branch mispredict penalty, leading to a
substantial improvement in IPC.

5. Conclusions

This work presents a hybrid branch predictor scheme that uses dual path execution and a predicting
set based on patterns to effectively reduce the branch penalty in high performance processors.While dual
path execution is in theory beneficial in eliminating branch penalty, it is generally unrealizable due to the
excessive hardware cost required.Combining DPE with another current prediction scheme can limit the
times that a fanout would occur reducing the cost.

When limiting DPE, it is beneficial to evaluate when the prediction is believed to be a sound one and
to allow the DPE resources to be used when the prediction is likely to be wrong.In order to accomplish
this, a predicting set is created to select when to predict and when to execute down both paths, creating a
partial coverage predictor. This work targets patterns since branches are biased to a particular path or pat-
tern. Theaccuracy and reference count of each pattern is used to assign a confidence to that pattern,
which determines whether that pattern should be predicted or should attempt to avoid a prediction by
executing down both paths.

Using the pattern confidences, a partial coverage predictor can be implemented.In the past,
branches have either always been predicted or are never predicted. Theidea of a partial coverage predic-
tor takes a predictor that is known to typically predict well and limits the time it predicts to those high
accuracy cases. Thepredicting sets described in this paper do a good job of allocating the DPE resources
and allow the strengths of both the predictor and dual path execution to remain, while also reducing the

Table 6. Cycle Time Comparison of LDPE to Perfect Prediction and PAg

Cycles Required Cycles Required Cycles Required % Increase in % Increase in
Using Using Using PAg Execution Time Execution Time

Perfect Prediction LDPE (forLDPE) (forPAg)
Program

compress 1924374 1989416 2357989 3.38 22.53
gcc 256463944 303700801 415954749 18.42 62.19
go 526541349 609912176 884465133 15.83 67.98
li 498301747 651088394 884971198 30.66 77.60
perl 8932741 10598949 12931283 18.65 44.76

- 13 -

negative costs of DPE.

Comparing the DPE hybrid predictor model to the single scheme approach PAg, dramatic decreases
in misprediction rate were seen.The PAg(16) gav e an average misprediction of 5.29%.The
DPE/PAg(16)/1 gives an average misprediction of 2.11% and the DPE/2-bit(16)/1 achieves a mispredic-
tion rate of 3.08%.These correspond to decreases of 60% and 36% respectively, which translates to an
improvement of 10% to 20% in execution time. These results imply that dual path execution which often
is thought to be a resource consuming method may be a worthy approach if restricted with a predicting
set.

6. Future Work

The proposed hybrid branch predictor scheme can greatly help increase the performance of proces-
sors. Whileit is clear that this scheme provides an increase in prediction accuracy over current schemes,
assumptions were made throughout the experiments that should be addressed in order to further validate
the results of this predictor approach.Future work in this area will eliminate some of these assumptions.

• Other hybrid dual path execution variations should be studied.The current predictors used in this
study were PAg and two-bit, however, other current predictors might prove useful if combined with
DPE.

• The cost of implementing of dual path execution was not looked into for this study. The cost of
varying the branch resolution time should also be studied.Knowing these costs would allow a better
comparison between predictors to find the best predictor for a given cost.

• In this study, execution was limited to two instruction streams at a time.The effects of allowing
more instruction streams to execute simultaneously would be an interesting analysis.This essen-
tially allows for instructions that are an unresolved branch path to be executed, creating more
instructions to fill the pipeline, however also creating the possibility for many more results to be
found to be useless later.

7. Bibliography

[1] W.D. Conners, J. Florkowski and S.K. Patton, "The IBM 3033: An Inside Look," In Datamation,
pages 198-218, May 1979.

[2] AugustusK. Uht and Vijay Sindagi, "Disjoint Eager Execution: Anoptimal form of speculative
execution," in Proceedings of the 28th Annual International Symposium on Microarchitecture
(MICRO-28),pages 313-325, Nov. 1995

[3] Gary Tyson, "The Effects of Predicated Execution on Branch Prediction", in27th Annual Interna-
tional Symposium on Microarchitecture, pages 196-205, Nov. 30-Dec. 2, San Jose, CA, 1994

[4] E. Rotenberg, S. Bennett, and J.E. Smith, "Trace Cache:A Low Latency Approach to High Band-
width Instruction Fetching," in29th Annual International Symposium on Microarchitecture, Paris,
France, Dec. 1996

[5] ScottMcFarling, "Combining Branch Predictors",Technical Report TN-36, DEC-WRL, June 1993.

[6] Erik Jacobsen, Eric Rotenberg, and James E. Smith, "Assigning Confidence to Conditional Brnach
Predictions", in 29th Annual International Symposium on Microarchitecture, pages 142-152,
December 1996.

[7] Kelsey Lick and Gary Tyson, "Hybrid Branch Prediction Using Limited Dual Path Execution",
Department of Computer Science Technical Report #UCR-CS-96-7, University of California, River-
side, November 1996.

- 14 -

