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Abstract

The proliferation of computer networks in the last decade and the ubiquity of the World Wide Web
have led to increased interest in the development of computer-supported cooperative work (CSCW) systems.
Collaborative, multi-user applications require group multicast services that provide ordering guarantees for
maintaining consistency of replicated shared context as well as provide a high degree of interactivity, even
under varying load on the multicast servers. While the most common view of the quality of service (QoS) in a
distributed system is in terms of the guarantee of the network connection parameters (bandwidth, end-to-end
delay), in this paper we investigate QoS from the perspective of the various requirements placed on group
communication servers with limited resources by multiple and diverse groups of collaborative users. We show
that in the absence of QoS considerations in the design of a group communication service, some groups or
individual users can be severely affected by bursty traffic or increase in the size of other groups. We present
the design of a best-effort QoS-based adaptive group communication service for supporting reliable data
communication in CSCW systems. Our QoS considerations address both group’s requirements and individual
user’s requirements. We present performance results showing the effectiveness of the approach and discuss
some of the open issues for future work.

1 Introduction

The proliferation of personal computers and workstations in the last decade has fueled the growth of computer
networks and an extensive development of distributed applications. Though traditional systems for distributed
computing such as distributed operating and database systems strive to provide the illusion of working alone in
a networked environment, computer-supported collaborative systems aim to empower geographically dispersed
users to effectively share data and work together over distance. Thus the sharing of data is made apparent in
collaborative systems, and the mechanics of data sharing often dictates the overall effectiveness of collaboration.

The management of shared data and the necessity to provide high-quality group communication in large-scale
collaborative systems places unique requirements on group multicast services. For example, the application re-
sponsiveness takes on much more importance in a collaborative system designed to provide a highly interactive
collaboration environment. In other cases, such as distributed multimedia systems, parameters such as through-
put, frame rate, resolution are emphasized. Different groupware applications and even clients within the same
group place a different load on the communication system and have different demands with respect to the quality
of service they receive.

This paper presents our approach to configuring multicast servers to support efficiently the wide range of user
needs in different types of collaborative applications. Our system provides QoS support based on priorities and
explicit control over the scheduling of different activities and by dynamic adjustment of its policies according

to system load, user input, application requirements and current global configuration. We have incorporated



the approach in our Java-based Corona multicast server, which is being used to support both synchronous and
asynchronous collaboration over the World Wide Web, where collaborating clients may be dynamically downloaded
over the Internet. The focus in this paper is in providing better quality of service for synchronous collaboration,
where QoS requirements are more stringent. We show that servers can be made more responsive to user/group
requirements, even in best-effort systems.

The rest of the paper is organized as follows. Section 2 motivates our work in providing QoS support for
computer-supported collaboration and discusses the key requirements of the design of a QoS-based large scale
group communication system. Section 3 discusses related work. Section 4 details the solution we propose to
address the QoS issues in synchronous collaboration. Section 5 reports performance results that compare our
approach with a non-QoS based approach. Section 6 concludes the paper with a brief summary of our work and

our future plans.

2 Background

Our work on the quality of service in computer-supported synchronous collaboration has its origin in a NSF-
sponsored project, called the Upper Atmospheric Research Collaboratory (UARC) [6]. The UARC project focuses
on developing an experimental testbed for wide-area scientific collaboratory work. This testbed is implemented
as a large object-oriented distributed system on the Internet and provides a collaboratory environment in which
a geographically dispersed community of scientists perform real-time experiments at remote facilities without
having to leave their home institutions. This community of scientists has extensively used our system over the

last few years.
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Figure 1: Collaboration tools using the Corona communication services

The implementation of the system has evolved through several generations of prototypes. The current design is

an applet-based architecture implemented in Java, taking advantage of the accessibility and ubiquity of the World



Wide Web and Java platform-independence. A server, called Corona ( [8], [17]), provides multicast services
to support various collaboration tools. These include various shared data viewers for graphically displaying
instrument data, a multi-party chat box for exchanging textual messages, and a notebook-like draw tool for saving
and sharing notes, images and drawings. An audio-conferencing tool, which enables participants to exchange live
audio data is currently under development. The server is currently written in Java, to allow scientists quick
prototyping and experimentation of the server on various platforms. Figure 1 shows the graphical interfaces of

some of the Corona-based collaboration tools.

2.1 Overview of Corona

Group Communication: The basic unit of communication in Corona is the group [1]. A group is defined to
be a set of processes, termed members. A group has a shared state and the members of the group operate on
the shared state by accessing and modifying the shared objects in the shared state. Corona requires a process
to be a member of a group in order to operate on the shared state of the group. A client application can be
simultaneously a member of several groups. The group members communicate with each other by exchanging
messages among themselves. The actions taken by members in a group are synchronized, resulting in the processes

having a consistent view of the shared state of the group.

Corona Server

Q T Q\A

Figure 2: Architectural Overview of Corona. Circles represent clients, dotted lines depict groups, and different
shapes represent different shared states. Note that clients may belong to different groups; Client D belongs to
both Group G2 and Group G3, and Client E belongs to Group G3 and Group G4. Group G4 presently has Client
E as its only member.

Corona Architecture: The major component of Corona is a server that provides group multicast services
and manages groups and their shared states. When a process joins a group, the server transfers a copy of the
current shared state of the group. In order to ensure fast and reliable state transfer, even in the presence of client
failures, the Corona server maintains a log of the shared state, including updates. Figure 2 illustrates the Corona
architecture. The Corona server manages groups and their shared states.

A key assumption in our design is that clients are unreliable but the server is be reliable. Furthermore, in order
to support different-time collaboration, we need to support persistence of group state, even when all members
leave. Thus, we decided to use a server-based multicast service, with the server logging all the updates.

The Corona version currently used in UARC is a centralized server, to simplify dealing with Java applet

security restrictions in browsers — applets are only allowed to make network connections to machines from which



they were downloaded. We have also prototyped distributed versions of the server. The approach discussed in
this paper is applicable to both versions of Corona.

Group Services: The Corona server provides a suite of services which may be categorized as: group mem-
bership, group multicast, synchronization, and checkpointing. The group membership service provides support for
creating, deleting, joining, and leaving groups. A client joins a group and receives the shared state of the group
or leaves a group unobtrusively; the existing processes in the group are able to carry on with their operations in
the presence of multiple, concurrent joins and leaves. The Corona server allows clients to specify roles [7] when
joining a group.

The group multicast service provides interfaces for broadcasting updates on shared state. Messages from
members of a group are multicast as point-to-point messages in the order of arrival to all the members, thus
ensuring total order.

The synchronization service provides interfaces for synchronizing client updates through locks, and the check-
pointing service allows a client to take a snapshot of a shared state. A group of clients may subscribe to any

combination of services and specify how a particular service is provided depending on the collaboration semantics.

2.2 Individual and Group QoS Design Requirements

Multi-group, Web-based CSCW systems, such as UARC, place interesting QoS demands on a multicast service

such as Corona. Some of the key characteristics of the demands are:

Service based on Client-Roles: Scientists who are participating in analysis of evolving scientific data tend
to be more impatient than casual observers with any delays caused by Corona, network congestion, or load

imposed by other users of Corona.

Service based on User Activity Level: A better quality of service needs to be provided to client applets
that are being actively used by a user. For example, viewer applets that are iconified or hidden on the

desktop can usually tolerate longer latencies than applets that are actively being observed by users.

Unpredictable workload: For data sharing applications, the bandwidth requirements are often bursty. For
instance, a shared whiteboard often has low bandwidth requirements but, when images are loaded into the
whiteboard by a user, it can require much higher bandwidth in order to multicast the image to all the
participants. Also, in a long-duration collaboration, there can be long periods of inactivity followed by
bursts of activity, e.g., depending on the interest in the evolving scientific data. So, aprior: reservation of

resources at the servers ( [10]) can be difficult for the clients to do or can be inefficient.

Service based on group characteristics: Some multicast groups can be more important than others. For
instance, in UARC, it has been found desirable to ensure that Chat traffic, which is low bandwidth, gets
through in a reasonable time irrespective of the load imposed by other groups on the server. Also, mul-
ticasting of real-time scientific data may be more important to users than other data, such as archived
data.

Simultaneous Support for Small and Large Groups: In UARC, we allow dynamic creation of rooms,
which are centers of collaboration. Users can participate in multiple rooms simultaneously. The usage of
UARC indicates that some rooms can have a much larger number of participants than others. The Corona
server needs to ensure that the quality of service to one group does not suffer significantly as a result of the

growth in size of other groups.



Adaptability to Bursty Traffic: Low-bandwidth traffic in one group may need to be protected from bursty
traffic in another group, even when groups are of equal priorities to users. For example, we have found it
desirable in UARC to ensure that Chat does not suffer if a shared whiteboard is being used to transmit
a high-resolution image. The servers should usually adapt to bursts of traffic in favor of low-bandwidth

groups.

Avoid Starvation: Irrespective of initial priorities, some mechanism should exist to reduce the risk of starvation
in the sending of messages to any member of a group, due to the activity of other members or the activity

in other groups.

We can use QoS-based policies for scheduling multicasting tasks within the Corona server. Section 4 discusses

our approach to incorporating the above requirements into Corona.

3 Related Work

There exists a great deal of interest in providing QoS guarantees of the network communication ( [20], [9]).
Robin et al. [16] address both the network and host QoS control problem in a system based on the Chorus [2]
micro-kernel. Several distinct policies for admission control and dynamic quality control are outlined in [10],
based on the experience with using Real-Time Mach [18], a micro-kernel architecture which supports the notion
of processor capacity reserve. Mehra et al. [12] introduce the real-time channel as a paradigm for guaranteed-
QoS communication services in packet-switched networks. The architecture proposed provides services such as
admission control, traffic enforcement, buffer management, and CPU and link scheduling.

Rajan et al. [15] propose a formal framework for multimedia collaboration, which distinguishes three levels
of abstraction: streams at the lowest level, for media communication, sessions at the next level, representing
collections of semantically related media streams, and conferences as temporally related sequences of sessions.
An overview of the QoS issues involved in distributed multimedia communication is presented by Vogel et al. [19]
from the perspective of communication protocols, operating systems, multimedia databases, and file servers.

Nahrstedt and Smith [13] point out that in order to provide applications with end-to-end guarantees, network
resource management alone is not sufficient and indicate a need to balance resources among the application,
network, and operating system at the endpoints, and between endpoints and the network. They introduce the
QoS Broker as an intermediary who performs services such as translation, admission and negotiation in order to
properly configure the system to application needs. Chaterjee et al. [3] present two models to facilitate adaptive
QoS-driven resource management in heterogeneous distributed systems and propose a graceful degradation of the
application QoS under certain circumstances. Mathur et al. [11] address the QoS problem in group collaboration
systems by means of a protocol composition approach.

Greenberg [7] uses roles as a distinction among categories of users, as well as among individual users within a
group. Edwards [5] presents a specification language for Intermezzo, a collaborative framework which supports
static and dynamic roles assigned to users. Roles and priorities are introduced in DCWPL [4], a programming
language used to develop user-customizable groupware applications. Based on the similarity with face-to-face

meetings, DCWPL assign to users roles of peer or moderator, with the moderator having higher priority.

4 Our Approach — QoS-based Adaptive Corona

An important characteristic of UARC-style, data-oriented, CSCW systems is that the bandwidth requirements

are not known in advance. So, it is difficult to design services that provide any QoS guarantees, even if real-time



platforms were to be used. On the other hand, users often know what data is more important to them at any
time and the services must make the best effort to deliver the data that is more important first.

To deal with this characteristic of CSCW system usage in the design of the Corona server, we propose enhancing
standard multicast services to include priorities assigned to multicast groups and to users within a group. These
Priorities are dynamically adjusted in response to changing user requirements and workload on the system. Below,
we discuss the details of the scheme, how these priorities are maintained and used within the server, and how the

scheme addresses the QoS design requirements of the system pointed out in Section 2.2.

4.1 Group Priority

Different multicast groups (e.g., chat, data instrument, shared white-board, etc.) can have different importance
to users. Corona server allows clients, when creating a group, to specify the group’s priority. Usually, the groups
corresponding to activities with higher degree of interactivity or requiring lower latencies should be assigned
higher priority. Clients can change the group priority dynamically if circumstances change. (Restrictions can be
added so that only authorized clients can change priorities; the issue of limiting the ability of clients to ask for
highest priority for everything is beyond the scope of this paper.)

Even groups sending similar data may have different priorities, based on the importance of the activity carried
on. E.g., consider two shared data viewers, one of which displays real-time data while the other one plays back
data previously generated and saved on the hard disk. Users may want events occurring in real-time to be given

higher priority at the server than archived events.

4.2 Client Roles and Client Priority

Users may have roles in a group, requiring better service for some members than others. As noted in [14], the
assignment of roles has a social meaning, the ones who are making a more important contribution being assigned
more important roles. In the Corona multicast service, we provide three roles for the users of our system: principal,
observer and membership-observer, listed here in the decreasing order of their priority. Principals have update
privilege on a shared state. Observers and membership-observers are casual members who may only view the
updates on the shared state or the changes on the group membership, respectively. A member may dynamically
change its role after it has joined a group. The same user can join a group as principal and another group as
observer. Thus, the roles represent the liaison between users and groups.

The assumption is that there are few principals in a group and potentially a large number of observers, with
principals being the important members of a group. The delays in multicasting to principals should be largely
independent of the number of observers. Thus, the server attempts to give higher priority in multicasting to
principals than to observers. It may even decide to disconnect the observers when the size of the group is too

large and the server is overloaded by intense traffic.

4.3 Active vs. Passive Clients

Clients can dynamically tell the server whether they are active or passive recipients of the group multicasts. For
example, if the application displaying the data is iconified, the application can tell the server that it is in passive
mode — latencies are less critical. The client priority within a group is decreased when the client indicates that
its activity mode is changing from active to passive within a group, and restored when the client changes back to

active mode.



4.4 Adapting to traffic bursts

Groups that use less bandwidth and less computing time for the handling of data exchange are given higher
priority. A group’s priority is lowered when the group starts using more bandwidth, usually due to data bursts.
This policy is similar to the multi-level feedback queue scheme used in CPU scheduling where threads using more
CPU are lowered in priority. Our goal is to insulate low bandwidth traffic, usually implying interactive use, from
high bandwidth traffic, usually implying batch transfer of shared information.

For each one of the entities mentioned above (group, user) we define a default priority and an instant priority.
The default priority is assigned at creation time. The instant priority initially equals the default one, but can be
lowered by the communication system, for example, when there is a burst of data in the group, or increased, if

messages are queued up and haven’t been sent for a while so that starvation risk is reduced.

createGroup(gName, gType, initState) | creates a group with name gName and type gType and initializes its
state to nitState

joinGroup(gName, role) joins the group with name gName with role role

changeRole(gName, newRole) changes client role in the group with name gName to the value newRole
changeActivityMode(gName, mnewAc- | changes client activity mode to the value newActivityMode in the group
tivityMode) with name gName. newActivityMode is either active or passive.

sendMessage(msg, gName, msgType) | sends the message msg of type msgType to the group gName. Totally
ordered delivery within the specified group is guaranteed by the server.

Table 1: Corona client interface for specifying priorities. Additional interface exists for state transfer, membership
change notifications, etc., and is not shown.

Table 1 presents some of the functions in the client API used in the assignment of priorities for groups and

users.

4.5 Scheduling of Message Transmissions within the Server

The Corona server has been implemented as a multi-threaded Java application, supporting downloadable Java

applet clients. The following threads are used by the Corona server:

e Connection Manager: accepts new connections from the clients. There is one thread in the server for

accepting connection requests.
e Client Receiver: for every client, there is Client Receiver thread, which receives data sent by the client.

e Client Sender: for every client, there is a Client Sender thread. The thread maintains the outgoing
message queue for the messages to be sent to a client and attempts to send the messages on the queue to
the client.

e Scheduler: the thread operating at highest priority; it controls the order in which all the other threads

are scheduled.

Figure 3 presents the interactions between different server threads and the data flow between these threads
and between the server and the clients.

The behavior of the Java runtime scheduler with regard to scheduling of more than one thread running at the
same priority is not defined. In some systems (e.g., NT) it uses round-robin time-slicing to give all such threads
equal time, whereas in other systems (e.g., Solaris) it uses non-preemptive scheduling. Additionally, a thread of

lower priority will never be scheduled as long as there exists a higher priority thread running, unless the higher



Scheduler

Connection Manager Client Receiver Client Sender Client Sender

Figure 3: Client-server relationship. The thin lines represent interactions between threads. The thick lines
represent the data flow.

priority thread yields explicitly. For this reason we have implemented our own scheduler, running at the highest
priority, to control the order in which the threads execute.

When a client sends a multicast message to a group, on the server side the message is received by the correspond-
ing Client Receiver thread. The thread inserts a reference to the message in the message queues corresponding
to the receiving clients (Figure 4). A Client Sender maintains one message queue per group that the client is a
member of. Since the queues contain references to the actual data, copying of the data is avoided. The messages
in a sending queue are delivered to the client by the Client Sender thread. A Client Sender is inactive as long as

there is no message for it to send and it is notified when a message is received.

Message
queues

(T Cerensmo >—
e oo~
T

Figure 4: Group multicast. Messages are sent to groups G1, G2, G3. A Client Sender maintains a message queue
for each group the client belongs to.

Each message queue is dynamically assigned a priority, based on the sum of the current priorities of the group
and the receiver associated with the queue. Recall that there is one message queue per group per receiver.

The priority of message queues is mapped to thread priorities of Client Sender threads as follows. Client Sender
threads serving messages in higher priority queues are scheduled before threads serving only low priority queues.
Threads lower their priority when all of their high priority queues are served. Each thread uses a round-robin
policy within the queues of the same priority to deliver messages to its client.

Message queue priorities can be dynamically changed, but all messages in a given queue have the same priority,
in order to guarantee ordered delivery of messages in a group.

Client Receiver threads run at the maximum of the priority of groups in which the client has a principal role.
Recall that a client can be a member of multiple groups and all messages from that client are received on the

same connection. We need to run the receiver threads at the maximum of the priority of the groups to which



the member can send messages, so as to avoid a client’s membership in a low-priority group from reducing the

priority with which the client’s messages to a high-priority group are handled by the server.

4.6 Dynamic Adjustment of Group and User Priorities

To insulate low-bandwidth communication from bursty traffic in another group, the instant priority of the group
where the bursty traffic occurred is lowered. This leads to a decrease in priority of the message queues corre-
sponding to the group members, causing a decrease of the priority of the corresponding Client Sender threads
when they are ready to deliver messages from those queues. The decrease of a group priority with the bandwidth

usage in that group is illustrated in Figure 5. Priority is raised when the recent bandwidth usage goes down.

priority
.

bandwidth usage

Figure 5: Adjustment of group priority with bandwidth usage

When a client application is still running, but is not active (the application window has been iconified or the
window is covered by other windows, denoting a reduced interest from the user in front of the screen), the server
is notified and the priority of the message queue corresponding to the client application is decreased, thus offering
other potential clients a better quality of service.

To avoid starvation, the instant priority of a queue is temporarily raised above the default value when a queue
is not served for a timeout interval. This case, which we call client aging, denotes an exceptional situation and
should only happen under unusually heavy traffic. The timeout interval value is a matter of policy, but should
be reasonably large to prevent low priority traffic from disrupting high priority communication. If timeouts are
violated on a queue frequently, a policy of removing low-priority members from the system can be implemented.

The following algorithm outlines the dynamic changes in priority:

for each group G
if traffic(G) > quota(G)
decrease priority(G)
endif
if traffic(G) == back-to-normal
priority(G) = default
endif
end for
for each client C
if stateChange(C)
if change = active-to-passive
decrease priority(C)

else /* change = passive-to-active */



increase priority(C)
endif
endif
if starved(C)
increase priority(C)
endif

endfor

A change in the priority of a group will lead to a change in the priority of the queues for all the members of
the group. A queue which has its priority raised due to starvation is brought back to its default priority after the

sender thread gets a chance to send some data from the queue.

5 Performance Measurements

This section presents some preliminary results obtained by applying the scheduling policies outlined previously
to the design of the Corona server. We have used in our tests a mix of Sun Sparc 20s and Ultra Sparc 140s on a
LAN. The server runs as a stand-alone Java application on a Sun Sparc 20. In the subsequent experiments, all the
clients in a group but one are receivers; the receivers connect to the server, join a group and receive the broadcast
messages addressed to that group. One client is both a sender and a receiver and does the measurements. The
latency 1s calculated based on the round-trip delay seen by the client that sends messages. From observation
of real messages exchanged by our client applications, the typical size of a message generated by the chat or
draw tools is in the order of a few hundreds of bytes. Therefore we have used messages of size 200 bytes (unless

otherwise specified) in our experiments.
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Figure 6: Influence of high bandwidth traffic in one group on the latency seen by clients in a a low bandwidth
group. a) All clients have equal and constant priority. b) The priority of the high bandwidth group is decreased
by using the adaptive strategy.

One of the goals of our QoS-based server is to monitor the usage of the system and to protect the users and
groups against the over usage and occasional bursts of data from other groups. Figure 6 presents the latency
experienced by a client in a group with the traffic kept within the accepted bounds in the presence of bursts
of data in another group. Each group has 6 members. In the first group there is one client which broadcasts
data continuously with the rate of 5 messages/sec. The burst is introduced by the second group by occasionally
sending a sequence of 5 messages of size 40000 bytes. In a) a standard non-QoS based is used, with all Client

Sender threads having the same priority, while in b), a QoS-based server is used, with the priority of all the

10



members of the group with the bursty traffic decreased until the burst disappears. As shown, in a QoS-based
server, the impact on the low bandwidth group is substantially reduced and the predictability of the response
time 1s increased. The impact is not completely eliminated because of the course granularity of scheduling in our
user-level scheduler (because we have no control over Java’s run-time scheduler) and the attempt by our scheduler
to avoid starvation of the high-bandwidth group.

We also investigated the influence of the increase in size of one group on other groups. Figure 7 compares the
latency seen by the clients in two groups; one of the groups has two members, while the size of the other one
increases gradually up to 50. In one case, all the clients in both groups have equal and fixed priority, as in a
non-QoS based server. In the QoS-based server’s case, the smaller group is given higher priority than the larger
group in which members are added. In each group there is one client which broadcasts data continuously with

the rate of 5 messages/sec. The data displayed has been obtained by averaging over several measurements.

500 T
gos-ba$d scheme constant group size é
QoS-based scheme, variable grolp size (5-
450 non g 0S-based scheme, constant group size 2 B -
non QoS-based scheme, variable grolip size (5 X
400 - RUEE SRR
X

g 350 - 4
= 300 - T
g
8 250 B

200 B

150 - B

100 | | | | |

0 10 50

0 30
number of clients

Figure 7: The latency increases with the size of the group. With the adaptive priority strategy, the members of
the small group are protected against the increase in size of another group. Without a priority-based strategy,
the latencies seen by the small group go up significantly as the size of the other group is increased. The latencies
in the larger group are similar in both cases.

One observation from data in Figure 7 is that the latency increases approximately linearly with the size of
the group and ultimately with the cumulated size of all the multicast groups. This is because latency is largely
determined by scheduling of threads within the server in our environment. Also, in this and other experiments
(results not shown for brevity), we have noticed that for messages of size up to a few hundreds of bytes the size
makes little difference in round-trip times. The influence of the message size is more evident above 1000 bytes.
The same observation applies for the time used by a client to send messages.

Another observation relates to the impact of the increase in the size of one group on the constant-size group.
When the server is non-QoS based, the increase in the size of one group causes an almost identical increase in
the latency seen by the clients in both groups. In the QoS-based server, the impact on the higher-priority smaller
group is minimized as the size of the lower-priority group increases.

Figure 8 presents the latency seen by clients with different roles belonging to the same multicast group with 20
members, in an experiment that investigates the relationship between the responsiveness seen by different clients
and their priorities within a group. One of the clients broadcasts data at constant rate (3 messages/second). The
clients in a) and b) are equally split in two classes of priority, while in ¢) all the clients in the group have the

same priority. There is a noticeable difference between the delay seen by a client with high priority and one with

11



low priority. When all the clients have the same priority, the response is less predictable, denoted by the wider
spread of the data points. The seemingly periodic appearance, more obvious for the graph in ¢), can be explained
by an implementation detail. Since a multicast message 1s sent as multiple point-to-point messages and the order
in which messages are sent to equal priority clients may make a difference, we chose to vary circularly the order of
the clients in the group. In order to provide higher responsiveness for the client that sends the broadcast message,

we can adjust the order in which the message is sent to the clients in the group by choosing the sender to be the

first one.
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Figure 8: Tmpact of priority on the latency seen by a client. a)The client has high priority. b)The client has low
priority. ¢)All the clients in the group have the same priority.

We tried to achieve an increased predictability of server response time. By dividing the clients in classes of
priority, we have obtained a reduced range in which the latency varies, i.e., between 150-300 msec for high priority
clients and between 250-400 msec for low priority clients, while in case ¢) the latency oscillates mainly in the
range 150-400 msec.

The priorities are not assigned statically, since in this case a client with low priority could starve in the presence
of continuous activity of the high priority clients. Figure 9 displays the adjustment of the priority of a low priority
(4) client in a group with 20 other clients having high priority (5). One of the clients sends data continuously.
As messages in the queue corresponding to the low priority client age, its priority is temporarily increased above

the default value, and it is restored after the aged messages are delivered.
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Figure 9: The priority of a low priority client is increased occasionally to prevent starvation

6 Conclusions and Future Work

In this paper we presented our approach to providing flexible group communication services for meeting end-user’s
QoS requirements in synchronous collaboration systems where workload is bursty or not known to users aprior:.
Large-scale collaboratories, such as the UARC collaboratory we support, appear to have these characteristics.
We addressed the QoS issues from both the group and individual point of view. Our solution is based on
allowing clients to specify and dynamically change group priorities as well as member priorities within a group.
Member priorities are specified by providing role information and activity status information. The server uses
the information provided by the clients to determine scheduling priorities of server threads that handle message
communication with each client. The server uses an adaptive strategy to protect low-bandwidth communication
in one group from bursty communication in other groups and to avoid starvation of low-priority clients.

In the absence of guarantees on the network bandwidth availability or the real-time response from the operating
system in a heterogeneous network environment, our approach offers a best-effort service. A prototype of the
server with QoS support has been implemented and the experimental results appear promising.

Our current research efforts are focused on increasing the scalability and robustness of the server and examining
the issues involved in a distributed implementation of the server. One of the challenges of a distributed server
implementation is to optimize the distribution of groups over multiple servers. The alternatives are either to use
servers dedicated to different groups, thus eliminating the potential traffic among servers that maintain the shared
state of a group, or to split each group among servers, taking advantage of the location of the users relatively to
the servers and thus eliminating some of the network traffic due to the broadcast of a message to large groups.
The QoS-based strategy discussed in this paper can be applied to each copy of the server. In addition, the QoS
information can be useful in determining dynamically the best way to partition the functionality of the service
among multiple servers.

Another direction we intend to pursue is to address the scalability problem by using reliable IP-multicast to
distribute a message to large groups of users. At present, our server does not do that because most of our clients
(which are Java applets running at sites not under our control) do not have TP-multicast support. Another reason
is that maintaining group membership can become more difficult with IP-multicasts — IP-multicasts achieve
some of their scalability by sacrificing availability of group membership change notifications.

An important problem in a QoS-based scheme is to ensure that clients do not attempt to ask for high priority
for everything. If that happens, our server will still provide better service than a non-QoS based server because

it will change priorities based on bandwidth usage. However, in general, it is important to have some mechanism

13



to ensure that clients prioritize their needs reasonably. This is an important issue for all QoS-based schemes, and

requires its own in-depth treatment. One strategy, for example, may be to authenticate clients and to set quotas

on the number of groups in which a client can be a principal or the number of groups in which a client can be

active at a time. Non-authenticated clients (e.g., casual participants over the Web) can be restricted to smaller

quotas. We intend to investigate this issue further in the context of the UARC Collaboratory project.
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