
1

Constructive Multilevel Logic Synthesis Under Properties of

Boolean Algebra

Victor N. Kravets and Karem A. Sakallah
Advanced Computer Architecture Laboratory

Department of Electrical Engineering and Computer Science
The University of Michigan

Ann Arbor, MI 48104
{vkravets, karem}@eecs.umich.edu

Abstract

We describe a new constructive multilevel logic synthesis system that integrates the traditionally sepa-
rate technology-independent and technology-dependent stages of modern synthesis tools. Dubbed
M32, this system is capable of generating circuits incrementally based on both functional as well as
structural considerations. This is achieved by maintaining a dynamic structural representation of the
evolving implementation and by refining it through progressive introduction of gates from a target
technology library. Circuit construction proceeds from the primary inputs towards the primary out-
puts. Preliminary experimental results show that circuits generated using this approach are generally
superior to those produced by multi-stage synthesis.

I. Introduction and Motivation

In this paper we describe a new multilevel logic synthesis system, M32, that departs in several important respects from
current practice in logic synthesis technology. The development of M32 was motivated by the oft-cited refrain that wires are
starting to dominate active logic in determining the area and speed of deep submicron ICs, and that current synthesis flows
are biased primarily towards optimizing gates. M32 was designed to address this bias by intertwining the traditionally sep-
arate phases of technology-independent Boolean optimization and technology-dependent mapping in a constructive synthe-
sis strategy that is cognizant of the structural implications of optimization decisions.

To quantify the impact of wires on circuit area we conducted a controlled experiment that compared the layouts of com-
binational circuits that have the same active areas but different interconnect patterns. The layouts were generated using the
Epoch [9] standard cell place and route tools for a two-layer CMOS IC process that allows over-cell routing. I/O
pins were distributed around the perimeter of the standard cell block. The plot in Figure1 shows the total routing area as
well as delay per logic level as functions of topological complexity given by

(1)

where is the number of topological levels crossed by wire and #Edges is the total number of wires in the circuit.
This metric is similar to the fanout range suggested by Vaishnav and Pedram [30] for controlling routing complexity during
technology-independent logic synthesis. As the figure clearly shows, routing area increases with increasing topological
complexity, and begins to exceed active area when topological complexity is around 2. Similarly, signal delay per logic
level increases with increased topological complexity. While these results may be specific to the particular IC technology
and physical design system used in the experiment, they nevertheless confirm the general belief that wiring can be a signif-
icant contributor to area and delay.

0.5µm

Topological complexity

L n()
n 1=

Edges

∑
#Edges

---------------------------=

L n() n

2

An algorithm which produces a technology specific network implementation from the initial phases of synthesis is one of
the goals in this work. The motivation for this approach is to allow exploration of degrees of freedom which are usually lost
in the split between technology-independent and technology-dependent phases. Such an approach enables the algorithm to
account for technology specific functional characteristics (e.g. signal arrival time and vertex delay), and network structure
(e.g. connectivity). Furthermore, this makes the task of assessing final design quality more accurate from the initial steps of
synthesis, whose pre-determined properties can be annotated forward to the back-end tools. For example, physical location
of gates in the final design can be determined at the early stages of synthesis in order to meet tighter delay constraints.

The remainder of this paper is organized as follows. Section II gives a brief description of prior work. A synthesis algo-
rithm based on the constructive synthesis methodology is then presented in Section III. It overcomes the limitations of pre-
vious constructive approaches and benefits from recent advances in synthesis technology, allowing it to handle much larger
circuits. Its prototype implementation in the M32 synthesis system has been demonstrated for combinational circuits con-
taining several thousand gates. An example illustrating execution of the algorithm is given in Section IV. Experimental
results discussed in Section V.

II. Prior Work

Combinational multilevel logic synthesis is the process of implementing a set of logic expressions using cells from a
technology library, each with a prescribed function and physical characteristics [27]. Most of the current logic synthesis
systems divide the logic synthesis process into technology-independent [5] and technology-dependent stages [17, 11]. The
technology-independent stage focuses on partitioning the logic, whereas the technology-dependent stage chooses appropri-
ate gates from the library to implement the partitioned logic. Such multi-stage approaches to complex optimization prob-
lems are common in electronic design automation (e.g. placement followed by routing) and are usually necessitated by the
difficulty of solving these problems conjointly.

This “serialization” of the optimization process implies that decisions made in earlier stages must necessarily be based
on loose estimates of what later stages can accomplish. At the same time, the solutions produced by early stages place lim-
itations on the degrees of freedom to improve final implementation of a design. For two-stage logic synthesis, decisions
made during the technology-independent stage [6, 8, 7] significantly determine the structure of a circuit. They are made
with no regard for the downstream technology. When the technology characteristics become available in the mapping stage
it is often too late to augment the effects of these decisions to improve circuit quality.

The back-annotated approaches, which perform resynthesis after technology specific information is extracted from the
mapped circuit, compensate partially for this problem. Given asign-off, information these approaches would typically
resynthesize the circuit through critical section correction [15, 32, 2, 22, 14, 28]. While this yields improvement in circuit
quality, technology-independent and technology-dependent transformations still remain disconnected. In [20], authors
address this problem by dynamically modifying the set of AND2/INV decompositions while deleting others based on the

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0 1 2 3 4 5 6 7 8 9

D
el

ay
 p

er
 lo

gi
c

le
ve

l,
ns

Avg. Topological Wire Length

✧

✧
✧

✧
✧

✧

✧

✧
✧

✧
✧

✧
✧

✧
✧

✧
✧

✧

✧✧ ✧
✧

✧
✧

✧
✧

✧
✧

✧

✧
✧

✧

✧ ✧
✧

1300

650

1950

325

975

1625

2275
Delay
Area

R
ou

tin
g

A
re

a,
 s

qu
ar

e
m

ils

Approximate active area size

Fig. 1. Effects of wiring on circuit area and delay.

cells (NAND3): 1024
primary inputs: 20
wires: 3072
Max fanout: 5
routing layers: 2

Circuit Characteristics

3

actual cost function used in technology mapping. It allows technology-independent transformations to be part of the tech-
nology mapping. However, these transformations do not exhibit global knowledge about circuit structure and functionality

This problem becomes more important with advances in CMOS technology since interconnections are becoming a major
concern in today’s high-performance, high-density ASIC designs [18]. It is therefore critical for a synthesis tool to have
accurate estimation of wiring from the initial stages of synthesis. In [30], the authors pursued this problem by relying on the
traditional synthesis methods, accounting for routing area during logic decomposition using heuristics for minimizing the
fanout ranges of a decomposed network. Another method of minimizing routing cost by deriving and maintaining an order
among primary inputs of the circuit was proposed in [24, 1]. These approaches operate during the early phase of synthesis,
and remain removed from the final function-realizing circuit. In [23] an attempt is made to account for the interconnections
during the technology mapping phase of synthesis. The idea is to generate a “companion” placement solution for the circuit
before it is mapped. This placement is then dynamically updated as the mapping process tries to evaluate the cost of a
matching gate. The algorithm estimates the interconnection contribution to the area and delay by referring to the dynami-
cally updated placement of the network. Using this technique, the authors are able to generate circuits with shorter wire
length and smaller area.

Realizing the need for synthesis to account for the “physical” information of back-end tools, Synopsys makes it possible
to choose an appropriate wire-load model [19]. The wire-load models specified in the Synopsys technology library are
based on statistical data which is design and process technology-dependent. Thus, inaccuracies in wire-load models can
lead to synthesized designs which are pessimistic, unroutable, or don’t meet tight constraints after routing is performed.
The synthesis process in Synopsys also relies on the methodology of technology-independent transformations, which is not
suited to account for the final wire lengths of a design.

Several attempts to synthesize networks incrementally are reported in the literature. Davidson presented a branch-and-
bound algorithm for NAND network synthesis [10]. The algorithm constructs a network realization incrementally starting
from the primary outputs. In each iteration, the algorithm extends a partial solution by introducing a new NAND gate
together with its fanin connections. Another incremental synthesis procedure for arbitrary gates was presented by Schneider
and Dietmeyer [26]. In each step, their algorithm finds the circuit package (i.e. gate type in a technology library) that satis-
fies some goal, such as area and delay, while meeting fanin, loading and power constraints. Such approaches, however, did
not yield practical synthesis tools: their exponential run time complexity rendered them useless except for very small cir-
cuits.

III. The M32 Logic Synthesis System

M32 is a multilevel technology-dependent constructive logic synthesis system. It relies on extended algebraic decompo-
sition techniques which define a feasible space of transformations which can be applied to a sum-of-products expression.
As an optimization objective the system considers the structure and size of a circuit. Constraints are implied by the gate
library. The system is currently geared towards performance-oriented synthesis which also minimizes average topological
wire length. In this section we first give an overview of the system, and then describe its main points in detail.

F2

F3

F1

F2

F3

F1

F2

F3

F1

Fig. 2. Illustration of the constructive technology-dependent synthesis

Initial network Partial implementation Final implementation
networknetwork

-- Unimplemented -- Implemented

4

A. System Overview

The overall synthesis process in M32 is depicted in Figure 2. The state of the synthesis process is modeled by aBoolean
network [4] that captures an evolving structural representation of the functions being synthesized. Each vertex in such
a network has an associated Boolean function that computes the logic value at the vertex’s output in terms of the logic
values on its inputs. A vertex is considered to beimplemented if its function is equivalent to one of the functions in a given
gate library , andunimplemented otherwise. To insure anonto mapping from to the vertices in , the library must, at a
minimum, have inverter and pass-through wire gates as well as any 2-input gate that makes it functionally complete.

Reading its functional specification as a set of multi-output cubes, M32 constructs an initialspecification network
consisting of implemented vertices corresponding to the primary inputs and unimplemented vertices corresponding to the
specified output functions . As the synthesis process evolves, the functions of unimplemented vertices are
successively decomposed in terms of those of already implemented vertices, resulting in a series ofpartial implementation
networks. The decomposition is closely tied with the given gate library, and leads to the creation of new implemented verti-
ces, i.e. vertices that correspond to library gates. Each implemented vertex introduces a new variable which can now
be used to simplify the functions of unimplemented vertices. The effect of these successive decompositions is an expansion
of from the PIs towards the POs as more implemented vertices are created and as the functional complexity of unimple-
mented vertices is reduced. This constructive creation process makes it possible to control the structural complexity of the
evolving implementation. The synthesis process terminates when all vertices become implemented yielding afinal imple-
mentation network.

The main loop in the M32 synthesis algorithm is shown in the pseudo-code of Figure 3. The algorithm treatsand as
globally accessible structures. In each iteration, the functions of unimplemented vertices are examined and one of them,

, is selected for a decomposition step. Anatomicdivisor is extracted from by an appropriate division procedure.
The divisor is subsequently implemented by a small set of vertices corresponding to gates from leading to the expansion
of the implemented part of . The decomposition step is completed by substituting the variables of the newly created
vertices into the functions of the unimplemented vertices. An unimplemented vertex becomes implemented when its func-
tion reduces to a single literal. Thus, the iteration stops, signalling completion of the synthesis process, when all the func-
tions in have been reduced to single literals.

This algorithm has several features that distinguish it from commonly-used synthesis methods:

• It interleaves functional decomposition and technology mapping throughout the synthesis process
• It considers the structural implications of candidate decompositions
• It selectively applies Boolean transformations toimprove synthesis qualitywithout adversely affecting run time

efficiency

The remainder of this section is devoted to detailed descriptions of the four main routines of the algorithm. To facilitate
these descriptions we introduce the following definitions. The depth of a literal, , is the topological depth of its
corresponding vertex in ; the depth of a primary input is defined to be 0. The depth of an expression , or a set of liter-
als, is the maximum depth of any of their literals. The set of literals appearing in will be denoted . The num-

η v
f v

L L η

F

f 1 f 2 … f n, , ,

v yv

η

Fig. 3. Synthesis loop in the M32 system

while exists such that is not a single literal do {

; // Determine largest

; // Select atomic divisor

; // is output vertex of subckt implementing

; // Re-express in terms of the newly

// implemented logic

f i F∈ f i

k SelectFunction()← f k, 1 k≤ n≤()

P GeneratateDivisor f k()← P

ẏv IntroduceGates P()← v P

Substi tute P ẏv,() F

F η

f k P f k
L

η yv

F

depth ẏv()
v η E

E supportE()

5

ber of times a literal occurs in will be denoted by , and will denote the number of literal
occurrences in .

B. SelectFunction

The order in which the functions of are decomposed clearly affects the final synthesized implementation. In each iter-
ation of the algorithm, the set of vertices that are candidates for decomposition is the subset of unimplemented vertices
whose fanins are already implemented. TheSelectFunction routine identifies the next function to decompose by greedily
choosing the candidate vertex whose function has the largest number of literals in its cube representation. This choice is
motivated by the expectation that larger, richer, functions yield better divisors. In this context, divisor is considered bet-
ter than divisor if the vertices in its implementation subcircuit represent better opportunities for sharing among the
unimplemented vertices. More sophisticated selection strategies can be easily envisioned, especially when the initial speci-
fication is a multi-level network.

C. GenerateDivisor

Like most modern synthesis algorithms, M32 relies on an efficient division procedure to decompose a function into the
form . The most commonly used division procedure is weak division [8] which is applied to an SOP expression for

 and is equivalent to excluding all Boolean transformations except for the distributive law. While primarily motivated by
the need for a fast division operation, weak division has been empirically shown to yield acceptable decompositions in
practice. Still, the quality of the divisors, as measured by the total number of literals in the resulting factored form, can be
improved by the judicious application of additional Boolean transformations. The division operation in M32 augments the
distributive law with the annihilation () and idempotency () properties to generate better decompositions.
This additional flexibility comes at a modest computational cost.

Example 3.1 Let . A possible algebraic decomposition of
obtained using weak division is which has a literal cost of 21.
Use of annihilation and idempotency yields the more compact decomposition whose
literal cost is only 12. Unlike the algebraic decomposition which yields factors with disjoint support, this decomposition
produces factors that have joint support. ■

It is interesting to note that limiting allowable transformations of Boolean expressions to the above three properties (distrib-
utivity, annihilation, and idempotency) guarantees that any generated factored form will reproduce the original SOP cover
underflattening [16]. This, in turn, implies that different initial SOP representations of a function can lead to different
decompositions. Removal of this bias requires the deployment of the entire arsenal of Boolean transformations, i.e. operat-
ing in the unrestricted functional domain. In general, the attendant improvement in the quality of such unrestricted decom-
position comes at a steep computational cost to be practical. M32 partially compensates for this bias by intertwining
decomposition with mapping to a specific gate library while managing the structural attributes of the evolving implementa-
tion.

Divisor selection in M32 is accomplished through successive factorization, using the distributive law, of repeated literals
from an SOP expression . The annihilation and idempotency transformations are subsequently invoked to modify the
resulting quotient and reduce the literal cost of the decomposition. This process is iterated until each literal appears only
once in the factored form. To account for the structural implications of particular decompositions, literals are chosen based
on a structural cost metric that is computed according to:

. (2)

where is a candidate literal in expression and is the quotient resulting from algebraic division of by . Gener-
ateDivisor creates a divisor by successively selecting the next candidate literal with least cost according to (2). Signal
arrival times were also factored into divisor selection.

ẏv E occurrenceẏv E,() size E()
E

F

P1
P2

f
pq r+

f

a′a 0= aa a=

f abcg abe acde a′b′cd a′b′e′ a′ce′g cdg+ + + + + += f
f ab d a′e′+ +()cg abe acde a′b′cd a′b′e′+ + + +=

f ab cd a′e′+ +() ae cg a′b′+ +()=

f

cost ẋ()

depth f / ẋ() depth ẏv()–[]
occurrence ẏv f / ẋ,()

ẏv support f / ẋ()∈

∑
size f / ẋ()

---=

ẋ f f / ẋ f ẋ

6

D. IntroduceGates

The technology mapping step in modern logic synthesis is based on graph covering of an intermediate Boolean network
obtained through technology-independent functional decomposition. This “optimized” network is initially translated into a
forest of trees each of whose vertices is an inverter or a 2-input NAND gate. The trees are subsequently mapped, in topolog-
ical order, to the target technology library. This involves two steps: (1) pattern matching [11] or Boolean matching [25, 21];
and (2) gate assignment [17]. In the matching step all possible gate functions in the library that are logically equivalent sub-
trees rooted in a given vertex are considered. In the gate assignment step an optimal match is selected, and its corresponding
subtree is implemented in terms of the library gate. These steps are applied recursively starting from the primary using
dynamic programming [3].

Unlike conventional technology mappers that operate on an intermediate “optimized” Boolean network obtained in a
prior technology-independent phase, M32 closely ties its creation of gates with functional decomposition. As soon as a
divisor is found byGenerateDivisor, IntroduceGates proceeds to map it to the given gate library. The mapping process is
also different from those used in conventional synthesis tools: no intermediatesubject graph is constructed. Similar to Gen-
erateDivisor, this procedure is aware of the structural implications of its choices, and involves iterating the following steps
until is fully implemented by library gates:

1. A gate from the technology library with its suitable variable support in is selected for instantiation as vertex
2. The vertex , along with its possible fanin inverters, is instantiated and added to; variable is associated with the

new vertex
3. The divisor is re-expressed in terms of

The implementation of IntroduceGates is currently limited to a small technology library defined by
. Thus, the gate type selection step in the above procedure is unnecessary. Enhancements to

IntroduceGates that are currently underway extend its capabilities to richer gate libraries. The selection of a suitable vari-
able support in step 1 is also simplified by this library choice. Candidate variable subsets are determined by considering all
associative groupings of literal pairs in , and the best pair is selected. Again, quality in this context is estimated by a struc-
tural metric: a pair of literals which instantiates vertex of least depth is greedily selected.

The depth of in is derived from the depth of vertices in the subexpression of an associative grouping while account-
ing for the possible presence of an inverter on ‘s fanin lines. The presence of an inverter on the fanin lines is determined
by matching subexpression to the NAND2 function under input/output phase assignments. Due to the small number of
possible matching combinations when using only NAND2 gates, we enumerate them asmeta rules in Figure4. To break
ties between the candidate supports we have used estimated signal arrival times based on the following delay model:

(3)

where is the intrinsic gate delay, is the gate fan-out, is fanout delay, is capacitance on a fanout pin. In the SIS-
1.2. system this model is known aslibrary model. In our experiments we have used nominal delay and capacitance was
taken from theMCNC library.

P

P

P v
v η yv
v
P yv

L wi re INV NAND2, ,{ }=

y' αβ←
y α' β'+←

y' α'β←
y α β'+←

y' α'β'←
y α β+←

α

α

α

β

β

β

y

y

y

py pα pβ

0 1 1
1 1 1

0 1 0
1 1 0

0 0 0
1 0 0

Meta rule Implemented as
Phase

Fig. 4. Meta rules describing variable support selection and construction of the circuit

1.

2.

3.

P
v

v η E
v

E

delay τg n τ× o Cp×+=

τg n τo Cp

7

After a gate support and its phases are determined, it is introduced into the circuit by establishing its fan-in connections
and placing an inverter (either a new one or reusing a previously introduced one) on each connection which has negative (0)
input phase. No inverter is placed on the gate output regardless of the output phase.

Finally, expression is re-expressed according to the newly implemented part of . This is done by applying substitu-
tion (described below), which replaces the subexpression with the new variable using its complemented and non-
complemented forms. Thus, each iteration inIntroduceGates reducesthe size of . The process continues until is
reduced to a single literal. This literal is then returned by theIntroduceGates routine, and is later used to substitute it for
in .

E. Substitute

At each iteration of the algorithm routineSubstitute re-expresses functions of the unimplemented vertices in
in terms of the newly introduced vertices. The substitutions applied to the functions are based on the division operation. If

 is the result dividing by then substitution re-expresses as , where is a new literal. The fac-
tored forms define feasible substitutions. At the substitution step they are currently based on the distributive, annihilation,
and idempotency law of Boolean algebra applied to SOP forms. To allow more feasible decompositions during the substitu-
tion process we have also used cube reduction, which was implemented the using sharp product operation , and
defined as [12]. Application of these operations is performed if it facilitates division with respect to a given divisor.
Example in Section IV illustrates how the use of cube reduction can lead to the better design.

Substitute re-expresses in two steps: (1) substituting literal () for the () function; and (2) substi-
tuting variables of newly introduced vertices for their gate functions, modulo the phase assignment on its inputs determined
in IntroduceGates. These steps are applied to each of the functions individually. The routine performs substitu-
tion selectively to minimize topological cost. Thus, quotients containing fewer cubes than possible may get selected. In the
first stepSubstitute uses the literal returned by theIntroduceGates routine, which corresponds to the output vertex of a sub-
circuit implementing . The second step of the routine implements substitutions of finer granularity. Substitution of gate
functions in this step is performed for each of the vertices in their topological order.

Note that substitution using the distributive law only does not require step (1), since it is subsumed by step (2). We should
also point out that the division under the used properties may not be unique. This is illustrated in the example below, where
annihilation gives rise to two distinct decompositions:

Example 3.2 Suppose , and let be a divisor of . We then can have
two different quotients and . Thus either substitution or

P P
E yv

P P
P

F

f 1 … f n, ,
η
pq r+ f p f ẏvq r+ ẏv pq r+

A#B
AB

f 1 … f n, , ẏv ẏv′ P P′

f 1 … f n, ,

P

a
b

c

...

...

y1

y2

y3

y4

y5

y6

ab ac bc+ +()

a b⊕()

a
b

c

...

...

c_out

z

y3 c⊕

ab ac bc+ +()

a b⊕()

SIS-1.2M32

Fig. 5. Synthesis of the full adder in M32 and SIS-1.2

z y3 c⊕=

z y1' y2'+() c⊕=

z y3 c⊕=

z y1' ab'+() c⊕=

cout ab y3c+=

cout y4' y5'+=

cout y4' y3c+=

cout y6=

cout y6=

cout

f abc'e' a'bcd ac'de' a'cde+ + += P ac'e' a'cd+= f
q1 b c'd ce+ += q2 b ad a'e+ += f yv b c'd ce+ +()=

8

 is feasible. ■

IV. An M32 Synthesis Example

Synthesis of a full adder will be used to as an example of the M32 system. M32 first reads the functional specification

(4)

(5)

of the circuit to be synthesized. M32 expects it to be in the two level pla format [31]. Thus, is the set of
unimplemented vertices to be synthesized. The algorithm then selects function since it has more literals then . A sub-
expression selected from by the routine is . GenerateDivisor selects this divisor since it
has the least cost, with the assumption that signal arrives later than two other input signals and . This expression is
then implemented usingIntroduceGatesby introducing gates , and through the following sequence of transforma-
tions of :

(6)

where a number above each arrow indicates a matching meta rule from Figure4.

The Substitutefunction would then substitute for (complement substitution is also tried) in both and
, giving:

(7)

. (8)

Note that is not an algebraic divisor of . Therefore substitution based on weak division alone
would not bring any changes to . TheSubstitute routine makes substitution in possible due to the cube reduction
based on the sharp product operation. The M32 system detects that the division become possible if cubes and are
reduced to and respectively. This is a valid transformation since the result of and , which is in
both cases cube , is covered by the cube . It is now easy to see that divides expression ,
representing the same carry-out function : .

The next step in theSubstitute routine is to see if any of the local functions of vertices , or can be used to re-
express either or . No further substitutions are possible in this case. This completes the first iteration of the algorithm
in Figure3.

On the next iteration of the loop either the unimplemented vertex for or can be selected, since both of their func-
tions have same number of literals. Figure5 depicts execution of the algorithm with the assumption that is selected.

 is completely implemented on this iteration of the algorithm through the following sequence of transformations:

. (9)

 The final implementation of the circuit has 9 NAND2 gates and 4 inverters, which is one NAND2 fewer than the equivalent
SIS-1.2 implementation.

V. Experimental results

We evaluated the performance of M32 by synthesizing a set of circuits selected from the MCNC benchmarks [31] and
comparing the results against SIS-1.2 [13]. The benchmarks were first minimized using ESPRESSO [5] prior to multilevel
synthesis in M32 or SIS-1.2. We used thedelay script in SIS-1.2 which is based on theclustering script proposed in [29]
and is targeted towards technology-independent minimization of circuit delay. Both systems used the minimal gate library

, and delay of the implementations obtained by both systems was estimated using thelibrary
delay model of SIS-1.2 and parameters from themcnc.genlib library.

TableI compares the generated circuits in terms of the number of gates, levels of logic, topological complexity and esti-

z a b c⊕ ⊕ a'b'c a'bc' ab'c' abc+ + += =

cout ab ac bc+ +=

F z cout,{ }=
z cout

P z GenerateDivisor a'b ab'+
c a b

y1 y2, y3
P

P 2a'b ab '+
2y1' ab'+

1y1' y2'+ y3→→→≡

y3 ab' a'b+ z
cout

z cy3' c'y3+=

cout ab cy3+=

ab' a'b+ ab ac bc+ +
cout cout

ac bc
a'bc abc ac#ab'c bc#a'bc

abc ab a'b ab'+ ab a+ b'c a'bc+
cout ab ab' a'b+()c+

y1 y2 y3
z cout

cout z
cout

cout

cout ab y3c+ y4' y3c+ y4' y5'+ y6→ → →≡ 1 1 1

L wi re INV NAND2, ,{ }=

9

mated pre-layout delay. The results in this table suggest the following observations:

• Even though minimization of gate count is not a primary objective in the M32 system, it generates implementations with
fewer gates in all but two cases. In some cases the reduction in gate count is almost 50%.

• M32-generated circuits have consistently fewer logic levels, in several cases being almost half as deep as SIS-generated
circuits.

• The topological complexity of M32-generated circuits is consistently lower than that of SIS-generated circuits.The
topological complexity however, should not be interpreted as a final judge of circuit quality. Our experiments in Figure1
were performed on synthetic benchmarks which belong to a restricted class of topologies, and which very significantly
in their topological complexity. Typically, the average topological wire length of practical circuits does not vary as much
as it does in Figure1.

• The pre-layout circuit delays of M32-generated circuits are consistently lower than those of SIS-generated circuits, the
average improvement in delay being about 30%.

The run times of M32 were comparable to or better than those of SIS-1.2 for all benchmarks suggesting that the use of more
powerful decompositions and substitutions is computationally feasible.

To get a better indication of synthesis quality, the netlists produced from M32 and SIS-1.2 were laid out using the Epoch
standard cell place and route tools [9] from Cascade Design Automation. The layouts were generated using cells in a

 CMOS process with two layers of metal, and allowing over-cell routing. I/O pins were distributed around the
perimeter of the standard cell block. Delays were computed using the Epoch static timing analyzer TACTIC. These results,
shown in TableII, indicate a 23% average improvement in total area, routing length and post-layout delay for M32-gener-
ated circuits. The layouts generated for a representative circuit, thecordic benchmark, are shown in Figure6.

Thecordic benchmark is also used, in Figure 7, to highlight the constructive nature of M32’s synthesis algorithm and
to illustrate its ability to dynamically adjust the implementation topology. The two variants shown in the figure were forced
to diverge after the 28 iteration of the synthesis loop (1/3 of total iterations for the Figure7 (a) solution). The gates marked
with ● in both variants correspond to the common portion of the implemented schematics. The implementation in part (a) of
the figure corresponds to the results shown in TableI and TableII, and reflects the incorporation of topological complexity
constraints. The implementation in part (b) was generated by relaxing these constraints after the 28iteration. This incre-
mental synthesis capability can prove invaluable when the generated netlists marginally fail to meet specifications and must
be fine tuned in the neighborhood of a given solution.

The last experiment was designed to assess the effect of using a richer gate library on the quality of the generated circuits.
Since the only library that is currently supported by our prototype implementation of M32 is the simple NAND2/INV
library, we had to resort to a less-than-ideal work-around to generate circuits based on other libraries. Using the SIS-1.2
map command, the NAND2/INV circuits produced by M32 were technology-mapped to themcnc.genlib library. The

Fig. 6.Cordic relative layout areas (shown to the same scale)

SIS-1.2 (script.delay) M32

0.5µm

10

same mapping process was also applied to the NAND2/INV circuits generated by SIS-1.2. The results of this experiment
are shown in TableIII. The columns labeled “Area” and “Delay” record, respectively, the active areas and circuits delays of
each implementation as reported by the mapper.

An examination of these results indicates that, overall, the circuits produced from M32 are still faster and smaller than
those produced from SIS-1.2. However, the improvement is not as pronounced as it was for the NAND2/INV library. This
outcome is hardly surprising since the above mapping process is decidedly antithetical to the constructive synthesis philos-
ophy of M32 and undoes many of its gains. Specifically, mapping by tree covering is ill-suited to a highly optimized DAG

TABLE I: Pre- layout synthesis resul ts

Circuit
Name

 SIS-1.2 M32 Norm.

 Inp. Outp. Cubes Gates Levels Compl. Delay Gates Levels Compl. Delay Delay
z4ml 7 4 59 75 12 1.96 17.6 44 8 1.55 11.6 0.65
vda 17 39 793 1573 29 2.48 62.3 1115 16 1.56 34.3 0.55
inc 7 9 42 152 20 2.20 30.2 133 10 1.55 17.2 0.56

count 35 16 184 311 17 2.55 24.1 201 13 2.19 21.1 0.87
ldd 9 19 70 139 13 1.96 18.9 110 10 1.84 15.4 0.81
b9 41 21 141 176 12 1.69 17.8 177 10 1.60 14.8 0.83
ex4 128 28 620 690 20 1.73 28.0 665 15 1.43 19.3 0.68

cordic 23 2 1180 182 18 1.65 23.4 133 11 1.39 14.6 0.62
cps 24 109 654 2162 35 2.52 61.9 1625 17 1.93 41.3 0.66

duke2 22 29 120 743 20 2.17 35.0 534 13 1.68 24.8 0.70
vg2 25 6 110 239 16 1.88 21.6 152 11 1.36 15.5 0.71

apex2 39 3 438 564 33 2.92 44.6 484 18 1.83 25.4 0.56
sqrt8 8 4 88 79 14 1.84 18.3 76 12 1.72 17.6 0.96
bw 5 28 110 232 16 1.91 28.9 206 9 1.58 18.3 0.63
clip 9 5 167 240 26 2.55 31.3 309 14 1.75 17.5 0.55

TABLE II : Post- layout synthesis resul ts

Circuit
Name

 SIS-1.2 M32 Improvement
M32 / SIS-1.2

 Total area
(mil2)

Routing
length
(µm)

Delay

(ns)

 Total area
(mil2)

Routing
length
(µm)

Delay

(ns)

Total
area

Routing
length

Delay

z4ml 33.59 6592.0 2.66 21.55 4212.2 1.81 0.64 0.63 0.68
vda 1159.20 326400.4 7.45 715.642 189921.6 5.87 0.61 0.58 0.78
inc 77.58 17041.5 4.21 62.24 14039.6 2.52 0.80 0.82 0.59

count 137.7 28675.4 3.63 81.51 16941.6 3.62 0.59 0.59 0.99
ldd 60.73 12220.2 2.96 48.09 9123.3 2.18 0.80 0.74 0.73
b9 74.95 15136.6 2.88 76.93 15519.5 2.10 1.02 1.02 0.72
ex4 311.72 66272.5 4.16 294.92 60746.6 3.15 0.94 0.91 0.75

cordic 70.82 13996.6 3.55 54.59 10751.4 1.98 0.77 0.76 0.55
cps 1414.4 393693 8.19 1032.2 271116 5.74 0.72 0.68 0.70

duke2 414.28 106240.6 4.87 273.10 65001.5 3.80 0.65 0.61 0.78
vg2 100.47 20847.5 3.20 63.17 12526.6 2.15 0.63 0.60 0.67

apex2 283.02 68251.2 6.89 237.54 54155.8 4.67 0.90 0.79 0.67
sqrt8 34.44 7245.9 2.74 32.14 6640.8 2.41 0.94 0.91 0.87
bw 111.25 24798.6 3.71 99.46 22616.8 2.46 0.89 0.91 0.66
clip 116.79 25814.6 5.87 156.59 34502.7 3.71 1.34 1.33 0.63

Average Improvement: 0.81 0.79 0.71

11

and we conjecture that exact DAG covering may have produced better results. It must be noted, however, that DAG cover-
ing is notoriously difficult and no published algorithms that can effectively handle large circuits have been demonstrated.

a
b

d
o

e

c

w�
f
t
�

u
r

v

s

p

q

m

n

k

l

i

j
�

g

h

f2

f1
�

Fig. 7. Two incrementally-different implementations of thecordic circuit

o

b
d

c

m

n

k

l

i

j
�

g

h

w

t

e

a

p
q

u

v

r

s

f

f2

f1

b) Synthesis with relaxed structural constraints:116 gates, 13 levels

a) Synthesis with topological constraints:133 gates, 11 levels

12

We believe that a more natural approach for solving this problem is the extension of the M32 algorithm to handle arbitrary
gate libraries directly. This effort is currently underway.

VI. Conclusions and Future Work

The M32 synthesis approach outlined in this paper is a promising alternative to conventional multi-stage logic synthesis
algorithms. Initial results from a prototype implementation are encouraging and suggest that further exploration of this
method is worthwhile. We are currently examining a number of extensions and variants including:

• Experimentation with other structural complexity metrics
• Support of arbitrary gate libraries
• Synthesis of partially-specified functions
• Exploration of other functional representations, such as BDDs, to enable more powerful Boolean transformations

Ultimately, we would like to integrate physical optimization (placement and routing) with logic synthesis for better man-
agement of interconnect effects on both area and delay.

References

[1] P.Abouzeid, K.Sakouti, G.Saucier, and F.Poirot. Multilevel synthesis minimizing the routing factor. In27th Design
Automation Conference, pages 365–368, June 1990.

[2] K. Bartlett, W.CohenandA. deGeus, and G.Hachtel. Synthesis and optimization of multilevel logic under timing con-
straints.IEEE Trans. CAD IC, CAD-5, 1986.

[3] R. Bellman.Dynamic Programming. Princeton University Press, 1957.

[4] R. Brayton, E.Detjens, S.Krishna, P.McGeer, T.Ma and L.Pei, N.Phillips, R.Rudell, R.Segal, A.Wang, R.Yung,
and A.Sangiovanni-Vincentelli. Multiple-level optimization system. InIEEE Int. Conf. on CAD (ICCAD), Santa
Clara, CA, November 1986.

TABLE II I : Resul ts f rom mapping to a r icher technology l ibrary

Circuit
SIS M32

NAND2/INV mcnc.genlib* NAND2/INV mcnc.genlib*

Name Area Delay Area Delay Area Delay Area Delay
z4ml 142 17.6 131 12.0 84 11.6 85 11.2
vda 2731 62.3 2188 21.6 1870 34.3 1558 20.1
inc 268 30.2 223 13.8 236 17.2 189 10.8

count 521 24.1 394 14.4 340 21.1 277 17.2
ldd 237 18.9 198 12.7 194 15.4 167 12.1
b9 280 17.8 224 12.6 297 14.8 261 10.8
ex4 1149 28.0 888 18.5 1078 19.3 843 15.6

cordic 301 23.4 244 17.2 216 14.6 163 11.1
cps 3641 61.9 2862 29.5 2753 41.3 2368 20.0

duke2 1263 35.0 1039 18.6 898 24.8 779 15.6
vg2 394 21.6 297 12.9 239 15.5 174 14.1

apex2 963 44.6 797 28.9 797 25.4 649 21.5
sqrt8 133 18.3 111 12.4 130 17.6 110 11.5
bw 395 28.9 333 14.3 349 18.3 328 11.3
clip 413 31.3 338 23.9 521 17.5 437 15.7

* Technology mapping was done using the SIS-1.2 commandmap -s -n 1 -AFG -p

13

[5] R. K. Brayton, G.D. Hachtel, L.A. Hemachandra, A.R. Newton, and A.L. M. Sangiovanni-Vincentelli. A comparison
of logic minimization strategies using ESPRESS0. InProc. IEEE International Symposium on Circuits and Systems,
pages 42–48, May 1982.

[6] R. K. Brayton and C.McMullen. Synthesis and optimization of multistage logic. InProc. Int. Conf. on Comp. Des. (IC-
CD-84), pages 23–28, Rye, 1984.

[7] R. K. Brayton, C.McMullen, G.D. Hachtel, and A.Sangiovanni-Vincentelli.Logic Minimization Algorithms for VLSI
Synthesis. Kluwer Academic Publishers for VLSI Synthesis, 1984.

[8] R. K. Brayton, R.Rudell, A.Sangiovanni-Vincentelli, and A.Wang. MIS: A multiple-level logic optimization system.
IEEE Transactions on Computer-Aided Design of Integrated Circuits, 6:1062–1081, November 1987.

[9] EPOCH User’s Manual, ver. 3.2. Bellevue, WA 98006, 1995.

[10] E.Davidson. An algorithm for NAND decomposition under network constraints.IEEE Transactions on Computers, C-
18(12):1098–1109, December 1969.

[11] E.Detjens, G.Gannot, R.Rudell, A.Sangiovanni-Vincentelli, and A.Wang. Technology mapping in MIS. InProceed-
ings International Conference on Computer-Aided Design, pages 116–119, Santa Clara, CA, November 1987.

[12] D. L. Dietmeyer.Logic design of digital Systems. Allyn and Bacon, Boston, MA, 1978.

[13] E.M. Sentovich et. al. SIS: A system for sequential circuit synthesis. Technical Report UCB/ERL M92/41, UC Berke-
ley, Electronics Research Laboratory, College of Engineering, University of California, Berkeley, CA 94720, May
1992.

[14] J.P. Fishburn. LATTIS: An iterative speedup heuristic for mapped logic. InProc. 29st ACM/IEEE Design Automation
Conference, pages 488–491, June 1992.

[15] D. Gregory, K.Bartlett, A.deGeus, and G.Hachtel. Socrates: A system for automatically synthesizing and optimizing
combinational logic. InProceeding of the 23rd Design Automation Conference, pages 79–85, 1986.

[16] G.Hachtel, R.M. Jacoby, K.Keutzer, and C.R. Morrison. On properties of algebraic transformations and the synthesis
of multifault-irredundant circuits.IEEE Transactions on Computer-Aided Design of Integrated Circuits, 11(3):313–
321, March 1992.

[17] K. Keutzer. DAGON: technology binding and local optimization by DAG matching. InProc. 24rd Design Automation
Conf., pages 341–347, June 1987. Reprinted in 25 Years of Electronic Design Automation.

[18] K. Keutzer, A.R. Newton, and N.Shenoy. The future of logic synthesis and physical design in deep-submicron process
geometries. InISPD’97, pages 218–224, 1997.

[19] P.Kurup and T.Abbasi.Logic Synthesis Using Synopsys. Kluwer Academic Publishers, 1997.

[20] E.Lehman, Y.Watanabe, J.Grodstein, and H.Harkness. Logic decomposition during technology mapping. InProc.
Int. Conf. Computer Design, pages 263–271, 1995.

[21] F.Mailhot and G.D. Micheli. Technology mapping using boolean matching. InEuropean Design Automation Confer-
ence, pages 180–185, March 1990.

[22] P.McGeer, R.Brayton, and A.Sangiovanni-Vincentelli. Performance enhancement through the generalized bypass
transform. InIEEE Int. Conf. on CAD (ICCAD), pages 184–187, November 1991.

[23] M. Pedram and N.Bhat. Layout driven technology mapping. InProc. 28th Design Automat. Conf., pages 99–105, June
1991.

[24] G.Saucier, J.Fron, and P.Abouzied. Lexicographical expressions of boolean functions with applications to multilevel
synthesis.IEEE Transactions on Computer-Aided Design of Integrated Circuits, 12:1642–1654, November 1993.

[25] H. Savoj, M.J. Silva, R.K. Brayton, and A.Sangiovanni-Vincentelli. Boolean matching in logic synthesis. InIEEE In-
ternational Conference on Computer Aided Design, pages 168–174, 1992.

[26] P.R. Schneider and D.L. Dietmeyer. An algorithm for synthesis of multiple-output combinational logic.IEEE Trans-

14

actions on Computers, C-17(2):117–128, February 1968.

[27] K. Scott and K.Keutzer. Improving cell libraries for synthesis. InThe Proceedings of the Custom Integrated Circuits
Conference, pages 721–724, 1994.

[28] K. J. Singh and A.Sangiovanni-Vincentelli. A heuristic algorithm for the fanout problem. InProc. 27st ACM/IEEE De-
sign Automation Conference, June 1990. 357-360.

[29] H. J. Touati, H.Savoj, and R.K. Brayton. Delay optimization of combinational logic circuits and partial collapsing. In
Proc. 28th Design Automat. Conf., pages 188–191, June 1991.

[30] H. Vaishnav and M.Pedram. Minimizing the routing cost during logic extraction. In32nd ACM/IEEE Design Automa-
tion Conference, 1995.

[31] S.Yang.Logic synthesis and optimization benchmarks user guide – version 3.0. Microelectronics Center of North Caro-
lina, Research Triangle Park, NC, January 1991.

[32] K. Yoshikawa, H.Ichiryu, H.Tanishita, S.Suzuki, N.Nomizu, and A.Kondoh. A depth-decreasing heuristic for com-
binational logic; or how to convert a ripple-carry adder into a carry-lookahead adder or anything in-between. InProc.
28st ACM/IEEE Design Automation Conference, pages 112–117, June 1991.

