
10

can better handle the reference patterns exhibited by the
target workloads.

8. Conclusion
mlcache is a flexible, multi-lateral cache simulator

developed to help designers in the middle of the design
cycle make cache configuration decisions that would best
aid in attaining the desired performance goals of the target
processor. mlcache is an event-driven, timing-sensitive
simulator based on the Latency Effects cache timing
model. It can be easily configured to model various multi-
lateral cache configurations by using its library of cache
state and data movement routines. The simulator can be
easily joined to a wide range of event-driven processor
simulators such asRCM_brisc, Talisman, SimICS, and
SimpleScalar. For this study, we integratedmlcache into
theSimpleScalar sim-outorderprocessor simulator.

We showed implementations of five different cache
configurations and their resulting performance when run-
ning nine of the SPEC95 benchmarks. These configura-
tions included a direct-mapped single structure cache and
four multi-lateral caches: an Assist cache, a Victim cache,
an NTS cache, and a PCS cache. Each was easily modeled
in mlcache using the library routines provided and a few
user-added status routines.

mlcache provides many statistics which can help
explain the performance of the potential cache configura-
tions when running target workloads. Information regard-
ing hit, miss, and delayed hit ratios tells of the program’s
memory access characteristics, while block tour and reuse
information tells of the actual data usage within each pro-
gram. These statistics can all be used to explain the perfor-
mance of each cache configuration as well as help to drive
the development of future cache designs that better handle
the reference streams presented by the target workloads.

9. Acknowledgments
This research was supported in part by a gift from IBM.

The simulation facility was provided through an Intel
Technology for Education 2000 grant.

References
[1] E. Rashid et al, “A CMOS RISC CPU with On-Chip Par-

allel Cache,” ISSCC Digest of Papers, February 1994, pp.
210-211.

[2] N. P. Jouppi, “Improving direct-mapped cache perfor-
mance by the addition of a small fully-associative cache
and prefetch buffers,” Proceedings of ISCA-17, Los Alam-
itos, CA, May 1990, pp. 364-373.

[3] J. A. Rivers and E. S. Davidson, “Reducing Conflicts in
Direct-Mapped Caches with a Temporality-Based
Design,” Proceedings of the 1996 ICPP, vol. I., Bloom-
ingdale, IL, August 12-16, 1996, pp. 151 - 160.

[4] J. A. Rivers, E. S. Tam, and E. S. Davidson, “On Effective
Data Supply for Multi-Issue Processors,” Proceedings of

the 1997 ICCD, October 1997, pp. 519-528‘.
[5] E. S. Tam, J.A. Rivers, and E. S. Davidson, “Flexible Tim-

ing Simulation of Multiple Cache Configurations,” Tech-
nical Report CSE-TR-348-97, University of Michigan,
November 1997.

[6] E. S. Tam and E. S. Davidson, “Early Design Cycle Tim-
ing Simulation of Caches,” Technical Report CSE-TR-
317-96, University of Michigan, November 1996.

[7] J-D Wellman and E. S. Davidson, “The Resource Conflict
Methodology for Early-Stage Design Space Exploration
of Superscalar RISC Processors,” Proceedings of the 1995
ICCD, Austin, Texas, October 2-4, 1995. pp. 110-115.

[8] R. C. Bedicheck, “Talisman: Fast and Accurate Multi-
computer Simulation,” Proceedings of the 1995 ACM
SIGMETRICS Conference, 1995, pp. 14-24.

[9] P. Magnusson and B. Werner, “Efficient Memory Simula-
tion in SimICS,” Proceedings of the 28th Annual Simula-
tion Symposium, April, 1995, pp. 62-73.

[10] D. Burger and T. M. Austin, “Evaluating Future Micro-
processors: the SimpleScalar Tool Set,” Technical Report
#1342, University of Wisconsin, June 1997.

[11] J. A. Rivers, E. S. Tam, G. S. Tyson, E. S. Davidson, and
M. Farrens, “Utilizing Reuse Information in Data Cache
Management,” Proceedings of the 1998 ICS, July, 1998.

[12] G. Kurpanchek et al, “PA-7200: A PA-RISC Processor
with Integrated High Performance MP Bus Interface.”
COMPCON Digest of Papers, February 1994, pp. 375-
382.

[13] M. D. Hill, DineroIII Documentation, Unpublished
UNIX-style Man Page, University of California, Berkeley,
October 1985.

[14] J-L. Baer and W-H. Wang, “On the Inclusion Properties
for Multi-Level Cache Hierarchies,” Proceedings of
ISCA-15, May 1988, pp. 73-80.

[15] M. J. Charney and T. R. Puzak, “Prefetching and Memory
System Behavior of the SPEC95 Benchmark suite,” IBM
Journal of Research and Development, Vol. 41 Number 3,
May 1997, pp. 265-286.

9

and PCS caches) the number of block tours corresponds to
the miss ratio –– a block tour starts when a block is
fetched from memory and ends when the block is evicted.
However, for configurations that allow data movement
between the caches like the Assist and Victim caches, the
total number of tours also counts the number of times a
block is moved between the A and B caches.

To more accurately explain the performance of the
Assist and Victim caches with regard to block tours, we
must also account for the number of tours caused by data
movement between the caches. These tours are caused by
efforts to improve data reuse and are not as costly as
accesses to the next level of memory. We can subtract the
number of tours due to a swap of two blocks between the
caches and migrations (saves) of a block from one cache to
the other from the total tours to obtain L1 tours (i.e. the
number of fetches from the next level of memory).

Table6 shows the tour information for two benchmarks
with differing performance using multi-lateral caches,go
andhydro2d, on three cache configurations, an 8K single
structure cache, an NTS cache, and a Victim cache. For go,
the multi-lateral designs result in large performance
improvements over the base 8K cache, with RCRs of
approximately half the cache effect of the base cache, i.e.
each multi-lateral design requires only about half the tours
incurred by the base cache through the L1 cache. The
number of L1 tours is calculated by subtracting the num-
ber of swaps and saves performed from the total number of
block tours reported bymlcache –– for the direct-mapped
and NTS caches, since they incur no data movement
between the caches, the number of L1 tours equals the
total number of tours

Note that though the Victim cache incurs the fewest L1
tours of the three configurations runninggo, its RCR is
higher than that of NTS. This is due to the added two cycle
latency for each swap –– though the Victim cache has
1.1M fewer L1 block tours than the NTS cache, each of
the 9.9M swaps adds two cycles to the access latency, and
potentially to the cycle count. If the latency of the swap is
reduced or eliminated, the Victim cache’s performance
will improve.

For hydro2d, the performance of the three configura-
tions is much closer, with the RCRs differing by less than
5%. This performance similarity is also reflected in the
number of L1 tours experienced by each configuration ––
approximately 28M each. The resulting RCRs of the
multi-lateral designs are close; though the NTS cache has
slightly fewer L1 tours, the RCR of the Victim cache is
slightly lower.

7.4. Block reuse information
mlcache also provides reuse information for each block

tour. Block usage can be broken into four categories: 1)
nontemporal nonspatial (NTNS), 2) nontemporal spatial

(NTS), 3) temporal nonspatial (TNS), and 4) temporal
spatial (TS). Good cache configurations should result in
fewer tours and a higher percentage of data references to
blocks making TS tours. NTNS and NTS tours are prob-
lematic; they may cause excessive cache pollution, and
should be minimized if possible.

We see in Table6 that the NTS cache does a very good
job of managing the cache state, resulting in a high per-
centage of TS tours ingo. Furthermore, the NTS cache
reduces the percentage of references to NTNS and NTS
data relative to the base cache, also contributing to its per-
formance. The Victim cache’s reuse information is less
indicative of its performance. Blocks in a Victim cache
may experience many different tours while still remaining
in the L1 structure. Thus, though Victim has a lower per-
centage of TS tours and a higher percentage of NTNS
tours compared to the base cache, its performance is still
better than that of the base cache. However, the Victim
cache manages its state passively, so block reuse informa-
tion is more of a statistic than an aid to cache management,
as in the NTS scheme.

The lack of performance improvement of the multi-lat-
eral designs runninghydro2d can also be explained by the
high percentage of nontemporal (NTNS + NTS) accesses
that each configuration experiences. Data in these catego-
ries often pollute the cache, as they are not reused with
high frequency and often evict more useful, temporal data.
This information can be used to design cache configura-
tions and management schemes than can help attain higher
performance when running benchmarks likehydro2d.

Thus, block tour and reuse information can be used to
evaluate and explain the performance of target caches run-
ning target applications. Furthermore, the statistics pro-
vided bymlcache can help drive new cache designs that

RCR Total
Tours

Swaps Saves L1
tours

Total % of References
to each Tour Group

NTNS NTS TNS TS

D 1.00 16.1M – – 16.1M 3.91 1.95 24.0 70.1

N 0.49 8.1M – – 8.1M 1.41 1.05 17.8 79.8

V 0.51 23.9M 9.9M 7.0M 7.0M 9.14 1.84 22.7 66.3

RCR Total
Tours

Swaps Saves L1
tours

Total % of References
to each Tour Group

NTNS NTS TNS TS

D 1.00 28.7M – – 28.7M 0.13 29.4 6.8 63.7

N 0.97 27.4M – – 27.4M 0.03 28.8 4.9 66.2

V 0.96 56.3M 1.4M 27.4M 27.5M 10.2 26.3 6.1 57.3

Table 6: Block tour information for three cache
configurations running go (top) and hydro2d (bottom). D
is the 8K direct-mapped single structure cache, N is the
NTS cache, and V is the Victim cache.

8

accesses: 1) hits to the cache, 2) misses to the cache, and
3) delayed hits. Hits and misses to the cache are defined
simply as accesses to data that is resident/not resident in
the cache at the time of access. The third category, delayed
hits, is a refinement of category 2. Delayed hits are typi-
cally categorized as hits in behavioral cache simulators, as
they do not cause any additional traffic between cache and
memory. However, delayed hits typically experience a
latency that is greater than the nominal hit latency due to
latency adding effects.

mlcache makes a distinction between these three access
categories and reports the ratio of the number of accesses
in each category. Figure 4 shows the miss and delayed hit
ratios for three benchmarks that show the impact of
delayed hits: i)compress, ii) go, and iii)hydro2d. We see
that the breakdown of references that do not hit in the
cache can vary greatly; delayed hits are most prominent in
go, misses inhydro2d, andcompress is in between these
two. Since misses generally have significantly larger laten-
cies than delayed hits, two configurations with similar hit
ratios may result in drastically different overall run times
due to the breakdown of misses and delayed hits. For these
experiments, the average delayed read and write hit laten-
cies were 9.89 and 11.17 cycles, respectively, compared to
the nominal miss latency of 18 cycles6. Furthermore, in
aggressive out-of-order pipelines, the latency of delayed
hits may be more easily masked by performing other use-
ful work.

7.2. Relative Cache Effect Ratio (RCR)
Hit/miss ratios, or even delayed hits, are not the best

metric by which to evaluate a cache configuration’s perfor-
mance when latencies are accounted for in simulation. A
better metric for highlighting performance gains is the
Relative Cache Effect Ratio, as defined in [4], which is:

This ratio provides the finite cache penalty of a given
cache configuration (X) relative to the penalty of a speci-
fied base cache. The base cache has an RCR of 1, caches
that perform better than the base have RCR between zero
and one, and caches that perform worse have RCR > 1.
The RCR thus more accurately reflects a cache configura-
tion’s actual contribution to total system performance
when running a target application. Table4 shows the num-
ber of cycles required to execute the code on our SimpleS-
calar processor configuration with a perfect cache (i.e. all
memory accesses are satisfied in the cycle after they com-

6. In mlcache, read latency ends when the data is at the processor;
write latency when the data is written in cache, freeing that block for
later accesses.

mence).
The RCR for each of the cache configurations, using the

direct-mapped 8K single structure cache as the base, is
shown in Figure 5. While performance varies among the
various configurations, several trends emerge. First, multi-
lateral designs can greatly improve cache performance by
reducing the overall number of cycles required to access
memory. For go andperl, multi-lateral designs can cut the
total finite cache penalty to less than half of the base 8K
direct-mapped cache. Further, the multi-lateral designs
often approach, or even exceed, the performance of a
larger, 16K direct-mapped cache –– the 16K cache per-
forms best only incompress, gcc, go, and li , where the
added capacity of the larger cache is more beneficial than
the improved cache management provided by the multi-
lateral schemes.

The Assist cache used in the HP PA-7200 made use of a
compiler-supplied hint. Though the hint was not
accounted for in this study, the Assist, NTS, and PCS
caches could all benefit from compiler hints regarding
proper management for particular cache blocks. For
instance, the NTS and PCS caches could use compiler
hints to place data for which no DU entry exists into the B
cache, instead of into the A cache by default –– if the com-
piler knew that the accessed data was nontemporal, this
hint could reduce pollution of the A cache with nontempo-
ral data. Thus, it is likely that with compiler assistance, the
performance of the Assist, NTS, and PCS caches would
each improve over what these experiments have shown.

7.3. Block tour inf ormation
In general, reducing the number of tours through the

cache for a given benchmark results in improved overall
performance –– fewer tours indicate that data is used more
often during each tour, resulting in fewer fetches to the
next level of memory. mlcache provides statistics for block
tours to each cache. For configurations that do not transfer
data directly between the A and B cache (i.e. single, NTS,

RCRX

Cycle CountX Cycle CountPerfect Cache–

Cycle Countbase Cycle CountPerfect Cache–
---=

Figure 5: Relative Cache Effect Ratio comparison for the
two direct-mapped and four multi-lateral configurations.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

compress gcc go li perl hydro2d su2cor swim wave5

BENCHMARK

R
C

R
 (8

K
 s

in
gl

e
ba

se
)

DM:8K
Assist
PCS
NTS
Victim
DM:16K

7

general.
Since our study focuses on the effectiveness of a given

data cache configuration in reducing memory access time,
we designed a near perfect instruction supply mechanism
for our processor simulator. In addition, we provided
ample resources for the instruction processing phase in
order to maximize the effect of data cache performance.
Table3 details our chosen parameters and architectural
assumptions. Since 16-way superscalar processors are
likely in the near future, this processor configuration will
shed light on the benefits of using multi-lateral caches in
processor designs of coming generations.

6.1. Benchmarks
Table4 shows the nine programs (5 integer and 4 float-

ing point) selected from the SPEC95 benchmark suite for
this study. Each program, using the training data sets, was
run to completion or through the first 1.5 billion instruc-
tions.

6.2. Experiments
The mlcache tool is capable of evaluating a large

expanse of cache designs based upon different cache
parameters; a listing of the available parameters is shown
in Table5. In order to present a directed cache configura-
tion evaluation usingmlcache, we chose to keep some of
these parameters constant. The multi-lateral caches are all
of the same size: the A cache is 8K and the B cache is 1K.
While these caches may be small by today’s standards,
they are convenient for illustrative purposes. Previous pro-
posed/evaluated multi-lateral cache designs were small, as
their performance was found to rival the performance of
direct-mapped caches of twice the size. Further, these
cache sizes are driven by our use of the SPEC benchmarks
–– larger caches can hold the entire working set of these
benchmarks, reducing the benefit of multi-lateral designs
[15].

The management of the data within the caches is dic-
tated by the four multi-lateral designs we chose to evaluate

(the management of data in the direct-mapped single
structure cache is obvious). We chose to keep the latencies
to memory constant over all configurations, as we are sim-
ply evaluating the effect of using each cache design in the
same processor. The latencies of moving data between the
A and B caches is dependent upon the cache design, as
listed in Table2.

To get a feel for each configuration’s performance, we
tested each using a direct-mapped A cache and a fully-
associative B cache. This is also the configuration used in
previous evaluations of the various cache designs, so this
experiment helps gauge the correctness of the performance
reported bymlcache. The following section discusses the
results provided bymlcache.

7. Results

7.1. Miss ratio
Miss ratio is a first-order performance metric typically

used to describe cache performance. However, incorpora-
tion of latencies introduces three categories of memory

cache size number of read ports CPU-to-cache bus
width

block size number of write ports cache-to-memory bus
width

word size number of read/write
ports

return policy
(requested word first/
first subblock first)

associativity replacement policy NOA

read miss latency write miss latency hit latency

Table 5: A listing of parameters for each cache modeled
in mlcache. The parameters are read in from an input file
and can be changed for each simulation run without
recompiling the simulator.

i) compress

ii) go

iii) hydro2d

0%

5%

10%

15%

20%

25%

30%

dm8k assist pcs nts victimME
MO

RY
 A

CC
ES

S
BR

EA
KD

OW
N

miss ratio
delayed hit ratio

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

dm8k assist pcs nts victimME
MO

RY
 A

CC
ES

S
BR

EA
KD

OW
N

miss ratio
delayed hit ratio

0%

10%

20%

30%

40%

50%

60%

dm8k assist pcs nts victimME
MO

RY
 A

CC
ES

S
BR

EA
KD

OW
N

miss ratio
delayed hit ratio

Figure 4: Memory access breakdown for the different
cache configurations for three benchmarks. i) is the
compress benchmark, where delayed hits contribute
moderately to the number of accesses that miss in the
cache. ii) is go, where delayed hits are prominent, and iii) is
hydro2d, where misses are dominant.

6

4.4. PCS cache
The PCS cache [11] decides on data placement based

on the program counter value of the memory instruction
causing the current miss, rather than on the effective
address of the block as in the NTS cache. Using the mem-
ory accessing instruction to direct placement of data in the
L1 cache structure is useful when the data accessed by the
instruction exhibits similar usage characteristics. This
approach can perform better than the NTS scheme when
the ratio of blocks accessed to the number of memory
instructions executed is high and the data used by each
instruction exhibits similar usage characteristics (e.g. a
single instruction striding through an array typically
results in nontemporal reuse of the data requested). Thus,
the performance of individual memory accessing instruc-
tions is used to determine placement of data in the PCS
scheme, as opposed to the performance of individual data
blocks in the NTS scheme.

The PCS cache structure modeled is as similar as possi-
ble to the NTS cache (Figure 2iii). The DU is indexed by
the memory accessing instruction’s program counter, but
is updated in a similar manner to the NTS scheme. When a
block is replaced, the temporality bit of its entry is set
according to the block’s reuse characteristics during its
last tour of the cache. Thus, if that instruction subse-
quently misses, the loaded block will be placed in the B
cache if the instruction’s PC hits in the DU and the predic-
tion (T/NT) bit indicates NT; otherwise the block is placed
in the A cache. If the instruction misses in the DU a new
DU entry is created for this instruction and the data is
placed in the A cache.

Given the similarity of the NTS and PCS cache struc-
tures, we implemented the PCS cache using the routines
that we created for the NTS cache, but simply indexed the
DU by the PC instead of by the effective address of its
data. As with the NTS cache, we use a 32-entry DU for
our experiments.

5. Implementation and testing ofmlcache
We implemented five different cache configurations

using themlcache simulator: a direct-mapped single struc-
ture cache, an Assist cache, a Victim cache, an NTS cache,
and a PCS cache. The latencies used for the timing simula-
tion of these caches are shown in Table2

6. Simulation envir onment
A timing simulation of caches is of limited use without

considering the latency-masking effects of processor exe-
cution. Thus, we integratedmlcache into theSimpleScalar
[10] sim-outorder simulator by replacingSimpleScalar’s
data cache module withmlcache. Note thatmlcache can
be combined with any currently available instruction-level
simulator, includingTalisman [8], SimICS [9], RCM_brisc
[7], and others. This flexibility is possible because
mlcache maintains the state of the caches itself and does
not take into account virtual memory or TLB effects. It
models up to two cache structures and assumes a perfect
memory thereafter, regardless of the number of level of
caches beyond that. We chose thesim-outorder processor
model because it performs out-of-order issue, execution,
and completion on a derivative of the MIPS instruction set
architecture, and is a well regarded processor simulator in

Fetch
Mechanism

fetches up to 16 instructions in program order
per cycle

Instruction
Cache

perfect cache, 1 cycle latency

Branch
Predictor

perfect branch prediction

Issue
Mechanism

out-or-order issue of up to 16 operations per
cycle, 256 entry re-order buffer (RUU), 128
entry load/store queue (LSQ); loads may exe-
cute when all prior store addresses are known

Functional
Units

16 integer ALUs, 16 FP ALUs, 8 integer
MULT/DIV, 8 FP MULT/DIV, varying # of L/S
units

Functional
Unit Latency
(total/issue)

integer ALU:1/1, integer MULT:3/1, integer
DIV:12/12, FP adder:2/1, FP MULT:4/1, FP
DIV:12/12. load/store:1/1

Data Cache write-back, write-allocate, 32B lines, 4 read/
write ports, non-blocking

Table 3: Processor and memory subsystem
characteristics.

Program
Instruction

Count
(millions)

Memory
References
(millions)

Perfect Cache
Performance

Loads Stores
Cycle
Count

(millions)
IPC

SPEC95 Integer Benchmarks

Compress 35.68 7.37 5.99 5.35 6.6644

GCC 263.85 61.15 36.24 43.50 6.0648

Go 548.13 115.79 41.40 91.33 6.0049

Li 956.49 286.38 168.79 151.32 6.3210

Perl 1,500.00 396.82 269.83 232.89 6.4408

SPEC95 Floating Point Benchmarks

Hydr o2d 974.50 196.11 60.90 127.63 7.6353

Su2cor 1,054.09 262.20 84.74 152.34 6.9192

Swim 849.92 205.18 58.44 113.02 7.5201

Wave5 1,500.00 321.87 133.26 318.69 4.7067

Table 4: The nine benchmarks and their memory
characteristics. IPC is Instructions Completed Per Cycle.

5

each memory access.

4.1. Assist cache
The Assist cache [1] (Figure 2i) is a multi-lateral design

where the B cache is used as a “staging area” for data
entering the A (main) cache. On a hit, the data is returned
to the processor the next cycle, but remains in the cache in
which it is found. On a miss, the block entering the L1
cache structure is placed into the B cache regardless of its
reuse characteristics. Blocks in the B cache are managed
in a FIFO fashion, where blocks evicted from the B cache
are placed in the A cache. A block evicted from the A
cache due to a promotion returns to the next level of mem-
ory.

In the Assist implementation in the HP PA-7200 [11], a
compiler hint is used to aid in keeping spatial-only5 data
from polluting the A cache. Blocks that have the spatial-
locality hint bit set are returned to the next level of mem-
ory upon eviction from the B cache. However, we do not
model these compiler hints in this paper. As a result, the
placement of data within the Assist cache is determined
only by the reference program’s pattern. This omission
will be addressed when we discuss the resulting perfor-
mance of the Assist cache implementation.

As shown in Figure 3, the Assist cache can be imple-
mented using the library routines provided.

4.2. Victim cache
The Victim cache (Figure 2ii), based on the scheme

proposed in [2], is a multi-lateral design where the B cache
is managed in a fashion akin to the victim buffer. On a
memory access, desired data found in the A cache is
returned to the processor the next cycle. If the desired data
is found in the B cache, the desired block must first be
“swapped” into the A cache –– the block from the B cache
is placed in the A cache and the resulting evicted block is
placed in the B cache. Depending upon the amount of
hardware dedicated to handling these swaps, a hit to the B
cache may require varying amounts of time. In this study,
we assume an additional 2 cycle latency for B cache hits.

On a miss, the block entering the L1 cache structure
from the next level of memory is placed in the A cache. A
block evicted from A as the result of the new block’s
arrival is placed in the B cache; blocks evicted from the B
cache return to the next level of memory. Like the Assist
cache, the Victim cache manages the cache state passively
–– recently evicted blocks are always saved in the auxil-
iary cache for faster access; no active placement decision
is made based on reuse information.

The Victim cache can also be implemented using the
library routines provided. On a cache miss, a

5. Data is tagged spatial-only if it is predicted to be use-once or too large
to be effectively cached.

DO_SAVE_EVICTED is performed, so the new block is
placed in the A cache and the evicted block is placed in the
B cache (after the specified access latencies). On a B cache
hit, a DO_SWAP is done to place the referenced data in
the A cache, and the block it evicts from the A cache into
the B cache.

4.3. NTS cache
The NTS cache, using the model in [11], which was

adapted from the scheme proposed in [3], actively places
data within the multi-lateral L1 cache structure based on
each block’s usage characteristics. In particular, blocks
that have been found to exhibit temporal reuse are placed
in the A cache, while nontemporal data are sent to the B
cache. This is done in the hope of allowing temporal data
to remain in the larger A cache for longer periods of time,
while less frequently used (nontemporal) data can for a
short while be quickly accessed from the small but fully
associative B cache.

On a memory access, if the desired data is found in
either of the caches, the data is returned to the processor
with a 0 added latency, but the block remains in the cache
in which it is found. On a miss, the block entering the L1
cache is checked to see if it has an entry in a Detection
Unit. The Detection Unit (DU) contains temporality infor-
mation about recently evicted blocks from the L1 cache
structure. On eviction, a block is checked to see if it exhib-
ited temporal reuse during its most recent tour in the L1
cache structure and is marked accordingly in the DU. If
the new block address matches an entry in the DU, the
block is placed in the A cache if the tag of that entry indi-
cates that it exhibited temporal reuse during its last tour,
and in the B cache if it did not. The reuse information is
kept via a single bit, the T/NT bit. If no DU match is
found, a new entry is created in the DU, the block is
assumed to be temporal, and it is placed in the larger A
cache. The DU thus caches entries consisting of a block
address and a T/NT bit.

mlcache does not provide routines for managing a DU.
The user can add routines that manage the DU and per-
form placement decisions based on the results of those
routines. We added routines that maintain the DU as a sep-
arate, finite-sized fully-associative cache indexed by an
address. Each entry in the DU contains an effective
address and a T/NT bit which is set to 1 if the block at that
address exhibited temporal reuse during its most recent
cache tour, and 0 if not. This T/NT bit is used to predict
the temporality of the next tour of this block. These rou-
tines are called within theconfig.c file when a cache
miss is handled and used to decide whether to place the
data in the A or B cache. Since this is a user-added routine,
we can specify separate parameters for this module. For
our experiments, we use a DU size of 32 entries.

4

cated busses, there are dedicated ports for accesses travel-
ing between the caches (e.g. this permits a processor read
from the A cache while a different element is being moved
to A from B). Implementations of these caches in a real,

well-designed machine would likely satisfy these assump-
tions.

Different latencies can also be assigned to a path
depending upon the operation that is being performed. The
latency assigned for themove_time can differ among
the cache configurations, as shown in Table2. For an
Assist cache (Figure 2i), moves between the caches are
always in the direction from B (buffer) to A (main cache).
Thus, in our experiments, a move in the Assist cache con-
figuration requires a single cycle, meaning that an access
that hits a block being promoted from the B cache to the A
cache is satisfied with a two cycle latency (one cycle for
the move and one cycle to return the data to the processor).
Accesses that hit in the A cache are returned in the next
cycle, as are accesses that hit in the B cache.

For a Victim cache (Figure 2ii), promotions from the B
cache to the A cache require a swap to be performed: the
block from the B cache is moved into the A cache and the
block it evicts from the A cache is placed in the B cache.
Normally, this operation cannot complete in a single cycle,
as there is only a single, albeit dedicated, bus between the
caches, and two elements need to be moved using the com-
mon bus. Thus, we can assign a latency of two cycles for a
move between the caches for the Victim configuration or
assign a one cycle latency and assume a 2 block wide bus;
we assigned latency 2 in our experiments. If there is an
access to a block that is moving between caches, the trail-
ing-edge effect seen by this latter access is properly
accounted for by the LE cache model.

Each of the multi-lateral configurations is discussed in
more detail in Section 4. From these brief examples, how-
ever, it is easy to see that this modular, library-based
approach to defining a cache configuration allows a signif-
icant range of configurations to be examined early in the
design cycle.

4. Cache configurations
In each of the following multi-lateral cache configura-

tions, both the A and B caches are checked in parallel on

/* this is the standard handler for each access. it
 checks in the A cache to see if the data is there
 first. if it isn’t, it checks in the B cache. if
 it's present in a cache, it handles the appropriate
 cache hit. if the access misses in both caches, a
 miss is processed.
 other designs may not need both caches checked
 (e.g. MLCOs that partition the memory access stream
 based on some criteria like address (odd/even),
 functionality (integer/floating point), etc.). */

long long handle_access(long long cycle_count,
 UpdateEntry *Entry) {

 /* check for hit in A cache “first” */
 if(!check_for_cache_hit(cycle_count,Entry))
 /* miss in A cache-check in B cache */
 if(!check_for_cache_hit(cycle_count,Entry))
 /* miss in both - handle the miss */
 access_time = handle_miss(cycle_count, Entry,

Conflict_Entry);
 else /* hit in B cache (after miss in A cache) -

 handle the B cache hit */
 access_time = handle_B_cache_hit(cycle_count,

 Entry);
 else /* hit in A cache - handle the A cache hit */
 access_time = handle_A_cache_hit(cycle_count,

 Entry);
 return access_time; }

l ong long handle_A_cache_hit(long long cycle_count,
 UpdateEntry *Entry) {

 /* hit in A cache, so just update stack, etc.
 for acache */
 Entry->on_completion = DO_UPDATE;
 Entry->access_latency = (long long)cache_latency;
 Entry->which_cache = ACACHE;
 return(handle_hit_timing(cycle_count,Entry,

 &(Entry->A))); }

long long handle_B_cache_hit(long long cycle_count,
 UpdateEntry *Entry) {

 /* hit in B cache, so just update stack, etc.
 for bcache */
 Entry->on_completion = DO_UPDATE;
 Entry->access_latency = (long long)cache_latency;
 Entry->which_cache = BCACHE;
 return(handle_hit_timing(cycle_count,Entry,

 &(Entry->B))); }

l ong long handle_miss(long long cycle_count,
UpdateEntry *Entry,
UpdateEntry *Conflict_Entry) {

 /* for assist cache, if something falls out of the
 B cache on the update, it is placed in the A
 cache in a FIFO fashion */
 if(Entry->B.dap.accesstype == 0)

Entry->access_latency =
(long long)main_mem_latency_r;

 else
 Entry->access_latency =

(long long)main_mem_latency_w;
 Entry->which_cache = BCACHE;
 Entry->on_completion = DO_SAVE_EVICT;
 Entry->move_direction = B_TO_A;
 return(handle_miss_timing(cycle_count, Entry,

 &(Entry->B))); }

Figure 3: Part of the config.c file used to implement the
Assist Cache. Setting on_completion to DO_SAVE_EVICT
causes the item evicted from the B cache on a miss to be
moved to the A cache (dictated by move_direction being
set to B_TO_A), as required.

Single Assist Victim NTS PCS

Cache A A B A B A B A B

Size 8/16K 8K 1K 8K 1K 8K 1K 8K 1K

Associativity 1/1 1 full 1 full 1 full 1 full

Replacement
Policy

–/– – FIFO – LRU – LRU – LRU

move time – 1 2 – –

latency to
next level

18 – 18 18 – 18 18 18 18

Table 2: Characteristics of the five configurations
studied. Times/latencies are in cycles.

3

miss ratios can have drastically different program execu-
tion times depending upon the actual latency of each
access. Thus, we use the Latency-Effects (LE) cache tim-
ing model [6] to account for the latencies seen by each
memory access. The LE cache model is a paramaterize-
able model that determines the latency for each access by
considering leading and trailing edge effects, bus width
and contention effects, port conflicts, and the number of
accesses (NOA) that the cache allows before blocking. For
single structure caches, the LE model is used to determine
the latency of hits, misses, and delayed hits3 to the cache.
For multiple-cache configurations, more latencies must be
considered.

A latency is assigned to each of the relevant paths in the
figure for each type of operation to be performed. For
instance, if an access is made to a block during its promo-
tion from B to A, the promotion time must be included in
the access latency. The latency of an access can be deter-
mined by summing the time to traverse each link of the
paths from where the block resides at the time of the
request to its final destination in the processor. For the
Assist cache configuration, the nominal miss latency, trail-
ing-edge effects, and bus width and contention consider-
ations are incorporated in the memory-to-cache path,
while the latency between caches and trailing-edge effects
are included in the cache-to-cache path. Regardless of the
cache configuration, each access is subject to the added
latencies, if any, due to port conflicts and NOA.

3. mlcache –– an easily configurable tool

3.1. High-level parameterization
To make mlcache easily retargetable, we chose to pro-

vide a library of routines that a user could choose from
when deciding what actions take place in the cache at a
given time. The routines are accessed from a single C file
namedconfig.c . The user simply modifiesconfig.c
to describe all of the desired interactions shown in Figure
1 between the caches, processor, and memory. The user
also controls when the actions occur via the delayed
update mechanism built into the cache simulator4. Table1
shows the routines provided for the user to choose from
and a brief description of each. If more interactions are
needed than those provided, they can then be coded into
the simulator by hand –– examples of such user-added
routines are presented below with the multi-lateral cache
implementations. However, the routines that are provided

3.Delayed hits are accesses to data currently returning to the cache on be-
half of earlier misses to the same block.
4. Delayed update is used to allow a behavioral cache simulator such as
DineroIII [13] to account for latency-adding effects. The use of delayed
update causes the effects of an access, i.e. an access’ placement into the
cache, the removal of the replaced block, etc. to occur only after the cal-
culated latency of the access has passed.

are already sufficient to model many multi-lateral cache
designs.

While mlcache models many of the effects seen by a
memory access in a multi-lateral configuration, some key
effects are still not accounted for. Multi-lateral configura-
tions that incorporate prefetching, e.g. with a streaming
buffer [2], cannot be dealt with because hardware
prefetching has not been included in the current imple-
mentation. Also, some configurations, e.g. a smaller or
less associative cache “backing” a larger or more associa-
tive (possibly multi-lateral) cache can potentially violate
the multi-level inclusion principle [14]; the potential for
this violation is common in multi-lateral caches and has
not been addressed in our current studies.

Figure 3 shows portions of theconfig.c file that
models an Assist cache configuration using the provided
routines. As can be seen, the operations in theconfig.c
file are all very high level and easily understandable,
thereby relieving the user from learning the intricacies of
the cache simulator’s low-level operations in order to
model a new cache.

3.2. Assessing latencies for multiple caches
Accounting for latencies between caches is a simple

extension of the LE cache model –– given that we know
what operation is occurring, we can add the corresponding
latency onto the access time and then adjust for any
latency-adding effects. For this paper, we assume that ded-
icated busses (as wide as the smaller cache’s blocksize) are
present between the caches so that we may ignore bus
width considerations between the caches for moves
between A and B. We also assume that, given these dedi-

Support Routine Description

check_for_cache_hit() check to see if an accessed block is
present in the cache

update() place an accessed block into the cache

move_over() move an accessed block from one cache
to another

do_swap() move an accessed block from cache1 to
cache2 and move the evicted block to
cache1

do_swap_with_inclusion()place an accessed block into both cache1
and cache2 and move the evicted block
from cache2 to cache1

do_save_evicted() move the block evicted from cache1 to
cache2

find_and_remove() remove a block from a cache

check_for_reuse() determine if a block exhibits temporal
behavior (word reuse)

Table 1: The basic support routines provided with the
mlcache simulator. The user can call these routines from a
configuration file to control the cache state and
interactions.

2

figurations that we consider include the Assist cache, Vic-
tim cache, NTS cache, and PCS cache [11]. We show how
each of these can be easily realized using themlcache tool,
and expose the performance of each scheme for a set of
cache parameters. Thoughmlcache is designed for multi-
lateral cache configurations, it can also easily handle sin-
gle structure caches. We compare the performance of the
multi-lateral caches with single structure caches of
increased size.

The paper is organized as follows: Section 2 discusses
the modeling and simulation of multiple caches. Section 3
introduces themlcache tool itself. Section 4 discusses each
of the cache configurations we evaluate, while Section 5
presents the implementation and testing ofmlcache. Sec-
tion 6 discusses our simulation environment, benchmarks,
and experiments. Section 7 presents the results of the
experiments we conducted, and we conclude in Section 8.

2. Modeling and simulating multi-lateral
caches

In order to model and compare multi-lateral cache con-
figurations, it is helpful to have a figure from which each
of the configurations can be derived. Figure 1i shows a
“fully-connected” processor-memory system with two
cache structures in L1 backed by a main memory. Depend-
ing upon the specific configuration being evaluated, some
of the paths will be deleted. The direct path between mem-
ory and processor is not included in the figure, as it is
assumed that even cache-bypass data that returns to the
processor directly from memory must still go through the
cache unit. The effects of a memory to processor transfer
can be obtained by assigning it appropriate parameter val-
ues for traversing the corresponding memory-to-cache and
cache-to-processor paths.

This figure can thus represent, at a high level, practi-
cally any system consisting of two caches, a processor, and
memory. (Note that the “memory” in this figure can actu-
ally represent a second level cache. In explaining this
model, however, we will assume that the level of memory
backing the two caches is the system’s main memory.) By

removing particular arcs and elements from Figure 1i, dif-
ferent cache configurations can be represented, e.g. a tradi-
tional single structure cache backed by main memory
(Figure 1ii) or a 2-level cache, where the L2 cache is B
and the L1 cache is A (Figure 1iii). The A and B caches
can have different sizes, associativities, replacement poli-
cies, etc., which are specified separately by assigning
parameter values.

Figure 2 shows representations of several multi-lateral
cache configurations. Figure 2i shows the Assist cache
configuration, used in the HP PA-7200 [1][12]. All blocks
that enter the cache from memory must enter through the
Assist buffer (the B cache). Note that there is no direct
memory-to-A cache transfer path in Figure 2i. The B
cache uses a FIFO replacement –– blocks evicted from the
B cache are moved (“promoted”) into the A cache unless
they are tagged with a compiler-supplied spatial-only hint.
Thus, the B cache serves as a “staging area” for accesses,
potentially reducing the number of conflict misses that a
program would experience if it were run on a system with
a single, direct-mapped L1 cache. Once a block has been
promoted to the A cache, it resides there until it is replaced
under an LRU policy. In the basic Assist implementation,
dirty blocks that are replaced in A are written back to main
memory; thus, there is no direct path from the A cache to
the B cache.

In the Victim cache (Figure 2ii), blocks replaced in A
move to B; blocks that hit in B move back to A. In the
NTS or PCS cache (Figure 2iii), blocks deemed to be tem-
poral2 are allocated to A, nontemporal blocks to B.

In the middle of the design cycle, it is helpful to incor-
porate latency effects when considering memory accesses,
as miss ratios alone are not a sufficiently accurate perfor-
mance metric of a target cache design. When cycle-level
simulation is performed, two cache designs with similar

2. A block is considered temporal if any word in it is accessed more
than once during a tour. A block is considered spatial if more than one
word is accessed during a tour. A block tour refers to one of the time
intervals that the block spends in the cache (between an allocation and
its subsequent eviction). A given block can have many tours through
the cache.

PROCESSOR

MEMORY

A B

PROCESSOR

MEMORY

A

PROCESSOR

MEMORY

A B

Figure 1: Schematic views of processor-memory systems
with two caches: i) fully-connected, ii) a single structure
cache, and iii) a two-level cache.

i) ii) iii)

PROCESSOR

MEMORY

A B

i) ii) iii)

Figure 2: Representations of some multi-lateral cache
configurations.: i) Assist cache, ii) Victim cache, and iii)
NTS and PCS caches.

PROCESSOR

MEMORY

A B

PROCESSOR

MEMORY

A B

1

mlcache: A Flexible Multi-Lateral Cache Simulator

Edward S. Tam, Jude A. Rivers, Gary S. Tyson, and Edward S. Davidson
Advanced Computer Architecture Laboratory

Electrical Engineering and Computer Science Department
The University of Michigan

Ann Arbor, MI. 48105
{estam,jrivers,tyson,davidson}@eecs.umich.edu

Abstract
As the gap between processor and memory speeds increas-
es, cache performance becomes more critical to overall
system performance. To address this, processor designers
typically design for the largest possible caches that can
still remain on the ever growing processor die. However,
alternate, multi-lateral1 cache designs such as the Assist
Cache, Victim Cache, and NTS Cache have been shown to
perform as well as or better than larger, single structure
caches while requiring less die area. For a given die size,
reducing the requirements to attain a given rate of data
supply can allow more space dedicated for branch predic-
tion, data forwarding, increasing the size of the reorder
buffer, etc. Current cache simulators are not able to study
a wide variety of multi-lateral cache configurations. Thus,
the mlcache multi-lateral cache simulator was developed
to help designers in the middle of the design cycle decide
which cache configuration would best aid in attaining the
desired performance goals of the target processor. ml-
cache is an event-driven, timing-sensitive simulator based
on the Latency Effects cache timing model. It can be easily
configured to model various multi-lateral cache configura-
tions using its library of cache state and data movement
routines. The simulator can be easily joined to a wide
range of event-driven processor simulators such as
RCM_brisc, Talisman, SimICS, and SimpleScalar. We use
the SPEC95 benchmarks to illustrate how mlcache can be
used to compare the performance of several different data
cache configurations.

Keywords: multi-lateral cache, timing simulation, perfor-
mance evaluation

1. Intr oduction
As the gap between processor and memory speeds

increases, cache performance becomes more critical to
overall system performance. To address this, processor
designers typically design for the largest possible caches
that can still remain on the ever growing processor die.
However, multi-lateral cache designs such as the Assist

1. We use the term multi-lateral to refer to a level of cache that contains
two or more data stores that have disjoint contents and operate in parallel.

Cache [1], Victim Cache [2], and NTS Cache [3] have
been shown to perform as well as or better than larger, sin-
gle structure caches while requiring less die area [4][5].
For a given die size, reducing the die requirements to
attain a given rate of data supply can allow other resources
to use the saved space –– for example, more space dedi-
cated to branch prediction, data forwarding, instruction
supply, and increasing the size of the reorder buffer can
serve to improve performance more than simply improv-
ing cache performance.

The mlcache multi-lateral cache simulator was devel-
oped to help designers in the middle of the design cycle
decide which cache configuration would help attain the
performance goals of the target processor. Early in the
design cycle, metrics such as miss ratio and bandwidth
requirements can be used to narrow the spectrum of caches
considered for a processor design. Before detailed cycle-
by-cycle simulators are constructed for final candidate
designs, it is often very helpful to use higher-level, mid-
cycle timing simulators to obtain a more detailed evalua-
tion of cache and processor performance.mlcache is an
event-driven, timing-sensitive cache simulator based on
the Latency Effects cache timing model [6]. It can be eas-
ily configured to model various multi-lateral cache config-
urations by using its library of cache state and data
movement routines. For interactions not modeled in the
library routines, users can write their own management
routines and call them from this simulator, which is struc-
tured for easy extensibility. The tool can be easily joined
to a wide range of event-driven processor simulators such
asRCM_brisc [7], Talisman [8], SimICS [9], andSimpleS-
calar [10]. Together, a combined processor-and-cache
simulator such asSimpleScalar+mlcache can provide
detailed evaluations of multiple cache designs running tar-
get workloads on proposed processor/cache configura-
tions.

In this paper we present themlcache tool and show how
it can be used to compare the performance of several dif-
ferent L1 data cache configurations when running the
SPEC95 benchmarks. While multi-lateral designs can also
be used for instruction caches, the lower predictability of
references to data is more suited to exposing the benefit of
multi-lateral cache designs. The multi-lateral cache con-

