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Abstract

A growing number of studies have explored the use of trace caches as a mechanism to 
increase instruction fetch bandwidth. The trace cache is a memory structure that stores statically 
noncontiguous but dynamically adjacent instructions in contiguous memory locations. When cou-
pled with an aggressive trace or multiple branch predictor, it can fetch multiple basic blocks per 
cycle using a single-ported cache structure. This paper compares trace cache performance to the 
theoretical limit of a three-block fetch mechanism equivalent to an idealized 3-ported instruction 
cache with a perfect alignment network. Several new metrics are defined to formalize analysis of 
the trace cache. These include fragmentation, duplication, indexability, and efficiency metrics. We 
show that performance is more limited by branch mispredictions than ability to fetch multiple 
blocks per cycle. As branch prediction improves, high duplication and the resulting low efficiency 
are shown to be among the reasons that the trace cache does not reach its upper bound. Based on 
the shortcomings of the trace cache discovered in this paper, we identify some potential future 
research areas.
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1. Introduction

Instruction supply is a key element in the performance of current superscalar processors.
Because of the large number of branch instructions in the typical instruction stream and the small
size of basic blocks, fetching through multiple branches per cycle is critical to high performance
processors. Traditional instruction cache designs cannot fetch past multiple branches per cycle,
and in particular through multiple taken branches per cycle.

The trace cache fetch mechanism is a solution to the problem of fetching past multiple
branches in a single cycle. It stores dynamically adjacent instructions in a contiguous memory
block and can do so with intervening branch instructions. When it is coupled with a multiple-
branch predictor, it can provide a high-bandwidth mechanism to fetch multiple basic blocks per
cycle.

This paper presents a study of the limits of trace cache performance and from where the
limits arise. The goal is not to compare the trace cache against other competing mechanisms or to
introduce any new features, but to study where current trace cache configurations can improve.

The contributions of this study are:
• an examination of the limit of trace cache performance based on an idealized 3-

block fetch mechanism that is modeled by a 3-ported instruction cache with a
perfect instruction alignment network;

• definition of several metrics to aid in analysis of trace cache performance;
• study of the sources and extent of trace cache inefficiency;
• quantify branch mispredictions as being a major cause of low trace cache per-

formance; and
• identification of new research opportunities.

The rest of this paper is organized as follows. Section 2 describes previous work and the
basic trace cache fetch mechanism. Section 3 introduces several metrics that we use to evaluate
the trace cache. Section 4 provides information on our simulation environment, and Section 5
evaluates the limits of trace cache performance. Section 6 extends the results of Section 5 by eval-
uating trace cache performance in terms of the metrics introduced in Section 3. Section 7 con-
cludes.

2. Related Work and the Trace Cache Fetch Mechanism

Many caching techniques have been proposed to enhance instruction fetch in superscalar
processors. The fill unit assembles multiple instructions from a single basic block for single-cycle
issue to a wide-issue processor [2][4][5]. The fill unit in [2] is a post-decode cache for CISC
instructions which contains partially renamed groups of micro-operations. It was primarily
intended as a mechanism to allow a large number of micro-operations to be executed concurrently
on an out-of-order processor. In conjunction with the decoded instruction cache, this model
reduces both the decoding and dependency checking necessary in the critical execution path. The
fill unit of [4] is designed to eliminate complex dependency checking logic in the processor’s crit-
ical path by assembling instructions into VLIW format and caching the result in a separate
shadow cache. The work in [5] is an extension for superscalar processors with complex decoding
requirements.

More recently, several fetch mechanisms have been proposed to reduce the impact of
branches in the instruction stream. The collapsing buffer [7] relies on multiple accesses to a
branch target buffer to produce the addresses needed for fetching multiple basic blocks in a single
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cycle. The branch address cache [3] requires a highly interleaved instruction cache to support
multiple accesses per cycle. The trace cache is an extension of the fill unit and loop/trace buffer
[1] that attempts to collect noncontiguous basic blocks from the dynamic instruction stream into a
single contiguous cache memory location [6][8][9][10][11][12]. The trace cache is compared to
several of the previous proposals in [8].

A diagram of the trace cache fetch mechanism is shown in Figure 1. The branch predictor
is either a multiple branch predictor [10] or a trace predictor [12]. The fill unit collects basic
blocks and builds traces for storage in the trace cache. It merges several basic blocks into a single
trace whereas earlier fill units stopped at the first branch instruction. The trace cache is backed up
by a conventional instruction cache in the case of a trace miss.

The fetch engine simultaneously presents an address to the trace cache, the conventional
instruction cache, and the branch prediction unit. If the trace cache contains a trace starting at the
address that also agrees with the branch prediction information, the trace cache signals a hit and
returns the trace. If the trace cache contains a trace at the address, but the branch prediction infor-
mation does not completely agree, a partial hit is indicated. Instruction cache accesses occur in
parallel with the trace cache; this of course, need not be the case if a power-savings is required.

If the trace cache does not contain a trace beginning at the specified address, it signals a
miss. The instruction cache then supplies the line containing the requested address to the execu-
tion engine and the fill unit. The fill unit begins building a new trace.

The trace cache fill unit continues to receive instructions until one of the trace termination
conditions is met. The trace termination policy1 determines when trace construction is completed.
Consistent with previous studies, a trace is terminated under any of the following conditions: 16
instructions; or 3 basic blocks; or a trap, return, or other indirect jump or serializing instruction.

1. Also called trace selection or trace finalization policy.

Figure 1: A fetch engine with a trace cache. The fill unit can be filled speculatively, as
shown in the diagram, or with traces formed from retired instructions. Lines that cross are
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3. Trace Cache Metrics

In addition to the common metrics of hit rate and IPC, we use other metrics to help us ana-
lyze the trace cache. These are fragmentation, instruction duplication, efficiency, indexability,
and retirement rate. Since performance is the reason for having a trace cache in the first place,
IPC must be the metric of choice in determining the best configuration, assuming no degradation
in cycle time. Fragmentation, duplication, efficiency and indexability are used to analyze why
various configurations perform as they do. The remainder of this section defines and explains
these metrics.

3.1. Hit Rate
The hit rate metric measures the effectiveness of the trace cache in providing instructions

to the front end of the processor. It is important to note whether the trace cache hit rate is com-
puted using accesses and hits only on the correct execution path or if it is computed without
regard to the right or wrong execution path. That is:

(EQ. 1)

(EQ. 2)

There can be a significant difference between these two metrics because of branch predic-
tion accuracy and processor pipeline width and depth. While we recognize this discrepancy in the
two ways of measuring hit rate, we will always show the correct-path hit rate. It is generally
higher than the all-path hit rate which makes no distinction between correct and incorrect execu-
tion path.

3.2. Fragmentation
Like hit rate, fragmentation indicates how efficiently the trace cache stores instructions.

Fragmentation is a measure of storage utilization which describes the portion of the trace cache
that is unused because of traces shorter than 16 instructions. It is essentially wasted storage. Frag-
mentation is related directly to the trace selection policy. More conservative trace selection results
in shorter traces, and thus higher fragmentation. Rotenberg [12] showed that average trace length
was reduced by about 20 percent when backward branch and call instructions were added to the
trace termination conditions.

During a particular clock cycle, fragmentation is the ratio of empty instruction slots to
total instruction slots. Average fragmentation is computed by summing the fragmentation values
for each cycle and dividing by the number of cycles. A higher value for fragmentation indicates a
less efficient trace cache; a conventional cache has no fragmentation.

3.3. Duplication
Another measure of instruction fetch capability is duplication. Duplication is a measure of

how efficiently the “un-fragmented” storage in the trace cache is used. Duplication is a conse-
quence of the method of indexing the trace cache and is really an intended side effect. In a con-
ventional instruction cache, a particular instruction can only appear once because only the
instruction address is used to index the cache. In a trace cache, the instruction address along with
branch prediction information is used as an index, so a given block may begin a trace and also
appear as an interior member of many traces in the trace cache.

Correct path hit rate
# hits or partial hits on correct execution path

# accesses on correct execution path
-------------------------------------------------------------------------------------------------------------=

All path hit rate
# hits or partial hits on right or wrong path

# accesses on right or wrong path
------------------------------------------------------------------------------------------------------=
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Code duplication in the trace cache occurs because a program revisits a section of code. It
may be that conditional branch instructions in the code take different directions each time they are
executed, as can be the case with if-then-else constructs. In such cases, duplication is due to the
multiple inclusion of fork and join points in the control flow graph. This is illustrated in Figure
2(A). Duplication of this type is called fanout redundancy [13].

Duplication may also occur because of a loop whose length is not an integer multiple of
the maximum trace cache line size. This case is illustrated in Figure 2(B). Duplication of this kind
is called shift redundancy [13]. If N is the number of instructions that can fit in the trace cache
line, a loop of L instructions will result in N/GCD(L, N) trace lines. In the case where a loop has
one more instruction than the trace cache line can hold (i.e. GCD(L, N) = 1), each instruction will
be stored N times, and the trace cache will be swamped with N similar (shifted) trace lines. We
use the formula

(EQ. 3)

to capture this information. As with fragmentation, the value we report is an average across the
benchmark cycle count. A higher duplication indicates lower utilization of the trace cache.

A conventional cache has no duplication, though a cache hierarchy may exhibit duplica-
tion due to cache inclusion. Duplication in the trace cache is more serious than inclusion-duplica-
tion because the duplicates appear in a single memory structure instead of across several levels of
memory structures. Since the memory structure must be larger than if it held no duplicates, the
access time of the structure is increased.

3.4. Efficiency
Fragmentation and duplication are important metrics because they indicate how efficiently

a trace cache configuration can provide instruction bandwidth to the processor. We define
(EQ. 4)

Figure 2: Causes of duplication in the trace cache. (A) illustrates duplication due to condi-
tional branches, while (B) shows duplication due to a backward (loop) branch.

A A

B BC

CD

DTraces starting at A: 
ABD
ACD

Traces starting at A: 
ABC
DAB
CDA
BCD

(A) (B)

duplication
total instructionsunique instructions–()

total instructions
------------------------------------------------------------------------------------------------=

efficiency1fragmentation–() x 1duplication–()=



6

to be the single number that wraps this information together. Efficiency represents the fraction of
the whole trace cache that is actually storing unique instructions as opposed to simply (1 - dupli-
cation), which measures the fraction of the utilized trace cache that stores duplicate instructions.

For a conventional instruction cache, the duplication is zero and the fragmentation in the
steady state is zero. There is no internal fragmentation of cache lines, but some cache lines could
be unused. Therefore, the efficiency of the instruction cache is 1. Figure 3 shows an example.

3.5. Indexability
Indexability provides information about the presence of traces even if they do not start a

trace line. Since trace lookup is anchored at the address that starts the trace line, a miss may occur
because it is not possible to directly access interior blocks. In this case, the trace cache performs
worse than an idealized three-ported instruction cache with perfect alignment mechanism.

Specifically, we define indexability to be a miss rate that indicates how often a trace start-
ing address is simply not in the trace cache at all, even at an interior block. When an address is
requested from the trace cache, we not only use the traditional indexing scheme (chop the offset
and tag bits) but we also examine every set in the trace cache to determine if some portion of a
trace contains that address. If no such partial trace can be found, the indexability miss count is
incremented. The indexability value is lower than the correct-path miss rate since it examines all
the traces in the cache. A more sophisticated indexing mechanism that can access some internal
blocks of traces could improve correct-path hit rates.

For a conventional instruction cache, the miss rate is equal to the indexability because a
given instruction can only reside at one directly-accessible location in the instruction cache.

We present indexability as a limit. It is not practically implementable since it requires
looking at all trace cache lines simultaneously and finding the longest match. It will show how
important proper trace-cache indexing is to trace cache performance.

3.6. Trading off Fragmentation, Duplication, and IPC
There is a fundamental trade-off to be made between the performance metrics introduced

above. The constrained trace selection policy mentioned in Section 3.2 will serve as a good exam-
ple. It was noted in [12] that the average trace length is reduced by conservative trace selection,
that is, adding trace termination conditions. While shorter traces mean that fragmentation will
increase, our simulation results show that duplication decreases correspondingly. This is to be
expected because the termination of traces on backward branches eliminates duplication due to
loops. Thus fragmentation increases but duplication decreases, resulting in little change in overall
efficiency. Furthermore, the trace cache hit rate increased under constrained trace selection but we
observed in our simulations that in some cases overall performance actually decreased because of

Figure 3: A 4-entry trace cache with fragmentation = (6+4+8+3) / (4*16) = 33% The
duplication in this example is (43 - 30) / (10+12+8+13) = 30% since there are 43 total
instructions and 30 unique instructions in the trace cache. The efficiency is (1 -

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5

E1 E2 F1 F2 F3 F4 G1 G2 G3 G4 G5 G6

C1 C2 C3 B1 B2 B3 B4 B5

D1 D2 D3 D4 D5 E1 E2 G1 G2 G3 G4 G5 G6
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the decrease in fetch bandwidth due to the shorter traces. These metrics will be discussed in more
detail in Section 6.

3.7. Retirement Rate
The previous metrics evaluate how effectively the trace cache structure stores traces and

how it provides instructions to the front end of a processor. The goal of the retirement rate metric
is to evaluate the effects of employing a trace cache on other processor resources. The increased
fetch bandwidth made possible by incorporating a trace cache will require additional resources at
later stages of the pipeline. IPC measures do not show the pipeline resource requirements of those
instructions, which may be squashed prior to retirement (i.e. the wrong path instructions). Retire-
ment rate1 is the ratio of the number of instruction fetched into the pipeline to the number retired:

(EQ. 5)

This gives a measure of the amount of pipeline resources wasted due to wrong-path
instructions. Retirement rate is a function of branch prediction accuracy, pipeline depth (or branch
resolution time) and issue width. Retirement rate will be considered in Section 5.2.

4. Simulation Environment

Simulation results were obtained with a modified version of the sim-outorder simulator
from the SimpleScalar tools [14]. For all experiments, the SPEC95 integer benchmarks were run
on the input sets listed in Table 1. The benchmark binaries provided in the SimpleScalar distribu-
tion are used in these experiments. The parameters common across all configurations simulated
are shown in Table 2.     

To stress the fetch engine, the processor’s execution engine is very aggressive. There are
16 of each of the five types of function units (integer ALU, integer multiplier, memory port, float-
ing point ALU and floating point multiplier). The instruction cache simulated was 128KB, but
SimpleScalar instructions are 64 bits long, so this is effectively a 64KB cache of conventional 32-
bit instructions. We will quote all L1 instruction cache and trace cache sizes as if SimpleScalar
instructions were 32-bits.

1. We will call it a ‘rate’ even though it is a ratio. Hit rate is similarly named.

Benchmark Input Set Insts (M)
compress compress_small.in 95
gcc jump.i 157
go 2stone9.in 151
ijpeg penguin.ppm 524
li train.lsp 183
m88ksim dcrand.train.big 120
perl scrabbl.pl 40
vortex vortex.in 213

Table 1: Benchmarks and data sets used. All benchmarks were simulated to completion except ijpeg which was 
simulated for the first 524 million instructions. The compress benchmark was simulated on a modified version of the 

test input with an initial list of 30,000 elements.

retirement rate
total instructions retired
total instructions fetched
-----------------------------------------------------------x100=
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The trace cache is simulated with 64 and 1024 sets, 2-way associative (i.e. instruction stor-
age of 8KB or 128KB of 32-bit instructions). Traces are finalized on instruction boundaries when
any of the following conditions are met: 1) 16 instructions; 2) three branches; and 3) trap or indi-
rect jump instruction. Branch prediction information is used as part of the tag match instead of as
part of the index into the trace cache to determine the longest matching trace for path associativity
and partial hits. This assumes that branch prediction lookup and trace cache lookup cannot happen
in series in a single cycle, which would be necessary if the branch predictions were used as part of
the trace cache index and the fetch mechanism were not pipelined.

4.1. The Branch Predictor
The branch predictor used for all non-perfect simulations is a 14-bit gshare predictor

where the shift register value is XORed with the PC and indexes a 214-entry table of two-bit
counters. When multiple branches are being predicted per cycle, it is accessed the required num-
ber of times in series, as if the hardware could be accessed that many times in one cycle.

The branch predictor uses speculative history information. All wrong-path history bits are
squashed once a mis-prediction has been identified. This is done because neither speculative
update nor non-speculative update alone provide reasonable performance [16]. The reason that
speculative and non-speculative branch history update policies fail is that trace cache processing
enables considerable speculation, resulting in non-speculative history that is too old, or specula-
tive history that contains too many history bits from the wrong path. The solution is to maintain
speculative history which is squashed when a mis-prediction occurs. This method provides the
same prediction accuracy regardless of the amount of speculation performed by the processor, and
is at least as accurate as speculative or non-speculative update alone.

5. Limits of Trace Cache Performance

The trace cache strives for the performance of a fetch mechanism that can fetch three basic
blocks per cycle without a multi-ported instruction cache. Previous studies have compared trace
cache performance to the performance of sequential fetching mechanisms, i.e. a fetch engine that
can fetch up to one branch (SEQ.1) or up to 3 branches where the first two are predicted not taken
(SEQ.3) [8]. While this highlights the performance improvement of fetching non-contiguous
blocks over fetching only sequential blocks, it is not an upper bound to performance. This study

Parameter Value Budget
L1 instruction cache 256 sets, 64-byte line, 4-way associative, 1-cycle access/throughput/

blocking (actually 128-byte line of SS insts)
64 KB

L1 data cache 512 sets, 32-byte line, 4-way associative, 1-cycle access/throughput/
blocking

64 KB

L2 unified cache 2048 sets, 128-byte line, 4-way associative, 6-cycle access 1 MB
Memory Latency 50 cycles for the first 8 bytes, 1 cycle for each 8 bytes thereafter
Branch Predictor 14-bit gshare accessed three times per cycle; perfect RAS
Trace Cache 2-way associative, 1-cycle hit latency, line size fixed at a maximum 

of 16 instructions, partial hits and path associativity; 1-cycle fill unit 
delay

Fetch queue 128 entries
Width 16 instructions per cycle
RUU/LSQ sizes 512/256

Table 2: Configuration parameters common across all simulations, unless otherwise noted.
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compares trace cache performance to the theoretical limit of a three-block fetch mechanism
equivalent to an idealized three-ported instruction cache with a perfect alignment network. This
cache can provide three non-contiguous blocks each cycle and merge them for placement into a
fetch buffer. We call it NONSEQ.3 to conform to previous terminology.

A lower bound on trace cache performance is a single-block fetch mechanism equivalent
to a conventional instruction cache. It can fetch up to the first branch or up to some maximum
number of instructions (16 in these simulations). The next two subsections show the results of the
limit simulations for 14-bit gshare and perfect branch prediction.

5.1. Gshare14 vs. Perfect Branch Prediction - 1 and 3 block fetch
Table 3 shows the performance of 1- and 3-block fetch engines. The left half of the table

presents data for configurations with a 14-bit gshare branch predictor as described in Section 4.1.
The right half shows speedup when using perfect branch prediction. The first two columns in each
portion of the table show the IPC for the conventional instruction cache and the 3-ported instruc-
tion cache, respectively. The third columns show the potential speedup of employing a trace
cache. We also include the branch prediction accuracy for the gshare14 configurations.

Because of the idealized branch prediction, the 3-block fetch engine with real branch pre-
diction always performs better than the 1-block mechanism. The benchmarks with very good
branch prediction (li, m88ksim, and vortex) achieve significant performance improvements in the
3-block case—50% or more. The other configurations (cc1, compress95, go, and ijpeg) suffer
from lower prediction accuracy and cannot take advantage of the two extra blocks per cycle
because there are many wrong-path instructions that must be squashed. As the 3-block case is the
limit of performance for the trace cache modeled, the trace cache can only provide a performance
benefit of around 20% for these programs. These results are more optimistic than previously-pub-
lished data would suggest [8], though no previous study has shown the true 3-block fetch limit.

As can be seen from the data on the right side of Table 3, there is potential for significant
improvement in trace cache performance when branch prediction is perfect—often 60% or more
improvements in IPC. These results indicate that performance is limited much more by branch
prediction than the inability to fetch multiple blocks per cycle. Nevertheless, as branch prediction
improves, a mechanism like the trace cache that can fetch multiple blocks per cycle becomes more
beneficial.

SPECint95 
Benchmark

Fetch 1 
Block IPC 
gshare14

Fetch 3 
Block IPC 
gshare14

Percent 
Increase

Branch 
Prediction

Fetch 1 
Block IPC 
perfectBP

Fetch 3 
Block IPC 
perfectBP

Percent 
Increase

cc1 2.43 2.96 +22% 91.7% 4.88 9.64 +98%
compress95 3.26 3.84 +18% 94.5% 5.34 8.83 +66%
go 2.28 2.51 +10% 82.7% 5.87 8.23 +40%
ijpeg 5.54 6.69 +21% 92.3% 7.89 10.92 +38%
li 3.39 5.27 +55% 96.7% 4.38 10.15 +132%
m88ksim 4.16 7.28 +75% 98.7% 4.62 10.40 +125%
perl 3.34 4.22 +27% 97.4% 5.14 8.33 +62%
vortex 4.42 6.31 +43% 98.3% 5.85 9.43 +61%

Table 3: The performance of fetching 1 block or 3 blocks under gshare14 and perfect branch prediction.
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5.2. Gshare14 vs. Perfect Branch Prediction - 1 to 5 block fetch
The graphs in Figure 4 show a superset of the data in Table 3. To highlight the resource

allocation required to support the greater number of instructions fetched by more aggressive con-
figurations, Figure 4(A) shows the performance of configurations which fetch one, two, three,
four, and five blocks per cycle. The machine is otherwise configured as shown in Table 2. The
dark upper portion of the bars indicate instructions that are fetched but later squashed because of
branch mis-predictions. Figure 4(B) is similar but uses perfect branch prediction, so no instruc-
tions are squashed.       

Table 4 examines the data in Figure 4(A) by showing the retirement rates for each of the
configurations. As the machine fetches past more branches, the retirement rate decreases mono-
tonically. The retirement rate decreases rapidly after the first and second branches, then less so
after the third and fourth branches; the retirement rate of cc1, for example, falls from 60% to 30%.
These results suggest that while the capability of the front end of the pipeline has dramatically
increased with the additional blocks fetched, the resource utilization at the backend of the
machine is very low because of the low prediction accuracy.

SPEC95 
Program

Fetch 1 Block 
gshare14

Retirement Rate

Fetch 2 Block 
gshare14

Retirement Rate

Fetch 3 Block 
gshare14

Retirement Rate

Fetch 4 Block 
gshare14

Retirement Rate

Fetch 5 Block 
gshare14

Retirement Rate

Overall Overall Extra Overall Extra Overall Extra Overall Extra
cc1 61% 41% 15% 33% 5% 29% 3% 28% 1%
compress 62% 40% 13% 33% 2% 31% 1% 30% 2%
go 42% 26% 5% 22% 2% 20% 1% 20% 2%
ijpeg 77% 61% 26% 54% 15% 51% -10% 49% 22%
li 80% 60% 38% 46% 12% 40% 3% 37% 2%
m88ksim 92% 82% 69% 71% 35% 66% 27% 63% 7%
perl 69% 46% 18% 36% 6% 32% 3% 31% 1%
vortex 89% 78% 58% 71% 22% 68% 17% 67% 23%

Table 4: Retirement rates for 1- to 5-block fetch configurations in Figure 4(A). The overall retirement rate is computed 
as defined in Section 3. The extra retirement rate shows the retirement rate of the extra instructions fetched by that 

configuration compared to the previous column.

Gshare14  Branch Prediction with IF Speculative BP Update- 
Fetching 1 to 5 blocks
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Figure 4: Performance of n-block fetch mechanisms under (A) real and (B) perfect branch
prediction. The perfect predictor shows the performance potential of a multi-block fetch
mechanism. The portion of the bar labeled ‘Wasted’ indicates instructions that were
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Another interesting metric is the retirement rate of the extra instructions brought in by the
second, third, fourth, and fifth blocks. The second number in the columns of Table 4 show the
value of this special retirement rate. For example, the overall retirement rate of cc1 is 41% for the
2-block fetch configuration. Only 15% of the additional instructions brought in by the second
block are actually retired. Only vortex and m88ksim exhibit extra-instruction-retirement-rates of
more than 60% from the first to the second block. The other benchmarks generally exhibit rates of
20% or less. As we proceed to three blocks we see the retirement rate of the extra instructions fall
below 1 in 10 for most programs. This means that only 1/10th of the pipeline resources are being
constructively utilized for extra instructions. Additional instructions that could be brought in by a
trace cache are simply not useful.

The performance of perfect branch prediction in Figure 4(B) saturates after 3 branches per
cycle primarily because of data-dependence limitations in the backend. Function unit contention
is not a significant cause of this leveling off of performance because the average IPC never goes
above 11. As expected, misprediction recovery time dominates delays due to data dependencies in
the gshare14 configurations.

The trace cache, which is limited above by the 3 block fetch case, suffers from the same
branch prediction limitation. It can provide high peak bandwidth, but the overall processor perfor-
mance is most limited by the branch prediction.

5.3. Trace Cache vs. Limit Cases
We have already noted that trace cache performance must fall between the 1- and 3-block

fetch cases. Figure 5 demonstrates this for both gshare14 and perfect branch prediction, with the
exception of the compress and go benchmarks. These benchmarks exhibit slightly pathological
behavior where the trace cache performs outside of the performance bounds. Go has a large work-
ing set of instruction paths that exceed the capacity of even a large (128KB) trace cache. A 2MB
trace cache was simulated and found to eliminate this problem. Still, the performance of go is lim-
ited more by branch prediction than anything else, as the difference between 1- and 3-block fetch
is only 10%1.   

1. Note to the reviewer: We acknowledge that we have not explained why compress is acting pathologically. 
Analysis of the simulation dumps is ongoing to determine the reason and analysis will be included in the 
final version of the paper.

Figure 5: Trace cache performance with perfect branch prediction and perfect indexability.
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Figure 5(A) further shows that the trace cache can come close to the upper bound when
branch prediction is not perfect, demonstrating that the trace cache is, for the most part, achieving
its goal of 3-block performance with a single-ported memory.

In the case of perfect prediction, Figure 5(B), we see that the 128KB trace cache generally
falls short of ideal by 20% or more. This is significant because as branch prediction improves, it
appears that the trace cache is falling farther below its upper bound. The trace cache will need to
be able to take advantage of improvements in branch prediction. Apparently imperfect branch pre-
diction hides some other deficiencies in the trace cache. Reasons for this are examined in the next
section.

6. Efficiency and Indexability Results

The results presented in Section 5 show that trace cache performance does not achieve the
theoretical limit of 3 block/cycle fetch with perfect branch prediction. This section uses the previ-
ously defined metrics to analyze why this might be the case.

The graphs in Figure 6 show the duplication, fragmentation and efficiency of a trace cache
as associativity and size are varied. Figure 6(A) shows that duplication of instructions in the trace
cache grows from 30%-50% up to 75%-90% as associativity and size are increased. Increasing the
size of the trace cache dramatically increases the duplication. For very large trace caches, an
instruction may reside in 10 or more locations. 

Similarly, fragmentation generally increases for the larger trace caches. This is primarily
due to many trace cache slots which are unused throughout the benchmark run—there are simply

Figure 6: Trace cache duplication, fragmentation, efficiency, and hit rate for several 8KB
and 128KB configurations with perfect indexability.
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not enough unique trace starting addresses to utilize the trace cache This is particularly evident for
compress, which uses only a couple of trace slots very heavily throughout the benchmark run and
leaves many trace slots unused. For go, which has a large number of paths, we see that the frag-
mentation does not increase as the trace cache increases in size from 8 to 128KB.

Fragmentation is generally improved as associativity increases from 2 to 4. This is to be
expected because any unused traces in the 2-way associative cache can be utilized in the 4-way
cache for traces which are competing for the more heavily used trace starting addresses. In other
words, the additional flexibility afforded by extra associativity allows the trace cache to use some
locations that would otherwise be blank. Overall, the trace cache loses 20% to 40% of its capacity
due to empty and short traces.

The overall efficiency is rarely above 40% and for the 128KB configuration is generally
between 20% and 35%. Certainly the trace cache is designed to trade-off space efficiency for
increased fetch bandwidth, but such low storage efficiency is remarkable. The low efficiency is
primarily caused by code duplication. When associativity is increased, the efficiency gain possible
because of decreased fragmentation is outweighed by increased duplication.

The overall performance of the trace cache is determined by the hit rate and the length of
the trace lines referenced. Experiments in [12] indicate that trace cache hit rates range from 60%-
90%, and our experiments confirm this trend. However, previous experiments required that the
address in the fetch request must be located in the first entry in some trace line. In this study we
also examine a trace structure in which this restriction is removed - the perfectly indexable trace
cache. Figure 6(D) shows the hit rate when the complete trace cache is searched for the fetch PC
(perfect indexability). When indexing the trace cache is expanded to any instruction in a trace
line, the hit rate increases to 95%-99% for most applications. Unfortunately there is a reduction in
the average length of trace fetched from the trace line because many paths start from some point
in the middle of the trace line. However, this increase in hit rate demonstrates that improved
indexing methods can significantly increase the trace cache hit rate. This suggests that current
trace cache implementations do not miss because new paths are identified. Instead they miss
because cache line allocation policies are naive.

7. Conclusions

The trace cache configurations studied in this paper suffer primarily from low branch pre-
diction accuracy. Less than 1 in 10 of the additional instructions fetched from a trace cache are
retired. The trace cache can provide high bandwidth instruction fetch but if the instructions are not
on the right path it does not matter.

When perfect branch prediction is simulated, the trace cache is still not able to perform up
to the 3-block limit case. Further study using the metrics defined herein reveals deficiencies in the
way the trace cache stores traces. Low trace cache efficiency and poor indexability are the pri-
mary reasons for this shortcoming.

This study has identified several potential areas where trace cache performance can be
improved. These are:

• Branch prediction. Improvements in this area will impact overall performance
the most.

• Duplication. Since duplication in current configurations is 50% or more, con-
servative trace termination policies could be used to reduce duplication due to
loops and fork-join points.
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• Fragmentation. This is caused mostly by a large number of short and empty
trace lines. A certain subset of these lines can be left in the instruction cache
without any performance penalty, and can thus increase the efficiency of the
trace cache. Never-used trace slots are also a problem that should be addressed.

• Indexability. Measurements showed that often the requested block is in the
trace cache but it cannot be reached since it is at an interior block.

The gshare branch predictor used in this study, while overly optimistic, is still better than
the branch prediction that will be available in commercial products on real programs. This and the
issues defined above lead us to question the utility of the trace cache as a mechanism to fetch mul-
tiple blocks per cycle, at least in the next couple of generations of microprocessors. A trace-cache-
like structure whose “traces” are a single block, however, would be useful as a post-decode cache
to save time and power in instruction decoding and renaming.

The fundamental problem is that the trace cache heavily emphasizes the already important
requirement for good branch prediction because it requires multiple predictions per cycle. The
trace cache does eliminate the need for a multi-ported cache structure but may instead require a
multi-ported branch prediction structure or a single-ported structure with a complex selection
mechanism (see [15], for example). Instead of trying to fetch past multiple branches, we think an
interesting avenue of related research would be to de-emphasize branch prediction and find other
means to increase performance. Compiler optimizations should help. We hypothesize that trace
scheduling, predication, and a single-ported instruction cache with a long line size should be able
to provide the same performance benefit as a trace cache since branches are eliminated and com-
mon paths can be scheduled contiguously. We are not aware of any direct comparison between
this type of compiler-based approach and the hardware-based trace cache.
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