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Abstract

We describe a program for optimizing and analyzing sequential allocation prob-
lems involving three Bernoulli populations. Previous researchers had considered
this problem computationally intractable, and we know of no prior exact opti-
mizations for such problems, even for very small sample sizes. Despite this, our
program is currently able to solve problems of size 200 or more by using a parallel
computer, and problems of size 100 on a workstation. We describe the program
and the techniques used to enable it to scale to large sample sizes. As an illus-
trative example, the program is used to create an adaptive sampling procedure
that is the optimal solution to a 3-arm bandit problem. The bandit procedure
is then compared to two other allocation procedures along various metrics. We
also indicate extensions of the program that enable it to solve a variety of related
problems.
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1 Introduction

A sequential (or adaptive) allocation problem is one in which an investigator has the option
to determine how to expend resources during the experiment based on the observations that
have been obtained so far. This is in contrast to �xed allocation problems in which resources
are assigned prior to the beginning the experiment. Here, we are interested in adaptive
sampling problems in which the resources in question are the experimental units available
and the investigator identi�es the population from which to sample at each decision time.
Note that the expressions sampling from a population and allocating an experimental unit

refer to the same action.
An important class of sequential sampling problems are bandit problems in which each

population has associated with it a reward. The goal of a bandit experiment is to sample from
the available populations in such a way as to maximize the total reward at the termination
of the experiment. The term \bandit" is a reference to a slot-machine with a single arm
that has an unknown probability of paying o�. Each time a coin is put into the machine, a
random outcome is observed. One can extend this process to the case in which � machines
are available, and coins are dropped in the di�erent machines in an attempt to locate the
machine that delivers the most money on average. Thus, an �-arm bandit is a model for
problems in which

� there are � populations with unknown reward structures,

� sampling (or arm pulling) takes place sequentially, and

� decisions are made with the intent to optimize the total payo�.

Bandit models are typically fully sequential, in that each outcome is observed before a
decision is made as to the next population to be sampled. They are used to model a variety
of optimization and learning problems. In particular, bandits arise in the design of ethical
clinical trials in which the goal is to minimize patient failures that occur during the trial.
See [4] for an in-depth discussion of bandit problems.

In many situations, the performance of an adaptive design can be dramatically superior to
that of a �xed allocation design in which all sampling decisions have been made in advance.
An example of a �xed design for a clinical trial is one in which 1=� of the subjects are assigned
to each of the � therapies under consideration. If, during the trial, one of the treatment
groups appears to be faring far less well than the others, a �xed design provides no mechanism
for adjusting the sampling ratios. Through adaptation, however, one can signi�cantly reduce
costs or fatalities without sacri�cing statistical objectives such as maximizing the probability
of determining the best or better therapies.

Adaptive statistical designs have many applications and are highly exible. Nevertheless,
such designs are rarely used. One reason for this is that many statisticians are unfamiliar
with sequential designs. Further, most practitioners are aware that examining data during an
experiment can introduce biases and error during the analysis phase of a study. Analyzing
sequential data requires new approaches. The \rules" are somewhat di�erent and thus a
bit controversial. Another important impediment to the adoption of adaptive designs has
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been their analytic and computational intractability. With regard to the computational
complexity, for example, typical comments include \the computation involved is prohibitive
except for trivially small horizons" [1] and \In theory the optimal strategies can always be
found by dynamic programming but the computation required is prohibitive" [21]. Note that
the \horizon" of an experiment refers to the number of experimental units that are available
for the experiment. For our purposes here, the horizon is simply the sample size, n, of the
experiment.

In this paper, we pursue the three-armed problem to illustrate the progress that has
been made in generating solutions to these demanding problems. We have implemented
an algorithm for the optimization and analysis of sequential allocation problems involving
three Bernoulli populations. For optimization, we assume there is some objective function
V , and that the goal is to produce the sequential allocation procedure that minimizes (or
maximizes, as appropriate) the value of V . For example, in a clinical trial, V may be the
expected number of failures, while for an estimation problem it may be the mean squared
error of an estimator. This optimization requires a Bayesian framework.

By analysis we mean that given an arbitrary adaptive allocation procedure, we can
evaluate its expected behavior for various criteria. For example, one may want to determine
the expected value of V for a simple adaptive procedure and compare it to the value attained
using the optimal sampling procedure. As another example, one may have determined the
optimal procedure with respect to an objective function V , but then ask for the expected
value of this procedure with respect to other objectives. In the analysis phase for these
procedures, one can use either a Bayesian or frequentist point of view. Note that the analysis
framework need not be the same as the framework used to design the allocation procedure.
This allows investigators to approach their research with added exibility.

1.1 Previous Work

While there is extensive literature on sequential sampling, almost all of it is concerned with
asymptotic behavior. Very little exact optimization or evaluation has been done.

With regard to bandit problems, there is a highly prominent result that determines
optimal procedures for a class of multi-armed bandit problems with in�nite horizons (see
Gittins [9] for this result and related work). However, as is the case with the present problem,
the computations required to generate the procedure are very di�cult. Further, even if the
procedure were readily available, the results would apply exactly only if the horizon were
in�nite, and geometric discounting was used for a bandit objective function. Most of the other
work on bandit problems involving exact optimizations has focused on 1- or 2-arm Bernoulli
bandit designs with very small sample sizes. Because of this past focus on Bernoulli bandits,
we use the term bandit problem to mean Bernoulli bandit problem from this point on.

A 1-arm bandit represents a model in which there are two populations and the reward
structure for one of them is known. Such problems are stopping rule problems and do not
require the treatment described here. However, with the addition of a second random arm,
we get the 2-armed bandit which requires a dynamic programming solution. For 2-armed
bandits, a typical optimization was carried out by Jones [16], who solved a problem of size
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n = 25, and noted the di�culties of solving larger problems. Kulkarni and Kulkarni [17] also
noted that the computation required for 2-armed bandits make it \impractical to compute
the decision even for moderate values of n � 50". It is our understanding that, prior
to our work, the largest 2-armed bandit problem that had been solved appeared in the
paper of Barry and Eick [3], which reports on work done around 1987. Utilizing a Cray 2
supercomputer, they were able to handle a sample size of n = 200. In early 1991, we began
working on improving algorithms for 2-armed bandits. Soon thereafter, we were able to run
problems of sizes greater than n = 400 and with more complex evaluations on our o�ce
workstations. Until now, however, problems requiring exact solutions to 3-arm bandits have
been considered infeasible.

It is useful to recall that a variety of approaches have been taken with the more gen-
eral problem of sequential sampling from three or more arms. For example, Siegmund [19]
and Coad [8] have applied repeated signi�cance testing to the case where several arms are
available and the outcome variables have normal distributions. Betensky [5, 6], also working
with normal outcome variables, has used other hypothesis testing approaches to tackle the
3-arm problem. Bather and Coad [2] addressed the multi-armed problem with Bernoulli
outcomes, and in this work, they emphasize locating procedures that work well along several
criteria but do not attempt to optimize on any given criterion. A number of researchers have
also examined multi-arm problems using nonparametric ranking and selection methods. The
primary goal of such designs is to select either the best of several arms or a best subset of
arms. See [10] and [7] for examples of this approach.

Whether it's a testing problem or a selection problem, most multi-armed designs incor-
porate a mechanism for removing obviously poor arms during the experiment. While we
do not explicitly include such an option here, the optimal sampling procedures we generate
e�ectively remove poor arms, in the sense that they do not continue to sample from them.
Further, our analysis routines can evaluate arbitrary 3-arm sequential procedures, including
ones that eliminate arms.

We noted that most of the procedures that have been suggested for multi-arm problems
have been derived from asymptotic arguments. To ascertain the behavior of the procedures
for practical sample sizes, simulation studies are typically used. Many excellent procedures
have been developed in this manner. Still, we know of only one for which exact optimality has
been obtained. Palmer [18] optimized a 3-arm knock-out tournament in which one samples
equally often from each population, sampling until 1 arm can be eliminated. The experiment
continues with equal allocation from the remaining 2 arms. This is not an optimal solution
to the problem of identifying the best arm, since the allocation strategy is partially �xed.
Palmer's solutions also required that fairly restrictive conditions be imposed on the prior
distributions for the parameters representing the success probabilities of the arms. Overall,
then, we know of no prior work addressing exact, optimal solutions for fully sequential, �nite
horizon, 3-arm problems.
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1.2 Model Used

We are interested in �-arm sequential allocation problems in which the arms represent pop-
ulations of Bernoulli random variables, indexed as 1; : : : ; �. The outcomes are viewed as
successes and failures, where the success probability on arm i is Pi for i = 1; : : : ; �.

The arms and pulls are assumed to be independent. At each stage, m = 0; 1; : : :, of
an experiment, we select a population and observe the response. At stage m, let (si; fi)
represent the number of successes and failures respectively from arm i. Then m =

P
(si+fi)

and hs1; f1; : : : ; s�; f�i is a vector of su�cient statistics for this problem. This vector will be
called a state. We utilize a Bayesian approach, in which the population parameters, Pi, have
a prior distribution which is the product of � independent distributions. In our program
these distributions are beta, but other distributions may be used as well.

We assume that there are exactly n observations available, the �xed horizon model. This
assumption merely provides a uniform framework for comparison, and can be easily relaxed
to allow for optional stopping.

We assume that there is an objective function V . For optimization the goal is to minimize
E(V ), while for analysis the goal is merely to determine E(V ). We require that V can be
computed by merely knowing the terminal state reached (and the priors). While this includes
the majority of objective functions of interest, it does exclude some. For example, if one
wanted to determine the expected length of the longest run (consecutive pulls on the same
arm) during the experiment, somewhat di�erent programs would be needed. In such a
situation, one would expand the state space to include the information needed to determine
V .

2 Computational Issues

To describe the time and space requirements of algorithms, we use \generalized O-notation"
from computer science, in which O and o have the same meanings as in statistical use; and
in which we say a function f = �(g) or f(n) = �(g(n)) if there exist positive constants C,
D, N such that C � g(n) � f(n) � D � g(n) for all n � N .

For a sequential allocation problem of horizon n involving � Bernoulli arms, there are

 
n+ 2�

2�

!
� �(n2�=(2�)!)

states. (Our �-analyses assumes � � n, and for most purposes we will �x � = 3.) To
optimize such problems, one typically uses a dynamic programming approach. One �rst
computes the value of each terminal state (those with n observations), and then the optimal
solution is found for all states with m observations based on the optimal solutions for all
states withm+1 observations, for m ranging from n�1 down to 0. To determine the optimal
solution at a state, one determines the expected value of each option available (a pull on an
arm), and selects the best one. The relevant recursive equations are given in Figure 1.

While Figure 1 shows the algorithm for optimization, with only a small change it is also
an algorithm for evaluation of an arbitrary adaptive designA. If, instead of choosing the arm
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f1si, 1
f
i : one success, failure on arm ig

fsi, fi: number of successes, failures arm ig
fm: number of observations so farg
fn: total number of observationsg
fj�j: number of observations at state �g
fV: the function being optimized, where V(0) is the answerg
fpi(si,fi): prob of success on arm i, if si successes and fi failures

have been observedg

For all states � with j�j=n, fi.e., for all terminal statesg
Initialize V(�)

For m=n-1 downto 0 do fcompute for all states of size mg
For s3=0 to m do

For f3=0 to m-s3 do

For s2=0 to m-s3-f3 do

For f2=0 to m-s3-f3-s2 do

For s1=0 to m-s3-f3-s2-f2 do

f1 = m-s3-f3-s2-f2-s1

� = hs1,f1,s2,f2,s3,f3i
V(�) = minf

(p1(s1,f1) � V(� + 1s1) + (1-p1(s1,f1)) � V(�+ 1
f
1)) ,

(p2(s2,f2) � V(� + 1s2) + (1-p2(s2,f2)) � V(�+ 1
f
2)) ,

(p3(s3,f3) � V(� + 1s3) + (1-p3(s3,f3)) � V(�+ 1
f
3)) g

Figure 1: Serial Algorithm for Determining Optimal Adaptive 3-Arm Allocation

that gives the optimal value of V, one uses the value of V corresponding to the arm chosen
by A, then the program determines the expected value of V obtained using procedure A.
This computational approach is known as backward induction.

For dynamic programming, it takes a constant amount of time to evaluate each arm,
and thus the total amount of time required to optimize an �-arm allocation problem is
�(n2�=(2� � 1)!). The time for backward induction can be a factor of � faster, if the
determination of which arm A uses can be done in constant time per state, as opposed to
the �(�) time per state needed by dynamic programming. For a 3-arm problem, either
dynamic programming or backward induction have the rather formidable growth rate of
�(n6).

Because of this growth rate, a parallel computer was needed to allow us to solve 3
population adaptive sampling problems of useful size in a feasible amount of time. Our
goals were to write parallel code that is portable, maintainable, and exible. In addition, we
needed to maintain the serial e�ciencies that had previously been exploited for 2-arm bandit-
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like problems (see [14]). The parallel code is written in Fortran 77, with MPI (Message-
Passing Interface) for the communication among the processors. These standard languages
are available on most parallel computers, and also on distributed systems such as networks
of workstations, so the program is quite portable.

In extending the previous 2-arm serial algorithms to a 3-arm parallel algorithm, the major
new computational issues were:

1. Space reduction (useful for both serial and parallel execution)

2. Load balancing among the processors (for e�cient parallel execution)

Space, rather than time, has become the limiting factor in solving fully sequential allocation
problems. This is due, in part, to prior developments that allow for more e�cient compu-
tations. Even with the space reductions described below, the ratio of computation time to
RAM space for an �-arm model grows only as �(n1+1=(2��1)), i.e., it is nearly linear, and the
ratio of time to disk space is linear.

3 Space

There are two di�erent space issues that need to be addressed. One is the need to reduce
the space utilized to store the V array, which is typically stored in RAM. The second is the
amount of storage needed to keep track of the arm chosen at each state, and this can be
kept on disk.

3.1 RAM Space

The program seems to imply that a 6-dimensional array is needed to store values of V, since
the state space is 6-dimensional and V is computed at each state. However, this array can
be compressed to a 5-dimensional array by reusing memory. This can be accomplished by
recognizing that, given m, the value of f1 is determined by knowing the values of s3, f3,
s2, f2, and s1. Thus, f1 can be omitted as an index, which means that array entries will
be overwritten. It is simple to verify that if each of the inner loops is increasing, then an
array entry for a speci�c m value is overwritten (by the corresponding entry for m-1) after
all reads of the value corresponding to m have occurred (see [14] for a further discussion
of this point). This is a well-known space compression technique for sequential allocation
and other dynamic programming problems. Because the array locations are being reused,
for high performance it is best if they are in RAM, although the sequential access patterns
allows disk storage to achieve reasonable e�ciency.

The next observation is that, due to the constraint that s3+f3+s2+f2+s1+f1� n, only a
corner of the 5-dimensional array is actually used. The corner occupied is only approximately
1/5! = 1/120 of the total array, so one can map this corner into a linear array and translate
all array references. The algebra is straightforward but tedious, and algebraic manipulation
packages can be used to help. The most straightforward way to implement this translation is
to write a function, say T(s1,f1,s2,f2,s3,f3), which computes the positions in the linear
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array to which states get mapped. Using this, each reference to V(�) is replaced by V(T(�)).
While this is, indeed, straightforward, it also has the unfortunate e�ect of dramatically
increasing the computational time. This is because T is a somewhat complicated 5th degree
polynomial and relatively little computation is done per array position accessed. As a result,
far more time would be spent on determining array positions than on using their contents.

To alleviate this problem, while still mapping into a linear array, we instead decomposed
T into a series of o�sets. At each level of nesting of the loops, the o�set of that level is added
to that of the previous one. We used a mapping such that the inner levels add the smallest
o�set. Thus, at the innermost level, the �nal position calculation is merely to add s1 to the
o�set from the preceding level. This makes the position calculations quite e�cient, although
it has the regrettable e�ect of making the code harder to read and maintain. Note that such
a mapping also maintains good cache utilization, since the innermost loop accesses array
positions in consecutive order.

3.2 Disk Space

Unfortunately, in many cases V is not the only array required, because one needs to know
more than just V(0). For example, one may want to utilize the allocation procedure for
an experiment, or evaluate it along additional criteria. In such settings, one needs to keep
a record, at each state �, of which arm to pull to achieve the optimal value. It is a com-
mon property of dynamic programming that one must add additional storage to record the
decisions which achieve the optimal value.

Since the decisions must be retained for all states, the array used to store this information
cannot overwrite values. As a result, the decision array remains 6-dimensional, although it
too can be collapsed into a corner, which allows one to reduce its space requirements by
approximately 1/6! = 1/720. This array needs only 3 bits per state (we allow for the
possibility of ties, so there are 7 possible outcomes), although for convenience we used one
byte per state. Thus the total space for the decision array grows approximately as n6=720
bytes. In some cases one can use monotonicity properties of the optimal decisions to reduce
the space needed (see [14]), but since we wanted to develop a general purpose algorithm
suitable for arbitrary objective functions this approach was not used.

Fortunately, the decision array is written to once, and in later analyses is only read once.
This is because nearly all analyses can be accomplished via path induction [15], which, after a
single initialization pass through the decision array, reduces each evaluation to a computation
over the �nal states. The path induction can be written to visit the states in the reverse order
they were visited for the dynamic programming, and hence the decision array can be read
in reverse of the order in which it was written. Thus a simple serial write/read mechanism
can be used, which allows us to store the decision array on disk with relatively little loss of
e�ciency. A serial implementation of path induction is given in Figure 2.

Note that the path induction algorithm allows for a random choice of arm. This permits
one to evaluate various biased coin or urn-based allocation schemes, or optimal allocation
schemes when ties result in randomizing among the arms achieving the optimal V value.

Since users often want to evaluate a design on a variety of secondary criteria (such as
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fpath(�): number of paths reaching state �g
fprobi(si,ni): probability that ni pulls of arm i have exactly si

successesg
fprob(�): prob1(s1,s1+f1) � prob2(s2,s2+f2) � prob3(s3,s3+f3)g
fp(�,i): probability that arm i selected at state �g

fduring computation of V(�), the arm(s) that were selected are written to

diskg

finitialization phaseg
path(0)=1

For m=0 to n-1 do

For s3=m downto 0

For f3=m-s3 downto 0 do

For s2=m-s3-f3 downto 0 do

For f2=m-s3-f3-s2 downto 0 do

For s1=m-s3-f3-s2-f2 downto 0 to

Read arms used for � = hs1,f1,s2,f2,s3,f3i
For all arms i used for �

path(�+ 1si) = path(�+ 1si) + p(�,i) � path(�)
path(�+ 1fi ) = path(�+ 1fi ) + p(�,i) � path(�)

fevaluation phaseg
For all post-analysis parameters �

W (�) =
P
fpath(�) � prob(�) �W (�; �) : � a terminal stateg

Figure 2: Serial Implementation of Path Induction

robustness), the use of path induction is an important step in making such high-dimensional
designs practical. Secondary criteria play a particularly important role in the design of
clinical trials since researchers may need to optimize competing factors. Typically, to do
this requires repeated reevaluation of the design, and this ultimately becomes the most
time-consuming part of the entire computational process. Prior to our introduction of path
induction, each such evaluation was evaluated via backward induction (see, for example, [3]).
For 3 populations, this requires �(n6) time per evaluation. With path induction, there is
still an initialization step that requires �(n6) time. However, each subsequent evaluation
occurs only over the �nal states, requiring only �(n5) time. As for the space requirements,
beyond the decision array one needs the path array to keep the path counts. However, this
array can re-occupy the space used by V, utilizing the same compression techniques. The
access patterns of the path array are the exact reverse of those occurring for V.

8



fPj: processor jg
fstart s3(j,m), end s3(j,m): range of s3 values assigned to Pj for this m

value,

with start s3(j+1,m)=end s3(j,m)+1 g

fFor all processors Pj simultaneously, dog

For all states � assigned to Pj with j�j=n,
Initialize V(�)

For m=n-1 downto 0 do fcompute for all states of size mg
For s3=start s3(j,m) to end s3(j,m) do

For f3, s2, f2, s1 as before do

compute V as before

Send needed V values to Pj�1

Receive V values from Pj+1

Send needed V values to Pj+1

Receive V values from Pj�1

Figure 3: Initial Parallel Algorithm

4 Load Balancing

The goal of load-balancing is to minimize the amount of time taken by the most heavily
loaded processor in a parallel computer. This is a critical concern for achieving e�cient
parallel performance. Load-balancing high-dimensional dynamic programming codes such
as those in Figure 1 is a non-trivial problem, even though all of the load information can be
determined in advance. When examining the dependencies, one sees that the code is similar
to a simple PDE solver over a regular grid, where the outermost loop (on m, the number of
pulls) acts like a time variable, and hence cannot be parallelized. At the same time, the inner
loops act like space variables which are amenable to parallelization, despite the dependencies
among neighbors. However, unlike a PDE solver, the \space" rapidly shrinks with m, and is
a high-dimensional simplex.

4.1 Initial Parallel Version

A natural �rst approach is to parallelize at the outermost loop possible, which is the s3 loop,
assigning each processor an interval of values. Using an interval of values both reduces the
amount of communication, and makes the parallel code as similar as possible to the serial
version. This is an important consideration when one is trying to maintain and extend serial
and parallel solutions to the same problem. For a given value of m, the range of s3 intervals
assigned to processor Pj is start s3(j,m)...end s3(j,m). A very simpli�ed pseudo-code
version of the parallel code is given in Figure 3.
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Once the iterations are assigned, the message-passing required to send neighbor infor-
mation is straightforward, based on the recurrence equation for V. If the start s3 and
end s3 values did not change with m, then the only messages needed would be for processor
Pj to send processor Pj�1 a copy of the V values corresponding to s3 = start s3(j,m).
This message-passing is the �rst send-receive pair in Figure 3. These would need to be
sent at the end of each iteration of m. However, because the iterations assigned to a pro-
cessor can change with each m value, the value of start s3(j,m-1) can be smaller than
start s3(j,m). In this case, processor Pj needs the values of V corresponding to s3 in the
range start s3(j,m-1)...start s3(j,m). These are obtained from processor Pj�1, in the
second send-receive pair in Figure 3.

Unfortunately the s3 iterations do not represent uniform load since the amount of work
grows like (m-s3)4. As a result, one cannot merely assign each processor the same number
of iterations. Determining the partitioning for optimal load balance can be accomplished
via dynamic programming, taking �(mp) time for p processors. To reduce the overhead,
we developed a simple yet e�ective heuristic which emphasizes careful assignment of the
iterations with the most work (i.e., those with small s3 value). This is important because
misplacing a single iteration can create a signi�cant imbalance if the iteration requires a
large amount of work. This heuristic runs in �(m) time and is given in [13], along with
comparisons to the optimal subdivision of the s3 loops. We refer to this algorithm as the
initial parallel algorithm, and it is the one that was used for the work reported in [11].

The changes needed for the initialization phase of path induction are the same as those
needed for dynamic programming, since it performs nearly identical calculations in the re-
verse order. For the evaluation phase, the only modi�cation needed is a reduction operation
to combine the values from the individual processors into a single value. Reduction operations
are explicitly provided in MPI and other parallel programming systems. This communication
is quite e�cient, especially when compared to the message passing required at each stage of
dynamic programming or backward induction. Since we often �nd it useful to have nearly
100 reevaluations of a design with n in the range of a few hundred, the use of a path induction
algorithm results in substantial savings for both serial and parallel implementations.

4.2 Improved Scalability

The initial parallel algorithm is suitable only for a small to moderate number of processors
because the algorithm's load balance is imperfect. For a given n, this imbalance worsens
as the number of processors increases, because the work per s3 iteration varies so greatly.
This holds even when the start s3 and end s3 functions are determined optimally. As
one might expect, because the computational and space requirements grow rapidly with the
sample size, n, more processors are needed to solve problems with large sample sizes in an
acceptable amount of time. Further, if the goal is to try to solve problems that barely �t
into the total space available, then the imbalance of the initial parallel algorithm may render
it unsuitable even with few processors.

To make a truly scalable algorithm able to handle large problems near the limit of a
machine's capacity, it is necessary to balance the work and space much more evenly. To do
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fPj: processor jg
fstart �(j,m), end �(j,m): range of � values assigned to Pj for this m

value,

with start �(j+1,m)=end �(j,m)+1 g

fFor all processors Pj simultaneously, dog

For �=start �(j,n) to end �(j,n) do finitialize terminal statesg
Initialize V(�)

For m=n-1 downto 0 do fcompute for all states of size mg
For �=start �(j,m) to end �(j,m) do

determine s1, f1, s2, f2, s3, f3 from �
compute V as before

Send needed V values to other processors

Receive V values from other processors

Figure 4: Scalable Parallel Algorithm

this, we note that the 1-dimensional V array can easily be subdivided evenly into intervals.
However, because a given interval may start and end at arbitrary value of s3, f3, s2, f2, and
s1, such a partitioning does not correspond to simple subdivisions of the control loops. Thus
we converted to a control structure which worked on intervals of V entries, and determined
corresponding values of s3, . . . , f1. Changes were also needed to determine the index ranges
and location of V entries needed from and by other processors, as processor Pj may now need
to exchange values with processors other than Pj�1. An overview of the improved algorithm
is given in Figure 4. By utilizing techniques such as the o�set calculations mentioned in
Section 3.1, the overhead for determining s3, . . . , f1, along with the locations of the V

entries needed to determine V(�), can be kept at an acceptable level which is comparable
to that needed in the serial algorithm. Further details can be found in [13], along with
experimental analyses of the time and space needed by the improved algorithm.

It should be noted that such extensive changes come at a cost. Besides being tedious, they
are more error-prone, and the resulting code is more di�cult to understand and maintain.
The greater the deviation from a simple serial description, the worse these problems become.
If such changes could be made automatically, this situation would be greatly improved, but
no current systems can do this. Space compression and nested loops with ranges that depend
on outer loops are beyond current parallelization tools.

5 Application

To illustrate the use of the parallel algorithm in Figure 4, it was applied to the design and
analysis of three sequential allocation procedures involving 3 arms. Our intent here is not
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to promote any speci�c design, but rather to show that the algorithm provides heretofore
unattainable exact evaluations of these procedures for useful sample sizes.

The procedures examined were:

Bandit The fully sequential design which maximizes the expected number of successes. It
is determined via dynamic programming.

Myopic A fully sequential design which chooses, at each state, the arm that has the highest
probability of producing a success.

Equal Allocation A commonly used �xed design approach, in which each arm receives n=3
pulls. This procedure is also referred to as vector at a time sampling.

As noted, to optimize the bandit procedure, a Bayesian approach is taken in the design phase.
Similarly, myopic allocation is also determined via a Bayesian approach. Recall, however,
that the procedures can be analyzed from either a Bayesian or frequentist perspective. To
illustrate this, the allocation schemes were compared (analyzed) according to two criteria |
one Bayesian and the other frequentist.

The �rst criterion is the expected number of failures given the prior distribution which,
in the examples here, is the product of three uniforms. This is the criterion that the bandit
optimizes. Myopic allocation, which always seeks to make the best decision based on taking
only one more observation, is a commonly referenced ad hoc attempt to achieve similar
performance. Note that dynamic programming is needed to determine the bandit allocation,
and backward induction is needed to determine the expected value of myopic allocation. For
equal allocation, the expected number of failures is just the sum, over all arms, of n=3 times
the prior probability of failure.

The second criteria examined is the probability of correct selection or \P(CS)". Given
an indi�erence tolerance � (herein selected to be 0.1), the probability of correct selection is
the minimum, over all arm probabilities p1, p2, p3, of the probability that at the end of the
experiment, the arm declared the winner has a success probability within � of the success
probability of the best arm. (By winner we mean the arm with the highest observed rate of
success. In case of ties, the winner was selected randomly, as is standard.) For an arbitrary
allocation algorithm it is not known which values of pi yield the minimum, which indicates
a search throughout the parameter space is needed to determine P(CS). However, it can be
shown that the minimum occurs when one arm is exactly � better than the other two so
the dimension of the relevant search space is reduced. P(CS) is an example of a criterion
for which an allocation algorithm needs to be evaluated multiple times. Because of these
multiple evaluations, path induction was used to determine P(CS) for the bandit and myopic
designs. For equal allocation much simpler approaches were employed.

In general one expects equal allocation to perform extremely well on the P(CS) criterion.
For 2 arms, in fact, this procedure can easily be shown to be optimal. However, for 3 arms
equal allocation is no longer optimal, as there exist adaptive procedures that are better. In
general, for a given n, the design that has the optimal P(CS) is not known for 3 or more
arms. Standard dynamic programming approaches cannot be used to solve this problem
because of the nonlinear nature of the minimum operation in the de�nition of P(CS).

12



0 50 100 150 200
Sample Size

0

20

40

60

80

100

E
xp

ec
te

d 
N

um
be

r 
of

 F
ai

lu
re

s

BB
B

B
B

B

B

B

MM

M
M

M

M

M

EE
E

E

E

E

E

E

Figure 5: Sample Size vs. E(Failures)
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Figure 6: Sample Size vs. P(CS), � = 0:1

All arms had uniform priors.

In Figure 5 we plot expected failures for the three procedures as a function of the sample
size. Similarly, in Figure 6 we plot P(CS) as a function of sample size. Uniform priors were
used throughout merely for comparison purposes. The program currently handles arbitrary
beta priors, and can easily be adapted to handle other prior distributions.

Note that, for these priors, the bandit allocation comes very close to achieving the P(CS)
of equal allocation, while incurring far fewer failures. Myopic allocation also incurs few
failures, but has a very poor ability to correctly locate the best arm. For the indi�erence
region of � = 0:1, the minimum P(CS) for myopic allocation occurs when one arm has a
success probability of 1 and the others have probability 0.9. In this situation, there is a
probability > 0:6 that it will never try the superior arm. The asymptotic P(CS) of myopic
allocation, as n tends to in�nity, is less than the P(CS) of equal allocation using n = 6.
There are simple ways to alter myopic allocation so that the P(CS) signi�cantly improves
with very little increase in failures, but that is beyond the scope of this work.

6 Extensions and Future Work

To summarize the current standing of this project, the serial (Figures 1 and 2), initial parallel
(Figure 3), and improved parallel (Figure 4) algorithms have all been implemented, with fully
operational dynamic programming/backward induction and path induction. These programs
can be applied with very general evaluation criteria V which typically will be application
speci�c. While we illustrated only a bandit objective here, minimizing total failures, with
trivial changes the program can be applied to estimation problems. One can also add sam-
pling costs, optional stopping, etc. As was illustrated, the dynamic programming can be
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used to produce optimal Bayesian designs, and the backward and path induction can be
used to evaluate arbitrary designs with respect to very general criteria which can be either
Bayesian or frequentist. All optimizations and evaluations are exact.

At present the scalable algorithm of Figure 4 can handle sample sizes as great as n = 200
using only 16 processors of an IBM SP2, where each processor has 1GB of RAM and a local
disk. Using only one processor, we are able to handle sample sizes greater than 100. We are
currently conducting studies for larger values of n and more processors, analyzing both the
time and space aspects of scalability. The results will be reported in [13].

From a statistical vantage point, we plan to evaluate optimal and sub-optimal strategies
along multiple criteria and also to examine the operating characteristics of all procedures
under consideration. As noted earlier, very little is known about the behavior of 3-arm
strategies, especially optimal strategies. Further, as highlighted in the discussion of equal
allocation and P(CS) in Section 5, even problems that are well-understood for 2 arms may
be quite complex for 3 arms.

We also plan to extend the design features of the algorithm. For example, the parallel
program for the 3-arm bandit can be trivially adapted to solve 2-arm bandits with trichoto-
mous responses. This is because the natural states are of the form ho11; o

2
1; o

3
1; o

1
2; o

2
2; o

3
3i, where

oij indicates the number of outcomes of type i on arm j. The recurrences for this problem
would be of the form

V (�) = F (V (� + 111); V (� + 121); V (� + 131); V (� + 112); V (� + 122); V (� + 132));

where 1ij denotes a single observation of outcome i on arm j. Note that this recurrence has
the same dependency structure as the recurrence in Figure 1, and hence all of the commu-
nication requirements are identical. A special case of the trichotomous response problem is
a 2-arm sequential allocation problem with censored outcomes. A censored observation is
one in which the outcome cannot be observed (e.g., a patient dies of causes unrelated to the
treatment being studied). If the censoring mechanism is independent of the arm selected,
then a 2-arm fully sequential allocation problem can be optimized via a 5-dimensional dy-
namic programming approach. However, if censoring is not independent of the arm, then
6-dimensional dynamic programming is needed. In either case, the recurrences remain near-
neighbor recurrences, as in Figure 1. As a result, the present work can be easily applied to
them.

With more substantive changes, one can also address problems involving 2-arm sequential
allocation with delayed responses. In delayed response problems, one doesn't necessarily
know the outcome of past decisions before new ones must be made. In a cancer therapy
study, for example, the ideal response is that the subject lives for a long period of time.
In the interim, however, other patients are admitted for treatment. During an experiment,
then, an investigator typically has observed some outcomes and has also started several
patients for whom the outcomes are not yet known. Nevertheless, the investigator retains
the goal of making the best possible assignment for each new patient given the data that
is actually known at the time. Clearly, the state space for this problem is larger than it
is for the problem in which each outcome is known before the next subject needs to be
assigned. However, some models of the 2-arm allocation problem with delayed response can
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be handled by a 6-dimensional recurrence only somewhat more complex than that which
appears in Figure 1. Such models can be solved by modifying the calculations and message-
passing of our current program.

Of course, one can always pursue an extension involving an increase in the number of
arms or the number of responses per arm. However, because the running time and space
grow exponentially in the total number of arm responses, this rapidly limits the sample size
that can be optimized or evaluated.

In closing, to our knowledge, no non-trivial optimal solutions have been produced for
any of the problems just described, with the exception of our preliminary work on the 2-arm
model with censoring independent of the arm [12]. We are especially interested in making
progress on the censored data and delayed response problems because these extensions ad-
dress important real-world considerations that have long obstructed adaptation of adaptive
experimental designs.
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