
Code Compression for DSP

CSE-TR-380-98

Charles Lefurgy and Trevor Mudge
{lefurgy,tnm}@eecs.umich.edu

EECS Department, University of Michigan
1301 Beal Ave., Ann Arbor, MI 48109-2122

http://www.eecs.umich.edu/~tnm/compress

Presented at
Compiler and Architecture Support for Embedded Computing Systems (CASES 98)

December 4-5, 1998
George Washington University

Washington DC

Abstract

Previous works have proposedadding compressiontechniquesto a variety of architecturalstyles to reduce
instructionmemoryrequirements.It is not immediatelyclear how theseresultsapply to DSP architectures.DSP
instructionsarelongerandhave potentiallygreatervariationwhich candecreasecompressionratio.Our resultsdem-
onstratethatDSPprogramsdo provide sufficient repetitionfor compressionalgorithms.We proposea compression
methodandapply it to SHARC,a popularDSParchitecture.Evenusinga very simplecompressionalgorithm,it is
possible to halve the size of the instruction memory requirements.

Keywords: Compression, Code Density, Code Space Optimization, DSP, Embedded Systems

1

1 Introduction

Architecturesfor digital signal processing(DSP)
have adopted several characteristicsof Very Long
InstructionWord (VLIW) architectures,includingwide
instructionwords.The costof using the explicit paral-
lelism of VLIW is muchlarger codesizes.Beyond the
classical optimizations used to achieve smaller pro-
grams,compressioncanshrink programsizeby utiliz-
ing repetition found at the instruction level. Several
compressiontechniqueshave beenproposedfor general
purposearchitectures[Wolfe92, Kozuch94,Fraser95,
Liao95, Benes97, Ernst97, Kirovski97, Lefurgy97,
Wolf97, Aranjo98]. Previous work focusedon using
short variable-length codewords and increasing the
meaningof codesby allowing themto decodeto a list of
instructions.It is not known if suchcompressionmeth-
odscanbeusedon DSParchitectures.DSPinstructions
canhold multiple independentoperationswhich poten-
tially increasesvariancein the instructionbit patterns.
Our previous study [Lefurgy98] notedthat most com-
pressioncanbeattributedto singleinstructionpatterns.
We usethis ideato show that programsfor DSParchi-
tecturesarehighly compressible.Compressionfor DSP
hastwo importantramifications.First, performancecan
be tradedfor small codesize.Second,small codesize
reducesthe frequency at which overlaysareperformed
and therefore can vastly improve execution time.

Theorganizationof thispaperis asfollows.Section
2 reviews previous work in code compression.We
present our compressionmethod in section 3. Our
experimentalresultsarepresentedin section4. In sec-
tion 5, we discusssome implications of the results.
Finally, section 6 contains our conclusions.

2 Previous work

Therehavebeenseveralrecentworksoncodecom-
pression. The CompressedCode RISC Processor
(CCRP)[Wolfe92,Kozuch94,Benes97]is a MIPS pro-
cessorthat compressesinstruction cache lines using
Huffman coding. Dictionary compression methods
[Bell90] have been studied for several processors
[Liao95, Lefurgy97]. A software-managedcompres-
sion-cachethatdecompressesfunctionson a cachemiss
has beenproposed[Kirovski97]. Compressionalgo-
rithmsbasedonoperandfactorizationandMarkov mod-
elshave beensuggestedfor transmittingprogramsover
networks [Ernst97]. A C compiler that producescus-
tomized compactinterpretersand byte-codehas been
demonstrated[Fraser95].Carmel[Sucher98]is a DSP
architecturethat usesa dictionary compressiontech-
nique.More complicatedcompressionalgorithmshave
combined operand factorization with Huffman and
arithmetic coding [Aranjo98, Lekatsas98].A VLIW

programrepresentation[Conte95]reducedprogramsize
by eliminating NOP fields.

In apreviouswork [Lefurgy97],weuseddictionary
compressionto reducetheinstructionmemoryfootprint
of embeddedprograms.We examined replacing fre-
quentlyusedsequencesof instructionswith acodeword.
The codeword served asan index into a list of instruc-
tion sequences.Fetchingand decodingthe codewords
recoveredthe original sequenceof instructionsto exe-
cute.A variable-lengthencodingusingsmallcodewords
(8-bits, 12-bits, and 16-bits), allowed us to compress
PowerPC programsto 60% of their original size. We
will show thatevensimplercompressiontechniquescan
improve SHARC [ADI] programs by much greater
amounts.

3 Compression architecture

Our compressionschemetakes advantageof the
observation that the instructionsin programsarehighly
repetitive. Eachuniqueinstructionword in theprogram
is put in an instruction table. Each instruction in the
programis thenreplacedwith an index into this table.
Becausethe instruction words are replaced with a
shortercodeandbecausethe tableoverheadis usually
small comparedto the programsize, the compressed
version is smaller than the original. Instructionsthat
only appearoncein the programareproblematic.The
original instructionin theinstructiontableandtheindex
in theprogramstreamarelargerthanthesingleoriginal
instruction,causinga slight expansionfrom the native
representation.

The SHARC pipeline is shown in Figure1.
SHARC typically uses the ProgramMemory bus to
fetch instructionsand usesthe Data Memory bus to
fetchdata.However, it canalsousethesebussesfor dual
data access.When this happens,instructionsare exe-
cuted from the instruction cacheso that the Program
Memory bus canbe usedfor datafetch.The modifica-
tion of SHARC for compressedprogramsis given in
Figure2. We augmentthe 3 stageSHARC pipelineby
adding a pre-fetch stage. First, the pre-fetch stage
retrieves the 16-bit instructionindex from the external
memory. The instruction table addressregister holds
thelocationof theinstructiontablein theinternalmem-
ory. Adding the contentsof this register to the index
forms the addressof the SHARC instruction.Second,
the fetch stage uses this addressto get the 48-bit
SHARC instruction word. Finally, the instruction is
issued to the decode stage.

Therearethreecostsfor addingthepre-fetchstage.
First, an extra internal memorybus must be addedto
supportsimultaneousaccessto the index memory, pro-
grammemory, anddatamemories.SHARC usesdual-

2

portedSRAM to achievesimultaneousaccessesover the
programanddatabusses.Insteadof addinganotherport
to SRAM for the index bus, a separateSRAM block
could be dedicatedto index memory. Second,the pre-
fetchstageaddsa third branchdelayslot.Last,onereg-
istermustbeaddedto hold theaddressof theinstruction
table.

Whendataandprogramaccessescompetefor use
of the program bus, SHARC puts the conflicting
instructionin theinstructioncache.Futurereferencesto
the sameinstruction addresscan use the I-cacheand
allow theprogrambus to beusedfor data.This feature
allows loopswith instructionsthatusetheprogrambus
for dataaccessto executewithout penaltydue to bus
contention.This is extremely importantfor DSP algo-
rithms which tend to be composedof small, computa-
tion-intensive loops. Our compression architecture
retains this valuable feature.

The16-bit index limits a programto useonly 64K
uniqueinstructions.However, programsthat usemore
instructionscanbeaccommodated.Onealternative is to
addamode-switchingbranchto theinstructionsetsimi-
lar to the oneusedin ARM [ARM95, Turley95]. This
would causethe fetch units to switch betweenusing
indexes and normal SHARC instructions. In native
mode,thepre-fetchstagecouldbeturnedoff. Thefetch
stagewould usethe programcounterto fetch SHARC
instructionsas usual.Another possibility is to encode
differentpartsof theprogramby usingdifferentinstruc-
tion tables.By simply re-loadingthe instruction table
addressregister, an entirenew set of 64K instructions
canbeused.This registercanalsobeusedto allow each
programin anembeddedsystemto useits own instruc-
tion tablesothat the tablesaretunedto the instructions
that the program actually uses.

3.1 Branch instructions

In our previous work, we did not compressbranch
instructionsbecausedoing so could affect instruction
repetitionin complicatedways.Usingpatternsof only 1
instructionwith a fixed-lengthencodingeliminatesthis
problem.Compressingaprogrammovesall instructions
to a differentlocation.This affectsbrancheswhich have
index and addressfields. Additionally, codewords are
smallerthantheoriginal instructions,so the instruction
fetch mechanismand branchesmust usea new align-
ment.Sincewe areusing16-bit codewords,PC-relative
branchesand absolutebranchesnow specify a 16-bit
alignedaddress.In this simplescheme,the index fields
of thePC-relative branchesdo not changesincethedis-
tance(numberof instructionsor codewords) between
the branchandtarget arethe same.Absolutebranches,
which thecompilerusesfor functioncalls,mustchange
to use the addressfor the new location of the target
function. However, all such branchesthat matched
beforewill alsomatchafter this transformation.There-
fore,we caneasilycompressbranchinstructionsjust as
any other instruction.

Internal SRAM

Internal SRAM

Figure 1: SHARC pipeline
Top shows program fetch during execution of a
single data access instruction. Bottom shows
program fetch during execution of a dual data
access instruction. Instructions are fetched from
cache when execution unit uses both Program
and Data busses to fetch data.

Instruction
Cache

Insn-Fetch ExecuteDecode

In
st

ru
ct

io
n

In
st

ru
ct

io
n

A
dd

re
ss

In
st

ru
ct

io
n

In
de

x

A
dd

re
ss

Data
Bus

Program
Bus

Data
Bus

Program
Bus

Program
Memory

Data
Memory

Program
Memory

Data
Memory

Instruction
Cache

Data
Memory

Program
Memory

Index
Memory

Data
Memory

Program
Memory

Index
Memory

Figure 2: Compressed program pipeline
Top shows program fetch during single data path
instruction execution. Bottom shows program
fetch during dual data path execution.

Index-fetch Insn-Fetch ExecuteDecode

In
sn

. T
ab

le

In
st

ru
ct

io
n

A
dd

re
ss

In
st

ru
ct

io
n

In
de

x

A
dd

re
ss

In
st

ru
ct

io
n

In
de

x

A
dd

re
ss In
st

ru
ct

io
n

In
de

x

A
dd

re
ss

Program
Bus

Data
Bus

Program
Bus

Internal SRAM

Internal SRAM

Data
Bus

Index
Bus

Index
Bus

3

4 Results

In this sectionwe integrateour compressiontech-
niqueinto theSHARCADSP-2106xinstructionset.We
use benchmarksfrom SPEC CINT95 [SPEC95] and
MediaBench[Lee97]. Thesebenchmarksarecompiled
with theVisualDSPcompilerfrom AnalogDevices.The
portionsof the benchmarksfor file I/O were removed
sincethey arenot supportedby thecompiler’s libraries.
Our resultsinclude both applicationand library code.
All compressedprogramsizesinclude the overheadof
thedictionary. Compressionratio is usedto measurethe
amount of compressibility.

(Eq. 1)

Table1 showstheresultsfor theourbasiccompres-
sion method.Eachbenchmarkwas compiledwith and
without optimizations.We only use“-O1” optimization
becausehigher levels of optimizationexposedbugs in
the compiler. The Table Sizecolumn is the numberof
entriesin the instruction table. There is one entry for
eachuniqueinstructionbit patternin theprogram.Com-
pressedSizeis thecombinedsizeof theindexesandthe
instruction table.

Classicalcodeoptimizationsareoneway to attaina
smaller code size. Using some optimization on the
benchmarksreducesthe numberof instructions,but it
also increasesthe table size. The table size increases
becausethe number of unique instructions increases
whensingleoperationinstructionsarecombinedinto 2
and 3 operation instructions. In un-optimized code,
instructions only contain 1 operation and are more
likely to match each other. The reducednumber of
instructionsin the optimizedcodedid not accountfor
the increasein the table size. Therefore,the smallest
representationwas attained by compressingun-opti-
mized code.

The instruction tables contain many instructions
thatareusedonly oncein theentireprogram.Onerea-
sonthis happensis that thecombinationof registersthe
register allocation algorithm uses for a particular

instructionmaynotmatchany otherinstruction.Wecan
improve the compressionratios by removing these
uniqueinstructionsfrom the table.To accomplishthis,
we selectsomeinstructionsthat can be representedin
16-bits and mix them in with the index stream.These
short instructionswill be codedwith unusedindex val-
ues.For this experiment,we selectedthe 8 most fre-
quent ALU operationsfor eachbenchmarkto use as
short instructions.The encodingof the index streamis
as follows. If an index begins with the bit 0, then the
remaining 15 bits are the index into the instruction
table.If thenindex begins with 1, thennext 3 bits will
selectanALU operationin theSHARC.Theremaining
12bitsaredividedinto groupsof 4-bitsto select3 regis-
ters for the ALU operation.The 3-bit ALU operation
field selectsoneentry from an8-entrytableof SHARC
ALU opcodes.This table could be programmableso
thateachprogramcouldselectthe8 bestALU instruc-
tions to help compression.

Resultsfor mixing ALU operationsandindexesare
presentedin Table2. SomecommonALU operations
used are addition, multiplication, subtraction, pass,
compare,increment,anddecrement.This encodingsig-
nificantly reducesthetablesize.However, for mpeg2enc
with optimization,thereare too few unusedindex val-
ues to add the shortenedALU instructions.For other
benchmarks,thecompressionratio is improvedbetween
1.2% and 3.7%.

5 Discussion

For comparison,we also compressedthe bench-
marks with a nibble compression algorithm
[Lefurgy97]. This algorithm reducesthe size of code-
words (indexes) to 8 bits, 12 bits, and 16 bits. Each
codeword canrepresenta list of instructions.However
branchinstructionsare not encoded.Insteadthey are
prefixed with an 4-bit escapenibble to differentiate
themfrom thecodewords.Table3 shows theresultsand
comparesthem to the baselinemethod.This demon-
stratesthatmorecomplicatedschemescanattainbetter
compressionratios.Interestingly, thecompressionratios
for thelargerbenchmarksarequitesimilarwhichshows

compression ratio
compressed size

original size
--------------------------------------=

Benchmark Optimization
Static

Instructions Table size
Original Size

(bytes)
Compressed
Size (bytes)

Compression
Ratio

mpeg2enc none 28,832 7,167 172,992 100,666 58.2%

-O1 26,537 8,118 159,222 101,782 63.9%

go none 81,343 8,564 488,058 214,070 43.9%

-O1 76,424 12,931 458,544 230,434 50.3%

ghostscript none 352,525 33,322 2,115,150 904,982 42.8%

-O1 310,869 49,734 1,865,214 920,142 49.3%

Table 1: Baseline results

4

that even simplecompressionalgorithmscanbe effec-
tive. Using the shortercodewordsinsteadof compress-
ing branchesyieldedslightly bettercompressionratios
for the larger benchmarks.

In embeddedsystemsthat mustuseexternalmem-
ory to storeprograms,overlaysareanimportantway to
effectively useinternalmemoryto achieve high perfor-
mance.Code compressioncan assistsuch systemsto
achieve even greaterperformance.Smaller code size
reducesthe frequency at which overlaysmust be used
sincea larger portion of the programcanfit in internal
memory. In addition, loading a compressedfunction
from externalmemoryrequireslesstime thanloadinga
non-compressed function.

6 Conclusions

We have demonstratedthat even simple compres-
sion methodscan be highly effective at reducingcode
sizes in DSP programs.Compressingonly single
instructionsto a fixed-lengthcodeallows us to have a
simplemechanismfor decompressionwhich hasmini-
mal impact on the SHARC architecture.Our method
cancompressprogramsto half their original sizewhile
allowing the hand-codednumerical loops that are
important in DSP algorithms to run at native speeds.

Acknowledgments

This work was supported by DARPA grant
DABT63-97-C-0047.

References

[ADI] Analog Devices, Inc.,SHARC User’s Manual.

[ARM95] AdvancedRISCMachinesLtd., An Introductionto
Thumb, March 1995.

[Bell90] T. Bell, J. Cleary, I. Witten, Text Compression, Pren-
tice Hall, 1990.

[Benes97] M. Benes,A. Wolfe, S.M. Nowick, “A High-Speed
AsynchronousDecompressionCircuit for EmbeddedProces-
sors”, Proceedingsof the 17th Conference on Advanced
Research in VLSI, September 1997.

[Conte95] T. ConteandS. Sathaye,“Dynamic Rescheduling:
A Techniquefor ObjectCodeCompatibility in VLIW Archi-
tectures”,Proceedingsof the 28th AnnualInternationalSym-
posium on Microarchitecture, November 1995.

[Ernst97] J.Ernst, W. Evans, C. W. Fraser, S.Lucco, and
T. A. Proebsting,“Code compression”,Proceedingsof the
ACM SIGPLAN’97 Conference on Programming Language
Design and Implementation (PLDI), June 1997.

[Fraser95] C. W. Fraser, T. A. Proebsting,CustomInstruction
Setsfor Code Compression, unpublished,http://www.cs.ari-
zona.edu/people/todd/papers/pldi2.ps, October 1995.

[Kirovski97] D. Kirovski, J.Kin, andW. H. Mangione-Smith,
“ProcedureBasedProgramCompression”,Proceedingsof the

Benchmark Optimization Table size

Table size
change from

baseline
Compressed
size (bytes)

Compression
ratio

Compression
ratio change
from baseline

mpeg2enc none 6,107 -1060 94,306 54.5% -3.7%

-O1 7,323 -795 97,012 60.9% -3.0%

go none 7,213 -1351 205,964 42.2% -1.7%

-O1 11,728 -1203 223,216 48.7% -1.6%

ghostscript none 29,183 -4139 880,148 41.6% -1.2%

-O1 46,498 -3236 N/A N/A N/A

Table 2: Addition of short instruction words

Benchmark Optimization
Compressed
size (bytes)

Compression
ratio

Compression
ratio change
from baseline

mpeg2enc none 89,647 51.8% -6.4%

-O1 88,541 55.6% -8.3%

go none 196,260 40.2% -3.7%

-O1 203,632 43.3% -7.0%

ghostscript none 883,789 41.8% -1.0%

-O1 852,871 45.7% -3.6%

Table 3: Nibble encoding

5

30th Annual International Symposiumon Microarchitecture,
December 1997.

[Kozuch94] M. Kozuch and A. Wolfe, “ Compressionof
EmbeddedSystemPrograms,” IEEEInternationalConference
on Computer Design, 1994.

[Lee97] C. Lee, M. Potkonjak, and W. Mangione-Smith,
“MediaBench:A Tool for EvaluatingandSynthesizingMulti-
media and CommunicationsSystems”,Proceedingsof the
30th Annual International Symposiumon Microarchitecture,
December 1997.

[Lefurgy97] C. Lefurgy, P. Bird, I.-C. Chen,and T. Mudge,
“Improving codedensityusingcompressiontechniques”,Pro-
ceedingsof the 30th Annual International Symposiumon
Microarchitecture, December 1997.

[Lekatsas98] H. LekatsasandW. Wolf, “Code Compression
for EmbeddedSystems”,Proceedingsof the 35th Design
Automation Conference, June 1998.

[Liao95] S. Liao, S. Devadas,K. Keutzer, “Code Density
Optimization for EmbeddedDSP ProcessorsUsing Data
CompressionTechniques”,Proceedingsof the 15th Confer-
ence on Advanced Research in VLSI, March 1995.

[SPEC95] SPEC CPU’95, Technical Manual, August 1995.

[Sucher98] R. Sucher, R. Niggebaum,G. Fettweiss,and A.
Rom, “CARMEL - A New High PerformanceDSP Core
UsingCLIW”, 9thAnnualInternationalConferenceonSignal
Processing Applications and Technology, September 1998.

[Turley95] J.L. Turley. “Thumb squeezesarm code size”.
Microprocessor Report, 9(4), 27 March 1995.

[Wolfe92] A. Wolfe andA. Chanin,“ExecutingCompressed
Programson an EmbeddedRISC Architecture,” Proceedings
of the 25th Annual International Symposiumon Microarchi-
tecture, December 1992.

	Abstract
	1 Introduction
	2 Previous work
	3 Compression architecture
	3.1 Branch instructions

	4 Results
	Table 1: Baseline results
	Table 2: Addition of short instruction words

	5 Discussion
	Table 3: Nibble encoding

	6 Conclusions
	Acknowledgments

