
submitted for journal publication, January 1999

Agent Communication
with Differentiated Ontologies:

 eight new measures of description compatibility

Peter C. Weinstein and William P. Birmingham

Artificial Intelligence Laboratories

Department of Electrical Engineering and Computer Science

University of Michigan

1101 Beal Ave., Ann Arbor, MI 48109-2110

{peterw, wpb}@eecs.umich.edu

Abstract

We propose an approach to achieve appropriate exchange of services and data in
distributed systems subject to semantic heterogeneity. We assume differentiated
ontologies: that terms have formal definitions as concepts related to other concepts,
that local concepts inherit from concepts that are shared, and that most or all
primitives are shared. We then develop measures of description compatibility using
the structure of the source and target definitions. We evaluate these measures by
generating description-logic ontologies in artificial worlds. In our simulations, the
“meaning” of a concept is its denotation in a finite universe of instances. The
accuracy of the description-compatibility measures can thus be judged by their
success in predicting the overlap of concept denotations. Description compatibility
can be used to guide agent search for services across communities that subscribe to
differentiated ontologies.

1

1 Introduction
We are interested in the semantics of agent communication in large, distributed systems
developed in a decentralized manner. In these systems, semantic heterogeneity is inevitable.
“Semantics” is the association of terms with the world; “semantic heterogeneity” exists
when term meanings are not coherent throughout the system. We can be more precise
within the simplifying framework of model theory: semantically heterogeneous terminology
is a set of symbols with inconsistent denotations (the same symbol references different sets
of objects), redundant denotations (different symbols reference identical sets of objects), or
both.

Semantic interoperability—the appropriate exchange of data and services in semantically
heterogeneous systems—requires some form of translation between terminologies. Most
research in this area focuses on how to represent mappings, which identify
correspondences between items in two terminologies. Mappings may be represented as
conditional rules (e.g., Chang and Garcia-Molina (Chang and Garcia-Molina 1998)),
functions (e.g., Chawathe et. al. (Chawathe, Garcia-Molina et al. 1994)), logic (e.g.,
Guha (Guha 1992)), or as sets of tables and procedures (e.g., Weinstein and Birmingham
(Weinstein and Birmingham 1998)). Most often, mapping is between local terminologies
and a global terminology, since this configuration requires a number of mappings linear in
the number of local terminologies rather than a quadratic number of mappings.
Unfortunately, it is often quite difficult to specify global terminologies that are adequate for
all intended uses. Furthermore, although there have been preliminary attempts to automate
the specification of mappings (Bright, Hurson et al. 1994; Lehmann and Cohn 1994;
Campbell and Shapiro 1995), this process is usually mostly manual. Typically, manual
specification of mappings is extremely expensive for real-world problems (Heiler 1995).

This paper describes measures of the syntactic correspondence between the definitions of
pairs of terms. These “description-compatibility measures” can be used to search for
satisfactory mappings, or to bypass mappings altogether. The algorithms that implement
the measures vary in the complexity of their computation and the knowledge that they
require about the domain. Some of the compatibility measures utilize matching: the
identification of maximal one-to-one correspondences between elements of the compared
definitions.

We use simulations to study the accuracy of our compatibility measures. In the context of
real-world applications, it is not possible to calculate the meaning of a term. In our
simulations, however, we can calculate meaning. First, we generate artificial sets of
terminology definitions that describe a finite universe of artificial objects. We then define a
term's meaning in a literal model-theoretic way, as the set of objects that satisfies the term's
definition. Given any two terms, we can calculate the “semantic overlap” of their meanings
using the intersection of their denoted sets. These semantic measures then provide an
authoritative basis for evaluating the accuracy of the syntax-based compatibility measures.

The remainder of this paper is organized as follows. We define our measures of description
compatibility in Section 6, the focus of the paper. The preceding sections are requisite for a
precise understanding of the measures and the experiments. Section 2 defines
“differentiated ontologies”, structures that contain term definitions that support calculation
of description compatibility. Section 3 describes the model of agent interaction that
underlies our experiments. Sections 4 and 5 describe the artificial ontologies that provide
data for our experiments, including the representation language, and the process of
generating the ontologies. Section 6 presents the description-compatibility measures,
including algorithms to construct matchings between elements of concept definitions.
Section 7 analyzes the performance of the syntactic measures by comparison to the measure

2

of semantic overlap defined in Section 3. Section 8 is a discussion, and Section 9
concludes.

2 Differentiated Ontologies
To enable calculation of the compatibility measures, we make certain assumptions about the
syntactic representation of terms to be mapped. Structures that satisfy these assumptions
are differentiated ontologies.

Assumption 1: Terms are defined as concepts in formal ontologies.

Ontologies are sets of concept definitions. Formal ontologies use logic to define concepts
by their relations to other concepts. For example, chair might be defined as a-kind-of
furniture that a person can sit-upon.1 The concept chair denotes the set of objects that
are chairs; the instance chair001 denotes a particular chair object. The logic must, like
description logic, support computational inference of subsumption (Woods 1991). Concept
A subsumes B if and only if every instance of B is always an instance of A. Highchair,
for example, might be defined as a-kind-of furniture that a toddler can sit-upon; by
comparing the definitions for chair and highchair and person and toddler, respectively,
description logic can deduce that highchair is a-kind-of chair. (See Weinstein and
Birmingham (Weinstein and Birmingham 1998) for an expanded description of “formal
ontology”; in this paper, Section 4 specifies the representation that we use in our
simulations.)

The structure of ontological definition provides a basis for syntactic comparison. The
precision required by logic, and in particular the support for subsumption inference, is
required to enable calculation of the compatibility measures.

Whereas Assumption 1 is fundamental to our enterprise, the following assumptions are
“soft” in that they can be violated, but increasing frequency of violation yields increasingly
poor results for our description-compatibility measures.

Assumption 2: Concepts inherit definitional structure from concepts that are shared .

This assumption identifies the form of commonality that we use to enable automatic
mapping. Note that mapping between concepts in differentiated ontologies is equivalent to
mapping between concepts in a single ontology that provides separate spaces for concept
names.

Assumption 3: Primitive concepts and relations are shared .

Non-primitive definitions have both necessary and sufficient conditions, but primitives
have only necessary conditions. For example, given the primitive (C ⇒ D), we cannot infer
that instance j ∈ C unless this is asserted explicitly. Clearly, there can be no basis for
matching a primitive element of a concept definition to any element of a concept in an
ontology where the primitive is undefined.

We expect differentiated ontologies to occur in two important contexts. First, architects
may design infrastructures for multi-agent systems that include one or more generic
ontologies to which all agents are expected to subscribe. As systems change over time,
developers will create local versions of ontologies that are specialized to help meet the
needs of particular user communities. Over time, large ontological structures will develop,
and communities of agents will be defined by the ontologies they use to communicate.
Agents will interact with agents in their own community, but may use the techniques

1 We use font to identify concept and relation names in a real or hypothetical ontology.

3

described in this paper to seek services from agents in other communities. We expect that
mapping will be more effective between ontologies whose concepts share a relatively high
percentage of definitional structure, compared to mapping between more remote ontologies.
The experiments described in this paper are designed within this context of agent
communication.

We also believe that differentiated ontologies will have an important role in the integration
of heterogeneous data. In this context, differentiated ontologies will be manually
constructed as a less-demanding alternative to a global terminology. Each local schema will
be mapped to one ontology in a family of ontologies. For example, we generated a
knowledge base of library metadata by mapping from a standard library format, MARC
(Machine Readable Cataloging), to an ontology that models bibliographic relationships
between works (Weinstein and Birmingham 1998). We were able to specify the mappings
in a straightforward way by the simple expedient of permitting the ontology to resemble
MARC somewhat more than it should. In the future, we plan to map from a variety of
metadata standards to a family of differentiated ontologies. Queries can be represented as
concepts, and measures similar to those described in this paper will then support an
imprecise query service that integrates data from the different sources.

3 Simulation Scenario
An agent in need of a service might use a variety of strategies to search for agents capable
of providing the service. Frequently, broker agents play important roles in multi-agent
systems; they know about available services and, in various ways, act to help requesting
and providing agents to coordinate (Kuokka and Harada 1995).

To structure our analysis of agent communication, we focus on a straightforward pattern of
agent interaction where agents ask brokers for service recommendations, as pictured in
Figure 1. Agent A formulates the request as an ontological concept definition, which, in
this context, we call a service description. In the figure, we represent service descriptions
as triangles. Broker agents know about services available in a community of agents, which
are also represented by service descriptions. These descriptions may have been defined by
agents as a means of advertising (Weinstein and Birmingham 1998). The broker applies
some sort of filter to select a set of candidate services, then compares each candidate service
description to the request. In the figure, the thickness of the gray lines indicates the strength
of the mapping. The broker then recommends the service whose description maps most
strongly to the request.

1 . I reques t
t h i s s erv i ce

2 . I reco mmend
t hi s s erv i ce

alternative
mappings

Agent
A

Broker

Figure 1: Model of agent interaction

In this model, the broker recommends a service description, which is an ontology concept,
rather than a particular service-providing agent. It is possible that many agents can provide
the service (presumably, the broker or some other agent knows those agents providing each
service). In our simulations, instances of agent service provision are represented as

4

ontology instances. Thus, the meaning of an agent’s service description is the set of
particular behaviors that the agent might execute to provide the service.

Accordingly, we measure the quality of the recommendation as the probability of success,
which we define as occurring when an instance selected from the recommended set also
satisfies the request:

P(Success) = P(j ∈ CI | j ∈ DI) (1)

 = P(j ∈ CI ∩ DI) / P(j ∈ DI)

 where C is the request, D the recommendation, CI and DI the extensions of C and D,
respectively, under logical interpretation I, and j is an instance selected uniformly randomly
from DI. Figure 2 illustrates Definition (1) with a Venn diagram.

CI

universe ∆ of agent service instances with logical interpretation I

recommended service
description D

recommended instances ji

request service
description C

DI

 Figure 2: Measuring semantic overlap using concept denotations

 In our simulations, the universe of objects is large, but finite. Thus, we operationalize our
semantic measure for recommendations (SEMR) as:

SEMR(C, D) = |CI ∩ DI| / |DI| . (2)

For some purposes, a symmetric measure of semantic overlap is appropriate. This measure
is independent of the pragmatic roles of concepts C and D, and is calculated by:

SEMS(C, D) = |CI ∩ DI| / |CI ∪ DI| . (3)

4 Ontology Representation
We designed the representation of our artificial ontologies in accordance with our
experience developing ontologies in complex domains (Weinstein and Birmingham 1998),
and our expectations for the sensititivities of our measures of description compatibility. We
knew that to match concept definitions we would convert concept definitions to description
graphs (Borgida and Patel-Schneider 1994; Cohen and Hirsh 1994), so we thought in
terms of graph structure. Thus, we considered it essential to include multiple inheritance
among concepts, and believed that it would be important to include relations between role
fillers, which would produce cycles within concept description graphs. We excluded less
useful features that would add complexity to our simulations without reason to expect an
important impact on measures of description compatibility. We discuss the issue of
expressivity further in Section 8.2.

Table 2 presents the syntax and semantics for a language that we call Very Basic
Description Logic (VBDL). VBDL is similar to CoreClassic (Cohen and Hirsh 1994),
except that roles are quantified existentially rather than universally, and relations may
inherit from other relations.

5

Concept definitions include “roles” and “constraints”. Roles include a relation, and a
concept that restricts the set of instances that can satisfy the relation, called a “type
restriction”. Instances that satisfy a concept role are “fillers”. Constraints include a relation
that must be satisfied by one or two of the concept's fillers. We call constraints between
two fillers “type constraints”. “Value constraints” require that a filler be a number that is in
the desired numeric relation to a given constant. Relations do not have roles, but can have
domain or range type restrictions, and inverses. The “:parent” argument for new concepts
identifies concepts from which the new concept inherits roles and constraints (and the same
applies analogously to relations).

To meet the requirements of our simulations, we implemented a customized, very fast
VDBL system. This implementation makes the following simplifications:

1) Roles are always filled with exactly one filler (they are “attributes”).

2) Numeric fillers belong to a finite and known set of values.

3) Concept definitions are not recursive (a concept cannot be a type restriction in its own
definition).

4) All relations have inverses.

5) Assertions about instances are monotonic.

6) All instances are accessible to all contexts.

“Contexts” restrict accessibility within an ontological structure. In this research, we are not
concerned with issues related to parallel execution on distributed platforms. Therefore, we
found it convenient to implement differentiated ontologies in a single structure. We use
contexts to hide concepts and relations that would not be accessible in a distributed system.

Every concept and relation is associated with some context, and is always accessed from
the perspective of some context. Contexts are partially ordered, i.e., accessibility among
contexts is transitive and non-symmetric. For example, if ontology B contains concepts
specialized from ontology A, concepts in ontology A will be visible from the context of
ontology B, but not vice versa. Figure 3 illustrates a fairly common occurrence, where a

Table 2: Syntax and semantics for Very Basic Description Logic (VBDL)

Language
Element Definition Syntax Notation Denotation
instance (new-instance c

:primitives
:attributes/values)

c c∈∆

value v v∈ V={1,2,…,k}⊆ ∆
concept (new-concept C :parents

:roles :constraints)
C CI⊆ ∆

primitive :is-primitive t P PI ⊆ ∆
relation (new-relation R :parents

:domain :range :inverse)
R R I ⊆ ∆ × ∆

conjunction :parents (C D) C ¿ D CI ∩ DI

roles :roles ([R D]*) C.R:D {c∈∆ | ∃ d∈∆ . c∈ CI, d∈ DI,
 (c,d)∈ RI }

type constraints :constraints
 ([R1 R2 R3]*)

C.R1:(C.R2 C.R3) {c∈∆ | ∃ d,e∈∆ . c∈ CI, (c,d)∈ R2
I,

 (c,e)∈ R3
I , (d,e)∈ R1

I }
value constraints :constraints

 ([R1 R2 v]*[R1 v R2]*)
C.R1:(C.R2 v) {c∈∆ | ∃ d∈∆ , v∈ V. c∈ CI,

 (c,d)∈ R2
I, (d,v)∈ R1

I }

6

concept defined in ontology B is classified between two ontology A concepts, but remains
invisible from the perspective of context A.

A1

A2

B1

in context B

in context A

Figure 3: Direct subsumption links in multiple contexts

5 Ontology Generation
This section describes the generation of the artificial ontologies that provide data to evaluate
our compatibility measures. We start with a set of world “objects” that the ontologies will
describe. These objects are hypothetical instances of service provision. We call the
representations of objects in the description-logic ontologies “instances”. Our description-
logic concepts are service descriptions. We also start with a tree of “communities” that
shape ontology differentiation. We think of communities as organized groups of users with
increasingly specialized interests; they bias the generation of new concepts to utilize
increasingly small subsets of the attributes that describe the objects. We generate one
ontology for each community.

The insight that drives concept generation within ontologies is this: we create terms that
distinguish certain objects from other objects. Figure 4 illustrates. The axes represent the
relations and attributes that define a space of potential services. We pick an object, find the
least general concepts that describe the object, pick one, and add to its definition to create a
new, relatively specialized concept that includes the target object.

potential
agent
service
instances new concept

target agent service instance

least general subsuming concept

Figure 4: A new concept distinguishes a new service from an old

The following subsections describe objects, communities, and concept generation in detail.
We illustrate with examples and data from Experiment 15, the basis of most of the results
reported in Section 7 (we used Experiments 1 through 14 to develop the process of
ontology generation).

7

5 .1 Objects

Our simulated worlds must have some structure that the ontologies can model, and the
description compatibility measures can exploit to produce interesting behavior. This
structure should be simple, to avoid obscuring the nature of the results, yet plausible as a
highly abstracted model of the real world.

Objects in our simulations are characterized by relations to numeric values, which we call
“attributes”, and by relations to other objects. These attributes can be thought of as
describing any kind of real world characteristic: for example, the color of an object, its
structure, behavior, or even less inherent attributes such as function, or context. Our object
attributes have the following characteristics:

(a) Some values are relatively rare.

(b) Attribute values are correlated with certain other attributes.

(c) Objects have values for different sets of attributes.

(d) Values can be interpreted as referring to other objects, which we explain below.

Experiment 15 has objects with structures as illustrated by Figure 5. Each object has five
“clusters” (L1 through L5), each with three slots for attributes. Three of the clusters have
attributes with values. Objects are associated with values by relations of the form has-
LxAy, where x is an integer that identifies the value’s cluster, and y is an integer that
identifies the attribute within the cluster. For example, Figure 5 includes the role
<HAS-L1A3 OBJ00123 4>.

4 5 4 - - - 1 1 3 3 4 5 - - -OBJ00123

L1 L5L4L3L2

A1 A2 A3 . . .

Figure 5: Objects have clusters of attribute values

We generate the values randomly with a multivariate normal distribution. The values are
correlated within clusters. These clustered correlations represent the structure of the world:
for example, we expect tall men to also be relatively heavy. Or, say that we are concerned
with agent services in digital libraries (Weinstein and Birmingham 1998), and OBJ00123 is
one of a group of services that provide access to educational videos. We would expect that
the intended audience of the videos and their conceptual-level would strongly covary,
thus hypothetically supporting mappings between services for elementary-school, and
those for reading-grade-level-2.

Attribute values are also significant in a second way, as cluster indices that constrain links
to other objects that enrich the object’s description with further detail. In Figure 6, for
example, attribute A2 in cluster L1 of object OBJ00123 has the value 5; this has the
consequence that OBJ00123 will have a “described-by” link from that value only to an
object with values in the 5th cluster in some other object (in this case, OBJ32789). To
continue our previous example, say that attribute A2 of cluster L1 identifies object
OBJ00123 as a live video access service. Because OBJ00123 delivers video, we expect it
to have values for certain other attributes that describe different aspects of the service; for
example, compression-format, delivery-rate, and so on. These values are supplied by
a link to another object, OBJ32789.

8

In our simulations, every value of every object has a relation in the form LxAy-
Described-By to some other object, as illustrated in the figure. A parameterized “cliquing
bias” determines the probability that an object will be linked to objects that are also linked to
each other, when it is possible to do so. This bias creates some structure in the pattern of
relations between objects; otherwise, the greater the number of objects, the less likely such
cliques would be.

Table 3 summarizes the parameters that control the generation of objects in our simulations.
To guarantee that the attribute correlations are valid for multivariate normal distributions,
we generate them from a parameterization of the normal distribution as a composition of
ellipses. The mean attribute value is not listed in the table because it is determined by the
number of clusters. Finally, the ontologies are generated initially with a set of 10,000
objects. To reduce noise from small numbers, we subsequently repopulate the ontologies
with different sets of objects 49 times.

Table 3: Parameters controlling object generation

Parameter Settings for Experiment 15
Number of clusters 5
Number of attributes in each cluster 3
Standard deviation of values 1.25
Attribute value correlations Within clusters: ρ(A1, A2) = 0.840

ρ(A1, A3) = 0.799
ρ(A2, A3) = 0.559

Across clusters: ρ(Ay, Az) = 0
Type relation cliquing bias 0.5
Number of objects 10,000 per universe, 50 universes

5 .2 Communities

We use a tree of “communities” to model the specialization of perspective that may be
expected of agent communities. Each community has a set of attributes that are preferred
over other attributes when generating concepts, as discussed in the next section. Each
community’s preferred attributes are a subset of attributes preferred by its parent
community. At the top of the community tree all attributes are equally preferred.

Figure 7 illustrates the tree of communities used in Experiment 15. Each community label
starts with the attributes that are preferred within each cluster. If an “L” is present, the
following digits indicate clusters that are preferred. Communities that have equal
preferences are distinguished with a small “a” or “b”. Note however, that concepts in the
ontologies associated with these communities will nevertheless be differentiated, as they
inherit structure from different sets of concepts (generated by communities with different
preferences).

4 5 4 - - - 1 1 3 3 4 5 - - -

- - - 2 3 2 1 1 3 - - - 3 4 4

L1A2-Described-By

OBJ00123

OBJ32789

Figure 6: A value references a cluster in another object

9

Al l

A12

A1L34

A1L2bA1L2aA1L1

A1L23A1L12

A1L345A1L123

A2aA1

A23

A2aL1A1L3

A2aL12

A2aL123

A12A2b

A2bL1

A2bL12

A2bL123

A3L1

A3L12

A3L123

Figure 7: Tree of communities

The community tree is filled flush left to provide maximum variation in the number of
shared and unshared ontologies when comparing concepts. For example, comparisons
between concepts in the ontologies associated with communities A1L1 and A1L2a benefit
from shared structure inherited from concepts in ontologies A1L12, A1L123, A1, A12,
and the top ontology. Comparisons between A1L1 and A3L1, meanwhile, have only the
top ontology in common.

5 .3 Concept Generation

We define new concepts in such a way as to distinguish certain objects from other objects.
Generating a new concept involves the following steps: select a target object, identify the
most specific concepts (“parents”) that describe the target, then define a new concept that
specializes one or more parents using one of the methods described below. By design, the
new concept must exclude a desired percentage of the instances of the specialized parents.
Finally, identify instances that are members of the new concept.

Prior to concept generation, we create a “Top” ontology whose contents are inherited by all
ontologies, including the “All” ontology at the top of the tree in Figure 7. The “Top”
ontology includes the following: (1) a description-logic instance for each world object,
asserted to be a member of the primitive concept Service, (2) a tree of value relations
including has, has-Lx for each cluster, and has-LxAy for each cluster/attribute, (3) a tree
of type relations including described-by, Lx-described-by, and LxAy described-by,
(4) isomorphic trees of inverse relations, with of and describes at the top, (5) a Number
concept, and (6) numeric relations (EQ, LT, etc.) for value comparisons. Instance names
are of the form OBJxxxxx, where xxxxx is a unique integer. Most importantly, note that
the trees of relations in the Top ontology model the structure of attributes within clusters,
since attributes within a cluster have a more proximate common ancestor than do relations
in different clusters.

Subsequent to concept generation, we delete many of the concepts from the interior of the
ontologies. This yields a structure that has relatively realistic variation in the number of
additional roles that distinguish concepts from their parents.

In more detail, we generate each concept as follows:

1) Select a target object to be “named” by the current community. If it has not already been
selected for naming, it must have a value for at least one attribute favored by the current

10

community. Otherwise, it has already been named either by the current community, or
one of its parents.

2) Determine the least-general concepts that describe the object. Consider only concepts
that are accessible to the current community. Order these potential parent concepts in a
way that is probabilistically biased such that concepts defined in the current or
proximate ontologies are more likely to be picked for specialization than concepts
defined in more remote ontologies.

3) If the object is not subsumed by any accessible concept, create a new child of the
primitive Service concept that has one role.

4) Otherwise, pick one of the alternative methods described below for specializing concept
definitions. Except for method (a), specialize the first of the potential parent concepts
that has not already been tried. In all cases, the new concept must exclude a certain
percentage of a sample of instances that are members of the parent concepts. This
sample, called the “prior members”, includes all instances that have previously been
“named” by the current community or its parents, and a random sample of additional
instances if necessary in order to obtain a sample of adequate size. The methods for
defining new concepts include:

a) Multiple inheritance : Conjoin two or more of the least-general-subsuming concepts.
If combining the definitions of two parents does not distinguish the target from
enough of the prior members, conjoin another parent, and so on.

b) Add a value-relation role . The new role constrains its filler to be either greater or
lesser than the mean value. We first try roles for attributes preferred by the current
community. Of those, we first use attributes with relatively extreme values. If the
new role does not successfully distinguish the target from enough prior members,
other attributes are tried. If the method does not work for any attribute favored by
the community, we try attributes favored by the parent community, and so on.

c) Add a type-relation role . We define a new type relation corresponding to the most
locally preferred attribute that does not already have a type relation in the parent
concept’s definition. The relation’s name is of the form [Lx][Ay-]described-
by[.<concept>], where the bracketed elements are optional. The goal is to be as
unrestrictive as possible while distinguishing the target from enough prior
members. Thus, we start with the most general type relation (described-by), and
test increasingly specific concepts as range restrictions. If none of these relations
succeed in distinguishing the target, we specialize the relation to refer only to fillers
of a single cluster; and if this does not work, we add the attribute identifier as well.
The new relation is classified in the same ontology as the new concept.

d) Restrict a value filler . Replaces a numeric constraint in a value-relation role with a
more restrictive constraint.

e) Restrict a type filler . Replaces a type-relation role with a role with a more specific
type restriction.

f) Add a constraint between value fillers . One filler must be greater than, less than, or
equal to another.

g) Add a constraint between type fillers . One filler instance must be linked by a type
relation to another filler. The new constraint adds a described-by relation between
the fillers, if that suffices to distinguish the target from enough prior members.
Otherwise, it requires a more specific LxAy-described-by relation between the
fillers.

11

The new concept is named after the object that it distinguishes, in the form COBJxxxxx[s].
For convenience, in cases where the object has already been named, we add a letter that
gives the concept a unique name.

5) If the method chosen in (4) does not succeed in distinguishing the target object from
enough of the prior members, then, if the selected object has multiple least-general-
subsuming concepts, the same method is tried with another potential parent concept. If
the method fails for all the potential parents, then another method is tried, and so on
until some method succeeds.

Figure 8 illustrates concept specialization using method (f), by showing the call to the new-
concept function. The target instance is OBJ00175, the community is A1L123, the parent
concept is COBJ00135A, and the new element added to the parent’s definition is the LT
constraint between the values that fill the HAS-L5A1 and HAS-L2A2 roles, respectively.
Figure 9 show the concept definition that results from merging the new constraint with the
parent concept’s definition.

(NEW-CONCEPT 'COBJ00175 'A1L123
 :PARENTS '(COBJ00135A)
 :CONSTRAINTS '((LT HAS-L5A1 HAS-L2A2))
 :ANNOTATIONS '(CCM4-VAL-FILLERS-RESTRICTION))

Figure 8: Specializing a concept definition

A1L123:COBJ00175
 <ROLE: HAS-L2A2 NUMBER>
 <ROLE: DESCRIBED-BY.COBJ00001 COBJ00001>
 <ROLE: L5-DESCRIBED-BY.COBJ00022 COBJ00022>
 <ROLE: HAS-L5A1 NUMBER>
 <CONSTRAINT: LT (<RELATION: HAS-L2A2>) 3>
 <CONSTRAINT: LT (<RELATION: HAS-L5A1>) 3>
 <CONSTRAINT: LT (<RELATION: HAS-L5A1>) (<RELATION: HAS-L2A2>)>

Figure 9: A concept definition

Table 4 summarizes the parameters that control the generation of concepts. The actual
frequencies of concept definition using the alternative methods do not match the
parameters, because frequently most methods fail. The parameters can be adjusted, though,
to obtain roughly the desired proportions.

12

Table 5 describes the ontology structure produced for Experiment 15. Generating 70
concepts for each community, then thinning half of the concepts with children yields 1327
concepts. The typical (median) concept has three ancestors before reaching the generic
Service concept (counting its longest path to Service), one parent, two value-relation
roles and one type-relation role, and 50 members.

Table 5: Concept characteristics summary (1327 concepts, 10000 instances)
Characteristic Average Median Minimum Maximum
Concept depth 2.9 3 1 7
Number of parents 1.7 1 1 9
Number of roles 3.5 3 1 8
 value-relation roles (number fillers) 1.9 2 0 6
 type-relation roles (instance fillers) 1.6 1 0 7
Number of member instances 198.5 53 1 3940

35 percent of the concepts have children. 264 of the concepts are used as type-restrictions
in other concept definitions. The “members ratio” compares concepts’ number of member
instances to the number of members of each of its parents. Typically, specializing a concept
results in excluding 80 or 90 percent of the parents’ members.

Experiment 15 has a preponderance of value relations compared to type relations. In
Section 7, we present some results from Experiment 16, in which this relative proportion is
reversed. The typical concept in Experiment 16 is deeper and has more roles compared to
Experiment 15.

6 Measures of Description Compatibility
In this section, we define measures of description compatibility between pairs of concept
definitions. The functions that produce these measures vary with respect to their cost of
computation, and the knowledge of the domain that they require. We present eight
measures that we believe are interesting, out of a much larger number with which we
experimented. In Section 7, we compare the output of the compatibility functions against
SEMR, our measure of semantic overlap (Equation (2) in Section 3).

For presentation purposes, we organize the measures into three groups. Two
“foundational” functions are inexpensive and universally applicable. Both utilize inheritance
links in the ontologies, and one, SHRR (see Table 6) also considers the structure of the
concept definitions. SHRR is surprisingly effective, as we will see in Section 7.

Table 4: Parameters controlling concept generation

Parameter Settings for Experiment 15
Probability of picking a target object that is not already “named” 0.5
Relative probability of picking previously named objects from objects
named by the current community, rather than from objects named by
the current community’s parent (also used to bias prioritization of
least-general-subsuming-concepts as potential parents).

2.0

The probability of selecting each subclassing method for defining new
concepts.

.08 .50 .08 .10 .08 .08 .08

The percentage of prior members that must be distinguished from the
target object.

60%

The percentage of concepts that have children that are subsequently
deleted from the ontologies (the “thinning” percentage).

50%

13

The “matching-based” functions build and evaluate one-to-one correspondences between
elements of concept definitions represented as graphs. These measures require more
calculation compared to the foundational measures. The advantage of matchings is that they
support analyses of both similarities and differences in the syntactic structure of the
compared definitions.

The “probabilistic” functions require domain-specific knowledge of the semantics of the
elements of the concept definitions, which they use to calculate the likelihood that arbitrary
instances in the domain will satisfy certain definitions. Thus, we characterize these
functions as semantics laden. One of the probabilistic functions is also matching-based. In
our simple simulation domain, we achieve very strong results with these functions (see
Section 7). PSHR and PMHR are practical in the sense that, we believe, it will be possible
to calculate them in real-world systems. The third (PCIR) makes unrealistic assumptions
about the agreement of concept-definition semantics across differentiated ontologies. We
include it for theoretical reasons because its derivation directly parallels our calculation of
semantic overlap.

Table 6: Summary of description compatibility measures

None of our compatibility measures exploit concept or relation names that happen to be the
same in different ontologies. We give concepts unique names for convenience; because our
relations may have the same name, we must always specify a context in order to access
them. Systems that maintain multiple ontologies usually define distinct namespaces by
concatenating the ontology name with the concept or relation name (as in Stanford’s library
of Ontolingua ontologies (Farquhar, Fikes et al. 1996)).

Table 6 summarizes the measures that we define in detail in the remainder of the section.
The measure names are capitalized in association with their abbreviations, which we
employ extensively. All of the abbreviations terminate with an “R” to distinguish these
measures from their symmetric counterparts. These measures are appropriate for the
request/recommendation scenario pictured in Figure 1; the “R” stands for
“Recommendation”. They all have some factor associated with either the source or the
target concept, which in the symmetric versions of the compatibility measures is associated
with both the source and the target.

Measure name Measure basis
Requires
matching

Semantics-
laden

Least-general Common
Subsumer (LCSR)

Distance to least-general subsuming
concept

No No

SHared Rooted roles (SHRR) Percent of shared rooted roles No No
eXponentiated DIFferences
(XDIFR)

Exponentiated unmatched edges Yes No

Rooted ISOmorphism (RISOR) Matching edges weighted by distance
from root

Yes A little

Rooted Isomorphism with
Partial Differences (RIPDR)

Rooted match edge similarity,
unmatched partial edge differences

Yes A little

Probabilistic Shared-roles
Heuristic (PSHR)

Conjoined parents No Yes

Probabilistic Matching Heuristic
(PMHR)

Matching structure Yes Yes

Probabilistic Conjoined
Intersection (PCIR)

Conjoined concepts No Yes
(unrealistic)

14

6 .1 Foundational Measures

Our first measure of description compatibility is a function of path distance to the most
proximate concept that subsumes both of the concepts being compared (LCSR, for “Least
Common Subsumer”). Let L1,...Ln ∈ P be the set of concepts that subsume C and D. Let
|p(C, Li)| be the number of links necessary to transverse the graph of inheritance links from
C to Li. Then

LCSR(C, D) = λ mini (|p(C, Li)|) , (4)

where λ∈ (0, 1) is an “attenuation factor” that models the expected percentage of instances
in the denotation of a parent concept that are also members of a child’s concept. In our
simulations, λ is set to be the same as the percentage of prior members that must be
distinguished from the target object (Table 4).

Measures of similarity based on path distance in a graph have a long history in artificial
intelligence, dating back to spreading activation in semantic nets as proposed by Quillian
(Quillian 1968). Our LCSR measure is more disciplined than spreading activation in the
sense that all of the links must be inheritance relations, and this is generally true of the use
of path-distance measures today (as in Bright et. al. (Bright, Hurson et al. 1994)).

Nevertheless, path-distance measures are fragile because they are sensitive to the degree of
detail in the ontological structure. For example, defining the new concept B1 in Figure 3
decreases LCSR(A1, A2), although the meaning of these concepts has not changed. In our
simulations, LCSR is quite accurate if we set the “thinning percentage” (Table 4) to be
zero, since most concept specializations add a single role or constraint, but loses accuracy
as the thinning percentage increases.

Our next measure quantifies the portion of definitional structure that is inherited from
shared concepts (SHRR for “SHared Rooted roles”). “Rooted” roles are roles of the
concepts being compared, as opposed to roles of other concepts in the definitions of the
concepts being compared (the term comes from the representation of concepts as
description graphs, although these graphs are not required to calculate SHRR). Let L1,...Ln
∈ P’ be the set of most specific concepts that subsume C and D, i.e., there is no i, j such
that Li subsumes Lj. Let R(Li) be the set of roles (relation plus filler) of Li, and let R’ ⊆
{R(L1) ∪ ... ∪ R(Ln)} such that no role in R’ subsumes another. Let |R’| be the number of
roles in R’, and let |RC| be the number of roles in the source concept C. Then

SHRR(C, D) = |R’| / |RC| . (5)

SHRR is especially interesting to us because it best captures the leverage provided by the
assumption of differentiated ontologies. Like LCSR, it uses inheritance links to identify
concepts that are the ancestors of both the source and target concepts. Unlike LCSR,
SHRR also utilizes the definitions of the source and target concepts, and is thus a far more
robust measure.

6 .2 Matching-based Measures

The foundational measures identify correspondences between concept definitions due to
structure inherited from common parents. Matching-based measures also identify
correspondences between definitional structure that develops separately in differentiated
ontologies. We call this additional isomorphism identified by matching serendipitous
correspondence.

In this section, we first describe how we construct matchings. We then define several
measures of syntactic correspondence that evaluate syntactic similarities and differences
revealed by the matchings.

15

6 . 2 . 1 Building Matchings

A matching is a one-to-one correspondence between the concepts and relations of two
concept definitions. To build matchings, we represent the concept definitions as directed
graphs. This approach has two advantages: the algorithms are independent of the
idiosyncrasies of particular concept representation languages, and we can utilize the large
body of research on manipulating graphs.

We call the problem of finding an optimal matching Rooted Weighted-Edge-Match Graph
Matching (RWEMGM). This problem is a restricted version of Weighted-Edge-Match
Graph Matching (WEMGM) (Gold and Rangarajan 1996), which has been the focus of
substantial research in the field of computational vision. Our solution for RWMGM,
however, is most similar to algorithms for constructing analogies (Gentner 1990).

We represent concepts as description graphs (Borgida and Patel-Schneider 1994; Cohen
and Hirsh 1994). We define the description graph for a concept C as:

G(C) = < V, E, v0 , k > ,

where

• V is a set of vertices. Each vertex, v∈ V, is associated with a concept d, v = < d >.

• E is a set of edges. Each edge, e∈ E, is described as e = < vi, r, vj >, where vi, vj∈ V and
r is a relation.

• v0 is the vertex associated with the concept C, called the “root” of the description graph
G.

• k is the maximum length of a path of edges from the root v0 to any other vertex.

For every concept C and maximum path length k there is a unique description graph. To
produce the graph we create a root node for the concept C, add edges for each role and
constraint on role fillers, then recursively add subgraphs for each type restriction concept.
If the path length from the root to a vertex reaches k, we halt the recursion. Figure 10
illustrates the description graph for the concept defined in Figure 9, COBJ00175, which
is typical for our experiments with respect to size and complexity. The figure does not
show inverse relations, which are present in the graph for every relation.

NUMBER

3

COBJ01427

NUMBER
NUMBER

NUMBER

COBJ00022

COBJ00001

NUMBER

COBJ00175
HAS-L2A2

HAS-L5A1

L1-DESCRIBED-
BY.COBJ01427

HAS-L5A1
HAS-L1A1

LT

3LT

GT

LT
LT

3
3

HAS-L4A2

3

GT

DESCRIBED-
BY.COBJ00001

L5-DESCRIBED-
BY.COBJ00022

Figure 10: A description graph

16

We represent matchings using graphs of matches, where a match is a pairing of a concept
(or relation) from the source graph with a concept (relation) from the target graph. We
define a matching of two concepts as:

M(C, D) = < VM, EM, vM, G(C), G(D) >

• VM is a set of matches between vertices. Let H(C) and H(D) be subgraphs of G(C) and
G(D), respectively. Let BV be a bijection between vertices, BV: VH(C)→VH(D). Then VM
= {v::BV(v), for all v∈ VH(C) }, where “::” indicates a match.

• EM is a set of matches between edges. Let BE be a bijection between edges,
BE: EH(C)→EH(D). EM = {e::BE(e), for all e∈ EH(C) }.

• vM is the root match, v0::BV(v0).

• G(C) and G(D) are description graphs for the source and target concepts. We include
these in the formal definition of matchings because analyses of differences between
concepts are interesting both for elements that are matched, and those that are not
matched.

Figure 11 illustrates a graph of matches in the matching between COBJ00175 and another
concept, COBJ00223C. Again, inverse relations are not shown. This matching is also
typical of matchings built in our simulation experiments.

3
:: 3

NUMBER
:: NUMBER

COBJ00001
:: COBJ00038

COBJ00175
:: COBJ00223C

HAS-L5A1
:: HAS-L5A1

LT
:: LT

DESCRIBED-BY.COBJ00001
:: DESCRIBED-BY.COBJ00038

3
:: 3

NUMBER
:: NUMBER

HAS-L1A1
:: HAS-L1A1

LT
:: LT

Figure 11: A graph of matches in a matching

The WEMGM (Weighted-Edge-Match Graph Matching) problem takes two graphs whose
edges are more or less compatible with edges from the other graph, and determines the
optimal one-to-one correspondence to maximize the total compatibility of matched edges
(Gold and Rangarajan 1996). This problem is NP-complete, which can be proved by
transformation from the Largest Common Subgraph problem (Garey and Johnson 1979).
Given an instance of Largest Common Subgraph, let all edge compatibilities have weight =
1, and require total edge compatibility equal to the required number of isomorphic edges in
the original. Many polynomial-time approximation algorithms exist for WEMGM, however
(see Rangarajan (Rangarajan 1996) for a particularly comprehensive list).

Thinking that we would avoid reinventing the wheel, we used the “Graduated Assignment”
algorithm (Gold and Rangarajan 1996) to generate sets of “soft” vertex matches (matches in
[0,1] rather than {0, 1}), and the Hungarian method for maximizing network flow to
convert the soft matches into discrete matches (Lawler 1976). Unfortunately, this approach
has two drawbacks: graduated assignment is slow, and occasionally the resulting matches
are not what we call “rooted”.

17

A rooted graph of matches includes the root match, and is connected: every vertex can be
reached by a path of edges from every other vertex. To motivate the need for rooted
graphs, compare two edges constructed with natural-language concepts and relations:

E1: < BARBARA DRINKS WATER >

and

E2: < CHARLES SWIMS-IN WATER > .

The definition of “water” might expand to a sizable description graph containing all sorts of
knowledge about water, but if we are interested in comparing Barbara and Charles, we
must also consider their relation to water.

We define RWEMGM (Rooted Weighted-Edge-Match Graph Matching) as a decision
problem in Figure 12. Condition (1) enforces isomorphism, condition (2) ensures that the
graph of matches is rooted, and condition (3) seeks to maximize total compatibility.
Condition (4) can be used to represent a preference for relatively compact solutions (more
edges per vertex), which often have greater face validity as matchings.

 Problem Instance
Graphs G=(V1, E1), H=(V2, E2).
A root match (r1∈ V1, r2∈ V2).
Non-negative real weights wij for every member of M=E1 × E2.
Positive real T.
Positive integer N.

 Question
Do there exist subsets V1’⊆ V1, E1’⊆ E1, V2’⊆ V2, E2’⊆ E2, such that:
(1) the subgraphs G’=(V1’, E1’) and H’=(V2’, E2’) are isomorphic: |V1’| = |V2’|, |E1’| =

|E2’|, and there exists a bijection f:V1’→ V2’ such that (u,v)∈ E1’ iff (f(u),f(v))∈ E2’.
(2) r1∈ V1’, r2∈ V2’, f:r1→ r2, and G’ and H’ are each connected graphs.
(3) W ≥ T, where W is the total sum of weights of the set P’⊆ M, P’={(u,v), (f(u),f(v))}

for all (u,v)∈ E1’.
(4) |V1’| < N.

Figure 12: Rooted Weighted-Edge-Match Graph Matching (RWEMGM)

RWEMGM is also NP-complete, which can be proved by transformation from WEMGM.
We provide a sketch. Given an instance of WEMGM, generate an instance of RWEMGM
for every possible root match, (r1, r2) ∈ V1 × V2. In the source and target graphs of each
instance of RWEMGM, connect every vertex to the root if it is not already connected to the
root. Let all of the compatibilities for these additional edges equal zero. WEMGM will have
a solution if and only if one of the RWEMGM instances has a solution.

We use a greedy algorithm to produce high quality, but not necessarily optimal rooted
matchings. This algorithm starts with the root match, and repeatedly extends the matching
by adding the most-compatible edge match whose edges are incident on a match currently
in the matching. If the new edge conflicts with other reachable edges, the matching is
cloned and each inconsistent edge is added to one of the copies. Tractability is maintained
by limiting the number of alternative matchings.

Figure 13 provides pseudocode for our greedy matching algorithm, including a key that
describes the input arguments and the pseudocode variables. In the pseudocode, two edges
are compatible if the function used to assign edge compatibility weights returns a positive
weight. Two edges are consistent if their matches do not violate the requirement for a one-

18

to-one correspondence between vertices of the matched subsets of the source and target
graphs.

Greedy matching’s time complexity is O(|E|b2), where |E| is the number of edges in the
smaller of G1 and G2, and b is the largest number of edges incident on a vertex in either
G1 or G2. Our WEMGM approximation algorithm is O(|E|2). On a Sun UltraSparc (143
Mhz) running compiled Allegro Lisp, building 20,000 matchings with the WEMGM
algorithm requires 60 hours. An equivalent run using greedy matching with a maximum of
20 alternative matchings requires 20 minutes.

Greedy matching is also a more accurate predictor of semantic overlap than WEMGM. In
more than half of all comparisons, greedy matching identifies more edges connected to the
root than WEMGM, and the reverse is true for less than one percent of comparisons. The
benefit is not dramatic, however. Apparently WEMGM does identify the matches that
matter most.

Greedy-matching (G1, G2, CI, f-eval-M, max-M)
initialize A := { (matching M with V={root match}, Q=Possible-extensions(M, root match, CI)) }
do until Q is empty for all M in A

for each M with non-empty Q
rank edges in Q, pick the best (B)
identify edges in Q inconsistent with B (I)

replace M with |I| matchings: for each edge e∈ I, Add-edge-match(M, e, CI)
rank matchings in A with f-eval-M; drop any with rank > max-M

return the most highly ranked matching

Possible-extensions (M, m, CI)
initialize X := ∅
for every edge (es) out of the source concept in match m

for every edge (et) out of the target concept in match m
if es and et are compatible and consistent with other edge-matches in M

X := X ∪ {es::et}
return X

Add-edge-match(M, e, CI)
if the second match in e (v) is new, add v to V
remove edges inconsistent with e from Q
add Possible-extensions (M, v, CI) to Q
add e to E
return M

 Key
G1, G2: The source and target description graphs
CI: “Compatibility Instructions”, including contexts for accessing concepts and relations in

the source and target graphs, and functions for evaluating edge, concept, and relation
compatibility.

f-eval-M: A function for evaluating the strength of a matching
max-M: The maximum number of alternative matchings
A: The set of alternative matchings
M: A matching in A
V: The set of vertices in a matching M
E: The set of edges in a matching M
Q: A queue of edge-matches that may be added to a matching M

Figure 13: Greedy matching algorithm

19

The functions used to assign edge compatibilities determine the results of the matching
algorithm. These include functions for estimating edge compatibility, concept compatibility,
and relation compatibility.

We calculate the compatibility score of a non-numeric edge-match, S(em), as:

S(em) = S(rm) * S(v2m) (6)

where S(rm) is the compatibility score of the relation match, and S(v2m) is the
compatibility score of the second vertex match. The edge-match includes two vertex
matches and the relation match. The compatibility of the first vertex match is not scored
because this match is already part of the matching. Equation (6) is also appropriate when
evaluating (rather than constructing) matchings, as long as evaluation proceeds outward
from the root.

We evaluate compatibility between edges that represent numeric constraints as:

S(ne) = |D(ne1) ∩ D(ne2)| / |D(ne1) ∪ D(ne2)| , (7)

where D(ne1) is the domain of finite values that satisfy the numeric constraint in the source
concept, and D(ne2) is the same for the target concept.

To estimate concept compatibility, we can use any of our description-compatibility
measures. In Section 7, we will compare matchings built using the LCSR, SHRR, RISOR,
and PCIR measures introduced in Table 6.

We estimate relation compatibility with a modified version of the LCSR compatibility
measure. First, we do not permit matches between relations that are specific to different
clusters. This modification of the standard LCSR algorithm compensates for inaccurate
modeling of our experimental domains by the ontological structure. For example, the
relations HAS-L2 and HAS-L3 are both direct children of the HAS relation, and thus,
according to LCSR, are highly compatible relations. In our simulations, however, attribute
values are not correlated across clusters. It is therefore undesirable to identify
correspondences across clusters, since none exist. Second, the relation-compatibility
function adjusts the LCSR measure to encourage matches that specify both attribute and
cluster over those that specify cluster only.

Finally, we use a very simple function to rank alternative matchings during greedy
matching: we sum the compatibilities of the edge-matches in the matching. It would also be
possible to use more elaborate evaluation functions for this purpose, including analogs of
all of the measures in Table 6.

6 . 2 . 2 Evaluating Matchings

The simplest of the matching-based measures focuses on syntactic differences between the
concept definitions: in particular, on those edges in the source and target that are not
included in the matching. Each unmatched edge diminishes the probability that an arbitrary
instance will be a member of both the source and target concept:

XDIFR(C, D) = γ |E(G(C))| - |E(M(C, D))| (8)

where E(G(C)) is the set of edges in the description graph G for concept C, E(M(C, D)) is
the set of edges in the matching between C and D, and γ∈ (0, 1) is a constant chosen
empirically to maximize the association of XDIFR with SEMR in a sample of concept
comparisons. γ is exponentiated by the number of edges in the source and the target graphs
that are not matched.

The next matching-based measure evaluates correspondences between the structure of the
source and target definitions. The RISOR (for “Rooted ISOmorphism”) measure focuses

20

on syntactic similarities, but also models certain differences that can be identified in the
context of the similarities:

RISOR(C, D) = (Σe W(e)S(e)) * Q(M(C, D)) / |E(G(C))| . (9)

where e is an edge match between concepts C and D, S(e) is the evaluation score of the
edge match (see Equation 6), and W(e) is a weighting based on its proximity to the root
match. The intuition is that the closer an edge match is to the root match, the more
important it is as far as indicating semantic overlap. Q is a function that identifies and
penalizes inconsistent numeric constraints. The sum of the weighted edge-match scores is
multiplied by the penalty, and divided by the number of edges in the source description
graph G(C).

Edge evaluations are weighted by their proximity to the root match, taking into account that
multiple paths may connect an edge to the root:

W(e) = min (1, Σp∈ H(r,v1(e)) (Πe∈ pS(e))α) (10)

where each p is a member of the set of paths H from the root r to v1(e), the first match of
the edge e; e ∈ p are the edges in each path, and α is a parameter that adjusts the degree to
which proximity to the root affects the evaluation. In RISOR, α = 1.

The function Q penalizes matchings where inconsistent numeric constraints are put into
correspondence. For example, if two concepts are matched and the first has a filler that
must be greater than three, while the second has a corresponding filler that must be less
than three, then (to the extent that the two fillers must correspond) no instances will be
members of the intersection. Q is a function of the matching between C and D, because it is
the one-to-one correspondence between the elements of C and D’s definitions that permits
the inconsistency to be identified:

Q(M(C, D)) = Πv∈ Vq(M(C, D)) min (1, Σp∈ H(r,v) (Πe∈ pS(e))α) (11)

where Vq(M(C, D)) is the set of node matches in the matching M(C, D) where there is a
contradiction among the numeric constraints incident on the match. The penalty is weighted
by the proximity of the offending node match to the root in the same manner as are edge
matches in Equation (10).

We could calculate any number of heuristic measures similar to RISOR. For example,
setting α = 0 in Equation (10) produces an unweighted estimate (that performs very
poorly); other values such as α = 0.75 or α = 2 produce estimates that are slightly less
accurate than RISOR. Dividing by the number of edges in the source concept (the
denominator in Equation (9)) accounts for differences in definitional structure, and has the
advantage that it does not introduce a free parameter such as γ in Equation (8). It makes
more sense, however, to use an exponentiated factor to represent differences, since each
additional unshared edge contributes proportionately, on average, to diminish the
probability of common member instances.

Our objective when designing the next matching-based measure of syntactic
correspondence was to squeeze as much information out of the matchings as possible.
RIPDR (“Rooted Isomorphism with Partial Differences”) combines the weighted rooted
numerator of RISOR, including the penalty function, with an exponentiated factor to
represent unmatched edges, with the added twist that partially matched edges are included
in the exponentiated factor:

 RIPDR = (Σe W(e)S(e)) * Q(M(C, D)) * γ |E(G(C))| - Σi=0to3βi|Ei(M(C, D))|
 . (12)

21

γ, W(e), S(e), and Q are defined as in Equations (8), (10), (6), and (11), respectively. The
Ei(M(C,D)) include edge matches that include from zero to three perfect concept and
relation matches, and β0, β1, β2, and β3 are 0.25, 0.50, 0.75, and 1.0, respectively.

We consider RIPDR to be our rococo measure. It is certainly possible to be even fancier,
but the return for such efforts rapidly diminishes.

6 .3 Probabilistic Measures

The probabilistic compatibility measures require knowledge of the semantics of relations in
concept definitions and attribute values in the domain. Using this knowledge, we can
estimate the probability that an arbitrary instance is a member of a concept. This capability
can be utilized in several interesting ways to construct potent measures of syntactic
correspondence.

The procedure for estimating the probability of concept membership represents the concept
as a description graph without cycles, then adjusts the estimate for each edge in the graph,
and for each edge excluded from the graph to prevent cycles. In our simulations, for
example, if a graph includes the relation HAS-L2A3, we multiply the estimated probability
by 3/5 because that percentage of objects have values in cluster 2. For the edge <NUMBER
GT 3> we multiply by 14/45 because that percentage of values are greater than 3.

More generally, we exploit the following knowledge about the generation of objects and
concepts:

• Knowledge of the structure of objects and concepts:

• That all attributes in 3 of 5 clusters have values.

• That each attribute can have only one filler.

• That cycles in concept description graphs include exactly three relations.

• Empirical data on:

• The frequencies of values.

• The frequencies of values conditioned on known values of other attributes within
a cluster.

With this knowledge, our estimates of the probability of concept membership, ˆ ()P j C∈ ,
achieve very strong correlation with empirical probabilities of concept membership:
r(ˆ ()P j C∈ , |CI| / |∆|) ≈ 0.90. (The correlation is often higher, but can be lower depending
on the sample of concepts). In realistic systems, we doubt that it will be possible to
calculate concept membership probabilities with equal accuracy, because our simulated
universe is far more orderly than the real world, and we know how it is constructed. It may
be possible, however, to construct useful semantic-laden estimates in realistic systems,
given:

• Ontologies where relations are defined in association with rules for calculating their
impact on membership probability; both independently, and when occurring with other
relations.

• A model of the joint-probability function of the occurrence of terminal attribute values
(for example, a Bayes net).

22

We define our first probabilistic compatibility measure, PSHR for “Probabilistic Shared-
role Heuristic”, as:

PSHR C D P C P A(,) ˆ () / ˆ ()= (13)

where A is a concept defined as the conjunction of all concepts that are ancestors of both
concepts C and D. Let L1,...Ln ∈ P’ be the set of concepts that subsume C and D, with
A≡(L1 AND L2 ... AND Li). Figure 14’s Venn diagram illustrates this calculation. It may
not seem intuitive when compared to SEMR (Equation 2). Consider, however, that the
more shared structure inherited by C and D, the more closely AI will encircle CI and DI; and
in the limiting case where C = D, A = C will also be true.

CI

universe ∆
recommended service
description D

request service
description C

DI

AI

concept defined by
conjoining shared
ancestors of C and D

 Figure 14: The semantic basis of PSHR

The next probabilistic compatibility measure is analogous to PSHR, but uses a matching to
identify correspondences between the source and target concepts. We also include penalties
for inconsistent numeric constraints (Q, as defined by Equation (11)), since these are easily
derived from a matching and have a significant effect (see Section 7). Thus, PMHR, for
“Probabilistic Matching Heuristic” is defined as:

PMHR C D P C Q M C D P B(,) ˆ () * ((,)) / ˆ ()= (14)

where B is a description graph constructed from a matching M(C, D) where each node
match and relation match is converted to a concept-definition node or relation edge,
respectively. To collapse a matching graph to a description graph, we:

1. Convert each relation match to the least-general relation that subsumes the matched
relations. For numeric constraints, we construct a constraint whose range is the union
of the matched constraints. For other relation matches, we rise in the taxonomy of
relations until we reach a shared ancestor.

2. Convert each concept match to a node in the new graph. We do not need to generalize
matched concept definitions, because all information in the concept definitions is
present in the graph’s edges.

Compared to PSHR, PMHR includes both shared inherited structure and serendipitous
correspondence. Therefore, with very few exceptions ˆ () ˆ ()P B P A≤ , and if there is no
penalty (Q(M(C, D)) = 1), PMHR(C, D) ≥ PSHR(C, D). The few exceptions occur if a
match that is not inherited is preferred instead of an inherited match, such that the preferred
match must be generalized when the matching graph is collapsed to the description graph.
In these unusual cases, the generalized edge may diminish the concept membership
probability estimate less than the alternative inherited match that is incorporated into the
PSHR estimate.

Our final probabilistic compatibility measure is a translation of the definition for SEMR
(Equation 2). We define PCIR, “Probabilistic Conjoined-Intersection”, as:

23

PCIR C D P C D P D(,) ˆ () / ˆ ()= ∧ . (15)

where (C ∧ D) is a concept defined as the conjunction of C and D.

PCIR is an extremely accurate measure (see Section 7). Unfortunately, it is realistic only
for source and target concepts in the same ontology, because it is highly unlikely that any
model of the joint distribution of values, or rules for the interaction of relations, would be
available for attributes and relations defined in differentiated ontologies.

7 Results
This section reports the performance of the syntactic correspondence measures in
comparison to SEMR, the measure of semantic overlap appropriate for agent requests and
recommendations. We first present results that support our fundamental premise that
differentiated ontologies can support syntactic measures that are clearly associated with
semantic overlap. Second, we focus on the matching-based measures to determine if, how,
and when matchings contribute substantially to prediction accuracy. Finally, we analyze the
results in terms of agent requests and recommendations to investigate the potential
usefulness of description compatibility measures for guiding agent search for services.

Unless noted otherwise, these results are for Experiment 15 (see Section 5). This
experiment includes over 20,000 concept comparisons, generated for source and target
concepts from 42 pairs of differentiated ontologies. The set of ontology pairs is designed to
have a broad range of variation in the number and ratio of communities that are shared and
not shared. For each ontology pair, each concept in the source ontology is compared to
concepts in the target ontology that share at least some inherited definitional structure, in
accordance with Assumption (2) about differentiated ontologies (see Section 2). Matchings
are built with our greedy matching algorithm (Section 6.2), using SHRR as the concept
compatibility function, and with a maximum of five alternative matchings.

To reduce noise from small numbers, we accumulated membership and concept intersection
counts for 500,000 instances. This was accomplished by repeatedly repopulating the
simulation with new sets of instances and saving the counts to disk. To reduce noise
further, only comparisons where both the source and target concept have at least 50
instances are included, thus excluding approximately five percent of the comparisons.

In studies of naturally occurring data, the statistical significance of estimates is of central
interest, but this is not true here. All of the correlations in the following tables are highly
significant, typically to less than one tenth of one percent. In general, the number of digits
shown is limited for display purposes, rather than to indicate statistical precision. On the
other hand, we cannot measure the fidelity of the simulation with respect to the real world.
Thus, we disregard fine distinctions in the numbers, and concern ourselves only with the
most salient results.

7 .1 Differentiated ontologies support estimation of semantic
overlap

In this section, we describe the association between our measures of syntactic
correspondence and the SEMR semantic measure.

Table 7 lists the first three moments of the distributions of the semantic and syntactic
correspondence measures. Two observations are of interest. First, the mean SEMR is fairly
small, and the skew is strongly positive. This shows that most pairs of concepts are not
very similar. Typically, approximately six percent of the instances of a recommendation
also satisfy the request. Secondly, the distributions of XDIFR and the probabilistic

24

measures PSHR, PMHR and PCIR are quite similar to that of SEMR. This is appropriate,
since SEMR and XDIFR are also probabilistic. The other measures would need to be
transformed to approximate SEMR’s distribution.

Table 8 describes the relative performance of the syntactic correspondence measures with
two correlation statistics:

• Pearson’s: the standard measure of correlation based on sums of squared distance from
the means, and

• Spearman’s: which applies Pearson’s equation to the ranks of the observed data
(Mendenhall and Scheaffer 1973).

Unlike Pearson’s correlation, ranked correlation is not sensitive to extreme data points.
Figure 15 demonstrates why ranked correlation is more appropriate for our data. Figure
15a show a scatterplot of comparisons located by SEMR and XDIFR. The slope of the
straight linear regression line equals Pearson’s correlation, but the data clearly are not
linear, and the linear regression is often distant from the curved local regression line.
Compared to RISOR, which is plotted in Figure 15b, XDIFR’s Pearson correlation is
higher, but its ranked correlation is much lower. Therefore, although the Pearson’s
correlations are usually larger, we will use ranked correlations for all subsequent analyses.

Table 7: Distributions of the semantic and syntactic correspondence measures

N=21,815
Method Mean

Standard
deviation Skew

SEMR .059 .155 4.45

LCSR .473 .153 0.13
SHRR .332 .152 2.00
XDIFR .051 .161 4.94
RISOR .128 .107 1.18
RIPDR .105 .466 8.83
PSHR .063 .141 4.89
PMHR .066 .148 4.56
PCIR .059 .155 4.42

Table 8: Accuracy of the syntactic correspondence measures

N=21,815
Method

Correlation
with SEMR

Ranked
correlation

LCSR 0.413 0.213
SHRR 0.635 0.380
XDIFR 0.718 0.176
RISOR 0.573 0.485
RIPDR 0.726 0.426
PSHR 0.892 0.559
PMHR 0.952 0.706
PCIR 0.989 0.963

25

(a) (b)

Figure 15: Scatterplots of XDIFR vs. SEMR (a) and RISOR vs. SEMR (b)

Focusing on the ranked correlations in Table 8, we observe that LCSR is fairly weak,
SHRR is stronger, the matching-based measures that identify definition isomorphism are
yet stronger, and the probabilistic measures are quite strong.

The correlation between SHRR and SEMR is a succinct summarization of the relationship
between differentiated ontologies and estimating semantic overlap. The greater the
proportion of shared inherited structure compared to all definitional structure, the greater
the expected semantic overlap. Figure 16 shows a second-order effect: if samples of
comparisons are filtered by a test for shared inherited structure, there is a noticeable
increase in the predictive accuracy of the compatibility measures. The filter test used for this
figure, NSHRE (Number of SHared Rooted Edges) is similar to the SHRR measure, but
includes inherited constraints as well as roles, and does not divide by the source’s rooted
roles as in Equation (5) (SHRR does not include constraints because these are not
necessarily linked directly to the root). The increase in predictive accuracy occurs for
NSHRE >= 3. The increase persists even with the removal of the significant minority of
cases where the request subsumes the recommendation (SEMR = 1).

Share d root e d role s and const raint s
(num cases in par ent heses)

0

0 .2

0 .4

0 .6

0 .8

1

1 2 3 4 5

LCS

SHRR

XDIFR

RISOR

RIPDR

PSHR

PMHR

PCIR

(21815) (14263) (2188) (849) (168)

Ranke d
corre lat ion
wit h SEMR

Figure 16: Moderate increase in accuracy with increasing shared inherited structure

SEMR
0 1

0

1

XDIFR

SEMR

RISOR

0 1
0

0.6

26

7 .2 Matchings can increase prediction accuracy

To evaluate the contribution of matchings to prediction accuracy, we need to control for
information utilized by the compatibility measures apart from the matchings. Thus, we
compare RISOR to SHRR, and PMHR to PSHR. Table 9 shows that the matching-based
measures do add significant accuracy, by predicting a ranked SEMR with a two step linear
regression, and testing the increase in explained variance.

Table 9: Significant improvement in prediction of ranked SEMR using matchings

Independent
variables in a two-
step regression

Variance explained
by the model
(R square)

Change in F
statistic
(df 1, 21812)

Change level of
significance

SHRRK .144
with RISORK .261 3442 0.000
PSHRK .312
with PMHRK .498 8106 0.000

The source of the increase in predictive accuracy in this experiment, however, is almost
entirely the identification of inconsistent numeric constraints (Equation 11). Table 10
includes measures that are versions of RISOR and PMHR without the penalty Q
(NPRISOR and NPPMHR, respectively), and the correlations for these measures are less
strong than for their non-matching-based counterparts. We need to make two points in this
regard, however. Firstly, without Q, matches between nodes with inconsistent constraints
actually increase NPRISOR and NPPMHR, thus reducing the accuracy of these measures.
Secondly and most importantly, the identification of positive correspondences in matchings
enables subsequent identification of differences. Thus, it is appropriate that the matching-
based measures include Q, whereas the non-matching measures do not.

Table 10: Ranked correlations to SEMR with and without penalties for inconsistent
constraints

Semantics-free SHRR RISOR NPRISOR
.380 .485 .166

Semantics-laden PSHR PMHR NPPMHR
.559 .706 .537

We anticipated that the high correlations between attribute values in our simulations would
be an important source of order that could be exploited by matchings. This turned out not to
be the case, primarily because less than one in five matchings includes a match between
different attributes. For matchings that do match different attributes, the value correlations
are important for measures that properly model these correspondences. Table 11 shows the
association of RISOR to SEMR for four samples that vary by the cases included, and the
covariance of attribute values in the universe of objects. When there is strong covariance of
attribute values within clusters, RISOR retains predictive accuracy for cases that include
matches across attributes, but when attribute values are independent it loses most of its
predictive power. (There are fewer cases in the independent attributes column because we
classified only 200,000 thousand instances for this experiment, causing more cases to be
excluded for small numbers.)

27

Counter to our intuition, an equivalent table for PMHR would show that this measure is
actually slightly more accurate when attribute values are independent. To understand this
requires intimate knowledge of the way PMHR handles matches across different attributes:
it generalizes these matches to attribute-independent HAS-Lx roles, with the effect of
tending to underestimate semantic overlap in these cases. This results in better performance
for the independent values scenario, which tends to have smaller semantic overlaps.

The intricacies of the PMHR algorithm are less important than the following general lesson
about matchings. The benefit of matching depends on the accuracy of the system’s partly
explicit, partly implicit model of the domain. Elements of the model are declaratively
encoded in the ontological structure. Other elements are procedurally encoded in
compatibility functions for edges, concepts, and relations. For example, our top-level
ontology accurately models attribute value covariance because HAS-LxAy inherit from
HAS-Lx relations. When attribute values do not covary, this ontological model is
inaccurate, since it indicates correspondence when none exists. Similarly, the inheritance of
the HAS-Lx relations from HAS harms predictive accuracy because values do not covary
across clusters. We correct this modeling inaccuracy by prohibiting cross-cluster relation
matches in our relation compatibility function.

We illustrate this fundamental issue about modeling accuracy by comparing our results for
Experiment 15 to another experiment with a substantially different ontology structure (see
Table 12). In Experiment 16, there are proportionately far more type roles (in which the
fillers are other instances) rather than value roles (in which fillers are numbers). This
results in bigger description graphs, and a corresponding increase in the size of the average
matching graph. Experiment 16 also has fewer opportunities for matches subject to
contradictory constraints, only because such contradictions apply more frequently to value
matches in our experiments. This characteristic is not inherent to value matches—many
ontologies define concepts to be disjoint, which would yield the same effect for type
matches.

Table 11: The effect of attribute value covariance on the predictive accuracy of RISOR

Value covariance
(number of cases in parentheses)

Case selection
High (see
Table 3)

None

A l l .485 (21815) .435 (18151)
With different attributes matched .464 (4052) .203 (3091)

Table 12: Predictive accuracy in two experiments. 16’s definitions are bigger and
matches are subject to fewer contradictions.

Experiment 15
(N=21,815)

Experiment 16
(N=14,614)

Proportion of value roles / type roles 1.20 .57
Avg. edges in source concept 26.0 35.9
Avg. edges in matching 8.4 11.5
Avg. numeric constraint penalty .810 .926
Ranked correlation with SEMR:
 SHRR .380 .486
 RISOR .485 .478
 RIPDR .426 .489
 PSHR .559 .679
 PMHR .706 .762

28

Most of the findings that we have identified for Experiment 15 also hold for Experiment
16. In general, the compatibility measures have greater predictive accuracy in Experiment
16. In particular, SHRR improves most dramatically, to the point where it is more accurate
than RISOR; we believe this is due mostly to the relative infrequency of contradictions in
Experiment 16. In Experiment 15, the value added by matchings is due mostly to the
identification of inconsistencies; in Experiment 16 inconsistencies are much less prevalent,
thus the matching-based measures do not make the substantial gains that might otherwise
results from the increased size of concept description graphs in Experiment 16.

Fortunately, the accuracy of matching-based measures is quite robust with respect to the
concept compatibility function used to construct the matching. Table 13 shows correlations
to SEMR for all of the matching-based measures for experiments where the matchings are
constructed using alternative measures for judging the compatibility of matches between
concepts in the source and target definitions. Note that LCSR yields larger matchings than
does SHRR. This occurs because all pairs of concepts have a common parent (Service),
but frequently do not share inherited structure. Indeed, the LCSR matching-based measures
are slightly more accurate than the SHRR-based measures. We prefer to use SHRR
nevertheless, because it is far more robust than LCSR (see Section 6.1). RISOR and
SHRR-based measures are equally accurate, and since RISOR is more expensive SHRR is
better for this purpose. Even using PCIR to judge concept compatibility does not yield
much improvement. Although the matchings do depend on the concept compatibility
function, it appears that we find the matches that matter with any of our measures.

Table 13: Ranked correlations to SEMR for matching-based measures with alternative
measures used for matching construction

7 .3 Description compatibility can help agents find services

In this section, we frame our analysis in terms of the model of agent interaction pictured in
Figure 1. We call the set of comparisons that include a particular source concept a “search”.
For each search, we rank comparisons by their SEMR value to obtain an ordered set of
“candidate” services. We rank comparisons by each of the compatibility measures to obtain
ordered sets of “recommended” services. We then characterize the usefulness of the
compatibility measures in terms of the rankings of the recommended candidates. There are
several ways to rank comparisons that have equal values, and unfortunately, the method
used can have a substantial impact on the reported results. Therefore, we rank comparisons
in several ways and combine the results as needed to answer questions of practical interest.

Experiment 15 includes 490 searches, averaging 53 comparisons per search. Of these, we
drop searches with less than 10 comparisons, leaving 414 searches. Figure 17(a) shows
that the large majority of comparisons are quite poor, with very small semantic overlaps.
The distribution of semantic overlap for the best candidates is much more uniform, of
course, but the average semantic overlap is still only 0.3, and the median is lower.

Cases:
2 1 , 8 1 5

Measure used for matching construction and submatch
evaluation (mean matching edges in parentheses)

Evaluation
measure

LCSR
(9 .63)

SHRR
(8 .36)

RISOR
(9 .00)

PCIR
(10 .40)

XDIFR .204 .176 .187 .214
RISOR .493 .485 .480 .487
RIPDR .434 .426 .429 .435
PMHR .707 .706 .707 .708

29

0.0 0.5 1.0
SEMR

10000

20000

0.0 0.5 1.0
SEMR

40

80

(a) (b)

Figure 17: Histograms of SEMR, for all cases (a) and for best candidates (b)

Table 14 shows the probability of recommending the best candidate on the first try. These
probabilities are composed of two mutually exclusive parts: the probability that a single
comparison has the highest score and that it identifies the best candidate, and the probability
that a comparison randomly selected from those tied for first is the best candidate. From
this perspective, measures that have fewer ties do better. Thus, the probability of
recommending the best candidate on the first try is relatively low for SHRR and PSHR (see
Equations (5) and (13) to understand why these measures do not distinguish well between
comparisons within a search). The performance of RISOR and PMHR, on the other hand,
is quite strong: the agent has close to a 50% chance of trying the best candidate first using
RISOR, and substantially better than a 50% chance with PMHR. As usual, PCIR is the
strongest, but we are interested in this measure only as a point of reference since it requires
unrealistic assumptions.

Figure 18 shows that the relative accuracy of the first recommendation is quite stable if we
consider other candidates besides the best. The chance that the first PMHR
recommendation will be in the top 10% of ranked candidates is nearly 80%, and so on.
(The data series markers along the x axis identify the percent of comparisons that are the
best for each search, those within the 10th percentile, the 20th, and so on—because of ties,
the actual number of cases in each percentile interval varies).

Table 14: Probability of recommending the best candidate on the first try

N=414
searches

Prob. 1st try
is best

Prob. one
mapping is
a single best

Prob. single
best is best

Prob. tied
for best is
best

Average
number tied
for best

LCSR 0.172 0.167 0.797 0.047 26.00
SHRR 0.283 0.256 0.708 0.136 8.06
XDIFR 0.406 0.454 0.516 0.314 3.16
RISOR 0.467 0.495 0.600 0.337 2.79
RIPDR 0.453 0.514 0.577 0.321 2.52
PSHR 0.321 0.333 0.659 0.151 6.92
PMHR 0.595 0.510 0.739 0.446 2.54
PCIR 0.656 0.886 0.616 0.968 1.57

30

Pe rce nt of all case s ranke d by SEMR

Probabilit y
1 st t ry is
in t op x
pe rce nt of
SEMR

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1 .0

0 10 20 30 40 50

LCSR

SHRR

XDIFR

RISOR

RIPDR

PSHR

PMHR

PCIR

Figure 18: Cumulative probability that first recommendation is of certain accuracy

Figure 19 shows that the degree of semantic overlap available among the candidates is
associated with the probability that the top recommendation will be accurate. The dip in the
middle of the figure, which is especially pronounced for RISOR and RIPDR, is intriguing,
but should not be considered definitive: the number of searches in each percentile interval is
only about 40, and we do not see a similar dip for Experiment 16. We interpret Figure 19
as indicating that the accuracy of all of the measures is somewhat lower for searches with
only very poor candidates, higher for searches with a very strong (subsumed) candidate,
and more or less equally accurate searches with candidates in the range from fair to good.
(Note, the comparisons included in this figure include only those with a single best SEMR,
so the data is not entirely consistent with Figure 18).

SEMR of best candi dat e

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.2 0.4 0.6 0.8 1.0

LCSR

SHRR

XDIFR

RISOR

RIPDR

PSHR

PMHR

PCIR

Pr obabi l i t y
1 st t r y i s
i n t he t op
1 0 % of
candi dat es

Figure 19: Relation of expected quality of first recommendation to the semantic
overlap of the best candidate

Figure 20 describes the number of recommendations that an agent would expect to try until
finding the service that is actually the best candidate. The position of the first data-series
markers along the x axis identifies the percentage of comparisons tied for first according to
each measure; the next marker identifies the 10th percentile cutoff, the next the 20th, and so
on up to the 50th percentile (the actual number of cases in percentile intervals varies widely

31

for the different measures). Again, PMHR and RISOR are the best, excluding PCIR.
Trying approximately 15% of the recommendations gives the agent better than an 80%
chance of finding the best candidate with PMHR, and a 68% chance with RISOR.

Pe rce nt of case s in re comme ndat ion orde r

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90 100

LCSR

SHRR

XDIFR

RISOR

RIPDR

PSHR

PMHR

PCIR

Prob.
be st
SEMR is
include d

Figure 20: Cumulative probability of finding the best candidate

In Figure 16, we saw that filtering comparisons to require increased shared inherited
structure results in higher associations between the description compatibility measures and
semantic overlap. Such filtering would not be desirable for agents searching for services,
however, unless there are many satisfactory candidates, because of the undesirable
exclusion of candidates that are strong because of serendipitous correspondence. Figure 21
shows the distribution of SHRR for the best candidates; the mean is 0.5, and the median is
lower.

SHRR

0.0 1.00.5

60

120

Figure 21: Histogram of SHRR for best candidates

8 Discussion
Developing general techniques to achieve semantic interoperability is an extremely difficult
problem, profoundly rooted in the nature of the world and communication using symbols.
Therefore, there has been little research that tackles semantic heterogeneity straight on.
Some papers characterize the problem and explain why it is hard (Heiler 1995), or analyze
the ways in which semantic heterogeneity manifests in heterogeneous schemas (Kim and
Seo 1991) or ontologies (Visser, Jones et al. 1997). Many papers, especially in the area of
data integration, dance around the problem. A few authors make bold claims about the
power of their technique to overcome semantic heterogeneity, but these inevitably conceal

32

some requirement that the problem essentially be solved outside rather than within the
processing.

We divide this section into two parts. First, we review research that is related to ours in the
areas of agent communication and integration of heterogeneous data. Second, we offer a
critique of our own work.

8 .1 Related work

Several multi-agent systems have been developed where agents advertise by describing
their capabilities in ontological structures, enabling broker agents to recommend services to
match requests. In the InfoSleuth project at MCC (Bayardo, Bohrer et al. 1996; Nodine
and Unruh 1997) the ontologies are highly self-descriptive: the descriptions talk about
themselves as frames. This enables translation between alternative syntaxes that support
different types of reasoning. Term semantics, however, are assumed to be shared. In the
Service Markets Society of the University of Michigan Digital Library (Durfee, Mullen et
al. 1998), description logic is used to organize service descriptions in a subsumption
taxonomy. This helps brokers reason in sophisticated ways to match requests, and leads to
interesting system behavior. For example, agents automatically switch to services provided
by new agents if the new agents’ service descriptions match their requests more closely
than those of existing agents. Again, however, semantic heterogeneity is avoided; in this
case by assuming that all agents subscribe to the same set of ontologies. The Kraft project
(Pazzaglia and Embury 1998) uses ontologies that focus on constraints. Current work has
focused on characterizing the problem of semantic heterogeneity (Visser, Jones et al. 1997)
rather than solving it.

Most research on the integration of heterogeneous data skirts the issue of semantic
heterogeneity, although the titles of some papers suggest a more direct confrontation. For
example, Milo and Zohar (Milo and Zohar 1998) describe a system to semi-automate the
generation of wrappers that translate queries from one schema to another. Knowledge of
term semantics, however, must be embedded in the rules that drive matching between the
schemas. In the SIMS project (Ambite and Knoblock 1995; Knoblock and Ambite 1997),
every database is represented by an agent that models its data with a description logic
ontology, that can be mapped using “query reformulation operators” to ontologies that
model databases represented by other agents. Again, knowledge of term semantics is
embedded in the initial ontological models and in the reformulation operators.

Some research does address semantic heterogeneity directly. Li (Li 1995) identifies
similarities between attributes from two schemas using neural networks. He runs a
clustering algorithm on the attributes of records from database A, trains a neural net to learn
the clusters, then runs records from database B through the network and sees how well it is
able to cluster the data. Li does not describe his “similarity determination” algorithm.

Lehmann and Cohn (Lehmann and Cohn 1994) develop an “EGG/YOLK reliability
hierarchy” that characterizes compatibility between ontological concept definitions. They
assume that concept definitions (eggs) include secondary, more specialized definitions for
typical instances (yolks). The eggs and yolks of two concepts can overlap in 42 different
ways, which the authors order by their reliability in an exceedingly elaborate and elegant
way. The authors do not address how a system can identify the egg/yolk configuration of a
pair of concepts that use different vocabulary.

Campbell and Shapiro describe an agent that mediates between agents that subscribe to
different ontologies (Campbell and Shapiro 1995). They assume that the ontologies share
some concepts. This form of overlap is not an adequate basis for mapping on its own, so
their mediating agent engages in sustained dialog with the agent using the destination
ontology, in which the mediator questions the user agent about words in the source

33

description. It is not clear, however, whether or how much such dialog can help: “In our
informal experiments to date, we have discovered that the user must almost know a priori
the classification of sibling words in the destination synset” (ibid. p. 8).

Bright, Hurson, and Paksad (Bright, Hurson et al. 1994) use a thesaurus to automate
generation of a global schema from local database schemas. Then, they estimate similarity
between elements of user queries expressed in the global schema to attributes in local
schemas, thus supporting a form of imprecise query service. Today, they could use
Wordnet (Miller 1990) instead of the common thesaurus. Or, if a formal ontology was
available, they could use the measures of description compatibility described in this paper,
rather than their “semantic-distance metric” based on path distance, which is an additive
version of our LCSR measure.

Kashyap and Sheth (Kashyap and Sheth 1996), like us, seek to describe the similarities
and differences between intensional definitions of two concepts (which they call “objects”).
Their “semantic proximity” is defined by a tuple, including:

• the context of comparison—which they define most closely as an attribute/value space,

• the objects’ domains—lists of their potential values,

• a correspondences between the domains (called an “abstraction/mapping”), and

• the objects’ states—their current extensions in the respective databases.

This structure then enables a review of the many forms of semantic heterogeneity, and
development of a set of rules for applying operations that transform one object to the other.
This work, however, is theoretical in nature; it is hard to see how one might quantify their
semantic proximity to enable a system to make decisions.

Our matching algorithm is inspired most directly by Artificial-Intelligence research in
analogy. In most of this research the things being compared are represented as graphs, and
similarities are identified as mappings between elements of the graphs (see Owen (Owen
1990) for a lucid overview). Historically, greedy matching was adapted from Gentner’s
“structure mapping” (Gentner 1990). Structure mapping builds internally consistent one-to-
one correspondences between expressions in two domains, such that they have the same
relations between them. An initial set of alternative mappings is generated by matching
relation predicates across two input expressions. The relation predicates must be identical.
Then, correspondences between entities are hypothesized by matching the arguments of the
relations. The first argument of the relation in the source expression corresponds to the first
argument in the target expression, and so on. Next, correspondences are gathered into
maximal internally-consistent sets, and evaluated for “systematicity”, a notion involving the
size and compactness of the matching. In comparison, greedy matching is more tolerant of
heterogeneity than is structure mapping, which depends on identical syntax for relations in
the source and target expressions.

8.2 Critique

Ultimately, proof of semantic interoperability must be provided by working systems.
Description compatibility measures will predict the probability of satisfactory agent service,
or of a useful query response. The accuracy of these measures can then be evaluated by
comparison to pragmatic measures: feedback following actual use, including analysis of the
frequency of false negatives and false positives (recall and precision, respectively, in
Information Retrieval idiom).

The disadvantage of pragmatic evaluation, however, is that it requires commitment to a
specific and unavoidably idiosyncratic task domain. Furthermore, the current stage of

34

development of automatic semantic interoperability techniques does not support
implementation of systems to solve problems that are important in and of themselves. In
comparison, by generating artificial ontologies we can calculate a model-theoretic measure
of semantic compatibility that is independent of a pragmatic context.

We consider the artificial ontologies to be the greatest strength of this work—and also the
greatest weakness. We believe that we have captured the essential characteristics of
differentiated ontologies as they will actually develop, but without actual differentiated
ontologies to test, we have no way of demonstrating this. In particular, we have:

• investigated a very small part of the simulation parameter space (specified in Tables 3
and 4).

• restricted the expressiveness of our concepts to a small subset of description logic.

Recently, tableaux-based description logics (Horrocks 1998) have demonstrated an
ability to speedily classify concepts whose definitions include disjunction and negation.
While it would be possible to represent these concepts as graphs (MacGregor 1994), it
may be difficult to find good matchings for them. Furthermore, although description
logic is far more expressive than, say, relational databases, it lacks a satisfactory means
of representing uncertainty, which is ubiquitous in real-world applications.

• glossed over additional complexity in the real world.

One aspect of our simulations that is quite unrealistic is the structure of described-by
relations between objects. Our objects are related with a certain probability to objects
that are related to each other; but beyond this “one step” level of structure, these
relationships are almost random (see Section 5.1). We believe a much greater degree of
order will exist in real differentiated ontologies. This order will constitute both an
opportunity and a problem for compatibility measures (as we discussed in terms of
model accuracy in Section 7.2).

We have also avoided the issue of primitives. In our simulations there are few
primitives and they are all shared, thus fully satisfying our third assumption about
differentiated ontologies (see Section 2).

The implications of the primitives issue are not obvious at this time. Ontology specification
is not an exercise in philosophy, where the objective is to describe the true nature of the
world. Rather, developing ontologies is an engineering process where an organization or
community defines consensus knowledge that can be reused to address multiple problems.
Philosophically, almost everything is a "natural kind" and requires definition as a primitive.
In practice, it is always possible to develop non-primitive definitions for those concepts that
are the focus of effort. Weinstein and Alloway (Weinstein and Alloway 1997) includes
discussion of the issue of the difficulty of developing formal ontologies.

9 Conclusions
To support communication despite semantic heterogeneity, we use differentiated
ontologies. In these structures, concepts are defined in relation to other concepts using
logic. Local concepts inherit from shared concepts, and primitives are shared. In our
artificial ontologies, concept definitions include roles with numeric and instance fillers,
subject to unary and binary constraints. We then explore the nature of these structures: the
degree to which we can predict overlap of concept denotations, and the potential usefulness
of these predictions to support agent communication.

The results are encouraging. The eight proposed measures of description compatibility have
varying levels of association with semantic overlap, consistent with their requirements in

35

terms of input and computation. SHRR measures the proportion of concept roles that are
inherited from shared concepts. As such, its correlation to the semantic measure SEMR is a
succinct summary of the leverage provided by differentiated ontologies; and that correlation
is moderately strong (a ranked correlation of 0.38 in Experiment 15; the relatively unstable
unranked correlation is much higher). Matchings are one-to-one correspondences among
elements of concept definitions. Matchings enable measures that are somewhat stronger,
with ranked correlations approaching 0.5. Most of the improvement for matching-based
measures derives from identification of inconsistencies between the source and target
definitions. The probabilistic measures require knowledge of the domain and the semantics
of relations in concept definitions. With this additional input it is possible to achieve very
accurate predictions of semantic overlap: the matching-based probabilistic measure PMHR,
for example, enjoys ranked correlations of 0.7 or better. Furthermore, if comparisons are
filtered to include only those with three or more roles inherited from shared concepts, there
is a moderate increase in the association of all of the measures with SEMR (except for
PCIR which is nearly perfect to start with). This confirms our basic intuition that shared
inherited definition structure supports estimation of description compatibility.

The degree of discrimination required for specific tasks will determine whether particular
measures can be used for that purpose. All of the measures, except perhaps XDIFR, are
fully satisfactory for purposes that require less discrimination: for example, as the basis for
constructing matchings. Similarly, if agents can try multiple candidates before selecting a
particular service, then even the less discriminating foundational measures might be
satisfactory. For example, the best available candidate service will be included in the top 15
percent of recommendations by SHRR two thirds of the time. Matching-based measures
such as RISOR, however, do a better job of discriminating. Thus, the first candidate
recommended by RISOR will be in the top 10 percent of all candidates two thirds of the
time, but only 40 percent of the time for SHRR. Again, PMHR is the most accurate of the
measures that may be practical to calculate in realistic systems.

We believe this research will be useful to system engineers. Architects will consider
differentiated ontologies as an approach to achieving semantic interoperability. Developers
will use our results to guide their selection of language to advertise their agents'
capabilities. Finally, differentiated ontologies will facilitate ontology reuse by relaxing the
commitment required to use an ontology.

Acknowledgments
Ed Durfee, Mike Wellman, and John Lawler provided valuable suggestions for conducting
this research. This work was supported in part by the NSF/ARPA/NASA Digital Library
Initiative under grant CERA IRI-9411287, and partially by the Congregating Agents
project, NSF grant IIS-9872057.

References
Ambite, J. L. and C. A. Knoblock (1995). Reconciling Distributed Information Sources. AAAI Spring
Symposium on Information Gathering from Distributed, Heterogenous Environments, Palo Alto, CA.

Bayardo, R. J. J., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap, T. Ksiezyk, G.
Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikrishnan, A. Unruh and D. Woelk
(1996). InfoSleuth: Agent-Based Semantic Integration of Information in Open and Dynamic Environments.
Austin, TX, MCC.

Borgida, A. and P. F. Patel-Schneider (1994). A Semantics and Complete Algorithm for Subsumption in
the CLASSIC Description Language. Journal of Artificial Intelligence Research 1: 277-308.

36

Bright, M. W., A. R. Hurson and S. Pakzad (1994). Automated Resolution of Semantic Heterogeneity in
Multidatabases. ACM Transactions on Database Systems 19(2): 212-253.

Campbell, A. E. and S. C. Shapiro (1995). Ontologic Mediation: An Overview. IJCAI95 Workshop on
Basic Ontological Issues in Knowledge Sharing, Montreal.

Chang, C.-C. K. and H. Garcia-Molina (1998). Conjunctive Constraint Mapping for Data Translation.
Third ACM Conference on Digital Libraries, Pittsburgh.

Chawathe, S., H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman and J. Widom
(1994). The TSIMMIS Project: Integration of Heterogenous Information Sources. IPSJ Conference, Tokyo,
Japan.

Cohen, W. W. and H. Hirsh (1994). The Learnability of Description Logics with Equality Constraints.
Machine Learning 17(2/3): 169-199.

Durfee, E. H., T. Mullen, S. Park, J. Vidal and P. Weinstein (1998). The Dynamics of the UMDL Service
Market Society. Cooperative Information Agents II, LNAI. M. Klusch and G. WeiB, Springer: 55-78.

Farquhar, A., R. Fikes and J. Rice (1996). The Ontolingua Server: a Tool for Collaborative Ontology
Construction. Palo Alto, California, Computer Science Department, Stanford University.

Garey, M. R. and D. S. Johnson (1979). Computers and Intractability: A Guide to the Theory of NP-
Completeness. New York, W. H. Freeman and Company.

Gentner, D. (1990). The mechanisms of analogical learning. Readings in Machine Learning. J. W. Shavlik
and T. G. Dietterich, Morgan Kauffman: 601-622.

Gold, S. and A. Rangarajan (1996). A Graduated Assignment Algorithm for Graph Matching. IEEE
Transactions on Pattern Analysis and Machine Intelligence 18(4): 377-388.

Guha, R. V. (1992). Contexts: A formalization and some applications. Ph.D. thesis, Computer Science,
Stanford.

Heiler, S. (1995). Semantic Interoperability. ACM Computing Surveys 27(2): 271-273.

Horrocks, I. R. (1998). Using an Expressive Description Logic: FaCT or Fiction? Sixth International
Conference on the Principles of Knowledge Representation and Reasoning.

Kashyap, V. and A. Sheth (1996). Semantic and Schematic Similarities between Database Objects: A
Context-based approach. International Journal on Very Large Data Bases 5(4): 276-304.

Kim, W. and J. Seo (1991). Classifying Schematic and Data Heterogeneity in Multidatabase Systems.
IEEE Computer 24(12).

Knoblock, C. A. and J. L. Ambite (1997). Agents for Information Gathering. Software Agents. J.
Bradshaw. Menlo Park, CA, AAAI/MIT Press: 1-27.

Kuokka, D. and L. Harada (1995). Supporting Information Retrieval via Matchmaking. Spring Symposium
on Information Gathering from Distributed, Heterogenous Environments.

Lawler, E. L. (1976). Combinatorial Optimization: Networks and Matroids. New York, Holt, Rinehart and
Winston.

Lehmann, F. and A. G. Cohn (1994). The EGG/YOLK Reliability Hierarchy: Semantic Data Integration
Using Sorts with Prototypes. Third International ACM Conference on Information and Knowledge
Management (CIKM-94), New York, ACM Press.

Li, W.-S. (1995). Knowledge Gathering and Matching in Heterogeneous Databases. AAAI Spring
Symposium on Information Gathering from Distributed, Heterogenous Environments.

MacGregor, R. M. (1994). A Description Classifier for the Predicate Calculus. Twelfth National
Conference on Artificial Intelligence (AAAI-94).

37

Mendenhall, W. and R. L. Scheaffer (1973). Mathematical Statistics with Applications. North Scituate,
MA, Duxbury Press.

Miller, G. A. (1990). WORDNET: An On-Line Lexical Database. International Journal of Lexicography
3(4): 235-312.

Milo, T. and S. Zohar (1998). Using Schema Matching to Simplify Heterogeneous Data Translation. Very
Large Databases (VLDB).

Nodine, M. H. and A. Unruh (1997). Facilitating Open Communication in Agent Systems: the InfoSleuth
Infrastructure. http://www.mcc.com/projects/infosleuth/papers/open_comm.ps

Owen, S. (1990). Analogy for Authomated Reasoning. San Diego, California, Academic Press.

Pazzaglia, J.-C. R. and S. M. Embury (1998). Bottom-up Integration of Ontologies in a Database Context.
5th KRDB Workshop, Seattle, WA.

Quillian, M. R. (1968). Semantic Memory. Semantic Information Processing. M. L. Minsky. Cambridge,
MA, MIT Press: 216-270.

Rangarajan, A. (1996). A Lagrangian Relaxation Network for Graph Matching. Transactions on Neural
Networks 7(6): 1365-1381.

Visser, P. R. S., D. M. Jones, T. J. M. Bench-Capon and M. J. R. Shave (1997). An Analysis of
Ontology Mismatches; Heterogeneity versus Interoperability. AAAI-97 Spring Symposium on Ontological
Engineering, Palo Alto, California.

Weinstein, P. and G. Alloway (1997). Seed Ontologies: growing digital libraries as distributed, intelligent
systems. Second ACM International Conference on Digital Libraries, Philadelphia, PA, USA.

Weinstein, P. C. and W. P. Birmingham (1998). Creating Ontological Metadata for Digital Library
Content and Services. International Journal on Digital Libraries 2(1): 19-36.

Woods, W. A. (1991). Understanding Subsumption and Taxonomy: A Framework for Progress. Principles
of Semantic Networks. J. F. Sowa. San Mateo, California, Morgan Kaufmann Publishers: 45-94.

