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ABSTRACT

Quality-of-Service (QoS) routing is indispensable to real-time applications on integrated
services packet-switching networks. However, existing QoS-routing schemes based on either
request flooding or link-state dissemination are not efflicient in terms of their message over-
head and/or operational cost. This paper proposes a QoS-routing algorithm with bounded
flooding which not only dramatically reduces message overhead and operational cost, but
also provides good performance. This significant overhead reduction is achieved by limiting
the search area within which connection-request messages are flooded. Since our scheme is
based on limited flooding, it does not require on-demand path calculation nor link-state dis-
semination, which are often known to be very expensive. In order to limit the search area,
we employ a distance table at each node storing hop counts of the shortest paths to all the
nodes reachable via its outgoing links. Unlike link-state routing, the proposed scheme only
needs network-topology information that changes much less frequently than link-load states.
Extensive simulation results have demonstrated the effectiveness of the proposed scheme in
terms of performance, operational cost, and message overhead. Especially, in an ordinary
operating condition in which the network’s physical topology doesn’t change frequently, it
is shown to be much better than all the other existing QoS-routing schemes in terms of
message overhead and operational cost, while providing reasonably good performance.

Index Terms — QoS routing, real-time communication, multimedia communication, ISPN,
request flooding, link-state routing.

1 Introduction

Providing QoS guarantees to individual sessions or connections has been one of the
most active research subjects in the area of integrated services packet-switching networks
(ISPNs). Compared to traditional data communication applications such as ftp and tel-
net, most real-time (e.g., multimedia) applications require more precisely-defined QoS in
terms of packet delay, throughput and loss rate. For such applications, ISPNs are re-
quired to support real-time communication or guaranteed service in addition to best-effort



service for conventional data communication applications. There are, however, many tech-
nical issues to be resolved before making real-time communication service a reality. In
particular, new packet-scheduling or service disciplines, as well as admission-control and
resource-reservation protocols must be developed to provide real-time guarantees; some of
these efforts can be found in [1-10]. The main idea behind these efforts is that an appro-
priate service discipline must be employed in order to deliver user-requested QoS, and that
admission control and resource reservation must be done in order for the service discipline
to work as intended. In conjunction with resource reservation and admission control, find-
ing a route which can provide user-requested QoS is another important issue. Without an
efficient QoS-routing algorithm, a network may fail to find a route and reject the request
for a new connection, even when there exists a qualified route with enough resources to
honor the request. QoS routing must therefore be considered as a essential component of
Integrated Service Model in the ISPN [11].

In addition to finding a qualified route for each requested connection, QoS routing must
be able to yield good overall network utilization. Making a good route selection for the
current request also relates to increasing the chance of accepting future requests. Moreover,
QoS routing should not be expensive in terms of both operational cost and implementation
complexity.

There are basically two approaches to QoS routing: source-directed and flooding-based.
In the source-directed approach, the source node selects a path based on each connection’s
traffic parameters and available resources in the network. This approach can be refined
into static or dynamic routing, depending on whether link-load information is used for
path computation or not. The former uses static topology information in choosing a route.
Although static QoS routing incurs low operational cost, it suffers from a poor connection-
establishment success rate. In contrast, in dynamic QoS routing, the information on the
available resource on each link must be distributed throughout the network, so that any
source can have access to the correct information on the resources available in the network.
The information distributed is often called link-state, and thus, source-directed routing
is also called link-state routing. By applying either Dijkstra’s shortest-path algorithm or
Bellman-Ford shortest-path algorithm based on link-state information, one can find a quali-
fied route for each requested connection. The ATM Forum’s PNNI standard [12] and a QoS
extension to the OSPF protocol known as QOSPF [13,14] are examples of source-directed
routing. Because of its high operational overhead in distributing and maintaining link-
state information, source-directed routing may not scale well. To improve the scalability in
large networks, a hierarchical approach can be adopted to distribute and manage link-state
information [12]. However, this approach can yield inaccurate route computation when
inaccurate link-state information is used for QoS routing [15]. In addition to use of a hier-
archical approach, efforts have been made to reduce link-state messages in order to control
the overhead. Periodic or triggered distribution of link-state information is a typical ex-
ample of this effort. Although less frequent dissemination of link-state information reduces
the overhead, inaccurate information may cause undue routing and/or signaling failures as
in the hierarchical approach[16]. A routing failure is said to occur if the source cannot find
a route based on link-state information kept in its own database even if a qualified route
exists. A signaling failure occurs if one of intermediate nodes on the route determined by



the source cannot reserve the resources required for the requested connection’s QoS.

In flooding-based QoS routing [17,18], local nodes are not required to keep link-state
information for the entire network. The source node simply multicasts each connection
request message to its neighbors, which then relay the message to their neighbors, and
so on, until the message reaches the destination. In order to limit the number of request
messages, the algorithm does not flood through a link which is found unable to guarantee
the connection’s QoS. Although this approach incurs considerable operational overhead
due to the large number of request messages, it still has its own merits as follows. First,
there is no need for disseminating link-state information and calculating shortest paths,
thus reducing operational overhead and implementation complexity. Second, nodes are not
required to maintain the database of link-state information, thus saving space and time
to store and process the information. Finally, since the latest, thus the most accurate,
information kept for each local link is used to determine whether it can accommodate a
new connection or not, the algorithm can always find a qualified route, if any, thereby
outperforming link-state routing in terms of connection-establishment success rate. This
aspect will be more pronounced when the network is unstable or the network undergoes
changes in its topology. In such a case, link-state routing will suffer from inaccuracies in
collected link-state information and computed paths.

In this paper, we propose a variation of flooding-based QoS routing which incurs much
lower message overhead yet yields a good connection-establishment success rate, as com-
pared to the existing flooding-based algorithms. In order to reduce the flooding overhead,
request messages are allowed to take only those routes of hop count smaller than a pre-
specified limit. The hop count limit is chosen such that as many alternate routes as possible
are searched while keeping overhead below a given level. Nodes are therefore required to
keep the network-topology information at each node which is not link-state, but node con-
nectivity. Since node connectivity changes (due to loss and addition of nodes/links) much
less frequently than dynamic link-state, distribution of (physical) topology-change infor-
mation incurs much lower overhead than link-state distribution. Using this almost static
topology information, network nodes decide whether to relay connection-request messages
to their neighbors. That is, if the route via one of its neighbors has a larger hop-count
than the pre-specified limit, the node does not relay the request message to that neigh-
bor. By narrowing the flooding area using this type of “pruning,” the proposed algorithm
is shown to be able to reduce the message overhead dramatically. Moreover, unlike the
source-directed approach, it does not require computation of on-demand shortest paths,
thus lowering the operational cost. Note, however, that this reduced message overhead and
operational cost may be achieved at the expense of reduction in connection-establishment
success rate; fortunately, this loss is shown to be acceptably low. In general, there is
a tradeoff between the reduction of overhead and operational cost, and the reduction of
connection-establishment success rate in both the flooding-based and link-state schemes.
That is, by either increasing the frequency of link-state distribution or increasing the num-
ber of request messages, one can achieve a higher connection-establishment success rate.
Although it is impossible to derive an analytical relation between overhead reduction and
performance loss, our scheme can control overhead by adjusting the hop count limit subject
to the required connection-establishment success rate. The overhead of the limited flood-



ing of request messages depends on how often the network’s physical topology changes; we
will give a comparative perspective of the proposed scheme relative to other QoS-routing
schemes.

The rest of the paper is organized as follows. After providing some background in
Section 2, we describe the proposed QoS routing in Section 3. Using extensive simulations,
the proposed and other existing algorithms are comparatively evaluated in Section 4. The
paper concludes with Section 5.

2 Related Work

Most service disciplines for timeliness-QoS guarantees assume connection-oriented ser-
vices due to their conceptual ease in resource reservation and management. The goal of
QoS routing is then to find a route or a virtual circuit through which real-time data of the
corresponding connection will be transported. This is the fundamental difference between
datagram routing and QoS routing. In datagram networks, including the current Internet,
each datagram is routed in a connectionless fashion.

Since real-time communication services are provided by employing a special form of ser-
vice discipline at each switch or router, the metric which QoS routing must consider for its
route-selection strongly depends on the service discipline employed. The metric could be
delay, loss rate, bandwidth, jitter, or a combination of thereof. In [19], an optimal routing
scheme for multiple QoS parameters was considered. Although QoS requirements and net-
work resources may be characterized by multiple parameters, under most of the Weighted-
Fair-Queueing service disciplines [7], one can satisfy user-requested QoS requirements by
providing guaranteed throughput or bandwidth to each connection. In some service disci-
plines such as delay-EDD (Earliest-Due-Date) and RCSP (Rate-Controlled Static-Priority),
guaranteeable delay and reserved bandwidth are indirectly related. In this case, reserving
bandwidth is not enough for guaranteeing a delay bound. Since our approach can be easily
modified to handle these sophisticated service disciplines, we will consider bandwidth as
each connection’s metric for its QoS or resource requirement. Depending on the underlying
admission-control policy, a connection’s QoS requirement can be given as a peak, or average,
or effective bandwidth. The network service provider must reserve resources commensurate
with the bandwidth requirement along the path chosen by QoS routing in order to provide
the QoS promised to the end user. For link-state routing, a node’s link-state database
stores information about the utilization of each link which is defined as the sum of reserved
bandwidths for the connections running over the link.

There are several strategies on how to choose an optimal route for real-time communi-
cation. For example, minimum-hop routing, shortest-widest path [19], widest-shortest path
[14], shortest-distance path [20], and minimum-load routing [16] are among them. Since
non-minimal routing algorithms, e.g., shortest-widest path, often select circuitous routes
that “occupy” more network resources, they possibly cause rejection of future connection
requests. The proposed routing scheme favors the selection of a minimum-load route to
balance network utilization, but it can be easily modified to accommodate other routing



strategies.

3 QoS Routing with Bounded Flooding

Our scheme is designed for an arbitrary point-to-point network; it can be a distributed
system or a wide-area network (WAN). All links in the network are assumed to be bidirectional.!

3.1 Overview of the Proposed Approach

We employ a bounded, not brute-force, flooding; in order to reduce the overhead of
flooding request messages, we limit the number of hops each request message can take
before reaching its destination. That is, when an intermediate node receives a request
message, it will decide whether to forward the message to one of its neighbors by checking
if the minimum-hop path via that neighbor can lead the request message to the destination
within the source-defined hop count limit. This approach can be interpreted as flooding
with a limited search area. Hop count is selected as a basis because restricting the hop
count of a path limits the degree to which the scheme can find a circuitous route around
congested links, thus not blocking future connection requests, as argued in [21]. In order
to determine whether a request message can reach the destination within the hop count
limit via a particular outgoing link, each intermediate node uses its almost static network-
topology information. Instead of calculating the minimum-hop path via an outgoing link
to the destination every time a request message arrives, we use a (distance) table storing
the hop count of the minimum-hop path through each outgoing link to every other node.

3.2 Composing Distance Tables

Before starting the QoS-routing service and/or when the network topology changes
due to failures and additions of nodes and links, every node must compose or update its
distance tables, using new topology information. Note that this topology information is
almost static, because it does not contain any link-state information but describes only
the physical connectivity between nodes. By calculating inter-node distances off-line, our
scheme dramatically reduces run-time operational cost.

Distance from node ¢ to node j via node ¢’s outgoing link ¢ is defined as the hop count of
the minimum-hop route among all the routes from node ¢ to 7 via link £. In order to prevent
the minimum-hop route from traversing { in the reverse direction, we exclude this “reverse-
directional link”? from minimum-hop route calculation. Its purpose is to exclude the case
when request messages bounce back to nodes from which they came. This prevents request
messages from oscillating between nodes. The minimum-hop route can be easily calculated
using Dijkstra’s shortest-path algorithm or Bellman-Ford shortest-path algorithm. All links
are given the same weight except the reverse-directional link of £ whose weight is set to co.

! This assumption can be relaxed trivially.
2 Actually, there is only one bidirectional link, but it is viewed as consisting of two unidirectional links.



Although we employed hop count in composing distance tables, other metrics can be used
as distance, depending on the environment. For example, if the network is not homogeneous,
i.e., each link has different capacity, the “cost” of a path can be employed as distance.

3.3 The Proposed QoS-Routing Algorithm

Upon generation of a connection request, the source node must check the “search-scope”
of the connection. The search-scope is the maximum number of hops the request message
can take to reach its destination. In order to increase the chance of granting the requested
connection, multiple alternate, not necessarily disjoint, paths must be given an opportunity
to run the connection over them. The search-scope must therefore be determined by making
a tradeofl between the message overhead and the request-acceptance probability. In this
paper, we allow at least two alternate paths to be tried for each connection request. Thus,
the search-scope is given by the second smallest distance between each source-destination
pair. If more than two minimum-hop paths exist for a request, we consider the hop count
of the minimum-hop paths as the second smallest distance. For example, in Figure 1, the
distance d( A, B;a) between source A and destination B via a is 2, and the distance via b,
d(A, B;b), is also 2. So, the second smallest distance is 2 and thus, the search-scope of a
connection between A and B is set to 2. If A is the source and ' the destination, then
d(A,C5a) = 2,d(A,C;b) =4, and d(A,C;d) = 4. The second smallest distance is 4, and
thus, the search-scope is 4. In general, the search-scope can be given as the hop count of
the 7" minimum-hop route for a given pair of source and destination.

Since we are considering only the connectivity between nodes, the search scope for every
pair of source and destination can be calculated a priori by source nodes before servicing
any connection request. The pre-calculated search scopes are stored in a table at each
node. Whenever the topology changes, albeit very infrequently, these search scopes must
be recalculated. On the other hand, the search scope can be determined on-line for a given
connection request. In this case, the source node may use the current load condition which
is estimated by using variables like local link bandwidth usage and the measured request-
acceptance probability. Here we use the first approach to minimize the operational cost at
the expense of a slight performance loss.

Upon receiving a connection request from an application program, the source node
generates a request message, m. A connection request message contains the following fields.

e Connection identifier Req./D which uniquely identifies the corresponding real-time
connection. For the uniqueness of each connection ID, an identifier is composed of
two parts: the node ID (or address) and connection number (unique within a source).
This composition of connection IDs ensures their uniqueness throughout the network.

e Source identifier Reg.src of the requested connection.
o Destination identifier Req.dest of the connection.

e Timeout. This field is used to specify the request’s time to live (TTL). After its TTL,
a request message is no longer valid and thus discarded. How to determine this value



o

O O

Figure 1: An example of determining the search scope

will be discussed when the connection-confirmation process is described later in this
section.

e Search-scope Sc¢ of the requested connection.
e Hop count H of the path taken by the request message to the current node.

e The connection’s bandwidth requirement bw(-). If no outgoing link has available
bandwidth larger than this, the request will be discarded.

o List of intermediate node IDs that the message has traversed thus far. Every time the
request message is relayed to the next node, the new node ID is appended to this field.
This information is needed for the destination node to confirm the establishment of
the requested connection.

e Accumulated utilization u of the path. This is the sum of all the intermediate links’
loads, where load is defined as the bandwidth reserved for real-time connections. This
field is needed for intermediate nodes and the destination to be able to choose the
least-loaded path. As discussed earlier, our scheme favors selection of the minimum-
load route based on this field. For other selection strategies, this field must be filled
in with an appropriate parameter. For instance, the field may store the minimum of
loads of the intermediate links the request message has traversed if the strategy is the
shortest-widest path.

Since the information of existing connections is necessary for a new connection’s admis-
sion test as well as for the run-time scheduling of messages belonging to those connections
already established, each node has to maintain two sets of tables for existing connections
and pending connections. The first set is the tables of established connections (TECs), one
for each of its outgoing links. Each entry of a TEC represents a real-time connection which
goes through the corresponding link and consists of the following two data fields.

¢ Connection identifier: this is the same as the one in the connection request message.



e The connection’s bandwidth requirement.

Using a connection’s bandwidth requirement, the service policy determines the priority of
data messages belonging to this connection.

The second set of tables each node has to maintain are tables for temporarily-pending
connection requests, also one for each of its outgoing links. These tables will be referred
to as “tables of pending requests” (TPRs). Each entry of a TPR represents a connection
request (or a pending connection) and contains the following fields.

o Connection identifier: same as the one in the connection request message. When
a connection request is conditionally-accepted (that is, the out-going link is able to
accommodate the requested connection), it is copied from the connection ID field of
the request message.

e Timeout: must be larger than that of a request message, in order to prevent deletion
of a connection request from TPR before the confirmation message arrives. More on
this will be discussed in the confirmation process. Upon expiration of the timer, the
connection request is deleted from TPR.

e The connection’s bandwidth requirement.

e Accumulated utilization u* of the path traversed by the most-recently accepted request
message for establishing the same connection.

When a connection request is conditionally-accepted to run the connection over a link, fields
of the corresponding entry of the link’s TPR are copied from the corresponding fields of
the message. In addition to entries for connection requests, TPR must have a field to keep
track of the remaining bandwidth of the link. The remaining bandwidth is calculated by
subtracting the sum of bandwidth requirements of both the established real-time connec-
tions and conditionally-accepted real-time connections from the link capacity, cap(-). This
is used for a new connection’s admission test.

Apart from TECs and TPRs, a node has to maintain the table of conditionally-accepted
connections (TAC) if it has received a request message whose Req.dest is the node itself.
The function of a TAC is to allow the destination to choose the best among the routes
which request messages traversed. Each entry of this table consists of the following fields.

¢ Connection identifier.
e Accumulated utilization u* of the most-recently saved path.
o List of IDs of intermediate nodes the message has traversed.

¢ Timeout: same as that of the request message. This field tells when to initiate the
connection-confirmation process.



Upon receiving a connection request from an application program, the source node sends
a request message, m, through each of its outgoing links only if it satisfies the following two
conditions:
distance test (source):

distance(Req.sre, Req.dest, () < search-scope(m),  and (3.1)

bandwidth test:

util(€) + bw(m) < cap(l), (3.2)

where util({) is the utilization of link ¢ by real-time communication traffic (i.e., the band-
width reserved for real-time connections), and bw(m) is the bandwidth requirement of
connection m.

The flowchart in Figure 2 shows the actions to be taken by an intermediate node or
by the destination upon receipt of a connection request message. First, the node checks
whether Req.dest of the message matches its own ID, Node.ID. If they match, then it
checks whether its TAC already has the connection ID identical to that of the request
message. If yes, the node has already received at least one copy of the connection request.
In this case, the node checks if the newly-arrived request message contains a better route
than the one in TAC (better route test). By “a better route,” we mean that the request
message contains a smaller accumulated utilization than that of the old one in TAC. As
mentioned earlier, this is to favor a less-loaded path. If the request message carries a better
route, the node updates the corresponding entry of its TAC. Otherwise, the request message
is discarded. If the request is new, the node stores the request in its TAC.

If the destination contained in the request message does not match, the node checks, for
each outgoing link, if the ID is in the link’s TPR, that is, if other request messages carrying
the same connection request have already passed through the link. If yes, as done with TAC,
the node checks if the new request message contains a smaller accumulated utilization than
that of TPR. If yes, the node executes the following distance test.
distance test (intermediate nodes):

H(m) + distance(node, Req.dest, ) < search-scope(m), (3.3)

where H(m) is the hop count of the path message m has traversed so far before reaching
this node. If it passes this test, then the node updates and forwards the request message to
a neighbor node via the outgoing link, and updates TPR by replacing u* of the connection
by the accumulated utilization of the newly-received request message. The request message
is updated by adding the utilization of the outgoing link to the accumulated utilization of
the message, incrementing H by 1, and appending the node ID to the list of intermediate
nodes of the path the message has traversed thus far. If this test fails, the request message
is discarded.

In order to reduce the overhead of request messages, we do not relay them to the
connection’s ‘upstream’ nodes. A connection’s upstream nodes are the ones from which at
least one copy of the same request has come. The necessary information for this action
can be maintained and easily checked by recording the request message’ ID in the TPR of
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Figure 2: Node actions upon arrival of a request message.

the reverse-directional link of the link through which the request message has come. By
assigning 0 to u™, we can use a better-route test for this.

If the ID of the request message matches none of the IDs of connection requests stored in
its TAC and TPRs, the request is new, and the distance test in Eq. (3.3) and the bandwidth
test in Eq. (3.2) are conducted. If it passes both tests, the node updates and relays the
request message to a neighbor through the outgoing link. In addition, it saves the connection
request in the TPR of the outgoing link.

We have already discussed the destination’s action upon arrival of a request message.
The destination does not respond immediately to the arrival of a request message. It does
not initiate the connection-confirmation process until it reaches the timeout of the request
which is kept in the TAC of the destination. Before describing the confirmation process, we
need to discuss timeout fields of request messages and the tables. First, in order to make
our scheme work as intended, we must ensure that as many request messages as possible
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arrive at the destination before the timer expires and that the timer is set to as small a value
as possible to reduce the chance of rejecting new requests due to unnecessary temporary
reservation as seen in the flooding-based approach. For this purpose, connection request
messages are transmitted through a dedicated signaling channel which can be realized by
opening a permanent virtual connection. By using a dedicated signaling channel, one can
reduce a request message’s link delay. From the arrival pattern of real-time connection
requests, we can estimate the bound of request message delays over a link. We assume that
the processing delay at each node is included in the link delay. Then, the source can set
the timeout field of a request message using the search scope of the connection. Since the
search scope indicates the maximum hop count of candidate routes, the timeout must be set
larger than, or equal to, the link delay bound multiplied by the search scope. Choosing a
large timeout value may not cause ineflicient use of network resources since relaying request
messages to neighbors depends on search scopes and distances as well as the timeout value
of a request message. The chosen value also works as the connection-confirmation initiation
time since we set the timeout of request messages equal to that of the connection in TAC.
Thus, the timeout of request messages and TAC is set to the link delay bound multiplied
by the search scope plus the processing time at the destination in order to minimize the
time to set up a connection.

In addition to connection request messages, connection-confirmation messages are also
transmitted through the signaling channel. Thus, we can use the same link delay bound
for confirmation messages. The link delay bound enables us to calculate the maximum
traversal delay of a confirmation message, which is used to determine the timeout field of
TPRs. Since conditional reservation of resources at the intermediate nodes must be kept
until the confirmation message reaches the source, the timeout in TPRs must be larger
than the maximum traversal time of a confirmation message plus the timeout of a request
message. In order to minimize unnecessary temporary reservation® of network resources,
we select the maximum traversal time of a confirmation message plus the time-to-live of a
request message as the timeout in TPRs.

Now, let’s consider the connection-confirmation process. Since, as discussed earlier, the
most recently-saved request message in its TAC contains the minimum-load route among
those which safely reached the destination, the destination simply chooses the one in its
TAC as the best route found. Although our approach is not guaranteed to find the global
minimum-load route because of its bounded search, it is likely to choose the best one due
to its selection process based on the better-route test. Upon expiration of the timer of the
connection in TAC, the destination sends a confirmation message in the reverse direction of
the path recorded in the connection’s entry of its TAC and deletes the entry from its TAC.
Upon the arrival of the confirmation message, the intermediate nodes along the route update
their TECs by recording the requested connection’s profile, and also delete the connection’s
entry from TPRs.

When a real-time communication is terminated by an application program, a disconnect
process is initiated by either the source or the destination. In this process, a disconnect
message is passed along the path of the real-time connection. Upon arrival of the disconnect

*Temporary reservation that lives longer than necessary.
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message, the intermediate nodes delete the corresponding entry of their TECs and update
the remaining link bandwidth in their TPRs.

3.4 Memory Requirement

Although our scheme is very efficient in reducing operational cost and message overhead,
the efficiency is achieved at the expense of increased memory requirement. Compared to
the existing flooding approach, our scheme requires additional memory for distance tables
and search-scope tables. Other tables such as TPRs, TECs and TACs are also required by
the existing flooding approach. When the number of nodes is N and the maximum number
of outgoing links of a node is L, the number of entries needed for distance tables in the
entire network is O(N?2L), and, for search-scope tables, O(N?).

Link-state routing doesn’t need TPRs and TACs, but requires a table similar to TECs
for maintenance of link-state for each link and the run-time scheduling of real-time messages.
Moreover, each node must have a table to store link-states of the entire network which must
be updated more frequently than TPRs and TACs. Memory requirement for this table is
the same as the one needed for distance tables in our scheme, i.e., O(N?L). If the maximum
number of connection requests which are pending simultaneously in the network is NV, the
memory requirements for TPRs and TACs in the proposed scheme are O(N2L) and (N?),
respectively, as the number of TPRs and TACs are O(N L) and O(N ), respectively. Since, in
terms of memory requirement, TPRs are a dominant factor among TPRs, TACs and search-
scope tables, additional memory of our scheme compared to that of link-state routing is
O(N?L). If the maximum number of connection requests which are pending simultaneously
in the network is much smaller than NV, a dominant factor comes from search-scope tables
whose memory requirement is O(N?).

4 Simulation and Discussion

We have conducted an in-depth simulation study to comparatively evaluate the pro-
posed and other QoS routing schemes in terms of their performance and overhead. In this
study, we measured the probability of establishing connections successfully under various
load conditions and network configurations. We also evaluated the overhead incurred for
establishing a connection with all of the routing schemes considered.

4.1 Simulation Model

In order to investigate the performance of the proposed scheme under different network
configurations with a wide range of node connectivity, we selected the following networks:
5-ary 2-cube, b-ary 3-cube, 10-ary 2-cube, 5-ary 3-cube, and the MBONE topology in the
North America region in Figure 3. In the MBONE topology, all T3 links and nodes which
are connected via T3 links are included in the simulation. FEach node acts as a router
or switch, and links are assumed to be bidirectional, with ‘unit’ capacity in each direction.

12
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Topology Nodes | Links
10-ary 2-cube 100 400
5-ary 3-cube 125 750
5-ary 2-cube 25 100

MBONE 18 42

Table 1: Characteristics of topologies

A k-ary n-cube is an n-dimensional cube with k nodes in each dimension. Each node is
connected to two other nodes in both the directions of each dimension in a ‘wrapped-around’
fashion. The left side of Figure 4 shows a 4-ary 2-cube with the wrap links indicated
by dotted lines and the right side shows a 3-ary 3-cube with the wrap links omitted for
simplicity. Each edge represents two unidirectional links. The MBONE topology in Figure
3 was selected to investigate the performance of each routing scheme under a network
configuration with (currently) realistic connectivity. Its connectivity is very poor compared
to the other topologies considered. (Note that future backbone networks are expected to
have higher connectivity, so k-ary n-cube topologies are reasonable to consider.) Table 1
shows the characteristics of the networks chosen for evaluation.

The load is defined as the bandwidth reserved for real-time connections. For each
network configuration, we tried to establish real-time connections under a certain load
using the proposed scheme (labeled as BFlooding in the figures), static routing (labeled
as Static), QoS routing by flooding (labeled as Flooding) [17,18], link-state routing with
periodic link-state distribution whose periods are 10 and 100 times the connection inter-
arrival time (labeled as LS(10) and LS(100), respectively), and lastly, link-state routing with
triggered link-state distribution with trigger levels of 0.1 and 0.5 (labeled as Trigger(0.1)
and Trigger(0.5), respectively). In Trigger(0.1) (Trigger(0.5)), link-state information is
distributed when the available link bandwidth changes by more than 10% (50%) from the
recently-distributed value. Static routing determines a QoS route solely based on the static
topology of the network. Although it incurs a very small overhead and operational cost, its
performance will later be shown unacceptable in most cases.

The simulation study uses homogeneous traffic patterns, with uniform random selection
of source and destination nodes. For simplicity, it also assumes exponentially-distributed
connection-request inter-arrival times. Instead of using more realistic traffic models, we
opted for simple traffic patterns, because our goal is to comparatively evaluate the pro-
posed scheme and others, as opposed to providing accurate absolute performance figures.
Connection bandwidths are uniformly-distributed within a pre-specified interval. For in-
stance, if the bandwidth range is set to 20%, connection bandwidth, b, is randomly chosen
from an interval (0.0, 0.2], resulting in b ~ U(0.0,0.2]. In order to keep the load constant, an
appropriate number of randomly-selected old connections are disconnected when a new con-
nection is established. At the beginning, no connections are deleted until the load reaches a
steady-state level. The simulations were run until connection blocking rates’ 99% confidence
intervals were within 1%.
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Topology BFLOODING | FLOODING | LS (10) | LS (100)
10-ary 2-cube 25-33 376— 479 4000 400
5-ary 3-cube 19 - 23 866—-1062 9375 936
5-ary 2-cube 6-8 74 - 101 250 25

MBONE 5—-12 10 - 24 76 8

Table 2: Overheads for different routing schemes.

4.2 Simulation Results

Depending on the network configuration and bandwidth usage by the requested con-
nections, the seven schemes considered exhibit a wide range of connection-success/blocking
probability.

Figure 5 shows the connection-blocking probability of each scheme when the bandwidth
range is 4% of the link capacity. Such a small bandwidth range allows us to look at a realis-
tic scenario in realizing real-time communication service in general ISPNs. The bandwidth
requirement of a real-time connection is usually quite small compared to the link capacity.
In the case of k-ary n-cubes, the blocking probability increases in the order of Trigger(0.1),
Flooding, Trigger(0.5), LS(10), BFlooding, 1.S(100), and Static. The blocking probabilities
of Flooding and Trigger(0.1) are almost the same except when load = 0.9. Flooding theoret-
ically provides the best performance in terms of connection-success rate since it searches all
the possible routes, but, because of the temporarily-reserved link bandwidth due to flood-
ing, its blocking is higher than that of Trigger(0.1) under such a heavily-loaded condition.
The performance of the proposed scheme lies between LS(10) and LS(100), but its blocking
probability is very small, showing almost no difference from those of other schemes except
when load = 0.9. Even when load = 0.9, its blocking probability is under 5%.

For the MBONE topology that has poorer connectivity, all but Static show similar per-
formance, because all the schemes have a very few alternate paths in this sparsely-connected
network, and thus, almost all candidate routes are always considered in determining a qual-
ified route. While our scheme shows a slightly higher blocking probability, its performance
is much closer to those of Flooding or link-state routing than Static.

The slightly-deteriorated performance of our scheme can be offset by its small overhead
and low operational cost because it doesn’t require path calculation. For the bandwidth
range of 4%, the overheads are given in Table 2 and Figure 6. We consider only the number
of messages as overhead, regardless whether messages are generated for establishing a con-
nection as in BFlooding and Flooding, or distributing link-state information as in LSs and
Triggers. This comparison may not be fair since link-state messages and connection-request
messages contain uncorrelated information. However, they both are transmitted over links
and consume bandwidth and processing resources. So, we consider the number of mes-
sages generated during an average connection inter-arrival time as the overhead, regardless
whether messages are for either distributing link-state or requesting a connection setup. (In
this comparison, we assume that the network topology is static. Thus, the distribution of

15



Blocking Probability of Connection Establishment

Blocking Probability of Connection Establishment

0.32

BFlCoding & E
03} Flooding -~ /
LS (10) --%-- /
028 [ LS (100) -+ s
Static -~ /
0.26 - Trigger (0.1) - / B
Trigger (0.5) ---&--- /
024 F y ]
022 | i
02+ / ]
018 4
016 [ |
/
0.14 |- / 4
012 1
01fF A 4
008 - P 1
0.06 |- 1
0.04 | L
002 e
0 P & .
055 0.6 0.65 07 0.7 08 085 0.9
Load
(a) 5-ary 2-cube
055 T T
BFlooding & /
Flooding —-6-- /
05 LS (10) --%-- /A
LS (100) -+ /
Static -~ /
0.45 | Trigger (0.1) - / 1
Trigger (0.5) ---&--- ;
04 - i
0.35 - J
03} J
025 F / 1
A
02+ ]
015 |- 3
01t - ]
005 | e 4
=
0 & L - i o ol -
055 0.6 0.65 07 0.7 08 085 0.9

Load

(c) 10-ary 2-cube

Blocking Probability of Connection Establishment

Blocking Probability of Connection Establishment

0.55 T T
BFlooding &
Flooding -~ /
05 LS (10) % A
LS (100) -+
Static -~
0.45 - Trigger (0.1) - b
Trigger (0.5) ---&---
041 , 1

035 | 1

03} 1

025 b g

,./
02t - ]
015 F —
01F ]
- g
005 | T 1
0 e . . L g g
0.55 06 0.65 0.7 0.75 08 0.85 0.9
Load
(b) 5-ary 3-cube
0.6 T T
BFlooding & M
Flooding -
055 LS (10) --%-- 1
LS (100) -+
L Static -~ 4
05 Trigger (0.1) - S
Trigger (0.5) ---&--- /

045 - A
3
|

04
035
03|
025
02|
015
o1f .
0.05 |
0 & % .
0.55 06 0.65 0.7 0.75 08 0.85 0.9

Load

(d) MBONE

Figure 5: Connection-blocking probability, b ~ (0,4%]

16



Overhead in Messages

Overhead in Messages

140

120

100 -

80 [

60

20 -

1000

06 0.65 0.7 0.75
Load

BFlooding —+—
Flooding ----

(a) 5-ary 2-cube

0.8

Trigger (0.1) ---o---
.-

0.85

Trigger (0.5) -

0.9

900 -

600 -

500

400 -

300

0.6 0.65 07

Load

BFlooding —+—
Flooding ----

(c) 10-ary 2-cube

0.8

Trigger (0.1) ---o---
.-

0.85

Trigger (0.5) -

0.9

Overhead in Messages

Overhead in Messages

1200

1000

800

400 -

200 -

e i :

06 0.65 0.7 0.75 08 0.85 0.9
Load

BFlooding —+—
Flooding ----

(b) 5-ary 3-cube

Trigger (0.1) ---o---
Trigger (0.5) ---#---

06 0.65 0.7 0.75 08 0.85 0.9
Load

BFlooding —+—
Flooding ----

(d) MBONE

Trigger (0.1) ---o---
Trigger (0.5) ---#---

Figure 6: Overheads of different routing schemes, b ~ (0,4%]

17



topology change information is not considered for overhead calculation. Dynamic changes of
network topology will be discussed in the next subsection). Let’s consider Flooding which
shows the best performance in most load ranges. In Figure 6, the number of messages
generated per connection request is around 100, 1000, 500, and 20 in 5-ary 2-cube, b-ary
3-cube, 10-ary 2-cube, and MBONE, respectively. As load increases, the number of request
messages decreases due to the early pruning at heavily-loaded links. By contrast, BFlooding
incurs a very small number of request messages, as shown in Table 2 and Figure 6. This
is the result of limiting the search area. Now, let’s consider Trigger(0.1) and Trigger(0.5)
in Figure 6. The small trigger level of Trigger(0.1) generates a large number of link-state
broadcasts. In densely-connected networks like the 10-ary 2-cube, the number of link-state
messages ranges between 250 and 900. This large overhead makes Trigger(0.1) impracti-
cal for QoS routing in spite of its good performance. The overhead increases with load
in Trigger(0.1), indicating frequent triggers under heavily-loaded conditions as expected.
However, this does not apply to the MBONE topology in which the load condition changes
less frequently even under heavily-loaded conditions, as the connection-success probability
is much smaller due to scarce alternate paths, and thus, less frequent changes in link-state.

Compared to Trigger(0.1), Trigger(0.5) shows much more reasonable overhead. Espe-
cially, in the low-to-medium range of load, its overhead is comparable to that of our scheme.
Considering its performance and overhead, Trigger(0.5) appears quite a promising choice for
QoS routing. However, as with Trigger(0.1), the overhead of Trigger(0.5) increases with load
dramatically. In contrast, BFlooding’s overhead remains small under all load conditions.
For example, in the MBONE topology, BFlooding generates only 5-12 request messages for
setting up a real-time connection.

In LS(10) and LS(100), the number of link-state messages is constant irrespective of
load ranges or conditions; this is why their overheads in Table 2 are shown separately from
those of Triggers. During every updating period, each link generates its new link-state
messages.*The new state of a link must be distributed to all the nodes in the network. The
distribution can be done using either flooding or broadcasting through a minimum spanning
tree. The latter approach generates a smaller number of messages. Assuming broadcasting
through a minimum spanning tree, 40,000 messages are transmitted in a 10-ary 2-cube in
an update period. The number of messages was derived from the number of nodes and links
in Table 2. That is, on average, LS(10) generates 4,000 messages per request, and LS(100)
does 400. As seen in Table 2, the overheads of LS(10) and even LS(100) are extremely large
except the case when LS(10) is applied in the MBONE topology. Although LS(100) and
LS(10) are comparable to BFlooding in terms of performance, their overhead is much larger
than BFlooding, and, in some cases, larger than that of Flooding.

Figures 7 and 8 show the connection-blocking probabilities when the bandwidth ranges
are 10% and 15%, respectively. Overall, the blocking probability increases as the bandwidth
range increases, verifying the fact that a connection with a larger bandwidth requirement
is less likely to be established.  Moreover, as the bandwidth range gets larger, the gap
between blocking probabilities of our scheme and Trigger(0.5) increases, which is the main

*Updates must not be synchronized to prevent the network from being overloaded with a burst of link-
state messages.
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comparison target in terms of performance and overhead. However, the gap between the
overheads of our scheme and Trigger(0.5) also increases. The overhead of Triggers increases
with bandwidth range because link-state changes more rapidly, triggering more frequent
link-state distribution when bandwidth range gets large. In contrast, the overhead of our
scheme does not change with bandwidth range.

In order to investigate the tradeoff between message overhead and performance loss,
we varied the search scope of a connection. By increasing the search scope, we expected
performance improvement in terms of connection-establishment success probability. In this
experiment, additional hops were added to the original search-scope which was set so as to
search at least two alternate paths. We only considered the case when the bandwidth range
is 10%. In Figures 11 and 12, the connection-blocking probability and message overhead
for the 10-ary 2-cube and the MBONE topology are plotted for our approach with different
search-scopes, Flooding and Trigger(0.5). In BFlooding(n), we added n hops to the original
search-scope used by BFlooding. For the 10-ary 2-cube, increasing the search-scope by one
or two hops does not add any route to be searched, thus causing no change in performance
or message overhead. Thus, the search-scope was increased by 3, 6, 9, and 12 hops®.When
the increment is 3, the connection-blocking probability is lower than that of Trigger(0.5)
or even Flooding. However, the number of messages generated per request is much larger
than that in BFlooding. Compared to Trigger(0.5), BFlooding(3) incurs larger overhead
under a mid-range load, but smaller under a heavily-loaded condition. This is because,
under a heavily-loaded condition, a smaller number of request messages are relayed due to
the bandwidth test failure in BFlooding(3) while more frequent link-state distributions are
required in Trigger(0.5). Little gain is made by adding more hops to the search-scope as
seen in Figure 11. In fact, the best performance was achieved when the increment was 6.
As the increment gets larger, the performance deteriorates, since temporarily-reserved link
bandwidth prevents new connections from passing the bandwidth test as with Flooding.
Despite the little gain in performance, the increase in message overhead is very large in
BFlooding(6), implying that increasing the search scope beyond some limit does not help
at all. The overhead does not change after the increment gets larger than 6. By setting the
search scope to oo, one can obtain the result of Flooding. BFlooding(3), BFlooding(6), and
BFlooding(9) are superior to Flooding in terms of performance and message overhead. The
result for the 10-ary 2-cube suggests use of an adaptive approach for determining the search
scope, depending on network load. That is, in case of heavy load, a larger search scope needs
to be used, which will greatly improve the connection-establishment success probability of
our approach. Since our approach is not based on any global network-load information, it
must use an indirect approach like prediction based on the connection-establishment success
rate or local information on the source node’s outgoing links. The result for the MBONLE
topology verifies the same trend observed in the 10-ary 2-cube.

® Some cases are omitted in the figures for clarity.
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4.3 Discussion

In the simulation study, we assumed a static network topology, and thus, did not include
the distribution of topology information in calculating the message overhead. This assump-
tion can be justified when the network is quite stable, i.e., the probability of link/node
failure is very low and addition/removal of link/node is rare. In reality, however, networks
are quite dynamic since new nodes and links are added to, or removed from, the existing
network as seen in the rapidly growing Internet. In addition, as the network gets larger, the
number of failed and/or restored nodes and links grows. Thus, we need to consider the effect
of topology changes on message overhead. Since addition or removal of links/nodes must
be known to the entire network in any QoS routing scheme, we only consider the failure
or restoration of links/nodes. In addition, we consider only link connectivity, because the
failure or restoration of a node can be considered as those of the entire set of links attached
to the node.

Topology changes can be handled by the datagram routing scheme (e.g., OSP}') without
any additional overhead. Since we are considering the QoS routing problem in an ISPN
environment, we can assume that a datagram routing scheme for best-effort traflic is working
concurrently with the proposed QoS routing scheme, and that the datagram routing scheme
handles the distribution of topology change information.

However, it may be meaningful to consider message overhead due to topology changes
separately from the datagram routing scheme. In order to examine the overhead increase due
to the change of link connectivity, we assume that a link toggles between “connected” and
“disconnected” state and the lifetime of each state is exponentially distributed with mean ¢.
Although this model does not capture the exact link connectivity change characteristics in
a general network environment, it enables us to quantify the frequency of link connectivity
changes. Using this model, we analyze the message overhead of the QoS routing schemes
considered in the simulation.

First, let’s consider BFlooding. Every link’s connectivity changes once, on average, for a
period of t. Thus, if we assume that the new link connectivity information is broadcast via a
minimum spanning tree as done for link-state distribution, approximately 40,000 messages
per ¢ will be generated in a 10-ary 2-cube. If we do not differentiate these link connectivity-
change messages from connection-request messages, the sum of link connectivity-change
messages and connection-request messages becomes the message overhead. Per-request
message overhead depends greatly on ¢. For example, if ¢ is 1,000 (10,000) times larger
than the average connection-request inter-arrival time, per-request link connectivity change
messages will be 40 (4). In that case, the total message overhead is given as 65-73 (29—
37) from Table 2. The overhead of BFlooding is still much smaller than that of Flooding,
LS(10), and LS(100) shown in Table 2. In contrast, when ¢ is small, e.g., 10 (100) times
larger than the average connection-request inter-arrival time, per-request link connectivity-
change messages will be 4,000 (400). In this case, BFlooding loses its own merit, low
message overhead, relative to Flooding, LS(10), and LS(100). Thus, BFlooding is not a good
candidate for QoS routing for such an unstable network. In fact, neither LS(10) nor LS(100)
is good. This is because the link-state update period is similar to the link connectivity-
change interval, and thus, it degrades the accuracy of link-state information. For such an
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unstable network, pure flooding-based QoS routing is the best in terms of performance and
overhead. It does not require global topology information in its routing/signaling, and thus
is not affected by inaccurate link-state information or the frequency of topology changes.
Furthermore, it does not require any shortest path calculation, thus lowering the operational
cost.

In the link-state routing with triggered link-state distribution, the number of topology-
change messages generated must be the same as that of BFlooding, because the change
of link connectivity triggers link-state distribution. According to the definition of link-
state routing with triggered link-state distribution, link-state information is distributed
when the available link bandwidth changes by more than the trigger level, and the change
of link connectivity satisfies this condition. Thus, the relation between Trigger(0.1) or
Trigger(0.5) and BFlooding does not change regardless whether the network topology is
static or dynamic.

In summary, the proposed QoS routing has very low overhead and operational cost, yet
providing good performance if the network is reasonably stable.

5 Conclusion

In this paper, we have proposed and evaluated a cost-effective QoS-routing scheme that
incurs small overhead and operational cost, but provides reasonably good performance. Un-
like link-state routing, the proposed scheme does not require distribution and maintenance
of link-state information, nor expensive on-line path computation. Instead, every node is
required to keep a distance table which can be obtained off-line using almost static network-
topology information. A qualified route for each requested real-time connection is searched
by flooding request messages with a limited hop count.

Using an in-depth simulation study, we have comparatively evaluated the performance
and overhead of ours and others’. In terms of overhead, our scheme is the best, although
some of the other schemes provide slightly better performance than, or comparable to, our
scheme. Although our scheme has a lower connection-establishment success probability
than brute-force flooding or link-state routing, it still provides reasonable performance at
much lower overhead and cost. Enlarging the flooding area by changing the search scope
can improve the scheme’s performance at the expense of higher overhead. The tradeoff
between performance and overhead needs to be considered in determining the search scope.
This is a matter of our future research.

References

[1] L. Zhang, “Virtual clock: a new traffic control algorithm for packet switching networks,” in

Proc. of ACM SIGCOMM, pp. 19-29, 1990.

[2] C. Kalmanek, H. Kanakia, and S. Keshav, “Rate controlled servers for very high-speed net-
works,” in Proc. of IEEE GLOBECOM 90, pp. 12-20, 1990.

26



[3]

S. J. Golestani, “A stop-and-go queueing framework for congestion management,” in Proc. of

ACM SIGCOMM, pp. 818, 1990.

D. Ferrari and D. C. Verma, “A scheme for real-time channel establishment in wide-area net-

works,” IEEE J. Select. Areas Commun., vol. 8, pp. 368-379, Apr. 1990.

H. Zhang and D. Ferrari, “Rate-controlled static-priority queueing,” in Proc. of IEEE INFO-
COM, pp. 227-236, 1993.

A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing algorithm,”

in Proc. of ACM SIGCOMM, pp. 1-12, 1989.

A. K. Parekh, A generalized processor sharing approach to flow control in integrated services net-
works. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Feb. 1992.

D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-time communication in multi-hop networks,”
in Proc. 11-th Int’l Conf. Distributed Comput. Systems, pp. 300-307, May 1991.

S. Kweon and K. G. Shin, “Traffic-controlled rate-monotonic priority scheduling,” in Proc. of

IEEE INFOCOM, pp. 655-662, 1996.

L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: a new resource ReSer-
Vation protocol,” IEEFE network, pp. 8-18, Sept. 1993.

D. D. Clark, S. Shenker, and L. Zhang, “Supporting real-time applications in an integrated
services packet network: architecture and mechanism,” in Proc. of ACM SIGCOMM, pp. 14—
26, 1992.

PNNI Working Group, “ATM Forum 94-0471R13 PNNI Draft Specification.” Document avail-
able at ftp://ftp.atmforum.com/pub/contributions.

7. Zhang, C. Sanchez, B. Salkewicz, and E. S. Crawley, “Quality of service extensions to OSPF
or quality of service path first routing (QOSPF).” Internet Draft (draft-zhang-qos-ospf-01.txt),
Sept. 1997.

R. Guérin, S. Kamat, and A. Orda, “QoS routing mechanisms and OSPF extensions.” Internet
Draft, Mar. 1997. To appear in Proceedings of IEEE GLOBECOM, November 1997.

Guérin and A. Orda, “QoS-based routing in networks with inaccurate information: Theory and

algorithms,” in INFOCOM’ 97, apr 1997.

A. Shaikh, J. Rexford, and K. Shin, “Dynamics of quality-of-service routing with inaccurate
link-state information,” Technical Report CSE-TR-350-97, Dept. of Electrical Engineering and
Computer Science, the University of Michigan, Ann Arbor, MI, Nov. 1997.

K. G. Shin and C.-C. Chou, “A distributed route-selection scheme for establishing real-time
channels,” in Proc. 6-th IFIP Int’l Conf. on High Performance Networking Conf. (HPN’95),
pp. 319-329, Sept. 1995.

C.-J. Hou, “Routing virtual circuits with timing requirements in virtual path based ATM

networks,” in Proc. of IEEE INFOCOM, pp. 320-328, Apr. 1996.

Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting multimedia applications,”
IEEE J. Select. Areas Commaun., vol. 14, pp. 1228-1234, Sept. 1996.

Q. Ma, P. Steenkiste, and H. Zhang, “Routing high-bandwidth traffic in max-min fair share
networks,” in Proc. of ACM SIGCOMM, pp. 206-217, Aug. 1996.

Q. Ma and P. Steenkiste, “On path selection for traffic with bandwidth guarantees,” in Proc.
of IEEE International Conference on Network Protocols, Oct. 1997.

27



