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ABSTRACT

In this paper, we explore the use of aMarkov Decison Network to generate music. We show
how the network is trained and used to generate compaositions of gpproximately 10 minutesin
duration that are representetive of the style of the composer whose music was used to train the
network.

1 INTRODUCTION

The study of musicd gyleisvita to our understanding of the essence of music. For centuries,
musicologists and music theorists have created and refined andytica methodologies thet
abdtract characterigtics of music. These andytica methodologies contribute to our
understanding of musical style. Computer stientists can develop ingght into difficult
computationa problems by developing moddsthat may be used in the andlysis of musica
gyle, and testing these model's through the generation of new compositions. For the purposes
of this report, we congtrain our discussion of musica syle to repertoire from the Classicd
Period of Western Tond Music (1750-1827).

Our objectives for the research described in this report are the following:
induce a composer’s style,
generate new compostions that are consstent with a composer’s syle.

We represent musica style through concurrencies, which are seis of notes, described by pitch
and duration that sound smultaneoudy. Concurrencies form states and trangtionsin a

Markov Decison Network (MDN). The MDN istrained (ajoint probability tableis
congructed) by andyzing selected compaostions, caled thetraining set. Eachtimea
composition is andyzed, the MDN captures many interesting stylidtic festures. The MDN is
used after training to generate compositions that have styligtic festures induced from the
traning set. These newly generated compositions are quite often Similar to the repertoire from
which they were trained.

We believe that composer’ s Syle (at least during the period we are interested in) can be
approximated as a gochadtic process. Thus, the MDN is an attractive technique for capturing
musicd syle, becauseit is reatively sraightforward to train them, and pieces that appear to
sound nove while maintain stylistic components expected of acomposer are essy to cregte by
unrolling the (trained) MDN. Ancther advantage of using our appraech is that we do not need
to use grammars or other predefined structures [4,5] before the system learns about musical

syles.

The results from our initial experiments are encouraging. We can train aMDN to learn Smple
style representation. These networks have generated compaositions of gpproximetely 10
minutes in duration that are representative of the syle of the composer whose music was used
to train the system. Y et, we have found that certain factors sometimes fail the generation
process by cregting styligticaly inconsstent musica passages.

2 CONCURRENCIES

Music of the Classicd Period is comprised of notes. Each note has an onset described asa
darting time, a pitch, and a duration. We gather the notes that share the same starting times
into sets caled concurrencies. Note in the discussion thet follows, we digtinguish between two
different notions of time:
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Duraion: thisis the length of time that the note sounds, and is measured in
Pulses Per Quarter Note (PPQN), described later in this section.

Onst time: thisis when the note first sounds in the piece. For example, ina
note might have an onsat time of the third beet of the fourth measure. We
modily ignore onset time when training our network, as described later in this
section.

The onset time of a concurrency is defined as the sarting time of dl the notes that belong to
the concurrency; hence, the name concurrency. This notion of time dlows usto create the
totd ordering of notes as they occur during a piece defined for naturd numbers. By definition,
if Aand Baretwo concurrencies, A isinferior to Bif and only if the time of concurrency Ais
inferior to the time of concurrency B. We will write A< Bto state that concurrency A is
inferior to concurrency B. We define Time to be a function from the set C of al the
concurrenciesto the set N of the natural numbersthat returns the onset time of its argument.
Thus,

A<BUO Time(A)<Time(B)

To account for the duration of notes encoded as MIDI data, we use PPQN (Pulses Per Quarter
Note). PPQN creates a Smple correspondence between note durations and the set of natura
numbers. We assign a quarter note equa to 192 PPON. Table 1 describes sdlected note vaues
and their corresponding duration expressed in PPON.

Table 1. Note Vaue/PPQN correspondence

NoteVaue PPON
Whole note 768
Half note 334
Quarter note 192
8™ note 96
16" note 48
32" note 24
64" note 12

The example in Figure 1 shows the score of Ludwig van Beethoven's Moonlight Sonata, Op.
14, third movement.
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Figure 1. First measure of the third movement of the Moonlight Sonata by Beethoven

To cregte the concurrencies corresponding to this score, we firgt identify dl the notes that
have the same onset time. When forming a concurrency, we do not consder notes that sound
smultaneoudy, such aswhen one note is struck and sustained during a subsequent note's
onset. Thus, these notes will be in different concurrencies. That both notes contribute to the
harmony is consdered arandom event by our sysem; yet, there will be alink in the MDN
between these concurrencies that may, with some chance, produce a piece where the two
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notes will sound together. Dividing a piece in thisway introduces degrees of freedom to
create“ novel-" sounding pieces
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Figure 2: The firs messure of the third movement of the Moonlight Sonata with the
concurrency divison

Figure 2 shows the partition of the notes into concurrencies. For a concurrency to be fully
Specified, we need the onset time, the pitch, and the duration of each note in the concurrency.
Each note name is assigned a sevent-bit key number according to the MIDI 1.0 specification,
with Middle C (C4) having akey number of 60. The duration is expressed in PPON.

For our Moonlight Soneta example, the set of concurrencies are given in Teble 2.
Table2: Concurrencies of the first measure of the third movement of the Moonlight Sonata

Concurrency Sarttimein Key numbers and durations expressed as PPQN organized by
number cumulaive PPQN pairs.
1 0 (Key number = 37, PPON = 96)
2 48 (Key number = 44, PPON = 48)
3 96 (Key number = 44, PPQN = 96), (Key number = 49, PPQN = 48)
4 144 (Key number = 52, PPON = 48)
5 192 (Key number = 37, PPON = 96), (Key number = 56, PPOQN = 48)
6 240 (Key number = 49, PPON = 48)
7 288 (Key number = 44, PPQN = 96), (Key number = 52, PPON = 48)
8 336 (Key number = 56, PPON = 48)
9 334 (Key number = 37, PPQN = 96), (Key number = 61, PPQN = 48)
10 432 (Key number = 52, PPON = 48)
11 480 (Key number = 44, PPQN = 96), (Key number = 56, PPON = 48)
12 528 (Key number = 61, PPON = 48)
13 576 (Key number = 37, PPQN = 96), (Key number = 64, FPQN = 48)
14 624 (Key number = 56, PPON = 48)
15 672 (Key number = 44, PPON = 96), (Key number = 61, PPON = 48)
16 720 (Key number = 64, PPON = 48)

We can now consider acomposition asaset of concurrencies. We cdl the set of dll
concurrencies C. If acompostion has p concurrenciesand (Cn)ni 2.0} arethep
concurrencies of the music, then we denote the composition by the list (Cl’CQ""’CP), where the

concurrencies (Ch )nT {12...p} areordered by onset time. Hence, whenever we talk about aligt of
concurrencies \G» %+ Co/ weimplicitly have the following property about the list:
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“ni 2.0} "n1{12..0} n<n,Ppc, <c,

3 MusIC GENERATION

All note-based music can be converted to alist (Cl’CZ""’Cp) of concurrencies for some
pogitive naturd number p and some concurrencies (Cn)ni {r2..ot. Conversdy, any list

G, Co ) of concurrencies can be “played” as a piece of music. The relationship among
the concurrencies capture the me ody, harmony and rhythm of amusica work.

To generate anew composition, we select a positive, natural number p and alist e.c.mc,)
of concurrencies. If done randomly, such alist of concurrencies will have a corresponding
musicd performance, but such a compasition may not exhibit a particular musica style. If we
want to generate compositions that are congruent with a particular syle, we must have a
modd for choosing the list of concurrencies comparable to those found by andysis of the

compositionsin thet style.
3.1 PROBABILISTIC HYPOTHESES

with N the set of all positive natural number, and C the st of all concurrendies, let (Xn)ri v
be aset of random variables with domain C E1A} and et Pr bethe joint probebility for the

sequence of random variables (Xn)ni N" . The symbol A s added to the set of concurrendies to
have atermina symbol representing the end of a compaostion.

An experimentd vaue for the set of random variables (Xn )nT N" will correspond to a
compaosition. We dill have to specify the joint probability distribution Pr that we want to use.
3.2 LOCALITY ASSUMPTION

Thefirg assumption we make is that the relationships among concurrencies are locd, and that
the nature of a concurrency depends only on the past concurrencies.

That the probability only depends on the past concurrenciesis given by:
TN PH(X X0 X X1 Xgnend) = PHX X X0, X4

11 7 tp+rtt

Then, the locdlity of the relationship can be trandated as the Markov chain prgperty:
$dT N "nl N
n>db Pr{X |X;, Xp0es Xo1) = PUX X g0 X e Xia)

This assumption reduces the set of possible probaility-digtribution functions, but il leaves
uswith alarge set of admissble vauesfor Pr.
Given the Markov property, we can now compute a new composition recursvely:

First, we choose a starting concurrency & randomly, extract it from an existing
composition, or choose it according to some rules.

Second, from the last d concurrencies, we can use the probability distribution
Pr to randomly sdect anew concurrency that we gppend to the compaosition.
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The problem of generaing anew compostion in a particular musicd yleis reduced to
finding aprobability digribution function Pr theat satisfies the Markov property derived from
the andlyss of compostionsin that muscd Syle.

We can consder d concurrencies without their onset times, which we cdl timeess
concurrencies. Timeless concurrencies are important, because they dlow usto insert a
concurrency anywhere in a piece without being limited by where the concurrency appeared in
apieceinthetraining st.

The st of possible pieces that can be composad from timeless concurrenciesis very large.
Congder, if we dlow the pitches and durations of the notes in these d concurrencies to belong
to finite sets, repectively, of cardindsp and t, then, the number of combinations of d

concurrenciesis. (1+t)pd

Proof : Each timeless concurrency may or may not have each of the p pitches possible
from the 128 MIDI keys. For each pitch that forms a concurrency, a duraion is

chosen. For example, if aconcurrency has both an eghth note and awhole note, one
$ aepgtl
duration must be chosen. Thisleadsto a gl combinations for asngle

concurrency, wherei is the number of p|tch$ present in the concurrency. Ford
concurrencies, thetotal number is:

é %2 = (@+t)°) = @eo)

Q.ED.

1t 4 =1 and we congtrain the pitch to be chasen from one octave (thus normdizing dl notes
to one st of 12 pitch classes) and the duration to be an eighth, a quarter, ahdf or awhole
note, the number of combinations exceeds 244 million.

3.3 MUSICAL ASSUMPTIONS

Notice that Concurrency 3 and Concurrency 5 in Figure 2 both contain pitch classes C# and
G#. Thus, asfar aspitch classes are concerned, these two concurrencies are equivdent. We
can aso see that both concurrencies have an 8" note and a 16™ note. Hence, asfar as duration
is concerned, these two concurrencies are equivalent.

Since our god is to generate conpositions from a representation of syle that we induce,
smplifying the choice of the probahility-distribution function Pr by using our knowledge

about music is gopropriate. To limit the choices for the probability-distribution function, we
take into account -pitch class and duration equivaencies. To do so, we introduce the notion of

astyle-descriptor function, S which isafunction from the set of dl concurrencies Cto
N™ N

The style descriptor function assgnsa pair of naturd numbers (M ’ R) to each concurrency in
C. M represents the pitch-class information of a concurrency, and R represents the duration of
aconcurrency. Wecdl (M ’ R) a style descriptor.

To compute R, we do the following:

Fre, Ris st equd to the shortest duration of dl the durations of the notesin
the concurrency.
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Second, if Rislessthan or equd to 768, R isrounded up to one of the
following values 48 (16" of note), 96 (8" of note), 192 (quarter note), 384
(helf note) or 768 (whole note). Otherwise, R is rounded down to 768.

The reason for R isthat by recording the duration of the shortest note, we have an idea of the
number of concurrencies per unit time that we must create when a concurrency is used to
generate anew compastion.

M can bea12- or 24-bit integer depending on the amount of precison we want to retain from
aconcurrency. If M isa 12-bit integer, it has a bit for each pitch class. Since there are 12
clases(C, C#, D, D#, E, F, F#, G, G#, A, A# and B), M must have aminimum of 12 bits. If
M isa24-bit integer, it has two bits for each pitch class.

If M isa 12-bit integer, bit zero corresponds to the C pitch dass. If aC is present in the
concurrency, then bit zero will be set to one; otherwise, it is st to zero. Bit one corresponds to
the C# pitch class. If a C# is present in the concurrency, then bit one will be set to one;
otherwisg, it is sat to zero, and so forth for each pitch class. Table 3 gives the correspondence
between the index of the litsin M and the set of pitches that can st the bit to one.

Table3: M vdue of 12 hits

Bit Key numbers Pitch Class

index

0 {0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120} C

1 {1, 13, 25, 37, 49, 61, 73, 85, 97, 109, 121} o

2 {2, 14, 26, 38, 50, 62, 74, 86, 98, 110, 122} D

3 (3,15, 27, 29, 51, 63, 75, 87, 99, 111, 123} D#

4 {4, 16, 28, 40, 52, 64, 76, 83, 100, 112, E
124)

5 {5, 17, 29, 41, 53, 65, 77, 89, 101, 113, F
125}

6 {6, 18, 30, 42, 54, 66, 78, 90, 102, 114, i
126}

7 (7,19, 31, 43, 55, 67, 79, 91, 103, 115, G
127}
(8,20, 32, 44, 56, 68, 80, 92, 104, 116} G
{9, 21, 33, 45, 57, 69, 81, 93, 105, 117} A

10 {10, 22, 34, 46,58, 70, 82, 94, 106, 118} A#

11 {11, 23, 35, 47,59, 71, 83, 95, 107, 119} B

If M isa24-bit integer, bit zero correspondsto dl the C pitch classes that arein an octave
with an even octave number. Bit 12 correspondsto al the C pitch classesthet arein an odd
octave number. Bit one corresponds to the C# pitch classes that are in an octave with an even
number, bit 13 to C# pitch classes in octaves with an odd number, etc.

It may seem unusud to separate notes based on the parity of the octave they arein, but thisis
an fident way of maintaining a grester anount of information about the pitches. Essentidly,
astyle descriptor function is a projection of the space of possible octaves space into atwo
octave space. Thus, by usng more bits, the space being projected into becomes larger. Table 4
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gives the correspondence between the index of the bitsin M and the st of key numbers that
can == the bit to one.

Table4: M vaue of 24 hits

Bit index Set of pitches Bit index Sa of pitches

0 {0, 24, 48, 72, 96, 120} 12 {12, 36, 60, 84, 108}
1 {1,25,49,73, 97, 121} 13 {13, 37, 61, 85, 109}
2 {2, 26, 50, 74, 98, 122} 14 {14, 38, 62, 86, 110}
3 {3, 27,51, 75,99, 123} 15 {15, 39, 63, 87, 111}
4 {4, 28, 52, 76, 100, 124} 16 {16, 40, 64, 88, 112}
5 {5, 29, 53, 77, 101, 125} 17 {17, 41, 65, 89, 113}
6 {6, 30, 54, 78, 102, 126} 18 {18, 42, 66, 90, 114}
7 {7,31,55,79, 103, 127} 19 {19, 43, 67,91, 115}
8 {8, 32, 56, 80, 104} 20 {20, 44, 68, 92, 116}
9 {9, 33,57, 81, 105} 21 {21, 45, 69, 93, 117}
10 {10, 34, 58, 82, 106} 22 {22, 46, 70, 94, 118}
11 {11, 35, 59, 83, 107} 23 {23, 47,71, 95, 119}

Thevaue for M can be easily computed using binary and modulo arithmetic. The dgorithm
for computing a 12-bit M s the fallowing:
M& 0
For all pitches p in the concurrency
M <& Mor (p nodul o 12)
In the case of a 24-hit M, just replace 12 by 24. In Table 5, we show the concurrencies for the
Moonlight Soneta example.

Werefer to the Sze of M as being the precison of the style descriptor. Currently, we only
congder two precisons 12 or 24. We can imagine cregting a precison of 36 or 48, but we
suspect that the information gain from such high precisons does not benefit to the music-
generation process.

The dyle-descriptor function defines an equivalence class on the set C of concurrencies.

Firally, we define SA) 0 be the peir (0, 0).

Table5: Style descriptors for the concurrencies of the first measure of the third movement of
the Moonlight Soneta with a precison of 12

Concurrency Syle Concurrency Syle
number Descriptor number Descriptor
1 (2,96 9 (2,48

2 (256, 48) 10 (16, 48)

3 (258, 48) 11 (256, 48)
4 (16, 48) 12 (2,48)

5 (258, 48) 13 (18, 48

6 (2,48 14 (256, 48)
7 (272, 48) 15 (258, 48)
8 (256, 48) 16 (16, 48)

With thisdefinition of the style descriptor function, the second assumption can be written as

$dT N "nl N
(n>d P Pr(x |Xn d? n d+1 ) ( |S(Xn d n d+1)""'q>(l’1-l)))[J
(hedP Pr{X [X,, X, 0. X, 1) = Pr(X [S(X,) S(X ) S(X,. )

This function sates that the probability of having concurrency X when the lagt d

concurrencies for > 9 or the "~ 1 first concurrendies for "£ 9 are known only depends on
the equivaence classes of these concurrencies.
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4 COMPUTING THE PROBABILITY DISTRIBUTION FUNCTION

With the two assumptionsin mind, we now explain the mechanism usad to compute afamily

of probability-distribution functions. Each of these functions will satisfy the Markov chaining
property (first assumption) and the equivaence-class property (second assumption).

4.1 GETTING THE PROBABILITY DISTRIBUTIONS BY MEASUREMENTS

In order to have reasonable probability-digtribution functions, we use music composed by
those recognized to be magters of a particular style. We assume that those composers have
deveoped drong gyligic dements.

Congder aoomposition(cl’CZ ’---’Cp) . For al sats of d consecutive concurrencies
(Cn’cnﬂ’"" Cova- 1) , We can compute the d corresponding style descriptors
(S(en). S(Ga).-—S(Gea-1)) we call adtuple of style descriptors a state. Thus, from a

compastion (Cl’CZ""’Cp),weWiII computethe P~ d +1 gaes obtained from d conseoutive
concurrencies.

A trangtion is a Sructure with a gate, a timeless concurrency, acount and aspace. A count
and a space are positive natura numbers. A composition, such as e, Cj) can provide up
to P~ d+1 Gitferent trangitions We bild alig, TL, of these trangtions by scanning through
(CHpY and applying the fallowing agorithm:

For dl the states of d consecutive concurrencies (Se,), S(Ga)r S(Gres-1) , webuilda
temporary transition T by adding the timeless concurrency S%4 (or Ajgn+d=p 1), a
count arbitrarily st to one, and aspace equd to the difference of the time between Chsa and

Cn+d-1 If atrangition between T intheligt of tranitions, LT, with the same state, the same
timeless concurrency and the same space exigts, then we increment the count of T by one.
Otherwise, we add trangtion T' to the list of trangtionsLT.

Theintuition for usng atrandtion isthe following: we want to have a count of the number of

times that pieces moved from state (S(ea). S(Ga).- S(Grea-1)) 10 concurrency <+d . If such a
transition is encountered frequently, we want to record thet transition asagood one, i.e,
highly indicative of acomposer’'s style. Hence, we keep the number of timesthetransition

was encountered in avariable cdled count. Since we do not want to discriminate transitions

by the time they occur in the pieces in the training st, we use the timeless version of

concurrency S of concurrency G+

Nonetheless, we need to recad the time interval between &+ and Cn+d-1, because during the
process of generating a piece of music, we want to know what duraion to use for the timeless
concurrency <+ . Hence, by knowing the concurrency “+d and the time interval between
Cosd ang Cned-1 (the space), we can recreste a concurrency by adding to the timeless

concurrency ©n+d-1 the time obtained by adding thetime of %+ and the space. We do thisvia
the Concurrency function that takes two arguments, atime and atimeless concurrency and
returns a concurrency.

In our definition of atrangtion, we have:
adate that indicates the last state to which to gppend the new concurrency,
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atimeess concurrency to provide us with the pitches and durations of the notesto add to the
next concurrency,

acount that we use to compute the probability-digtribution function based on the frequency of
the occurrences, and

agpace that dlows usto compute an “onset” time for the next concurrency.
We will refer to the timeless concurrency of atrangition asthe next concurrency. For eech
trangtion T with a state (S(Cn)’ S(Cn+l)""’s(cn+d- 1)) , anext concurrency Coed | acountt and a

space s, we define the next seate to be (S(Cn+l)’ S(Cn+2)""’ S(Cn +d )) . Note that we can compute
the style descriptor of atimeess concurrency, since the style-descriptor function does not use
the time of a concurrency as an argumern.

From alig of trandtions LT, we can generate a probakility digtribution function in the
following way:

For eech trangtion T with state (S(Cl)’ S(CZ ) S(Cd )) , Next concurrency Cas , count t and
space s, we compute the sum v of al the counts of the trangtionsin LT with State

(Sle,). Sle,)S(es)) ang we assart tha:
"nl N° n3dp

Pr(x, = S(Time(x,) +s,c.,)

< |~

For all the states (S(C1) S(C2).---:S(6) thet o not appeer in the list LT, we assert that:
"nl N n3db

With these two rules, we can build a probability-digribution function from any list of
trangtions. Since we can get lists of trangtions by scanning through pieces of music, we are
now able to generate networks that we will use to make comparisons and generate new
compaostions

5 GENERATING NEW PIECE OF MUSIC

In this section, we present the generation process.

5.1 STARTING THE GENERATION PROCESS

We described in Section 4, how we get the probability-distribution function for the Markov
process. This distribution function dlows us to randomly sdlect the next Sate given a current
state. In order to get the generation started, we need a dart state.

Even though any gate taken from any of the training compositions could be a garting date,

we decided to only choose from the States that were Sarting points for the compostionsin the
training set. Hence, this gives us as many dart Sates as pieces we used. To chose among these
possble gart dates, we use a uniform distribution probahllity.

Thereis no pendty for choosing the start Sate as we did. There is even the advantage that we
are guaranteed a reasonable start, which can lead to amore congruent piece than would a
randomly chosen sart state. The random choice of agtate in the entire s&t, for example, may
givetheilluson that the piece beginsin the “middle”
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5.2 RUNNING THE GENERATION PROCESS

When usad to generate music, the Markov trandition mode generates pieces thet are
“recognizably” in the style of acomposer used as atraining case. There are, however,
problems. A problem that occurs in some piecesis along, repetitive sequence. Thisisdueto
the presence of a path in the sate graph with few outgoing edges (edges leading out of the
path), and the few outgoing edges have low counts in comparison with the trangtion within
the loap.
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|
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Figure 3: Portion of the Sate graph for the Moonlight Sonata illustrating the loop effect.”

14 7
For example, condder Figure 3, the trandition process has a probability >5 ~ 77 of gaing to
date #1475 from Sate #1475 after only two trangtions. After Six trangtions, the probability of
14 3, 2.1_35

having returned to or of being in tate #1475 againis 5, * >, T 5, 7 24 - Hence the

generation process, following this probability digtribution can get to Sate #1475, and then
repeet this state and dl the gates in the path returning to this stete many times.

The edges are oriented top to bottom. The nodes are represented by a state number. The numbers close to the
edges and the state numbers are the transition counts. For example, state 595 has edges to eight distinct states:
1475, 1487, 1478, 1484, 1481, 1482, 1486 and 1477. State 1475 isin parenthesis, because it was displayed
previoudly in the graph (above 595). Anedge going to a parenthesized state number isto be understood as an
edge going upward to anode already printed in the upper part of the graph.
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5.3 LOOP-AVOIDANCE ALGORITHM

To avoid such amusicaly annoying affect, we used a mechanism that prohibits long loops.
When we generate a piece, we keep track of the last transition used by the generation process
inalig cdled thehistory list. A trangtion that has been used in the recent past hasits
probability lowered to zero. The higtory ligt isimplemented as afirg-in firg-out queue with
daticaly defined Sze h. Thus, during the generation we only keep references of thelast h
trangtions used.

Congder that we are currently in State S and that there are three transtionsfrom date S X, Y
and Z with respective counts of X, y, z. In the norma case, the respective probability of

X y
secting X, Y or Z to provide the next concurrency is respectively X+y+2Z X+y+2Z and

z
xty+z O

If one of these trangitions has been used during the last d trangtions, then its count is
conddered zero. For example, if X, has been usad recently, but not Y and Z, the new

y z
probebilitiesfor X, Y and Z will be0, 37 ad 37 (2), respectively.

A specid case can occur when dl the trangitions have been used in the lagt d trangtions. In
such acase, the probabilities used are those for the normal case (1).

6 RESULTS

The MDN represented by thelist of trangtionsis centrd to the music-generation process.
Thus, we describe important features of the networks we have seen in the experiments.

The qudity of the music generated depends on three parameters. d, which is the rumber of
style descriptors (concurrencies) we use for the state, h, which isthe size of the higtory list
used to avoid looping, and the style descriptor precison.

For low vaues of d (less than or equd to four), the generated pieces have sections thet are
“chaotic’ over short spans (relatively few concurrencies). These sections generdly intervene
between smooth portions. This combinetion of chaotic intergpersed among smooth sectionsis
not pleasing, even though within the sections the system does produce music of the syle of
the composer being imitated. These chaotic portions correspond to places in the state graph
where the branching factor explodes and remains higher than the average branching factor for
asgnificant number of trangtions. The example from Figure 4 illustrates this phenomenon.
The branching factor for Sate #595 is eight, while the average for the graph is gpproximetdy
35
1.133. Since the probability of getting back to Sate #4595 ishigh (44 @ least), the branching

fector while the generation process remains in these loopsin very high. If the sates used
during these loops origindly came from different pieces of music, then numerous trangtions
from one to ancther result in a chaotic sounding compostion. Oneway of solving this
problem would beto increase d when the branching factor tends to be high for some number
of trangtions. This would have the effect of lowering the branching factor.

For high vaues of d (more or equd to eight), the branching factor is generdly very low and
there are long paths with no branching opportunities, which corresponds to a determinigtic
sequence of date asfar as the generation processis concerned. These long, branchfree paths

come from a single piece and generdly (99%) correspond to a highly pronounced me ody
line. This has the consequence that the generation process seems to copy entire portions of the
training compodtions. From a point of view of origindity, thisis not a desred effect. One
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way of solving this problem would be to decrease the d parameter when the branching factor
tends to be too low for a sequence of concurrencies (25 or more trangtions). Thiswould have
the effect of merging states and possibly increase the branching factor.

In most of the pieces generated, we used d = 8, Since this vaue avoids chaotic sections & the
cost of have bigger copied portion of music.

Even though going from a precison of 12 to 24 increases the state space by as much as 33%
(32% for the Moonlight sonata) and decreases the average branching factor by 20% (from
1.41 to 1.13 for the Moonlight sonata), when ligtening to pieces generated with different
precisons, the difference seem imperceptible.

The key and genre usad in the training st are important factors that change the qudity of the
generated pieces. By genre, we refer to the form and instrumentation of the compostion, eg.,
whether it is a sonata, a piano concerto, a symphony, an opera, etc. Uniformity helps prevent
chaotic-sounding sections.

If the piecesin the training cases are Smilar (same key, dl piano sonatas, for example), then
the generated pieces are more musicaly coherent than pieces trained with very different
Syles.

The generation process can be used for red-time music generation. It is avery fast process
that typicaly takes less a second to creste a 20-minute piece on aAMD-K6 200 MHz
machine. Since it takes up to three seconds to analyze a 20-minute piece, the time of the entire
process is not a concern.

7 RELATED WORK

Cope [4 and 5] focuses on a grammar-oriented relationship among musica structures. Cope
has developed a grammar to parse pieces into dements he can recombine into new
compoasitions. Our gpproach does nat requirea priori commitment to a particular grammar to
parse a piece of musc: our concurrencies are aminima commitment to sructure. Rether, we
prefer to induce structure from the piece, rather than prescribe or proscribe it with a grammar.

Brooks, Hopkins, Neumann and Wright [3] have tried the probabilistic gpproach in avery
smple manner. They were only considering very smple meody with no harmony (asingle
pitch a atime). We consider our work an extenson of what they did by providing amore
complete formalism for music generation and more eaborated generation capabilities than a
sngle pitch a atime.

8 LIMITATIONS AND FUTURE WORK

Thefirg assumption sated thet the probability for choosing a concurrency only depended on
the previous concurrencies. This assumption prevents the generation process from being
guided. One could imagine wanting to end a piece with a certain cadence. The past-only
assumption placed on the probebilistic modd does not dlow us such flexibility. Future work
will add functiondlity to bias the probakility distribution into accounting for some information
about where the piece should go. This can be done by pruning from the ate graph dll
branches and nodes that, if taken, will not alow the generation process to meet some criteria

Dynamicdly adapted state Size could prevent the gppearance of chaotic structure or long
“copied”’ passages (i.e., passages that are mogily direct copies of the training repertoire).
Dynamicaly changing the Sze of the states means changing the entire state graph during the
generation process. Hence, an optimized implementation of trangtion lists to change the Sate
szewithout cogtly overhead will be implemented.
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9 CONCLUSION AND SUMMARY

We have developed a representation for music generation by exhibiting a bijection between
compositions and lists of concurrencies. With this concurrency structure, we have built a
Markov Decison Network thet, in spite of ardatively Smple representation alows usto
extract interesting attributes of musical syle.

The MDN has a graph representation showing sparse connectivity and a cycles-oriented
Sructure. The presence of nested short, medium or large cycles gives the graph a fractatlike

gructure. The graph exhibits in many places long paths with no branch opportunities, while,
in some other places, exploding branching factors.

The MDN can be used to generaie musicd samples. With ardaively short sate Sze, these
samples do not make musicd sense: they do not have an eadlly identifiable Structure. With
longer Szes, the compasitions become more coherent, with recognizable musical siructures.
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11 APPENDIX

Table Al: MIDI key number standard representation

Octave Notenumbers

C Ctt D D# E F F# G GH# A A# B
0 0 1 2 3 4 5 6 7 8 9 10 11
1 12 13 14 15 16 17 18 19 20 21 22 23
2 24 25 26 27 28 29 30 31 32 33 34 35
3 36 37 38 39 40 41 42 43 44 45 46 47
4 48 49 50 51 52 53 54 55 56 57 58 59
5 60 61 62 63 64 65 66 67 68 69 70 71
6 72 73 74 75 76 77 78 79 80 81 82 83
7 84 85 86 87 88 89 90 91 92 93 94 b
8 96 97 98 99 100 | 101 102 103 |14 105 106 107
9 108 109 110 111 112 113 114 115 116 117 118 119
10 120 121 122 123 124 125 126 127
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