A CONSTRAINT SATISFACTION APPROACH
To TONAL HARMONIC ANALYSS

Tim HOFFMAN
WILLIAM P. BIRMINGHAM

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE DEPARTMENT
THE UNIVERSITY OF MICHIGAN

25 JANUARY 2000

TECHNICAL REPORT

CSE-TR-397-99

Abstract

This paper gives an algorithm for harmonic analysis for atonal composition using a constraint-satisfaction
problem (CSP) model. The algorithm combines rule-based and preference-based approachesto perform
harmonic analysis, taking the position that the problem can be modeled as a computational process and less of a
psychological phenomenon. Using cadential patternswithin the piece, it identifiestonal centers and assignsthe
harmonic analysis, applying preferences when necessary. A software implementation of the algorithmiis
presented, along with adiscussion if itsresults.

1 INTRODUCTION

Harmonic analysis provides atheoretical framework for examining a musical composition and summarizing its
tonal organization. Thisanalysisis based upon the rules of tonal harmony, whose application resultsin a
grammatical parsing (Roman numeral notation) of a composition; this Roman numeral analysis givesthe
functions of chordsrelative to the key area, or tonal center, in which the chordsreside. Designed to analyze
Western tonal music (seventeenth to nineteenth century), it providesinsight into the musical language spoken
by the great composers of thisera.

In recent years, there have been several attempts, with various levels of success, to render portions of harmonic
analysis as algorithms. By and large, these research efforts have been informal, relying on lists of rules or
sketches of algorithms. They have not addressed some of the important computational issues, such as problem
complexity, agorithm complexity, and generally have not provided concise descriptions of their algorithms. By
addressing these issues, we gain insight into how harmonic analysis can be tackled efficiently by computers.
Further, we believe that the precision necessary for computational analysiswill provide musical insight aswell.
Lerdahl and Jackendoff’s effortsin creating aformal system for tonal music analysis, for example, have lead to
important musical insights(Lerdahl and Jackendoff 1983). Likewise, we focus our efforts on tonal music
analysis, examining chorales written by Samuel Scheidt, a seventeenth-century composer. Scheidt’s music
closely follows the conventions of tonal harmony, making it excellent test material for our algorithm.

In this paper, we model harmonic analysis as a constraint-satisfaction problem (CSP). The CSP' s formal
framework provides a clear representation of the problem, facilitatesits analysis, and encourages concise
algorithm descriptions. We chose to model the problem using attributed domains to take advantage of the
properties of chords, such askey, quality, and function. We borrow this technique from the more expansive
Multi-Attribute Domain (MAD) CSP (Darr 1997; Darr 1998).

In addition to its expositional advantages, the CSP naturally handles constraint and preference processing. We
posit, and demonstrate in this paper, that many rules used in harmonic analysis are actually analytical
constraints. By modeling these “rules’ as constraints, we can both simplify processing by reducing, albeit not
necessarily eliminating, the number of ad hoc rules, and by bringing to bear powerful algorithms from the CSP
literature on harmonic analysis.

Central to our approach isthe identification of tonal centersin the composition. This cannot be accomplished by
asimple application of arule, astherulesfor tonal harmony are not specifically stated, but are conventions
drawn from centuries of musical experience. There is no music-theoretic requirement, for example, that atonal
composition must employ the tonic-dominant relationship, yet it is ubiquitous and recognized by musically
trained and untrained listeners alike. Likewise, the algorithms presented here use cadences as a basis for
identifying tonal centers. Using the constraint that modulations (changesin the tonal center) are suggested by
cadences, our algorithm searches a piece for all cadential structures, determines which are locally the best, and
then decides whether or not to modulate. After finding the tonal centers, it |abels the chordsin the piece with the
proper Roman numeral notation.

Thelack of aformal system in tonal harmonic analysis poses a problem for a computational approach. Like
natural-language parsing, tonal harmonic analysis does not necessarily give asingle answer; two music theorists
analyzing the same composition may arrive at different analyses, yet neither of them would necessarily be
considered more correct. Many of the decisions made during analysis reflect the analyst’ s preferences. Thus,
preferences must be includedin the computational system. An example of apreference isthe selection of the

location of amodulation; there may be several equally valid places for the modulation, with fixing of any one
relying on the analyst’s preference.

We describe in this paper the CSP representation, how the types of music we areinterested in analyzing map to
a CSP, and the algorithms we use to perform harmonic analysis.

2 REPRESENTATION

Understanding the al gorithm presented in this paper requires a basic knowledge of CSPs. A brief introduction to
CSPsfollows.

21 CSPoverview
211 Definition
A CSP comprisesthe following elements:

aset of variablesV ={Vy, ..., Vi, ..., Vi}.

adomain for each variable, Di={d,, ..., dg} , which is the set of values that may be assigned to variable
V. The domainsin this paper are discrete, but in general may be either discrete or continuous.
Extending d; definition to include an attribute; d;.att isin the set { key, quality, function}. Thisisin
the spirit of the more expansive MAD-CSP definition. For example, an instantiation of avariable
might be V; =<C, Mg, | >. Thistuple, consisting of three attributes, constitutes one domain
element.

aset of constraints, C={Cy11, ..., Gk }, which place restrictions on the possible values of the
variables. Inthis paper, we are concerned only with binary constraints (although the MAD-CSP
requires no such restriction). The notation C;; x refersto aconstraint that has variables V; and V; as
arguments, with k denoting a particular constraint between these variables. In this paper, the
constraints are directed, although thisis not a requirement.

The modulation constraints (Table 1) are binary. The complete notation identifying an arbitrary
constraint should be C;; x, representing the node, constraints involving that node, and whether it is
"inbound" (coming from V;.1)or "outbound" (going to Vi.1). For notational convenience, we treat
them as directional. This gives each V; (except thefirst and last, V, and V,,) three constraints
associating V; with Vi.;.To simplify this notation further, we refer to only the outbound constraints
from V. Inreferring to constraint C; j, we refer to all constraints connecting V; to V1. Thus Cy5 is
the constraint that specifies Vz.key =Vs.key + 7. We use this notation without loss of generality, as
all the modul ation constraints can still be uniquely identified.

Constraint-propagation functions h; j(d;.att) restrict the attributes comprising the domain of V;,
given the possible assignment of domain valuesto all other arguments.

The precondition-evaluation function, c;;”*, defines when constraint C;; isactive. If ¢;;”®is TRUE,
G, isactive (it restricts D; and D;.1); otherwisg, it isinactive (all domain valuestrivially satisfy the
constraint).

Constraint-evaluation functions, C;;(V;, Vi+1), return TRUE if the arguments satisfy constraint C;,
and FAL SE otherwise.

A constraint graph, G(V,C), which depicts the rel ationships among the variables and constraints. The
nodes are variables, and the arcs are the constraints. Further, we assume that constraints are directed
arcsfrom V; to V;, without loss of generality. In fact, as we show in this paper, G(V,C) is a hypergraph
that is tree shaped.

212 Properties

A solutionto aCSP is an assignment of valuesto all the variables that simultaneously satisfies all the
constraints. A solution may require a possibly combinatorial search of the domain space to find such an
assignment. A benefit of using the CSP framework is that there are many heuristics for reducing the complexity
of the search process.

An important method for improving the efficiency of the search, arc-consistency checking, ensures that for each
variable, all the domain elements satisfy the constraints on that variable. This eliminates infeasible domain
elements, thereby reducing the search-space size. Arc consistency is given by Equation 1.

- Vi:{" di Di . Ci,j(ViyVi+i)}

Equation 1

Arc consistency does not guarantee that all constraints can be satisfied simultaneously: it does not guarantee
that a solution exists.

Decomposability, the strongest form of arc consistency, (also known as n-consistency) does guarantee a
solution. If graph G is decomposable, then all assignments of the variables constitute solutions; the domains
contain no values that will cause any constraint to be inconsistent. In adecomposable graph, all variable
assignments constitute solutions.

Searching agraph may also involve preferences, which guide the search towards more preferable solutions. An
example of apreference in harmonic analysisis choosing an applied function over aroot function, such as
choosing V/ Vinstead of | | for achord’ s function.

213 Example

Figure 1 shows a constraint graph for asimple CSP. In this example, there are only two types of constraints:
Ciyll specifiesthat V., .width = Vi.width + 1, and C; ; specifiesthat Vi1 .height = V;.height. The domains of
each variable arelisted in tables. For example, V; has adomain comprising the tuples <1,7> and <5,9>.

Figurel. Initial constraint graph.

width ~ height
1 7
Cl,l 5 9
width _ height
2 4
3 3
6 ! width height
9 3
4 7
2 10

1o simplify the discussion, we assign a number to each constraint “type.” For example, the height
constraint typeis always constraint 2 in the example. In general, thisis not necessary, and the constraint number
(the second argues of its subscript) could change.

C,1 specifiesthat V,.width = Vi.width + 1, and C, , specifies that V3.height = V,.height. Using arc consistency
checking, wefirst check constraint C; ;, and find that <3,3> can be eliminated from D,. Assigning V,.width =3
violates C; ; because 2 is not present in the “width” columnin D;, so <3,3> isremoved. Similarly, by checking
C, 2, we eliminate from D3 the tuples <9,3> (because <3,3> isno longer in D,) and <2,10>. After making the
graph arc consistent, we are |eft with the diagram in Figure 2.

width height
1 7
Cl,l
5 9
width height
2 4
6 7
width height
4 7

Figure2. Arcconsistent constraint graph.

The solutionto thisCSPisV, =<5,9>, V,=<6,7>, V3= <4,7>, found by instantiating variablesinreverse
order. Starting with V3, <4,7> isthe only choice. Satisfying C, forces V; to <6,7>, and satisfying C, ; forces V
to <5,9>. Note that the graph in Figure 2 is arc consistent but not decomposable.

214 Musical example

Suppose a sequence of three chordsis analyzed. Our CSP representation has each chord a variable, whose
attributes arethe key andqual i t y of thetonal area, andf unct i on, which isthe harmonic function (Roman
numeral notation). The constraints listed in Table 1 apply. Figure 3 depicts the three chords, along with its CSP
representation.

0 Cus 0 Cy4 e

fi]]
| |
[
=
el 1 [[D, D, D,
6[_A 6[- <0.Maj . 1> <0, Maj , V> <0_Mhj |
- — <1, Maj , MI> <1, Maj , #l V> 1 _MNei V1
[o) ' T
T — - .. - .
f f <11, Maj , nat <11, Maj , nat <11, Maj , nat
I I 1> V> L
Vv, vV, V,
Music CSP

Figure 3. Music and CSP representation.

Theroot of V; isC, and by enforcing Cs 1, D; reducesto one element. Cy 4 similarly eliminatesall but one
edement from D,. (Note that pitches are assigned numbers; half steps are one increment apart.). The solution to
the example in Figure 3isthe tuples <0,Maj,| >, <0,Mgj,V>, <0,M4g,| >, which is aperfect authentic cadence.

22 CSP Musical Representation

In this section, we show the mapping from harmonic analysis (at least, the part of which we are concerned) to a
CSP.

221 Assumptions
The assumptions regard the harmonic restrictions placed on the pieces we currently can analyze:

The key of the piece isthat of the root of thefirst and last chords, and the quality of the key (major or
minor) isthat of thefirst chord.

Thisreduces the burden of key finding in this project. Thiswas done for two reasons: key finding isnot atrivial
task, with agood deal of literature devoted to this subject alone (Vos and Geenen 1996; Temperley 1997). More
important, the area of interest of thisagorithm isthe identification of key changes within apiece. The onus of
detecting modulations and key areas still rests on the algorithm, and is described in detail later.

All modulations are to major keys.

This does not affect the generality of the algorithm; it simply narrowed the scope of the project. Including minor
keys means having to include special cases for the different types of minor scales (melodic and harmonic). If

the process can be done for major, then minor can be done in the same manner; the tables for what tones are
diatonic to agiven key would simply be different.

Modulations follow the circle of fifths.

For example, if the current key were D Mgjor, it can either modul ate to the dominant, A Major, or to the
subdominant (1 V), G Mgor. Intonal music, the circle of fifthsisnot arule, but rather a strong preference, as
the tonic-dominant relationship is considered one of the strongest in tonal music (Lerdahl 1988).

Suspensions (a dissonance that resolves to consonance) are resolved in theinput.

Some may question the validity of eliminating suspensions (in the same manner that some object to how
Schenkerian analysis removes “ unnecessary” notes for its analysis), but the goal of the project isto determine
different key areas of the piece. Suspensions add color and direction to the piece, but do not change the
harmonic analysis.

Neighboring and passing tones are omitted.

Thejustification for this assumption is similar to the former, as passing and harmonic tones will not change the
harmonic analysis of a piece. Occasionally, a neighboring tone's motion will take it through a seventh, in which
case the note is harmonically important; inthese cases, the note isincluded.

2.3.2 Mapping

Our mapping of acompositionto aCSPisinTable 1. Notethat r oot isnot included as an attribute of a chord.
Thisisrepresented by the function attribute; knowing the function means knowing the root aswell. In some
constraints, we refer to the root of achord; thisisfor notational convenience.

CSP Music

Variable Chord

Key

Qudlity (major, minor)

Function (Roman numeral notation)

Cadence (Boolean)

Index (integer)

Root

Inversion

Chord (array of integers that comprise the chord)

Domain attributes

Vy.key = V,.root

Vh.key =V, .key

Vi.quality = major

Vi+1.k€y = Vi.key

Vis1.key = (Vi.key + 7Y MOD(12)
Vi.1.key = (Vi .key +5) MOD(12)

Constraint-propagation functions

True

True

True

Vi+]_.k€y = Vlkey

Vi+1.key = (Vi.key + 7) MOD(12)
Vi+1.key = (Vi.key + 5) MOD(12)

Constraint precondition-eval uation functions
(Section 3.1.4)

SO WNROAOR~WDNRE

If |D;| > 1 and V.1 .root = V., .root+7 and V; .key =
Vi.1.key, prefer Vi.function = V/V to V;.function
=1l

If |D;| > 1 and V.1 .root = Vj,;.root+1 and V;.key =
Vi.1.key, prefer V;.function = vii°/V to
V,.function = #iv°

Search preferences

Tablel. Musical CSP representation.

The attributed domains are in the spirit of a Multi-Attribute Domain (MAD) CSP, but since the domains are
treated as discrete collections of attributes, they are modeled as atraditional CSP. Of the attributes, the first
three (key, qual i ty,functi on) aredirectly related to music, whereasthe last two (cadence, i ndex) are
particular to our agorithm.

Thefirst three constraints (see “ Constraint-propagation functions” in Table 1) establish the key of the piece.
Under our assumptions, the piece begins and ends in the same key; these constraints determine the key of the
first and last chords. With this information, the algorithm determines the tonal centersfor the entire piece.

The last three constraints, or modulation constraints, contradict themselves, saying that at any time a piece
simultaneously stays in the same key, modulates to the dominant, and modul ates to the subdominant. Thisis
because there are no restrictions on where modulations can occur. So, in the constraint graph, all the modulation
constraints must apply to each node, V;. Each modulation constraint’ s precondition ensures that only one
modulation constraint will be active per variable.

Since the first three constraints are always active, they need no precondition-evaluation function. (Such a
function would simply return TRUE.) The last three constraints, however, require precondition-eval uation
functions to ensure that only one modulation constraint is active per each node. The purpose of the
precondition-evaluation functionsis to determine where modul ations occur.

Search preferences ensure a unique solution. After arc consistency is enforced, the graphs become
decomposable; however, some domains have more than one element, allowing more than one possibl e sol ution.
The search preferences select the best value for the variable rather than enumerate all the possible solutions.

2.2.2 Conversion

The conversion of amusical score to the input for the algorithm is done by hand, similar to Winograd’ s method
(Winograd 1968). The resulting list is a series of four-voice chords (listed as Bass, Tenor, Alto, Soprano), with
the numbers referring to the MIDI pitch values. (For example, pitch = 60is Cy4, or middie C.) A valueof —1lina
voice meansit issilent in that chord. The following example shows the conversion of the chorale Von Himmel
Hoch (@) , using the assumptions given in Section2.2.1.

] | . | | | | . . .
! =T
5 = e — -— -
SWFT_F—W TP T T [pif 8
z IR LY F YN ?ﬁ\;JJ 4
N] 1 1 1] | I 1 [l - Fa]] . [l
et =t =T
1
A | , | | | | | | , | o
I = 1 | | | I | - I | | | | I
. 1 1 1 o) 1 Fan :._-I 1 1 1 1
e 3 = a1
N = |0 (It
L4 ld 1y A dybd
L — gy — O B S P — ﬁE — i~
. — — b r= E— i —
! rl'rl T I | I | 1 |||-']
Figure4: Original score, Von Himmel Hoch (1).
1
al l | | | [| | [L L
e L . A T i E——— T = —— 1 1
e e e - e
Tt T 7F [pr 1T
z L 4|41y | L gd) [gd)d
i; q - o) E = [l - o) o)
Y] | 1 1 Fa] T F 1 [w] - Fa] [
& —— — r t —H— |=|” i rrl#
E
Fal | . | | l l | l |
e e et =
== et g
STt
(SIS I _=,m%£u
bl Hz o PO . Y bl [w]
. -— -2 I —+ roe — F F i o e —
T r) | T 1 | | | | | T T [r’
Figure5: Chords, Von Himmel Hoch (1).

B T A S B T A S B T A S B T A S B T A S B T A S
1) 48 55 64 72 | 8) 55 55 62 71 15) 48 55 64 67 | 22) 48 55 60 64 | 29) 50 54 -1 69 | 36) 52 60 67 67
2) 52 55 -1 71 |9) 43 55 65 71 16) 43 59 62 67 | 23) 48 55 60 64 | 30) 43 55 59 67 | 37) 53 57 60 69
3) 53 60 65 69 | 10) 48 55 64 72 | 17) 45 57 60 64 | 24) 41 53 60 69 | 31) 45 52 64 72 | 38) 46 58 62 65
4) 55 -1 62 71 | 11) 48 55 64 72 | 18) 52 55 59 67 | 25) 45 60 65 69 | 32) 50 55 62 71 | 39) 48 55 60 64
5) 48 60 64 67 | 12) 52 55 67 72 | 19) 40 60 64 67 | 26) 48 60 64 67 | 33) 50 54 62 69 | 40) 43 53 59 62
6) 53 57 60 69 | 13) 48 55 64 72 | 20) 41 57 62 65 | 27) 47 55 67 71 | 34) 55 55 62 67 | 41) 48 52 60 60
7) 50 53 62 69 | 14) 47 55 62 67 | 21) 43 59 62 65 | 28) 45 55 64 72 | 35) 48 60 64 67

Figure6: Chord list.

Note that this representation disregards metrical information. This does not mean that such informationis

unimportant to harmonic analysis. Our aim is to identify tonal centers, and there is strong evidence that vertical

sonority (chords) can provide the necessary information to do this(Cook 1987; Lerdahl 1988).

3 ALGORITHM

Central to the algorithm isthe identification of tonal centers. The algorithm first finds the root and sets the
domain for each chord. Based on the assumptionsin Section 2.3.1, it determines the key of the piece. Next, it
searches the chords for cadential patterns, creating acadencelist. Thislist is used to find modulations.

Cadences are central to our algorithm, asthey form the basis for identifying tonal centers. In our notation, a
“cadencein C" means that the root of the cadence’slast chord is C. Thisis also the chord used to identify the
cadence, allowing usto represent cadences as a subset of the set of chords. This subset is known as the cadence
space, Z, where Z 1 V: it comprises a distinguished set of variables, such that each Z; T Zisthelast chord of

the cadence. Further, for simplicity, we number each Z; sequentially. Note, however, that aset of chords (V;) of
arbitrary number can exist between Z; and Zj4;. The"cadence" domain attribute indicates if the chord isa
member of the cadence space. The "i ndex" domain attribute is simply the number assigned to the chord asit
read from the input file.

Figure 7shows the relationship between chord space and cadence space.

Cadence space: Z ={z, .

Q Q—0

Chord space: V ={v, ..v}

Figure 7. Cadence spacevs. Chord space

It isimportant to note that a cadence chord (shaded) differs from a non-cadence chord only by the value of a
Boolean attribute, denoted by the "Cadence" attribute in Table 1. Cadence chords simply have thisflag set to
TRUE. The reason for creating two separate chord spaces is that some of our algorithms search the chord space,
while others search the cadence space. Throughout this paper, "Z" refersto achord in cadence space, whereas
"V;" refersto achord in chord space.

Using the cadences as signposts for tonal centers, the algorithm determines where modulations occur. With the
tonal centers’ locations defined, the preconditions for the constraints given in Table 1 come into effect. For each
chord within agiven tonal center, the active constraint isthe one that specifies no modulation. (Constraint C,4 in
Table 1.) At amodulation, the dominant or subdominant modulation constraint (Cs or Cg) is active. The domain
of each chord is searched for the elements that satisfy the constraints of key and quality.

After applying arc consistency, a search finds the solution, which is the harmonic analysis. Most of the domains
reduce to asingle element, but when an applied chord is possible, there will be two elements. In this case, the
search preferences determine which element is the better choice.

The overall agorithmisgiveninFigure 8. Inal of our pseudo-codelistings, V and Z are represented by the
variablesChor d_Li st and Cadence_Li st , respectively.

10

1. Create Chord _List frominput file
2. for i = 1to |V

3. FI ND_ROOT(V;)

4. CREATE_DOVAI N(Vi)

5. Cadence_List -~ £

6. append V; to Cadence_Li st

7. for i = 1to |V

8. i f 1'S_CADENCE(V;)

9. for j = 1 to |D]

10. ni, ;. cadence = TRUE

11. append V; to Cadence_Li st
12. nmod_i ndex - 0

13. for k =1 to |Z]-1

14. nmod_i ndex - MODULATE(Zx, Zk+1)
15. EVALUATE_PRECONDI Tl ONS(Z, Zx+1, nod_i ndex)
16. for i = 1 to |V

17. for j - 4to 6

18. if G P® = TRUE

19. for d - 1to |DO]

20. if n g key violates G ;
21. renove nj 4 fromD
22. for i = 1to |V

23. if D] >1

24, print preferred n;

25. el se

26. print n

Figure8. Overall algorithm.

Theoverall algorithm is not a complete description; some sections summarize subroutines that would be
unwieldy to list here. These subroutines are capitalized, asinFI ND_ROOT(V;) (Line 3.) We explain these
subroutinesin detail in the following discussion. Section 3.1 explains the logic for the process, and Section 3.2
analyzesits complexity. Note that the heading for each sub-routine gives the corresponding linesin the overall
algorithm where that subroutine occurs.

3.1 Operation
311 FIND_ROOT(V;): line3of overall algorithm

The method for finding rootsis similar to Hindemith's method (Hindemith 1970). The agorithm triadifiesa
chord, taking its voicing, which may span many octaves, and lowers the octaves of the tenor, alto, and soprano
voices so that all are within an octave of the bass. For example, the chord G4-Cs-E¢-C; (an widely spaced chord)
would become G4-Cs-E5-Cs. Since the Cs in the soprano is now redundant, it is not added to the ‘triadified’
chord, thus leaving G4-Cs-Es. The chord is now assumed to bein root position (‘ zeroth’ inversion), and the
voices are compared individually to the bass to determine the chord’ s true inversion. Thisis done by finding the
interval between the bass and the voice being compared, and then applying rules, based on that interval, that
determine whether the voice should remain whereit is or be lowered by an octave. This octave lowering means
that the bass note is no longer the root of the chord, and thusis of someinversion. The algorithmisgivenin
Figure9.

1

1. Vi.inversion = 0

2. for j - 1to 3

3. interval = Vj.chord[j] - V;i.chord[O0]
4, if (interval = 8) OR (interval = 9)
5. if Vi.inversion <1

6. Vi.inversion = 1

7. | ower Vi.chord[j] by an octave

8. else if (interval =5) OR (interval = 6)
9. if Vi.inversion < 2

10. Vi.inversion = 2

11. |l ower Vi.chord[j] by an octave
12. el se

13. if interval = 2

14. V,.inversion = 3

15. |l ower Vi.chord[j] by an octave

Figure9. FI ND_ROOT(V;) algorithm.

Given G;-Cs-Es, the algorithm first checks the interval between the first and second notes, G4-Cs. Since this
interval is aperfect fourth (corresponding toi nt er val =5intheroot-finding algorithm), i nver si on issettotwo
(sinceinversion is currently zero) by line 11, and Cs is dropped an octave to a C,4 (line 12). Next, theinterval
between the first and third notes, G, and Es, is found to be a sixth (corresponding toi nt er val =9); since

i nversi on =2, line7 does not apply, but the note is still dropped an octave (line 8). The resulting triad is now
C4-E4-G4. The chord is C major chord in second inversion.

3.1.2 CREATE_DOMAI N(V;) : line4 of overall algorithm

After triadifying achord, atableisfilled with the chord’ s possible functionsin the different key signatures. For
example, the C-major triad’ s functions from the examplein Section 3.1.1are given in Table 2:

Chord Domain Attributes

V, Key Qual ity Functi on Cadence I ndex Root I nversion Chord
Ni C Maj | FALSE [0 2 [60 64 67]
ni2 C#/ Db Maj nat. Vil FALSE [0 2 [60 64 67]
Nis D Maj nat. Vil FALSE [0 2 [60 64 67]
Nii2 B Maj nat. || FALSE i 0 2 [60 64 67]

Table2. Domain-attribute valuesfor aC Major chord.

Similar tables are created for chords that are minor and diminished. (Note that all the columns to the right of
“functi on” havethe samevalue. These are properties of the chord itself and do not change, regardless of the
analysis.) Initialy, al thecadence fieldsare set to FALSE. Thei ndex field is set by a counter that increments
as each chord isread from the input file. It isimportant to store this value, so that we can access a particular Z;
from the Cadence Space. (i.e., to determine the corresponding V;.) Applied chords make it possible to have
domain elements with the ssme key and qual i t y, but different functions, as functions depend on the situation in
which they are found. For example, all chord may also be aV/V; thus, both possibilities are represented in the
domains of every mgjor chord.

Some properties of chords, such asinversion, are represented as attributes even though their values are constant
throughout the domain. E4-Gy-Cs isaC Major triad in first inversion, regardless of the tonal center in whichitis
found. (Note that the triad itself has a key and quality, which are not to be confused with thekey and qual i ty of
atonal center to which the chord belongs.) The key area to which the chord belongs determines a chord's
harmonic function.

313 | S_CADENCE(V;) : line8 of overall algorithm

Creating the cadence list requires identifying every cadential structurein the piece. The cadence-finding
algorithm searches for three types of cadences: I-V-I, 11-V-I, and IV-V-I. Plagal and half cadences (I-IV-I and
V-I, respectively) are not included because they are weaker indicators of tonal change.

1. elaboration = 2

2. j = Vj.index -1

3. if ((Vj.root+7)MOD(12) = Vi.root) AND (j > 0)
4, whil e el aboration > 0

5. if Vj.i.root = Vj.root

6. j = j-1

7. el se

8. br eak

9. el aboration - elaboration - 1
10. if { Vj.i.root = Vi.root OR

11. (Vj-1.root+5) MOD(12) = Vi.root OR
12. (Vj.root+2) MOD(12) = V;.root }
13. return TRUE

14. el se

15. return FALSE

Figure10.1 S_CADENCE(V;) algorithm.

Theel abor ati on variable (lines 1, 4, and 9) allows for elaboration of the dominant in the cadences. For
example, thismeansthat | - V- V- | , aswell asl - V- | , are both perfect authentic cadences. Setting

el aboration - 2 (linel)isavalue, determined experimentally, that identifies elaborated dominantsin
cadences, but does not include lengthy patterns. For example, if el abor ati on -~ 4, then the sequencel - V- V-
V- V- | would be acadence, but harmonically it isunlikely that thisisthe case. Line 3 checks the previous
chordinthelist for apossible V- | relationship. After allowing for elaboration of the dominant (lines 4-8), it
checksthe preceding chord in thelist; if the root of thischordisal | ,1V, or Vin relation to the original chord
(Vi), then the cadence is appended to Z. Z is stored as an ordered list; thisis required for the algorithm to
function properly. Sincethelist of chordsisfrom whichZ is created is ordered, Z does not require sorting.

The resulting list Z of cadence chords, Z 1 V, givesthe possibilities for the tonal centers’ locations within the
piece, with amodulation possible between any two adjacent cadencesin different keys. The relationship
between the number of cadences and n, the number of chords, is not unique; there are no hard and fast rules
about where cadences occur, with the exception of the end of a piece.

When the cadence-identification algorithm finishes, the list contains many ‘false’ cadences, whose root motions
fit the cadence pattern matching, but are not true cadences in their harmonic function. The following example
shows all the cadencesfound in a chorale by Samuel Scheidt (Von Himmel Hoch (2).)

13

2) IV-V-1 in

G 3) |1-v-l incC

s

Ml

I

g
11

——
,!ﬁh::,

L] 0.

Tenll
K

mi

__-M_—

A
e

224

L]
o
p—
|
Fom H
L]

q R

“r

"

TTH

MTT—

1) 11-V-1 inF

Ty |%—

o

5) I1-V-1 in G

4) 1-V-1 inC
e | e — : —
e e T
\ FTIFPM P (T TP° FIFTF rr;'];q]»_}/rvm
_ M ul |- T P I-M
2’%“”-?'? L T F-;rur_q??wﬂ”‘:“-'?
7) 11-V-1 inC

6) I-V-1 in C

Figure 11. Cadenceidentification.

False cadences are accepted or rejected based on the circle of fifths (e.g., acadencein D cannot follow a
cadencein C), or by aheuristic that decides how well the cadence fitsthe key it suggests. For example, a G-
major cadence whose chords contain no leading tones (F#) is considered much weaker than one that does
contain leading tones.

In the case of overlapping cadences, this heuristic decides which is the false cadence. The criteriafor

elimination is the number of non-harmonic tones (NHTS), relative to the keys of the cadences, are present in the

chords; the cadence whose key has the most NHTsis eliminated. Figure 12 shows an example of aD major
cadence overlapping a G major cadence.

Cadencein D Major

Y, V ||
Ll
Ls [,
& - = I‘
[~ [, I'_'J [,
7 - =
i v l;|

Cadencein G Magjor

Figure 12. Overlapping cadences.

The G major cadence is chosen in this case, because the F# in the tenor voice of its second chord isaleading
tonefor G major. In the case of the D major cadence, its second chord has a C natural in the soprano voice,
which isnot aleading tone to D major. Since the preparation of the D major chord isweaker than the

14

preparation of the G major chord, the latter cadence is chosen as the correct one, and the former is discarded. A
situation in which overlapping cadences are not resolved is when both cadences are in the same key and share
only one chord. Thus, all-V-I and al-V-l may overlap (i.e., I1-V-{1}-V-I) if theroots of the | chords are the
same. In this case, both cadences are added to the cadence space.

Another criterion for cadence elimination is lack of proper voice leading. Cadences are strengthened
harmonically by contrary motion between the soprano and bass and by stepwise motion in the soprano voice
(Aldwell and Schachter 1978). We define the latter only between the last two chords of a cadence. In Figure

12, the cadence in D major does not have stepwise motion in the soprano voiceinitslast two chords. Cadences
that lack both contrary motion and stepwise soprano motion are removed, asit is unlikely that they function as
cadencesin the piece.

Figure 13 shows the cadences that remain in Von Himmel Hoch (2) after eliminating fal se cadences.

3) I1-V-1 inC

i
-
.
Wil

k]

8

T
1
N
|
|.;
. [10ER
%
. L1NEE
—&

T — T
¥
(]|

'r'

e
E;hEZﬁ
el

1]
TR

) J ™
2 4 1y |y Jd %]l

1
e |
L 1
»
T [e—
o

—

A L1 . | T T] | 1 LR
e e = —iSE=
\ﬂ Fr Il P T Frf=] TP TF rrifﬂﬁl’]jm
- R e e e e e e —
5) 11-V-1 in G 6)|-vﬁc 7) 11-V-1 inC

Figure 13. Final cadencelist.

Cadence 1 (see Figure 11) is eliminated because of the B natural in the soprano voice, which is not diatonic to
the key of F. Cadence 2 isremoved by the same rule. Cadence 4 overlaps Cadence 5, and is eliminated by
comparing the NHTs of the two keys. Thus, the cadences in Figure 13 comprise the cadence space.

Note that the first chord of the piece isautomatically thefirst chord in the cadence list. This serves asthe
starting point for identifying modulations, which we discuss later. The cadence list from Figure 13 would be
{C,C,G,C,C}. (Thesearetheroots of the chords that comprise the Cadence Space.)

314 MODULATE(Zy, Zk+1) : line 14 of overall algorithm

Between sequential cadences Zy and Zy.1, amodulation is possibleif their key attributes are different. To
determine if amodulation occurs, the algorithm builds atable of the sums of all the harmonic tones, relative to

all twelve major keys, of al the chords between consecutive cadences. (Thisis an O(|V|) operation.) To
determineif the section between Z, and Zy.; modulates, the MODULATE algorithm compares the table values
for the corresponding section for Zy .key and Zy.1.key. If the number of harmonic tonesfor Zy.key is higher than
that for Z.1.key, then no modulation occurs; the tonal center of the entire sectionisZy .key.

The harmonic-tone tabl e uses a weighting to represent accurately the tonality of a section. Since aleading tone
to the dominant (which isreally a non-harmonic tone relative to the tonic) can still suggest the tonic itself, itis
considered a partial harmonic tone. The weighting used in our algorithm isthat a harmonic tone (relative to the
tonic) hasaweight of 5, whereas aleading tone to the dominant gets aweight of 1. Theresult isthat the

15

presence of an occasional |eading tone to the dominant in a passage does not necessarily suggest that the tonal
center of that passage is the dominant; it may still be the tonic. For example, consider the following notes:
C,D,E,F,F#,G. InCmajor, al the notes are harmonic tones except for the F#, which is aleading tone to the
dominant , G major. Thus, the value for this passage in the harmonic tone table would be 26. (Five harmonic
tones, one leading tone to the dominant.) In G major, the harmonic tone value for this passage would be 25;
there are five harmonic tones (each with aweight of 5), and one non-harmonic tone, (F), which has aweight of
zero. This passage istherefore more likely to be in C major thanin G major.

If, however, the section has more harmonic tones when Zy.1 key isthetonal center, then at some chord between
Zy and Z.1, the section modulates from Zy.key to Zy+1. key. A linear search of the chords between Z, and Zy+,
finds the chord where the modulation occurs. If the modulation isto the dominant (Zy+1.key =Zx.key + 7),
then the search order through V; isfrom Zy to Zy.;. If the modulation isto the subdominant (Zy+; key = Zx.key -
7), then areverse search (Zy+1 to Z) is used. In both cases, the search looks for the first chord that contains a
leading tone to Zy., .key. Having found this chord, the search proceeds forward (regardless of itsinitial
direction) for the first tonic (I) chord to Zy.; .key. Thisisthe chord where the modulation occurs. In the case of a
“down” modulation (V-I), it searches for the pivot chord, which will have both V/I and I/V functionsin the two
keys.

This procedure is the MODULATE agorithm. Its arguments are Zy and Zy.,, and it returns the chord number

(Vi. i ndex) where the modulation occurs. If Zy.;.key = Z.key, then no modulation exists between the cadences,
and MODULATE returns zero. A special case of MODULATE occurs when checking the last two cadencesin the
list. Since the piece must return to its home key (which was determined by the first three constraintsin Table 1),
it will always return amodulation in this case. It ignores the harmonic tone table lookup and performsthe

search previously described. For example, if the keys of the |ast two cadences are { E,A}, then it must modulate
toA.

In Figure 13, modulations are possible between Cadence 3 and Cadence 5 (C-G), and between Cadence 5 and
Cadence 6 (G-C). MODULATE identifies the following modul ations:

L
Bl

e
gahﬁh
el

11
k).

el
4 K
M
j' |
[

z PPy J!J:L 4d %]"l

Py
i
TT— %
wl
T
wl
.
i
y
|

--:l_ 1 1 1 - |
= I -] T =
. T
fromC (5 e o
s T IR E e — o
e R e NEE
\ w] F‘ [r]-TI' For rr‘ o Fip T‘rF Fﬂﬂ?r-ﬁm
] 4 P | A T T Y IJ|
2_‘.*:: ;:IjIFF? I?:II | T S F‘l':ll'i-i -:la
T T I it o I o | |||_||rutfrru

Figure 14. Modulations.

In finding the modulation from G to C (dominant to tonic), it finds the first chord with aleading toneto G by a
reverse search, and then proceeds forward to find the first chord that servesasbothaV/l inGand I/V in C.
Thisisthe pivot chord, and the modulation occurs at the following chord.

16

315 EVALUATE_PRECONDI TI ONS(Zy, Zk+1, nod_i ndex) : line 15 of overall algorithm

Table 1lists six constraints. The first three determine the key of the piece: the first and second examine the first
and last chord to get the key, and the third constraint enforces the assumption that all keys are major. Enforcing
these constraintsis simple, both conceptually and computationally. Applying arc consistency using these
constraints affects only the first and last chords of the piece. For example, if achoralein G mgjor were the

input, arc consistency using the first three constraints would result in everything being eliminated from D; and
Dy, except those domain elements whose key attributeis“7” (the key of G) andqual i t y attributeis“Maj.”
Since there is no additional information about the tonal centers of the piece, the domains of all other variables
are unchanged.

Figure 15. EVALUATE_PRECONDI Tl ONS(Zk, Zx+1, nod_i ndex) algorithm.

The remaining three constraints establish tonal centers. Whereas these constraints specify attributes from only
two chordsin itsargument list, their preconditions are more complex. To determine which of these constraints
is active, the preconditions are eval uated to find the modulations. (MODULATE is defined in Section 3.1.4.) The
precondition evaluation algorithm is given in Figure 15.

If the keys of the two cadences are the same, then there is no modulation between them. In this case, lines 2-5
set Ci ;" to TRUE and the other preconditions to FALSE for al Cij, where Zy.q.i ndex 3 i3 Zy.i ndex. If the
keysof Zy, and Z., are different, then amodulation is possible between these cadence chords. If MODLUATE
finds a modulation, then lines 6-25 eval uate the preconditions such that up to the modulation, the tonal center is
that of Zy (lines 14-17); after the modulation, the tonal center isthat of Zy.,(lines22-25). Lines 14-21 set the
preconditions for the modulation chord. If it modulates to the dominant, lines 14-17 apply. For modulations to
the subdominant, lines 18-21 apply.

In some cases, the precondition-eval uation algorithm removes a cadence from Z (lines 8, 27). If MODULATE
decides against amodulation between Zy and Zy.1, then Zy., isremoved, asit isno longer an indicator of tonal
change (line 8). The next comparison would be between Zy and Zy..,. If Zx., violates the circle of fifths
constraint, it isalso removed (line 27).

For example, suppose the following five cadences comprise thelist: (C,G,D,G,C). Modulations are possible
between each successive cadence pair. Suppose Modul at e examinesthefirst and second cadences and finds no
modulation, then the second cadence (in G) is removed from further consideration, leaving thelist (C,D,G,C).
Now the first and second cadences (C,D) violate the circle-of-fifths-modul ation constraint, so again the second
cadenceis removed, leaving (C,G,C).

Due to the strong tonic-dominant relationship in the pieces analyzed, this section of the algorithm also considers
adjacent cadences in the dominant key to be an indication of amodulation, so the first of the two dominant
cadencesisa* Sforced” modulation. Thus, in a cadence sequence such as (C,G,G,C), the presence of two
consecutive cadences in the dominant key (G) is considered to be a strong enough indication that a modulation
occurs between the first two cadencesin thelist.

Theresult of the precondition-evaluation algorithm is the activation of the constraints that establish the tonal
centers. The arc-consistency algorithm (lines 16-21 in the overall algorithm) performs aforward traversal of the
chord space, removing infeasible domain elements from each chord. Due to the tree structure of the constraint
graph, we do not need to recheck adomain after enforcing a constraint. Since the constraints are al binary and
directed, it isimpossible for constraint C;; to affect the domain of any variable other than V;..

In Figure 14, the algorithm starts at the first chord (V1) and makes C; 4”® TRUE until it reaches the first
modulation (C to G, measure 7). For the chord prior to the modulation, it evaluates C; s to TRUE, activating

the constraint for modulating up afifth. Between the first and second modulations, it again evaluates all C; 4”° to
TRUE for al constraints on the chords between the modul ations. Upon reaching the second modulation (G to C,

measure 9), it evaluates C; ¢™'° to TRUE, activating the constraint that specifies modulating down afifth. Finally,
it finishes the remaining segment of chords (from the second modulation to the end of the piece) by once more

17

evaluating al C; 4" to TRUE. This entire operation occurs in chord space. The resulting tonal centers are shown
in Figure 16.

< CI\/B.j >

1 .
L
Bl

e
I!ﬁ’::n

Sl

N |
e

L
[
H e

ol
. K
=
T h
q
|
1
T — %
b
dfll
|l]

T | 1e—
A
o
I
nd(
i
"
]
+ .
i

—
v
M
]

4
TTH

™

L /1
|
L 18
||| p—
. [1NER
S
rr f
|

. | EE
%

(&)]
.

L L1
T
L L 1N .

"
Eﬁah::n
1
- 11N
L] NN
—
_*
|
e JL 158
%]
u,g .
.
—
7

§

Figure16. Tonal centers.

3.1.6 Solution

When applying arc consistency, most of the domains reduce to one element. (Recall that our definition of a
domain element isatuple of <key, quality, function>.) Thismakes sense, asknowing thetonal centers
usually defines the harmonic functions of chords. In the case of applied or cadential chords, adomain will have
more than one element, and the search preferencesin Table 1 are used to choose the best analysis. Note that the
graph is now decomposable; hone of the domain elements remaining after G(V,C) isarc consistent will violate
any constraint. The best answer isinferred by the (search) preferences, which are merely table lookups. The
solution search, therefore, islinear in |V|, the number of chordsin the piece. We prove thisin the following
section.

3.2 Analysis

In this section, we analyze the algorithms given in Section 3.1. By taking advantage of the CSP framework and
properties of tonal music, we were able to represent harmonic analysis as a sequence of O(|V|) operations, aswe
will demonstrate in the following sections.

321 Constraint graph

The modulation constraintsin Table 1 (the last three constraints) create adirected acyclic graph (DAG), shown
in Figure 17. C; and C; are not shown, as they limit the domains of V; and V,, but nothing el se; the algorithms
operate under the assumption that C; and C, have already been applied. C3 isnot included in the graph, because
the domains are created without any elementsthat violate it.

18

H
C1,5 t
C,, elc
\»
ClG C2,6

Figure17. Constraint graph.

Without the circle of fifths modulation assumption, each node in the constraint graph would have twelve
outgoing arcsinstead of three, representing the possibility of modulating to any key at any time. Relaxing the
major-key constraint (Cs) allows modulations to minor keys. With twelve keys and two qualities (major and
minor), each node would have twenty-four outgoing arcs. The resulting graph is still aDAG. After the
preconditions are evaluated, only one constraint will be active between adjacent nodes. From the perspective of
asolution search, the graph is now atree, since a search examines only the active constraints.

The structure of the constraint graph ensures a backtrack-free search. This constraint graph is ordered, meaning
that the nodes are examined in a particular order (V; through V,). In such agraph, the width of anodeisthe
number of arcs that connect that node to its predecessors. The width of an ordering is the maximum width of all
the nodes, and the width of the graph is the minimumwidth of all possible orderings. (A treeisagraph of width
one.) Thefollowing theorem gives arelationship between the width of a graph and the tractability of search
(Dechter 1990).

An ordered constraint graph is backtrack-freeif the level of directional
strong consistency along this order is greater than the width of the ordered

graph.

The algorithm given in this paper enforces directional two-consistency on an ordered graph of width one,
ensuring that the search will be backtrack-free.

322 Complexity analysis

It isimportant to note that in aworst-case analysis, Chord Space and Cadence Space are the same magnitude. A
cadence must be at least three chords long, and cadences cannot overlap. A piece with acadencein every
possible location would contain at most [V]/3 cadences. In tonal music, however, cadences are rarely found in
such close proximity.

The following analyses first investigate the subroutines, and then the overall algorithm inFigure 8.

3221 FIND_ROOT(V;) and CREATE_DOVAI N(V;)

FI ND_ROOT executes a constant-time loop (root finding) and then CREATE_DOMAI Nfillsafinite-length table

with domain attributes. The size of thistableis a constant, independent of |[V. As both these algorithms are
called once for each chord, root-finding and domain creation for the chord list requires O(|V|) time.

3222 | S_CADENCE(V;)

Creating the cadence space requires alinear search of the chord space. At each iteration, it performs a constant-
timeloop (the constant isthe el abor at i on variable.) Before the cadences are appended to the cadence list, they
are put temporary list that, for each cadence, storesitsfirst and last chords. (Theresultisalist that is ordered by
the last chords of the cadences.) Thistemporary list istraversed in aloop. Any cadencesthat overlap are
submitted to a constant-time check (Figure 12), and a cadence gets elimi nated. Cadence Space is thus created in
O(|V]) time.

19

3223 MODULATE(Z, Zys1)

This algorithm first creates atable of the sums of all harmonic tones, relative to all twelve keys, of the chords
between the cadences. Creating this table requires atraversal of chord space, with twelve constant-time
operations per chord. Thisrunsin O(|V|) time, and is performed only once. Although it is not specifically called
by MODULATE, itsanalysisisincluded here for convenience. Next, it identifies modulations viatable lookup, or
removing cadences from the cadence space if it finds no modulation. Thus, creating the table requires O(|V])
time, and MODULATE runsin constant time. Since MODULATE iscalled for each sequential cadence pair (and
O([Z)) = O(V))), finding the modulations requires O(|V]) time.

3224 EVALUATE_PRECONDI Tl ONS(Zy Zis:, nod_i ndex)

Although at first glance this algorithm appears to require O(|V|?) time, its complexity islinear in |V|. The reason
isthat the main loop, which iterates through cadence space (whichis O(|V|])). When amodulation is identified

an inner loop iterates through chord space between cadence chords Zy and Zy.;. This means that cadence chords
can be examined twice; once in the cadence-space search, and once in the chord-space search. At most, thiswill
result in O(JV| + |Z|) operations. Since O(|Z|) isequal to O(JV|), the thisagorithm runsin O(|V|) time.

Applying arc consistency also runsin O(|V|) time. Given the nature of the constraints, we can search through
chord space, enforcing the active constraint for each V;, which limits the domain for Vi.;. With the tree structure
of G, we are assured that once a constraint is applied, it will never need to be re-checked.

3.2.25 Solution:

Finding a solution requires alinear search of chord space and returning the domain element for each variable.
Almost all domains reduce to one element after the application of arc consistency; those that have more than
one element use a constant-time table lookup (preferences) to return the best choice. This operationrequires
O(V]) time for one solution. As demonstrated in Section 3.2.1, the search is bactrack free.

3.2.2.6 Overall algorithm:

We can now evaluate the complexity of the overall algorithm (Figure 8.) Lines 2-4 are the root-finding
algorithm (O(]V|]).) Lines 5-13 represent the cadence identification algorithm (O(|V[).) Lines 14-20 comprise the
precondition evaluation algorithm (O(|V|)), followed by lines 21-26, which apply arc-consistency (O(|V]).)
Finally, lines 27-31 find the solution (O(|V[).) All of the sub-algorithms execute sequentially, thus making the
overall algorithm a series of linear-time operations; it therefore runsin O(|V|) time.

4 RESULTS

The source material analyzed here comefrom Das Gorlitzer Tablaturbuch, a collection of chorales written by
Samuel Scheidt in 1650. We chose Scheidt because his work fits the assumptions we impose, but has sufficient
harmonic motion to make it useful test material. A brief discussion follows each analysis.

[

i

I

=

il

EAdli

g

138

I|JJ'GI-

7l |
T

brl
[A

sl

YT

IV v VIV V

Y

IV

=
=
=
=
I

PP

I
=

|
-
&
-4

|
-

i

2]

) Jd

=
—
I

Fr'pl'r Fle re f

J

IV °

M

I
V'

r"l
IV vii”

T
Y

r

=

i

\Y

T

[TMh— — %

rr

Vb

>
6
I

VI vi vi VIV oV

Vi

ToT] | p—

e,

hl

Figure 18. In Dulci Jubilo.

After removing the fal se cadences, the key of all cadencesinZ is G. This means that there are no modul ations,

and constraint C; 4 isactive for all nodes. Arc consistency thus eliminates all n; 4, wheren; 4 * 7 (where 7 isthe

pitch value of G.) The secondary functionsin measures 5 and 12 are the result of preferences employed when

searching for the solution.

21

T
£¥—
T
o
|
m
-
]
TH f—
—m%
| B |
o

===
I diii IV V1 IVii VV'I 1% VI v iiirbirib\/l
. S R S S R — P
e —— 2 e e i e
ST e T Tt
24,;_,,' P PN . Tl NN WE
(e = s s
f rrr|l] T [T L)
v iV 1V viTwv v 64CVII6IV'I Vi
Gl i v v bVI |

Figure19. Von Himmel Hoch (1).

In this example, Z contained the cadences { C,C,C,C,G,G,C} after false cadences were removed. Thefirst of the
two G cadencesis at the end of measure 7. MODULATE examines the passage between this cadence and the C
cadence at the end of measure 5, and decides that the modulation occurs at the first chord of measure 8. Since
the next cadencein thelist is another G cadence (measure 9), the tonal center between these two cadence chords
isG. Sincethisisa“down” modulation, MODULATE looksfor the last |eading tone to the new key (F natural in
this case, found by areverse search.) From there, it looks for the pivot chord, one whosef uncti on isVinthe
current key and | in the new key. It assigns all current key to the chords up to the pivot chord, and the new key
to the chords following the pivot.

Another chorale, In Dulci Jubilo, had an analysisin which the entire piece was in one key (G major) except for
asmall group of chords, corresponding to about a measure in the piece. In this area, the analysisshowed a
modulation to the dominant (D major). According to amusic theorist, thisis not correct, or at least very
unlikely, not making any ‘ “musical sense.” From alistener’s perspective, however, it may make more sense.
The analysis resulted from two D major cadencesin close proximity, which might sound to the listener asif the
piece briefly suggests the dominant before returning to the tonic. Asresolving thisis more of an interpretation
rather than arule, we do not see this result asafailing of the algorithm.

5 DISCUSSION

The goal of any theory isto represent a system with a set of concise and powerful rules. A well-formed theory
summarizes and yields insights to the system, and presents a framework that others may examine and

reproduce. An algorithm designed to encapsul ate tonal music theory must possess these propertiesif itisto bea
useful tool for approaching the problem.

5.1 Earlier attempts

Winograd, treating music as agrammar, developed a hierarchical set of parsing rules that act on alist of chords
(Winograd 1968). Whereas he clearly enumerates the rules, hierarchies, and tables used in hisimplementation,
the description of the implementation itself is high level, lacking necessary detail for athorough analysis. This
makes it difficult to reproduce his results.

Using arule-based system, Maxwell represents harmonic analysis essentially as atable lookup (Maxwell 1992).
In addition to the lack of aclear description of the algorithms, his presentation of the rulesinvolved is
sometimes ambiguous or missing altogether. For example, thisisthe description of one such rule:

“IF asonority is not tertian OR it is accented AND dissonant AND the next sonority is
tertian AND the next sonority has alower tertian-dissonance level OR it is unaccented
AND dissonant AND the last sonority istertian AND the last sonority has alower
tertian-dissonance level, THEN the sonority isdissonant in context.”

Given this description, there are several possible implementations of thisrule. (Thisisonly one of over 50 such
rules.) With ambiguous and omitted rule definitions, along with no description of the algorithms, itis
impossible either to reproduce or to analyze Maxwell's results.

Another problem inherent with arule-based approach isthat arule-based system requires a"proliferation of
rules that tend never to reach an end" (Ebcioglu 1992). Suppose the scope of the project were to analyze just
one composer, such as Bach. It would be no small task to develop the a knowledge base of all the situationsin
which Bach "breaks the rules" of tonal harmony, much less represent all his stylistic idiosyncrasies. Even if
such aset of rules were created, it would certainly need amending to be used to analyze another composer's
work. Since constraints are atype of rule, our work may also suffer from this problem as we extend it to analyze
more complex music.

The Serioso program (Temperley and Sleator 1999) takes a comprehensive approach, separating its analysis
into three sections, (meter, key, and harmony), and combining these separate analyses into afinal interpretation.
It addresses many of the difficulties encountered by the approaches described above, summarizing its
performance by a set of preferencerules. It introduces some intriguing ideas and insights, such as the line of
fifths model (Temperley 1997).. There is no description of how the preference rules are implemented, leaving

no opportunity for their analysis.

5.2 Our representation

Thegoal of thiswork isnot only to model harmonic analysis,, but also to present it in aformal framework that
facilitates analysis and duplication. We make no claim that our approach more comprehensive or correct than
any of the others previously mentioned. Oursis an attempt to model some key insights into harmonic analysis
and to present it amore accessible way.

The central ideain our approach isthat cadences form abasis for identifying the presence of tonal centers
within acomposition. The notion of using cadences as musical guidesis not new; Lerdahl, in correspondence
with Jackendoff (Jackendoff 1991) suggests using cadences as aids for metrical analysis. We posit that they
also play avital rolein determining the tonal structure, serving as“musical footprints” of the path the tonal
center takes throughout the piece. From this, we develop heuristics to determine where cadences occur and
where the tonality changesin the piece. Once the tonal centers are identified, harmonic analysis reducesto little
more than a parsing problem. We, therefore, focus our algorithm on the identification of tonal centers.

We chose the CSP framework for our approach because of its elegance in representing the problem and because
itisreadily analyzed by formal methods. By making the variable a chord rather than the individual notes, we
take advantage of properties of chords, while retaining the ability to constrain their analysis by their attributes.
A major point in favor of our approachisits simplicity. Instead of using alarge set of rules, we employ aseries
of simple pattern-matching and search algorithms to accomplish the task. We freely admit, however, that thisis
neither acomprehensive nor final solution to the problem. Certainly, some of the algorithms are not sufficient
for analyzing all types of tonal music; our assumptions need to be relaxed, and more complicated test cases are
necessary. The complexity of the algorithms may very well increase as the work progresses; the music analyzed
in this paper isrelatively simple, and as more complex pieces are introduced, the sophistication of the
algorithmswill have to improve accordingly.

23

6 SUMMARY

In the past, attempts at algorithms that perform harmonic analysis have suffered from alack of formal
presentation of the methods involved. Regardless of the successes of these efforts, analysis and duplication of
their resultsis ambiguous and difficult. The purpose of thiswork isto encapsul ate the process of harmonic
analysisin aprecise and well-studied framework that availsitself to analysis and reproduction.

Harmonic analysisis similar to natural-language parsing in that it incorporates rules and preferences, and like
understanding natural language, is considered to be atask performed without difficulty by those who are
familiar with it (Lerdahl and Jackendoff 1983). By modeling the rules of tonal harmony as constraints and the
preferences as search preferences, the CSP framework provides an el egant a gorithmic representation of
harmonic analysis.

Our implementation employs a series of algorithms that employ various tonal harmony rulesto identify tonal
centers within acomposition. Establishing thisinformation is the heart of harmonic analysis, asit reduces the
remainder of the problem to little more than parsing. Aiding our algorithms are several assumptions about tonal
music, which simplify the task. They provide additional constraints on interpreting the compositions.

The music used to evaluate our system is a subset of tonal music, and that the assumptions we made must be
relaxed in order to have arobust tonal harmonic-analysis system.

REFERENCES

Aldwell, E. and C. Schachter (1978). Harmony and Voice L eading. New Y ork, Harcourt Brace Jovanovich, Inc.
Cook, N. (1987). “The perception of large-scale tonal closure.” Music Perception 5: 197-206.

Darr, T. (1997). A constraint-satisfaction problem computational model for distributed part-selection problems.
Electrical Engineering and Computer Science Department. Ann Arbor, The University of Michigan.

Darr, T. P., W.P. Birmingham, N. Scala (1998). A MAD Approach for solving part-selection problems.
Artificial Intelligencein Design, Lisbon, Portugal., Kluwer.

Dechter, R.(1990) Constraint Networks. Encyclopedia of Al: 276-285.

Ebcioglu, K. (1992). An Expert System for Harmonizing Choralesin the Style of J. S. Bach. understanding
Music with Al: Perspectives on Music Cognition. M. Balaban, K. Ebcioglu and O. Laske. Menlo Park, AAAI
Press: 295-333.

Hindemith, P. (1970). The Craft of Musical Composition. New Y ork, Schott Music Corporation.

Jackendoff, R. (1991). “Musical Parsing and Musical Affect.” Music Perception 9(2): 199-230.

Lerdahl, F. (1988). “Tona Pitch Space.” Music Perception 5(3): 315-350.

Lerdahl, F. and R. Jackendoff (1983). A Generative Theory of Tonal Music. Cambridge, Mass, MIT Press.
Maxwell, H. J. (1992). An Expert System for Harmonizing Analysis of Tonal Music. Understanding Music with
Al: Perspectives on Music Cognition. M. Balaban, K. Ebcioglu and O. Laske. Menlo Park, AAAI Press. 335
353.

Temperley, D. (1997). “An Algorithm for Harmonic Analysis.” Music Perception 15(1): 31-68.

Temperley, D. and D. Sleator (1999). “Modeling Meter and Harmony: A Preference-Rule Approach.”
Computer Music Journal 23(1): 10-27.

Vos, P. G. and E. W. V. Geenen (1996). “A Parald-Processing Key-Finding Model.” Music Perception 14(2):
185-224.

Winograd, T. (1968). “Linguistics and the Computer Analysis of Tonal Harmony.” The Journal of Music
Theory 12: 2-49.

24

