
 1

A CONSTRAINT SATISFACTION APPROACH
 TO TONAL HARMONIC ANALYSIS

TIM HOFFMAN
WILLIAM P. BIRMINGHAM

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE DEPARTMENT
THE UNIVERSITY OF MICHIGAN

25 JANUARY 2000

TECHNICAL REPORT

CSE-TR-397-99

 2

Abstract
This paper gives an algorithm for harmonic analysis for a tonal composition using a constraint-satisfaction

problem (CSP) model. The algorithm combines rule-based and preference-based approaches to perform
harmonic analysis, taking the position that the problem can be modeled as a computational process and less of a
psychological phenomenon. Using cadential patterns within the piece, it identifies tonal centers and assigns the
harmonic analysis, applying preferences when necessary. A software implementation of the algorithm is
presented, along with a discussion if its results.

1 INTRODUCTION

Harmonic analysis provides a theoretical framework for examining a musical composition and summarizing its
tonal organization. This analysis is based upon the rules of tonal harmony, whose application results in a
grammatical parsing (Roman numeral notation) of a composition; this Roman numeral analysis gives the
functions of chords relative to the key area, or tonal center, in which the chords reside. Designed to analyze
Western tonal music (seventeenth to nineteenth century), it provides insight into the musical language spoken
by the great composers of this era.

In recent years, there have been several attempts, with various levels of success, to render portions of harmonic
analysis as algorithms. By and large, these research efforts have been informal, relying on lists of rules or
sketches of algorithms. They have not addressed some of the important computational issues, such as problem
complexity, algorithm complexity, and generally have not provided concise descriptions of their algorithms. By
addressing these issues, we gain insight into how harmonic analysis can be tackled efficiently by computers.
Further, we believe that the precision necessary for computational analysis will provide musical insight as well.
Lerdahl and Jackendoff’s efforts in creating a formal system for tonal music analysis, for example, have lead to
important musical insights (Lerdahl and Jackendoff 1983). Likewise, we focus our efforts on tonal music
analysis, examining chorales written by Samuel Scheidt, a seventeenth-century composer. Scheidt’s music
closely follows the conventions of tonal harmony, making it excellent test material for our algorithm.

In this paper, we model harmonic analysis as a constraint-satisfaction problem (CSP). The CSP’s formal
framework provides a clear representation of the problem, facilitates its analysis, and encourages concise
algorithm descriptions. We chose to model the problem using attributed domains to take advantage of the
properties of chords, such as key, quality, and function. We borrow this technique from the more expansive
Multi-Attribute Domain (MAD) CSP (Darr 1997; Darr 1998).

In addition to its expositional advantages, the CSP naturally handles constraint and preference processing. We
posit, and demonstrate in this paper, that many rules used in harmonic analysis are actually analytical
constraints. By modeling these “rules” as constraints, we can both simplify processing by reducing, albeit not
necessarily eliminating, the number of ad hoc rules, and by bringing to bear powerful algorithms from the CSP
literature on harmonic analysis.

Central to our approach is the identification of tonal centers in the composition. This cannot be accomplis hed by
a simple application of a rule, as the rules for tonal harmony are not specifically stated, but are conventions
drawn from centuries of musical experience. There is no music-theoretic requirement, for example, that a tonal
composition must employ the tonic-dominant relationship, yet it is ubiquitous and recognized by musically
trained and untrained listeners alike. Likewise, the algorithms presented here use cadences as a basis for
identifying tonal centers. Using the constraint that modulations (changes in the tonal center) are suggested by
cadences, our algorithm searches a piece for all cadential structures, determines which are locally the best, and
then decides whether or not to modulate. After finding the tonal centers, it labels the chords in the piece with the
proper Roman numeral notation.

The lack of a formal system in tonal harmonic analysis poses a problem for a computational approach. Like
natural-language parsing, tonal harmonic analysis does not necessarily give a single answer; two music theorists
analyzing the same composition may arrive at different analyses, yet neither of them would necessarily be
considered more correct. Many of the decisions made during analysis reflect the analyst’s preferences. Thus,
preferences must be included in the computational system. An example of a preference is the selection of the

 3

location of a modulation; there may be several equally valid places for the modulation, with fixing of any one
relying on the analyst’s preference.

We describe in this paper the CSP representation, how the types of music we are interested in analyzing map to
a CSP, and the algorithms we use to perform harmonic analysis.

2 REPRESENTATION

Understanding the algorithm presented in this paper requires a basic knowledge of CSPs. A brief introduction to
CSPs follows.

2.1 CSP overview

2.1.1 Definition

A CSP comprises the following elements:

• a set of variables V = {V1, …, Vi, …, Vn}.

• a domain for each variable, Di= {d1, …, dd}, which is the set of values that may be assigned to variable
Vi. The domains in this paper are discrete, but in general may be either discrete or continuous.
Extending d i definition to include an attribute; d i.att is in the set {key, quality, function}. This is in
the spirit of the more expansive MAD-CSP definition. For examp le, an instantiation of a variable
might be Vi = <C, Maj, I>. This tuple, consisting of three attributes, constitutes one domain
element.

• a set of constraints, C = {C1,1,1 , …, Ci,j,k }, which place restrictions on the possible values of the
variables. In this paper, we are concerned only with binary constraints (although the MAD-CSP
requires no such restriction). The notation Ci,j.k refers to a constraint that has variables Vi and Vj as
arguments, with k denoting a particular constraint between these variables. In this paper, the
constraints are directed, although this is not a requirement.

The modulation constraints (Table 1) are binary. The complete notation identifying an arbitrary
constraint should be Ci,j,k , representing the node, constraints involving that node, and whether it is
"inbound" (coming from Vi-1)or "outbound" (going to Vi+1). For notational convenience, we treat
them as directional. This gives each Vi (except the first and last, V1 and Vn) three constraints
associating Vi with Vi+1.To simplify this notation further, we refer to only the outbound constraints
from Vi. In referring to constraint Ci,j, we refer to all constraints connecting Vi to Vi+1. Thus C2,5 is
the constraint that specifies V3.key = V2.key + 7. We use this notation without loss of generality, as
all the modulation constraints can still be uniquely identified.

• Constraint-propagation functions h i,j(di.att) restrict the attributes comprising the domain of Vi,
given the possible assignment of domain values to all other arguments.

• The precondition-evaluation function, ci,j
pre, defines when constraint Ci,j is active. If ci,j

pre is TRUE,
Ci,j is active (it restricts Di and Di+1); otherwise, it is inactive (all domain values trivially satisfy the
constraint).

• Constraint-evaluation functions, Ci,j(Vi, Vi+1), return TRUE if the arguments satisfy constraint Ci,j,
and FALSE otherwise.

• A constraint graph, G(V,C), which depicts the relationships among the variables and constraints. The
nodes are variables, and the arcs are the constraints. Further, we assume that constraints are directed
arcs from Vi to Vj, without loss of generality. In fact, as we show in this paper, G(V,C) is a hypergraph
that is tree shaped.

 4

2.1.2 Properties

A solution to a CSP is an assignment of values to all the variables that simultaneously satisfies all the
constraints. A solution may require a possibly combinatorial search of the domain space to find such an
assignment. A benefit of using the CSP framework is that there are many heuristics for reducing the complexity
of the search process.

An important method for improving the efficiency of the search, arc-consistency checking, ensures that for each
variable, all the domain elements satisfy the constraints on that variable. This eliminates infeasible domain
elements, thereby reducing the search-space size. Arc consistency is given by Equation 1.

∀∀ Vi: { ∀∀ di ∈∈ Di : Ci,j(Vi, Vi+i) }

Equation 1

Arc consistency does not guarantee that all constraints can be satisfied simultaneously: it does not guarantee
that a solution exists.

Decomposability, the strongest form of arc consistency, (also known as n-consistency) does guarantee a
solution. If graph G is decomposable, then all assignments of the variables constitute solutions; the domains
contain no values that will cause any constraint to be inconsistent. In a decomposable graph, all variable
assignments constitute solutions.

Searching a graph may also involve preferences, which guide the search towards more preferable solutions. An
example of a preference in harmonic analysis is choosing an applied function over a root function, such as
choosing V/V instead of II for a chord’s function.

2.1.3 Example

Figure 1 shows a constraint graph for a simple CSP. In this example, there are only two types of constraints:
Ci,1

1 specifies that Vi+1.width = Vi.width + 1, and Ci,2 specifies that Vi+1.height = Vi.height. The domains of
each variable are listed in tables. For example, V1 has a domain comprising the tuples <1,7> and <5,9>.

width height

1 7

5 9
V1

V2

V3

width height

2 4

3 3

6 7 width height

9 3

4 7

2 10

C1,1

C2,2

Figure 1. Initial constraint graph.

1To simplify the discussion, we assign a number to each constraint “type.” For example, the height

constraint type is always constraint 2 in the example. In general, this is not necessary, and the constraint number
(the second argues of its subscript) could change.

 5

C1,1 specifies that V2.width = V1.width + 1, and C2,2 specifies that V3.height = V2.height. Using arc consistency
checking, we first check constraint C1,1, and find that <3,3> can be eliminated from D2. Assigning V2.width = 3
violates C1,1 because 2 is not present in the “width” column in D1, so <3,3> is removed. Similarly, by checking
C2,2, we eliminate from D3 the tuples <9,3> (because <3,3> is no longer in D2) and <2,10>. After making the
graph arc consistent, we are left with the diagram in Figure 2.

V1

V2

V3

C1,1

C2,2

width height

1 7

5 9

width height

2 4

6 7

width height

4 7

Figure 2. Arc consistent constraint graph.

The solution to this CSP is V1 = <5,9>, V2 = <6,7>, V3 = <4,7>, found by instantiating variables in reverse
order. Starting with V3, <4,7> is the only choice. Satisfying C2,2 forces V2 to <6,7>, and satisfying C1,1 forces V1
to <5,9>. Note that the graph in Figure 2 is arc consistent but not decomposable.

2.1.4 Musical example

Suppose a sequence of three chords is analyzed. Our CSP representation has each chord a variable, whose
attributes are the key and quality of the tonal area, and function, which is the harmonic function (Roman
numeral notation). The constraints listed in Table 1 apply. Figure 3 depicts the three chords, along with its CSP
representation.

 6

V1 V2 V3

C2,4

C1,2

V1 V2 V3

D1

<0,Maj,I>
<1,Maj,VII>

...
<11,Maj,nat

II>

C1,4

C3,1

Music CSP

D2

<0,Maj,V>
<1,Maj,#IV>

...
<11,Maj,nat

VI>

D3

<0,Maj,I>
<1,Maj,VII>

...
<11,Maj,nat

II>

Figure 3. Music and CSP representation.

The root of V1 is C, and by enforcing C3,1, D1 reduces to one element. C1,4 similarly eliminates all but one
element from D2. (Note that pitches are assigned numbers; half steps are one increment apart.). The solution to
the example in Figure 3 is the tuples <0,Maj,I>, <0,Maj,V>, <0,Maj,I>, which is a perfect authentic cadence.

2.2 CSP Musical Representation

In this section, we show the mapping from harmonic analysis (at least, the part of which we are concerned) to a
CSP.

2.2.1 Assumptions

The assumptions regard the harmonic restrictions placed on the pieces we currently can analyze:

• The key of the piece is that of the root of the first and last chords, and the quality of the key (major or
minor) is that of the first chord.

This reduces the burden of key finding in this project. This was done for two reasons: key finding is not a trivial
task, with a good deal of literature devoted to this subject alone (Vos and Geenen 1996; Temperley 1997). More
important, the area of interest of this algorithm is the identification of key changes within a piece. The onus of
detecting modulations and key areas still rests on the algorithm, and is described in detail later.

• All modulations are to major keys.

This does not affect the generality of the algorithm; it simply narrowed the scope of the project. Including minor
keys means having to include special cases for the different types of minor scales (melodic and harmonic). If
the process can be done for major, then minor can be done in the same manner; the tables for what tones are
diatonic to a given key would simply be different.

• Modulations follow the circle of fifths.

For example, if the current key were D Major, it can either modulate to the dominant, A Major, or to the
subdominant (IV), G Major. In tonal music, the circle of fifths is not a rule, but rather a strong preference, as
the tonic-dominant relationship is considered one of the strongest in tonal music (Lerdahl 1988).

 7

• Suspensions (a dissonance that resolves to consonance) are resolved in the input.

Some may question the validity of eliminating suspensions (in the same manner that some object to how
Schenkerian analysis removes “unnecessary” notes for its analysis), but the goal of the project is to determine
different key areas of the piece. Suspensions add color and direction to the piece, but do not change the
harmonic analysis.

• Neighboring and passing tones are omitted.

The justification for this assumption is similar to the former, as passing and harmonic tones will not change the
harmonic analysis of a piece. Occasionally, a neighboring tone's motion will take it through a seventh, in which
case the note is harmonically important; in these cases, the note is included.

2.3.2 Mapping

Our mapping of a composition to a CSP is in Table 1. Note that root is not included as an attribute of a chord.
This is represented by the function attribute; knowing the function means knowing the root as well. In some
constraints, we refer to the root of a chord; this is for notational convenience.

CSP Music

Variable Chord

Domain attributes

Key
Quality (major, minor)
Function (Roman numeral notation)
Cadence (Boolean)
Index (integer)
Root
Inversion
Chord (array of integers that comprise the chord)

Constraint-propagation functions

1. V1.key = Vn.root
2. Vn.key = V1.key
3. Vi.quality = major
4. Vi+1.key = Vi.key
5. Vi+1.key = (Vi.key + 7)MOD(12)
6. Vi+1.key = (Vi.key +5) MOD(12)

Constraint precondition-evaluation functions
(Section 3.1.4)

1. True
2. True
3. True
4. Vi+1.key = Vi.key
5. Vi+1.key = (Vi.key + 7) MOD(12)
6. Vi+1.key = (Vi.key + 5) MOD(12)

Search preferences

• If |Di| > 1 and Vi+1.root = Vi+1.root+7 and Vi.key =
Vi+1.key, prefer Vi.function = V/V to Vi.function
= II

• If |Di| > 1 and Vi+1.root = Vi+1.root+1 and Vi.key =
Vi+1.key, prefer Vi.function = vii°/V to
Vi.function = #iv°

Table 1. Musical CSP representation.

The attributed domains are in the spirit of a Multi-Attribute Domain (MAD) CSP, but since the domains are
treated as discrete collections of attributes, they are modeled as a traditional CSP. Of the attributes, the first
three (key, quality, function) are directly related to music, whereas the last two (cadence, index) are
particular to our algorithm.

 8

The first three constraints (see “Constraint-propagation functions” in Table 1) establish the key of the piece.
Under our assumptions, the piece begins and ends in the same key; these constraints determine the key of the
first and last chords. With this information, the algorithm determines the tonal centers for the entire piece.

The last three constraints, or modulation constraints, contradict themselves, saying that at any time a piece
simultaneously stays in the same key, modulates to the dominant, and modulates to the subdominant. This is
because there are no restrictions on where modulations can occur. So, in the constraint graph, all the modulation
constraints must apply to each node, Vi. Each modulation constraint’s precondition ensures that only one
modulation constraint will be active per variable.

Since the first three constraints are always active, they need no precondition-evaluation function. (Such a
function would simply return TRUE.) The last three constraints, however, require precondition-evaluation
functions to ensure that only one modulation constraint is active per each node. The purpose of the
precondition-evaluation functions is to determine where modulations occur.

Search preferences ensure a unique solution. After arc consistency is enforced, the graphs become
decomposable; however, some domains have more than one element, allowing more than one possible solution.
The search preferences select the best value for the variable rather than enumerate all the possible solutions.

2.2.2 Conversion

The conversion of a musical score to the input for the algorithm is done by hand, similar to Winograd’s method
(Winograd 1968). The resulting list is a series of four-voice chords (listed as Bass, Tenor, Alto, Soprano), with
the numbers referring to the MIDI pitch values. (For example, pitch = 60 is C4, or middle C.) A value of –1 in a
voice means it is silent in that chord. The following example shows the conversion of the chorale Von Himmel
Hoch (a) , using the assumptions given in Section 2.2.1.

 9

Figure 4: Original score, Von Himmel Hoch (1).

Figure 5: Chords , Von Himmel Hoch (1).

 B T A S B T A S B T A S B T A S B T A S B T A S

1) 48 55 64 72
2) 52 55 -1 71
3) 53 60 65 69
4) 55 -1 62 71
5) 48 60 64 67
6) 53 57 60 69
7) 50 53 62 69

8) 55 55 62 71
9) 43 55 65 71
10) 48 55 64 72
11) 48 55 64 72
12) 52 55 67 72
13) 48 55 64 72
14) 47 55 62 67

15) 48 55 64 67
16) 43 59 62 67
17) 45 57 60 64
18) 52 55 59 67
19) 40 60 64 67
20) 41 57 62 65
21) 43 59 62 65

22) 48 55 60 64
23) 48 55 60 64
24) 41 53 60 69
25) 45 60 65 69
26) 48 60 64 67
27) 47 55 67 71
28) 45 55 64 72

29) 50 54 -1 69
30) 43 55 59 67
31) 45 52 64 72
32) 50 55 62 71
33) 50 54 62 69
34) 55 55 62 67
35) 48 60 64 67

36) 52 60 67 67
37) 53 57 60 69
38) 46 58 62 65
39) 48 55 60 64
40) 43 53 59 62
41) 48 52 60 60

Figure 6: Chord list.

Note that this representation disregards metrical information. This does not mean that such information is
unimportant to harmonic analysis. Our aim is to identify tonal centers, and there is strong evidence that vertical
sonority (chords) can provide the necessary information to do this (Cook 1987; Lerdahl 1988).

 10

3 ALGORITHM

Central to the algorithm is the identification of tonal centers. The algorithm first finds the root and sets the
domain for each chord. Based on the assumptions in Section 2.3.1, it determines the key of the piece. Next, it
searches the chords for cadential patterns, creating a cadence list. This list is used to find modulations.

Cadences are central to our algorithm, as they form the basis for identifying tonal centers. In our notation, a
“cadence in C” means that the root of the cadence’s last chord is C. This is also the chord used to identify the
cadence, allowing us to represent cadences as a subset of the set of chords. This subset is known as the cadence
space, Z, where Z ⊂ V: it comprises a distinguished set of variables, such that each Zj ∈ Z is the last chord of
the cadence. Further, for simplicity, we number each Zj sequentially. Note, however, that a set of chords (Vi) of
arbitrary number can exist between Zj and Zj+1. The "cadence" domain attribute indicates if the chord is a
member of the cadence space. The "index" domain attribute is simply the number assigned to the chord as it
read from the input file.

Figure 7shows the relationship between chord space and cadence space.

Cadence space : Z = {z
1
 ... z

m
}

Chord space: V = {v 1 ... vn}

Figure 7. Cadence space vs. Chord space

It is important to note that a cadence chord (shaded) differs from a non-cadence chord only by the value of a
Boolean attribute, denoted by the "Cadence" attribute in Table 1. Cadence chords simply have this flag set to
TRUE. The reason for creating two separate chord spaces is that some of our algorithms search the chord space,
while others search the cadence space. Throughout this paper, "Zk" refers to a chord in cadence space, whereas
"Vi" refers to a chord in chord space.

Using the cadences as signposts for tonal centers, the algorithm determines where modulations occur. With the
tonal centers’ locations defined, the preconditions for the constraints given in Table 1 come into effect. For each
chord within a given tonal center, the active constraint is the one that specifies no modulation. (Constraint C4 in
Table 1.) At a modulation, the dominant or subdominant modulation constraint (C5 or C6) is active. The domain
of each chord is searched for the elements that satisfy the constraints of key and quality.

After applying arc consistency, a search finds the solution, which is the harmonic analysis. Most of the domains
reduce to a single element, but when an applied chord is possible, there will be two elements. In this case, the
search preferences determine which element is the better choice.

The overall algorithm is given in Figure 8. In all of our pseudo-code listings, V and Z are represented by the
variables Chord_List and Cadence_List, respectively.

 11

Figure 8. Overall algorithm.

The overall algorithm is not a complete description; some sections summarize subroutines that would be
unwieldy to list here. These subroutines are capitalized, as in FIND_ROOT(Vi) (Line 3.) We explain these
subroutines in detail in the following discussion. Section 3.1 explains the logic for the process, and Section 3.2
analyzes its complexity. Note that the heading for each sub-routine gives the corresponding lines in the overall
algorithm where that subroutine occurs.

3.1 Operation

3.1.1 FIND_ROOT(Vi): line 3 of overall algorithm

The method for finding roots is similar to Hindemith’s method (Hindemith 1970). The algorithm triadifies a
chord, taking its voicing, which may span many octaves, and lowers the octaves of the tenor, alto, and soprano
voices so that all are within an octave of the bass. For example, the chord G4-C5-E6-C7 (an widely spaced chord)
would become G4-C5-E5-C5. Since the C5 in the soprano is now redundant, it is not added to the ‘triadified’
chord, thus leaving G4-C5-E5. The chord is now assumed to be in root position (‘zeroth’ inversion), and the
voices are compared individually to the bass to determine the chord’s true inversion. This is done by finding the
interval between the bass and the voice being compared, and then applying rules, based on that interval, that
determine whether the voice should remain where it is or be lowered by an octave. This octave lowering means
that the bass note is no longer the root of the chord, and thus is of some inversion. The algorithm is given in
Figure 9.

1. Create Chord_List from input file
2. for i ← 1 to |V|
3. FIND_ROOT(Vi)
4. CREATE_DOMAIN(Vi)
5. Cadence_List ← ∅
6. append V1 to Cadence_List
7. for i ← 1 to |V|
8. if IS_CADENCE(Vi)
9. for j ← 1 to |Di|
10. νi,j.cadence = TRUE
11. append Vi to Cadence_List
12. mod_index ← 0
13. for k ←1 to |Z|-1
14. mod_index ← MODULATE(Zk,Zk+1)
15. EVALUATE_PRECONDITIONS(Zk,Zk+1, mod_index)
16. for i ← 1 to |V|
17. for j ← 4 to 6
18. if Ci,jpre = TRUE
19. for d ← 1 to |Di|
20. if νi,d.key violates Ci,j
21. remove νi,d from Di
22. for i ← 1 to |V|
23. if |Di| > 1
24. print preferred νi
25. else
26. print νi

 12

Figure 9. FIND_ROOT(Vi) algorithm.

Given G4-C5-E5, the algorithm first checks the interval between the first and second notes, G4-C5. Since this
interval is a perfect fourth (corresponding to interval = 5 in the root-finding algorithm), inversion is set to two
(since inversion is currently zero) by line 11, and C5 is dropped an octave to a C4 (line 12). Next, the interval
between the first and third notes, G4 and E5, is found to be a sixth (corresponding to interval = 9); since
inversion = 2 , line 7 does not apply, but the note is still dropped an octave (line 8). The resulting triad is now
C4-E4-G4. The chord is C major chord in second inversion.

3.1.2 CREATE_DOMAIN(Vi): line 4 of overall algorithm

After triadifying a chord, a table is filled with the chord’s possible functions in the different key signatures. For
example, the C-major triad’s functions from the example in Section 3.1.1are given in Table 2:

Table 2. Domain-attribute values for a C Major chord.

Similar tables are created for chords that are minor and diminished. (Note that all the columns to the right of
“function” have the same value. These are properties of the chord itself and do not change, regardless of the
analysis.) Initially, all the cadence fields are set to FALSE. The index field is set by a counter that increments
as each chord is read from the input file. It is important to store this value, so that we can access a particular Zi
from the Cadence Space. (i.e., to determine the corresponding Vi.) Applied chords make it possible to have
domain elements with the same key and quality, but different functions, as functions depend on the situation in
which they are found. For example, a II chord may also be a V/V; thus, both possibilities are represented in the
domains of every major chord.

1. Vi.inversion ← 0
2. for j ← 1 to 3
3. interval = Vi.chord[j] – Vi.chord[0]
4. if (interval = 8) OR (interval = 9)
5. if Vi.inversion < 1
6. Vi.inversion ← 1
7. lower Vi.chord[j] by an octave
8. else if (interval = 5) OR (interval = 6)
9. if Vi.inversion < 2
10. Vi.inversion ← 2
11. lower Vi.chord[j] by an octave
12. else
13. if interval = 2
14. Vi.inversion ← 3
15. lower Vi.chord[j] by an octave

Chord Domain Attributes

Vi Key Quality Function Cadence Index Root Inversion Chord

νi,1 C Maj I FALSE i 0 2 [60 64 67]

ν i,2 C#/Db Maj nat. VII FALSE i 0 2 [60 64 67]

ν i,3 D Maj nat. VII FALSE i 0 2 [60 64 67]

… … … … … … … … …

ν i,12 B Maj nat. II FALSE i 0 2 [60 64 67]

 13

Some properties of chords, such as inversion, are represented as attributes even though their values are constant
throughout the domain. E4-G4-C5 is a C Major triad in first inversion, regardless of the tonal center in which it is
found. (Note that the triad itself has a key and quality, which are not to be confused with the key and quality of
a tonal center to which the chord belongs.) The key area to which the chord belongs determines a chord's
harmonic function.

3.1.3 IS_CADENCE(Vi): line 8 of overall algorithm

Creating the cadence list requires identifying every cadential structure in the piece. The cadence-finding
algorithm searches for three types of cadences: I-V-I, II-V-I, and IV-V-I. Plagal and half cadences (I-IV-I and
V-I, respectively) are not included because they are weaker indicators of tonal change.

Figure 10. IS_CADENCE(Vi) algorithm.

The elaboration variable (lines 1, 4, and 9) allows for elaboration of the dominant in the cadences. For
example, this means that I-V-V7-I, as well as I-V-I, are both perfect authentic cadences. Setting
elaboration ← 2 (line 1) is a value, determined experimentally, that identifies elaborated dominants in
cadences, but does not include lengthy patterns. For example, if elaboration ← 4, then the sequence I-V-V-
V-V-I would be a cadence, but harmonically it is unlikely that this is the case. Line 3 checks the previous
chord in the list for a possible V-I relationship. After allowing for elaboration of the dominant (lines 4-8), it
checks the preceding chord in the list; if the root of this chord is a II, IV, or V in relation to the original chord
(Vi), then the cadence is appended to Z. Z is stored as an ordered list; this is required for the algorithm to
function properly. Since the list of chords is from which Z is created is ordered, Z does not require sorting.

The resulting list Z of cadence chords, Z ⊂ V, gives the possibilities for the tonal centers’ locations within the
piece, with a modulation possible between any two adjacent cadences in different keys. The relationship
between the number of cadences and n, the number of chords, is not unique; there are no hard and fast rules
about where cadences occur, with the exception of the end of a piece.

When the cadence-identification algorithm finishes, the list contains many ‘false’ cadences, whose root motions
fit the cadence pattern matching, but are not true cadences in their harmonic function. The following example
shows all the cadences found in a chorale by Samuel Scheidt (Von Himmel Hoch (2).)

1. elaboration ← 2
2. j ← Vi.index – 1
3. if ((Vj.root+7)MOD(12) = Vi.root) AND (j > 0)
4. while elaboration > 0
5. if Vj-1.root = Vj.root
6. j ← j-1
7. else
8. break
9. elaboration ← elaboration - 1
10. if { Vj-1.root = Vi.root OR
11. (Vj-1.root+5)MOD(12) = Vi.root OR
12. (Vj.root+2)MOD(12) = Vi.root }
13. return TRUE
14. else
15. return FALSE

 14

1) II-V-I in F

2) IV-V-I in G 3) II-V-I in C

4) I-V-I in C

5) II-V-I in G 6) I-V-I in C
7) II-V-I in C

Figure 11. Cadence identification.

False cadences are accepted or rejected based on the circle of fifths (e.g., a cadence in D cannot follow a
cadence in C), or by a heuristic that decides how well the cadence fits the key it suggests. For example, a G-
major cadence whose chords contain no leading tones (F#) is considered much weaker than one that does
contain leading tones.

In the case of overlapping cadences, this heuristic decides which is the false cadence. The criteria for
elimination is the number of non-harmonic tones (NHTs), relative to the keys of the cadences, are present in the
chords; the cadence whose key has the most NHTs is eliminated. Figure 12 shows an example of a D major
cadence overlapping a G major cadence.

 Figure 12. Overlapping cadences.

The G major cadence is chosen in this case, because the F# in the tenor voice of its second chord is a leading
tone for G major. In the case of the D major cadence, its second chord has a C natural in the soprano voice,
which is not a leading tone to D major. Since the preparation of the D major chord is weaker than the

 Cadence in D Major
 IV V I

 ii V I
 Cadence in G Major

 15

preparation of the G major chord, the latter cadence is chosen as the correct one, and the former is discarded. A
situation in which overlapping cadences are not resolved is when both cadences are in the same key and share
only one chord. Thus, a II-V-I and a I-V-I may overlap (i.e., II-V-{I}-V-I) if the roots of the I chords are the
same. In this case, both cadences are added to the cadence space.

Another criterion for cadence elimination is lack of proper voice leading. Cadences are strengthened
harmonically by contrary motion between the soprano and bass and by stepwise motion in the soprano voice
(Aldwell and Schachter 1978). We define the latter only between the last two chords of a cadence. In Figure
12, the cadence in D major does not have stepwise motion in the soprano voice in its last two chords. Cadences
that lack both contrary motion and stepwise soprano motion are removed, as it is unlikely that they function as
cadences in the piece.

Figure 13 shows the cadences that remain in Von Himmel Hoch (2) after eliminating false cadences.

3) II-V-I in C

5) II-V-I in G 6) I-V-I in C
7) II-V-I in C

Figure 13. Final cadence list.

Cadence 1 (see Figure 11) is eliminated because of the B natural in the soprano voice, which is not diatonic to
the key of F. Cadence 2 is removed by the same rule. Cadence 4 overlaps Cadence 5, and is eliminated by
comparing the NHTs of the two keys. Thus, the cadences in Figure 13 comprise the cadence space.

Note that the first chord of the piece is automatically the first chord in the cadence list. This serves as the
starting point for identifying modulations, which we discuss later. The cadence list from Figure 13 would be
{C,C,G,C,C}. (These are the roots of the chords that comprise the Cadence Space.)

3.1.4 MODULATE(Zk,Zk+1): line 14 of overall algorithm

Between sequential cadences Zk and Zk+1, a modulation is possible if their key attributes are different. To
determine if a modulation occurs, the algorithm builds a table of the sums of all the harmonic tones, relative to
all twelve major keys, of all the chords between consecutive cadences. (This is an O(|V|) operation.) To
determine if the section between Zk and Zk+1 modulates, the MODULATE algorithm compares the table values
for the corresponding section for Zk.key and Zk+1.key. If the number of harmonic tonesfor Zk.key is higher than
that for Zk+1.key, then no modulation occurs; the tonal center of the entire section is Zk.key.

The harmonic-tone table uses a weighting to represent accurately the tonality of a section. Since a leading tone
to the dominant (which is really a non-harmonic tone relative to the tonic) can still suggest the tonic itself, it is
considered a partial harmonic tone. The weighting used in our algorithm is that a harmonic tone (relative to the
tonic) has a weight of 5, whereas a leading tone to the dominant gets a weight of 1. The result is that the

 16

presence of an occasional leading tone to the dominant in a passage does not necessarily suggest that the tonal
center of that passage is the dominant; it may still be the tonic. For example, consider the following notes:
C,D,E,F,F#,G. In C major, all the notes are harmonic tones except for the F#, which is a leading tone to the
dominant , G major. Thus, the value for this passage in the harmonic tone table would be 26. (Five harmonic
tones, one leading tone to the dominant.) In G major, the harmonic tone value for this passage would be 25;
there are five harmonic tones (each with a weight of 5), and one non-harmonic tone, (F), which has a weight of
zero. This passage is therefore more likely to be in C major than in G major.

If, however, the section has more harmonic tones when Zk+1.key is the tonal center, then at some chord between
Zk and Zk+1, the section modulates from Zk.key to Zk+1.key. A linear search of the chords between Zk and Zk+1

finds the chord where the modulation occurs. If the modulation is to the dominant (Zk+1.key = Zk.key + 7) ,
then the search order through Vi is from Zk to Zk+1. If the modulation is to the subdominant (Zk+1.key = Zk.key -
7), then a reverse search (Zk+1 to Zk) is used. In both cases, the search looks for the first chord that contains a
leading tone to Zk+1.key. Having found this chord, the search proceeds forward (regardless of its initial
direction) for the first tonic (I) chord to Zk+1.key. This is the chord where the modulation occurs. In the case of a
“down” modulation (V-I), it searches for the pivot chord , which will have both V/I and I/V functions in the two
keys.

This procedure is the MODULATE algorithm. Its arguments are Zk and Zk+1, and it returns the chord number
(Vi.index) where the modulation occurs. If Zk+1.key = Zk.key, then no modulation exists between the cadences,
and MODULATE returns zero. A special case of MODULATE occurs when checking the last two cadences in the
list. Since the piece must return to its home key (which was determined by the first three constraints in Table 1),
it will always return a modulation in this case. It ignores the harmonic tone table lookup and performs the
search previously described. For example, if the keys of the last two cadences are {E,A}, then it must modulate
to A.

In Figure 13, modulations are possible between Cadence 3 and Cadence 5 (C-G), and between Cadence 5 and
Cadence 6 (G-C). MODULATE identifies the following modulations:

Modulation
from C to G

Modulation
from G to C

Figure 14. Modulations.

In finding the modulation from G to C (dominant to tonic), it finds the first chord with a leading tone to G by a
reverse search, and then proceeds forward to find the first chord that serves as both a V/I in G and I/V in C.
This is the pivot chord, and the modulation occurs at the following chord.

 17

3.1.5 EVALUATE_PRECONDITIONS(Zk,Zk+1, mod_index): line 15 of overall algorithm

Table 1 lists six constraints. The first three determine the key of the piece: the first and second examine the first
and last chord to get the key, and the third constraint enforces the assumption that all keys are major. Enforcing
these constraints is simple, both conceptually and computationally. Applying arc consistency using these
constraints affects only the first and last chords of the piece. For example, if a chorale in G major were the
input, arc consistency using the first three constraints would result in everything being eliminated from D1 and
Dn except those domain elements whose key attribute is “7” (the key of G) and quality attribute is “Maj.”
Since there is no additional information about the tonal centers of the piece, the domains of all other variables
are unchanged.

Figure 15. EVALUATE_PRECONDITIONS(Zk,Zk+1, mod_index) algorithm.

The remaining three constraints establish tonal centers. Whereas these constraints specify attributes from only
two chords in its argument list, their preconditions are more complex. To determine which of these constraints
is active, the preconditions are evaluated to find the modulations. (MODULATE is defined in Section 3.1.4.) The
precondition evaluation algorithm is given in Figure 15.

If the keys of the two cadences are the same, then there is no modulation between them. In this case, lines 2-5
set Ci,1

pre to TRUE and the other preconditions to FALSE for all Ci,j, where Zk+1.index ≥ i ≥ Zk.index. If the
keys of Zk and Zk+1 are different, then a modulation is possible between these cadence chords. If MODLUATE
finds a modulation, then lines 6-25 evaluate the preconditions such that up to the modulation, the tonal center is
that of Zk (lines 14-17); after the modulation, the tonal center is that of Zk+1(lines 22-25). Lines 14-21 set the
preconditions for the modulation chord. If it modulates to the dominant, lines 14-17 apply. For modulations to
the subdominant, lines 18-21 apply.

In some cases, the precondition-evaluation algorithm removes a cadence from Z (lines 8, 27). If MODULATE
decides against a modulation between Zk and Zk+1, then Zk+1 is removed, as it is no longer an indicator of tonal
change (line 8). The next comparison would be between Zk and Zk+2. If Zk+2 violates the circle of fifths
constraint, it is also removed (line 27).

For example, suppose the following five cadences comprise the list: (C,G,D,G,C). Modulations are possible
between each successive cadence pair. Suppose Modulate examines the first and second cadences and finds no
modulation, then the second cadence (in G) is removed from further consideration, leaving the list (C,D,G,C).
Now the first and second cadences (C,D) violate the circle-of-fifths-modulation constraint, so again the second
cadence is removed, leaving (C,G,C).

Due to the strong tonic-dominant relationship in the pieces analyzed, this section of the algorithm also considers
adjacent cadences in the dominant key to be an indication of a modulation, so the first of the two dominant
cadences is a “Sforced” modulation. Thus, in a cadence sequence such as (C,G,G,C), the presence of two
consecutive cadences in the dominant key (G) is considered to be a strong enough indication that a modulation
occurs between the first two cadences in the list.

The result of the precondition-evaluation algorithm is the activation of the constraints that establish the tonal
centers. The arc-consistency algorithm (lines 16-21 in the overall algorithm) performs a forward traversal of the
chord space, removing infeasible domain elements from each chord. Due to the tree structure of the constraint
graph, we do not need to recheck a domain after enforcing a constraint. Since the constraints are all binary and
directed, it is impossible for constraint Ci,j to affect the domain of any variable other than Vi+1.

In Figure 14, the algorithm starts at the first chord (V1) and makes Ci,4
pre TRUE until it reaches the first

modulation (C to G, measure 7). For the chord prior to the modulation, it evaluates Ci,5
pre to TRUE, activating

the constraint for modulating up a fifth. Between the first and second modulations, it again evaluates all Ci,4
pre to

TRUE for all constraints on the chords between the modulations. Upon reaching the second modulation (G to C,
measure 9), it evaluates Ci,6

pre to TRUE, activating the constraint that specifies modulating down a fifth. Finally,
it finishes the remaining segment of chords (from the second modulation to the end of the piece) by once more

 18

evaluating all Ci,4
pre to TRUE. This entire operation occurs in chord space. The resulting tonal centers are shown

in Figure 16.

C Maj

G Maj C Maj

Figure 16. Tonal centers.

3.1.6 Solution

When applying arc consistency, most of the domains reduce to one element. (Recall that our definition of a
domain element is a tuple of <key, quality, function>.) This makes sense, as knowing the tonal centers
usually defines the harmonic functions of chords. In the case of applied or cadential chords, a domain will have
more than one element, and the search preferences in Table 1 are used to choose the best analysis. Note that the
graph is now decomposable; none of the domain elements remaining after G(V,C) is arc consistent will violate
any constraint. The best answer is inferred by the (search) preferences, which are merely table lookups. The
solution search, therefore, is linear in |V|, the number of chords in the piece. We prove this in the following
section.

3.2 Analysis

In this section, we analyze the algorithms given in Section 3.1. By taking advantage of the CSP framework and
properties of tonal music, we were able to represent harmonic analysis as a sequence of O(|V|) operations, as we
will demonstrate in the following sections.

3.2.1 Constraint graph

The modulation constraints in Table 1 (the last three constraints) create a directed acyclic graph (DAG), shown
in Figure 17. C1 and C2 are not shown, as they limit the domains of V1 and Vn but nothing else; the algorithms
operate under the assumption that C1 and C2 have already been applied. C3 is not included in the graph, because
the domains are created without any elements that violate it.

 19

etc ...V1
V2 Vn-1

Vn

C 1,4

C 1,5

C 1,6

C2,4 C n-2,4
C n-1,4

C2,5 C n-2,5

C n-1,5

C2,6 C n-2,6 C n-1,6

Figure 17. Constraint graph.

Without the circle of fifths modulation assumption, each node in the constraint graph would have twelve
outgoing arcs instead of three, representing the possibility of modulating to any key at any time. Relaxing the
major-key constraint (C3) allows modulations to minor keys. With twelve keys and two qualities (major and
minor), each node would have twenty-four outgoing arcs. The resulting graph is still a DAG. After the
preconditions are evaluated, only one constraint will be active between adjacent nodes. From the perspective of
a solution search, the graph is now a tree, since a search examines only the active constraints.

The structure of the constraint graph ensures a backtrack-free search. This constraint graph is ordered, meaning
that the nodes are examined in a particular order (V1 through Vn). In such a graph, the width of a node is the
number of arcs that connect that node to its predecessors . The width of an ordering is the maximum width of all
the nodes, and the width of the graph is the minimum width of all possible orderings. (A tree is a graph of width
one.) The following theorem gives a relationship between the width of a graph and the tractability of search
(Dechter 1990).

 An ordered constraint graph is backtrack-free if the level of directional
strong consistency along this order is greater than the width of the ordered
graph.

The algorithm given in this paper enforces directional two-consistency on an ordered graph of width one,
ensuring that the search will be backtrack-free.

3.2.2 Complexity analysis

It is important to note that in a worst-case analysis, Chord Space and Cadence Space are the same magnitude. A
cadence mu st be at least three chords long, and cadences cannot overlap. A piece with a cadence in every
possible location would contain at most |V|/3 cadences. In tonal music, however, cadences are rarely found in
such close proximity.

The following analyses first investigate the subroutines, and then the overall algorithm in Figure 8.

3.2.2.1 FIND_ROOT(Vi) and CREATE_DOMAIN(Vi)

FIND_ROOT executes a constant-time loop (root finding) and then CREATE_DOMAIN fills a finite-length table
with domain attributes. The size of this table is a constant, independent of |V. As both these algorithms are
called once for each chord, root-finding and domain creation for the chord list requires O(|V|) time.

3.2.2.2 IS_CADENCE(Vi)

Creating the cadence space requires a linear search of the chord space. At each iteration, it performs a constant-
time loop (the constant is the elaboration variable.) Before the cadences are appended to the cadence list, they
are put temporary list that, for each cadence, stores its first and last chords. (The result is a list that is ordered by
the last chords of the cadences.) This temporary list is traversed in a loop. Any cadences that overlap are
submitted to a constant-time check (Figure 12), and a cadence gets eliminated. Cadence Space is thus created in
O(|V|) time.

 20

3.2.2.3 MODULATE(Zk,Zk+1)

This algorithm first creates a table of the sums of all harmonic tones, relative to all twelve keys, of the chords
between the cadences. Creating this table requires a traversal of chord space, with twelve constant-time
operations per chord. This runs in O(|V|) time, and is performed only once. Although it is not specifically called
by MODULATE, its analysis is included here for convenience. Next, it identifies modulations via table lookup, or
removing cadences from the cadence space if it finds no modulation. Thus, creating the table requires O(|V|)
time, and MODULATE runs in constant time. Since MODULATE is called for each sequential cadence pair (and
O(|Z|) = O(|V|)), finding the modulations requires O(|V|) time.

3.2.2.4 EVALUATE_PRECONDITIONS(Zk,Zk+1, mod_index)

Although at first glance this algorithm appears to require O(|V|2) time, its complexity is linear in |V|. The reason
is that the main loop, which iterates through cadence space (which is O(|V|)). When a modulation is identified
an inner loop iterates through chord space between cadence chords Zk and Zk+1. This means that cadence chords
can be examined twice; once in the cadence-space search, and once in the chord-space search. At most, this will
result in O(|V| + |Z|) operations. Since O(|Z|) is equal to O(|V|), the this algorithm runs in O(|V|) time.

Applying arc consistency also runs in O(|V|) time. Given the nature of the constraints, we can search through
chord space, enforcing the active constraint for each Vi, which limits the domain for Vi+1. With the tree structure
of G, we are assured that once a constraint is applied, it will never need to be re-checked.

3.2.2.5 Solution:
Finding a solution requires a linear search of chord space and returning the domain element for each variable.
Almost all domains reduce to one element after the application of arc consistency; those that have more than
one element use a constant-time table lookup (preferences) to return the best choice. This operation requires
O(|V|) time for one solution. As demonstrated in Section 3.2.1, the search is bactrack free.

3.2.2.6 Overall algorithm:
We can now evaluate the complexity of the overall algorithm (Figure 8.) Lines 2-4 are the root-finding
algorithm (O(|V|).) Lines 5-13 represent the cadence identification algorithm (O(|V|).) Lines 14-20 comprise the
precondition evaluation algorithm (O(|V|)), followed by lines 21-26, which apply arc-consistency (O(|V|).)
Finally, lines 27-31 find the solution (O(|V|).) All of the sub-algorithms execute sequentially, thus making the
overall algorithm a series of linear-time operations; it therefore runs in O(|V|) time.

4 RESULTS

The source material analyzed here come from Das Gorlitzer Tablaturbuch, a collection of chorales written by
Samuel Scheidt in 1650. We chose Scheidt because his work fits the assumptions we impose, but has sufficient
harmonic motion to make it useful test material. A brief discussion follows each analysis.

 21

I IV
6
 IV I ii I

6
I IV I I I

6
I IV I IV

6
 v V/V V

I IV
64
 I

6
 IV I I vi

6
 V V I V I V I I

6
 I IV I

6
 I ii

VI VI vi vi V
65
/V V I

6
 V

6
 I V I IV IV vii

ø6
 V

7

#

I
6
 I I V

6
 I I V V I

1

6

11

15

Figure 18. In Dulci Jubilo.

After removing the false cadences, the key of all cadences in Z is G. This means that there are no modulations,
and constraint Ci,4 is active for all nodes. Arc consistency thus eliminates all νi,d, where νi,d ≠ 7 (where 7 is the
pitch value of G.) The secondary functions in measures 5 and 12 are the result of preferences employed when
searching for the solution.

 22

I iii IV V I IV ii V V
7
 I I I

6
 I V

6
I V vi iii I

6
 ii

6
 V

7
 I

I IV IV
6
 I V

6
 vi

7
 V/V V C:V I I

6
 IV ↑ I V

7
I

 G:I ii V
64
 V I bVII

Figure 19. Von Himmel Hoch (1).

In this example, Z contained the cadences {C,C,C,C,G,G,C} after false cadences were removed. The first of the
two G cadences is at the end of measure 7. MODULATE examines the passage between this cadence and the C
cadence at the end of measure 5, and decides that the modulation occurs at the first chord of measure 8. Since
the next cadence in the list is another G cadence (measure 9), the tonal center between these two cadence chords
is G. Since this is a “down” modulation, MODULATE looks for the last leading tone to the new key (F natural in
this case, found by a reverse search.) From there, it looks for the pivot chord, one whose function is V in the
current key and I in the new key. It assigns all current key to the chords up to the pivot chord, and the new key
to the chords following the pivot.

Another chorale, In Dulci Jubilo, had an analysis in which the entire piece was in one key (G major) except for
a small group of chords, corresponding to about a measure in the piece. In this area, the analysis showed a
modulation to the dominant (D major). According to a music theorist, this is not correct, or at least very
unlikely, not making any ‘ “musical sense.” From a listener’s perspective, however, it may make more sense.
The analysis resulted from two D major cadences in close proximity, which might sound to the listener as if the
piece briefly suggests the dominant before returning to the tonic. As resolving this is more of an interpretation
rather than a rule, we do not see this result as a failing of the algorithm.

5 DISCUSSION

The goal of any theory is to represent a system with a set of concise and powerful rules. A well-formed theory
summarizes and yields insights to the system, and presents a framework that others may examine and
reproduce. An algorithm designed to encapsulate tonal music theory must possess these properties if it is to be a
useful tool for approaching the problem.

5.1 Earlier attempts

Winograd, treating music as a grammar, developed a hierarchical set of parsing rules that act on a list of chords
(Winograd 1968). Whereas he clearly enumerates the rules, hierarchies, and tables used in his implementation,
the description of the implementation itself is high level, lacking necessary detail for a thorough analysis. This
makes it difficult to reproduce his results.

 23

Using a rule-based system, Maxwell represents harmonic analysis essentially as a table lookup (Maxwell 1992).
In addition to the lack of a clear description of the algorithms, his presentation of the rules involved is
sometimes ambiguous or missing altogether. For example, this is the description of one such rule:

“IF a sonority is not tertian OR it is accented AND dissonant AND the next sonority is
tertian AND the next sonority has a lower tertian-dissonance level OR it is unaccented
AND dissonant AND the last sonority is tertian AND the last sonority has a lower
tertian-dissonance level, THEN the sonority is dissonant in context.”

Given this description, there are several possible implementations of this rule. (This is only one of over 50 such
rules.) With ambiguous and omitted rule definitions, along with no description of the algorithms, it is
impossible either to reproduce or to analyze Maxwell's results.

Another problem inherent with a rule-based approach is that a rule-based system requires a "proliferation of
rules that tend never to reach an end" (Ebcioglu 1992). Suppose the scope of the project were to analyze just
one composer, such as Bach. It would be no small task to develop the a knowledge base of all the situations in
which Bach "breaks the rules" of tonal harmony, much less represent all his stylistic idiosyncrasies. Even if
such a set of rules were created, it would certainly need amending to be used to analyze another composer's
work. Since constraints are a type of rule, our work may also suffer from this problem as we extend it to analyze
more complex music.

The Serioso program (Temperley and Sleator 1999) takes a comprehensive approach, separating its analysis
into three sections, (meter, key, and harmony), and combining these separate analyses into a final interpretation.
It addresses many of the difficulties encountered by the approaches described above, summarizing its
performance by a set of preference rules. It introduces some intriguing ideas and insights, such as the line of
fifths model (Temperley 1997).. There is no description of how the preference rules are implemented, leaving
no opportunity for their analysis.

5.2 Our representation

The goal of this work is not only to model harmonic analysis,, but also to present it in a formal framework that
facilitates analysis and duplication. We make no claim that our approach more comprehensive or correct than
any of the others previously mentioned. Ours is an attempt to model some key insights into harmonic analysis
and to present it a more accessible way.

The central idea in our approach is that cadences form a basis for identifying the presence of tonal centers
within a composition. The notion of using cadences as musical guides is not new; Lerdahl, in correspondence
with Jackendoff (Jackendoff 1991) suggests using cadences as aids for metrical analysis. We posit that they
also play a vital role in determining the tonal structure, serving as “musical footprints” of the path the tonal
center takes throughout the piece. From this, we develop heuristics to determine where cadences occur and
where the tonality changes in the piece. Once the tonal centers are identified, harmonic analysis reduces to little
more than a parsing problem. We, therefore, focus our algorithm on the identification of tonal centers.

We chose the CSP framework for our approach because of its elegance in representing the problem and because
it is readily analyzed by formal methods. By making the variable a chord rather than the individual notes, we
take advantage of properties of chords, while retaining the ability to constrain their analysis by their attributes.
A major point in favor of our approach is its simplicity. Instead of using a large set of rules, we employ a series
of simple pattern-matching and search algorithms to accomplish the task. We freely admit, however, that this is
neither a comprehensive nor final solution to the problem. Certainly, some of the algorithms are not sufficient
for analyzing all types of tonal music; our assumptions need to be relaxed, and more complicated test cases are
necessary. The complexity of the algorithms may very well increase as the work progresses; the music analyzed
in this paper is relatively simple, and as more complex pieces are introduced, the sophistication of the
algorithms will have to improve accordingly.

 24

6 SUMMARY

In the past, attempts at algorithms that perform harmonic analysis have suffered from a lack of formal
presentation of the methods involved. Regardless of the successes of these efforts, analysis and duplication of
their results is ambiguous and difficult. The purpose of this work is to encapsulate the process of harmonic
analysis in a precis e and well-studied framework that avails itself to analysis and reproduction.

Harmonic analysis is similar to natural-language parsing in that it incorporates rules and preferences, and like
understanding natural language, is considered to be a task performed without difficulty by those who are
familiar with it (Lerdahl and Jackendoff 1983). By modeling the rules of tonal harmony as constraints and the
preferences as search preferences, the CSP framework provides an elegant algorithmic representation of
harmonic analysis.

Our implementation employs a series of algorithms that employ various tonal harmony rules to identify tonal
centers within a composition. Establishing this information is the heart of harmonic analysis, as it reduces the
remainder of the problem to little more than parsing. Aiding our algorithms are several assumptions about tonal
music, which simplify the task. They provide additional constraints on interpreting the compositions.

The music used to evaluate our system is a subset of tonal music, and that the assumptions we made must be
relaxed in order to have a robust tonal harmonic-analysis system.

REFERENCES

Aldwell, E. and C. Schachter (1978). Harmony and Voice Leading. New York, Harcourt Brace Jovanovich, Inc.
Cook, N. (1987). “The perception of large-scale tonal closure.” Music Perception 5: 197-206.
Darr, T. (1997). A constraint-satisfaction problem computational model for distributed part-selection problems.
Electrical Engineering and Computer Science Department. Ann Arbor, The University of Michigan.
Darr, T. P., W.P. Birmingham, N. Scala (1998). A MAD Approach for solving part-selection problems .
Artificial Intelligence in Design, Lisbon, Portugal., Kluwer.
Dechter, R.(1990) Constraint Networks. Encyclopedia of AI: 276-285.
Ebcioglu, K. (1992). An Expert System for Harmonizing Chorales in the Style of J. S. Bach. understanding
Music with AI: Perspectives on Music Cognition. M. Balaban, K. Ebcioglu and O. Laske. Menlo Park, AAAI
Press: 295-333.
Hindemith, P. (1970). The Craft of Musical Composition. New York, Schott Music Corporation.
Jackendoff, R. (1991). “Musical Parsing and Musical Affect.” Music Perception 9(2): 199-230.
Lerdahl, F. (1988). “Tonal Pitch Space.” Music Perception 5(3): 315-350.
Lerdahl, F. and R. Jackendoff (1983). A Generative Theory of Tonal Music. Cambridge, Mass, MIT Press.
Maxwell, H. J. (1992). An Expert System for Harmonizing Analysis of Tonal Music. Understanding Music with
AI: Perspectives on Music Cognition. M. Balaban, K. Ebcioglu and O. Laske. Menlo Park, AAAI Press: 335-
353.
Temperley, D. (1997). “An Algorithm for Harmonic Analysis.” Music Perception 15(1): 31-68.
Temperley, D. and D. Sleator (1999). “Modeling Meter and Harmony: A Preference-Rule Approach.”
Computer Music Journal 23(1): 10-27.
Vos, P. G. and E. W. V. Geenen (1996). “A Parallel-Processing Key-Finding Model.” Music Perception 14(2):
185-224.
Winograd, T. (1968). “Linguistics and the Computer Analysis of Tonal Harmony.” The Journal of Music
Theory 12: 2-49.

