
Eager Writeback - a Technique for Improving Bandwidth Utilization

Hsien-Hsin Lee Gary Tyson
ACAL, Department of EECS

University of Michigan
Ann Arbor, Michigan 48109

flinear,tysong@eecs.umich.edu

Matthew Farrens
Department of Computer Science
University of California, Davis

Davis, California 95616
farrens@cs.ucdavis.edu

June 14, 1999

Abstract

Modern high-performance processors utilize multi-level cache structures to help tolerate the increasing
latency (measured in processor cycles) of main memory. These caches employ either a writeback or
a write-through strategy to deal with store operations. Write-through caches propagate data to more
distant memory levels at the time each store occurs, which requires a very large bandwidth between
the memory hierarchy levels. Writeback caches can signi�cantly reduce the bandwidth requirements
between caches and memory by marking cache lines as dirty when stores are processed and writing
those lines to the memory system only when that dirty line is evicted. This approach works well for
many applications (e.g. SPEC95), but for graphics applications that experience signi�cant numbers of
cache misses due to streaming data, writeback cache designs can degrade overall system performance
by clustering bus activity when dirty lines contend with data being fetched into the cache. In this
paper we present a new technique called Eager Writeback, which re-distributes and balances traÆc by
writing dirty cache lines to memory prior to their eviction. This reduces the likelihood of writing dirty
lines that impede the loading of cache miss data. Eager Writeback can be viewed as a compromise
between write-through and writeback policies, in which dirty lines are written later than write-through,
but prior to writeback. We will show that this approach can reduce the large number of writes seen in
a write-through design, while avoiding the performance degradation caused by clustering bus traÆc of
a writeback approach.

1 Introduction

Caches are used extensively in high-performance processors to help minimize the average memory
access time and thus improve the performance of a program. Caches accomplish this by exploiting
the spatial and temporal locality of references exhibited by most programs, and are very e�ective in
reducing memory bus traÆc by intercepting and handling most of the read requests generated by the
processor.

However, caches must deal with both reads and writes to memory. Support for writes (stores)
tends to be simple { on a store the data item is either written into both the cache and through the
cache hierarchy to the memory (referred to as a write-through policy), or it is written into the cache
exclusively and the data item is written out to memory only when the cache line is evicted (known as
a writeback policy.)

Caches employing a write-through policy generate memory traÆc every time a store occurs in the
program. Since it would largely defeat the purpose of having a cache if the processor had to block on
each store until the write completed, write-through caches use a structure known as a store bu�er or
write bu�er[8] to bu�er writes to memory. Whenever a write occurs, the data item is written into both
the cache and this structure, allowing the processor to continue executing without blocking (until the
store bu�er becomes full). The store bu�er will send its contents to memory as soon as the bus is idle.

Writeback caches, on the other hand, generate memory traÆc much less frequently. When a store
occurs in a writeback cache the data value is written into the corresponding line in the cache, which is
then marked dirty. Writes to memory occur only when a line marked dirty is evicted from the cache
(usually due to a cache miss) in order to make room for the incoming data item.

Whenever there are many consecutive misses (caused by context switches, or working set changes,
or by certain graphics applications, for example) the writeback cache can �nd itself blocked waiting
for a dirty line to be written to memory. This is the same problem faced by the write-through cache,
and can be dealt with in much the same manner by adding a writeback bu�er. However, there are
certain classes of programs which su�er from memory delay penalties that even a large writeback
bu�er cannot eliminate. For example, many newer applications (e.g. 3D graphics or multimedia) have
enormous incoming data streams. In these programs, the stream of incoming data items can cause
many conict cache misses and trigger the eviction of many dirty lines. This dirty writeback traÆc
must compete for available memory bandwidth with the arriving data, and often impedes the delivery
of the data to the cache. For programs where overall performance is bound by memory bandwidth,
this competition for bandwidth can have a substantial negative impact.

In this paper we propose a modi�cation to the writeback policy which spreads out memory activity
by selectively writing some dirty lines to memory whenever the bus is free, instead of waiting until
that line in the cache is replaced. This early writing of dirty lines to the memory system reduces the
potential impact of bursty reference streams, and can e�ectively re-distribute and balance the memory
bandwidth and improve system performance.

2 Background

As discussed in the introduction, caches that employ a writeback policy reduce memory traÆc by
delaying the transfer of data to memory as long as possible. Most modern microprocessors using a
writeback cache policy incorporate a writeback (or cast-out) bu�er, which is used as temporary storage
space for holding dirty cache lines while the data request that caused the eviction is serviced. Upon
eviction, a dirty cache line is deposited into the writeback bu�er, which usually has the highest bus
scheduling priority among all types of non-read bus transactions. Once the writeback bu�er �lls up,
subsequent dirty line replacements cannot take place. As a result, their corresponding data demand
fetch operations cannot be committed into the cache, and the processor pipeline stalls waiting for the
dependent data.

It is possible to alleviate this problem somewhat by using existing cache hardware. Non-blocking

caches have been proposed by Kroft[6] which use a set of miss status holding registers (MSHRs) to
manage several outstanding cache misses. When a cache miss occurs in a non-blocking cache, it is
allocated an empty MSHR entry. Once the MSHR entry is allocated, processor execution can continue.
If none of the MSHRs are available (i.e. a structural hazard [5] exists due to resource conicts), the
processor will have to block until an MSHR entry becomes free.

By adding data �elds to the MSHRs, it would be possible to use them to temporarily store returning
cache lines. This would allow fetched data to be immediately forwarded to the appropriate destination
registers, and help overcome the situation where the cache cannot be written to because the writeback
bu�er is full. However, this scenario delays MSHR deallocation and can lead to processor stalls on a
cache miss because of no free MSHRs. Figure 1 illustrates a non-blocking cache organization.

In addition, in a modern computer system memory bandwidth is not exclusively dedicated to the
host processor. There are often multiple agents on the bus (such as graphics accelerators or multiple
processors) issuing requests to memory over a short period of time. A typical system architecture of a
contemporary PC system is illustrated in Figure 2.

In a contemporary PC platform with an Accelerated Graphics Port (AGP) interface running a
graphics-centric application, for example, the graphics accelerator shares system memory bandwidth

2

way0

Writeback Buffer

MSHRs

Next Level Cache/Memory

Block
Address

Block
Addr

Data

Data

set0

Set-Associative Cache
LRU bits

Cache Miss Address

Data
Return

Data
Forward
Path

Figure 1: Architectural Block Diagram of non-blocking caches.

with the host processor by constantly retrieving graphics commands and texture maps from the system
memory. As is shown in Figure 2 , the same system memory serves as the instruction and data
repository for both the processor and graphics accelerator.

In a common 3D graphics application, for instance, the processor reads instructions and triangle
vertices, processes and then stores them with rendering state commands back into AGP memory
space. The graphics accelerator then reads these commands out of AGP memory for rasterization.
In addition to the command traÆc, the graphics accelerator also reads a large amount of texture
data (which constitutes the major portion of AGP traÆc on the bus). These textures are mapped onto
polygon surfaces to increase the visual realism of computer-generated images. In the future, with richer
content 3D graphics applications or graphics accelerators with enhanced quality features such as bi-
linear/tri-linear interpolation, AGP command and data bandwidth demands for graphics accelerators
will undoubtedly be even greater than they are now.

Current cache designs have diÆculty in eÆciently managing the ow of data in and out of the
cache hierarchy in these data intensive applications. Bu�ering techniques, including write bu�ers and
MSHRs can help, but do not alleviate the problems of clustering bus traÆc caused by writeback data.
In the next section we introduce a new technique designed to distribute the writes of dirty blocks to
times when the bus is idle.

3 Eager Writeback

3.1 Overview

To address the performance drawbacks of a conventional writeback policy, we are proposing a new
technique called Eager Writeback. The fundamental idea behind Eager Writeback is to write dirty
cache lines to the next level of the memory hierarchy and clear their dirty bits earlier than in a
conventional writeback cache design, in order to better distribute bandwidth utilization and alleviate
memory bus congestion. If dirty cache lines are written to memory when the bus is less congested,

3

System Memory

Graphics
Accelerator

Chipset

Cache
L2

Textures

Local
Frame
Buffer

Backside Bus

Fr
on

ts
id

e
B

us

Core Processor

The Host Processor

Command and Texture Traffics

I/O I/O I/O

A.G.P.

Figure 2: A PC system architecture with AGP.

then there will be fewer dirty lines that require eviction during peak memory activity.
In essence, we are speculating that certain dirty lines will not be re-written before eviction and

thus there is no need to wait until eviction time to perform the cache line write. An Eager Writeback
will never impact the correctness of the architectural state even if the operation that triggers it was
wrongly speculated - if our speculation is incorrect and we write too often, we approach the limiting
case of write-through cache behavior. If we do not speculate often enough, we approach writeback
cache behavior. However, in either case we do not violate any correctness constraints. In the worst
case incorrect speculation may lead to excessive memory traÆc, by consistently writing and cleaning
lines in the cache that are then quickly marked dirty again.

In order to select the best \trigger" to cause an eager writeback, we examined the probability of
rewriting a dirty line in a set-associative cache when it was in a given state (MRU through LRU)
for the well-known SPEC95 benchmarks[4] and four applications from the lesser-known X benchmark
suite[7]. The X benchmark suite consists of four applications representing di�erent graphics algorithms.
DOOM, a popular video game, uses a polygon-based rendering algorithm. POV is a public domain ray
tracing package developed for generating photo-realistic images on a computer. The third application
is an animation viewer which processes an MPEG-1 data stream to display an animated sequence. The
�nal application, xlock, renders a 3D polygonal object on the screen.

Our results indicate that cache lines that have been marked dirty and reach the LRU (Least Recently
Used) state in a 4-way set-associative cache are rarely written to again before they are evicted. In
Figure 3 and Figure 4, we show the probability of a line that was marked dirty being written to again
as it moves from the MRU (Most Recently Used) state to the LRU state for both L1 and L2 caches.
The graph on the left in Figure 3, for example, shows that in the L1 cache the average probability of
a dirty line in the LRU state being re-written is 0.15, while the similar probability for a dirty line in
the MRU state is 0.95. The probabilities of re-dirtying lines in the LRU state are even lower in the L2
cache - in fact, close to 0 as shown in the graphs on right of Figure 3 and Figure 4.

These �gures indicate there are some programs (such as fpppp and su2cor) that have a fairly
high probability of writing to dirty lines after they have entered the LRU state. In order to further
evaluate this, we looked at the ratio of the number of times a dirty line in the LRU state is written
to normalized to the number of times a dirty line in the MRU state is written to. The results are

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MRU MRU-1 LRU+1 LRU

P
r
o
b
a
b
i
l
i
t
y

o
f

R
e
w
r
i
t
e

4-way assoc cache: MRU -> LRU

Probability of rewriting to a dirty line in each LRu stack of L1 cache (Spec95 Benchmark)

129.compress
099.go

126.gcc
130.li

132.ijpeg
134.perl

101.tomcatv
103.su2cor
107.mgrid
145.fpppp
146.wave5

Average

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MRU MRU-1 LRU+1 LRU

P
r
o
b
a
b
i
l
i
t
y

o
f

R
e
w
r
i
t
e

4-way assoc cache: MRU -> LRU

Probability of rewriting to a dirty line in each LRu stack of L2 cache (Spec95 Benchmark)

129.compress
099.go

126.gcc
130.li

132.ijpeg
134.perl

101.tomcatv
103.su2cor
107.mgrid
145.fpppp
146.wave5

Average

Figure 3: Probability of writing to a dirty line in each LRU stack of L1 and L2 caches (SPEC95)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MRU MRU-1 LRU+1 LRU

P
r
o
b
a
b
i
l
i
t
y

o
f

R
e
w
r
i
t
e

4-way assoc cache: MRU -> LRU

Probability of rewriting to a dirty line in each LRU stack of L1 cache (X Benchmark)

XDOOM demo
POV-ray

Animation viewer
Xlock-mountain

Average

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MRU MRU-1 LRU+1 LRU

P
r
o
b
a
b
i
l
i
t
y

o
f

R
e
w
r
i
t
e

4-way assoc cache: MRU -> LRU

Probability of rewriting to a dirty line in each LRU stack of L2 cache (X Benchmark)

XDOOM demo
POV-ray

Animation viewer
Xlock-mountain

Average

Figure 4: Probability of writing to a dirty line in each LRU stack of L1 and L2 caches (X benchmark)

xdoom pov-ray gcc fpppp
0

0.2

0.4

0.6

0.8

1
L1 data writes w.r.t. MRU->LRU stack (normalized to MRU # enter dirty state), 16KB L1/512KB L2

MRU - # enter dirty

MRU - # re-dirty

MRU+1 - # enter dirty

MRU+1 - # re-dirty

MRU+2 - # enter dirty

MRU+2 - # re-dirty

LRU - # enter dirty

LRU - # re-dirty

Figure 5: Normalized number of writes and rewrites to a dirty line in each MRU-LRU stack

5

presented in Figure 5, which shows that while the probabilities may be high, the actual number of
these occurrences is negligible compared to the rewriting that occurs when a line is in other states
(MRU, MRU-1, etc.). These trends held across a wide range of cache con�gurations, and imply that
once a line enters the LRU state it becomes a prime candidate for Eager Writeback, since it has a very
low occurrence of being re-written (and thus marked dirty again).

3.2 Design Issues in Eager Writeback Caches

There can be many di�erent approaches to deciding when to trigger an Eager Writeback. As was shown
in the previous section, one obvious candidate is to use the transition of a dirty line into the LRU state
as a trigger point for an Eager Writeback. For example, when a cache set is being accessed and its
corresponding LRU bit is being updated, the line can be checked to see if it is marked dirty. If it is,
then a dirty writeback can be scheduled, and the dirty bit can be reset.

If the writeback bu�er is full at this point, two approaches can be considered; (a) simply abort
the Eager Writeback; the actual dirty writeback will take place later when the line is evicted, or (b)
perform the eager writeback when an entry in the writeback bu�er becomes free. This provides the
ability to perform eager writeback anytime between when a line is marked LRU and when it is evicted.

To provide this capability using a minimum of hardware, we chose to simulate an Eager Queue which
holds attempted eager writebacks which were unable to acquire writeback bu�er entries. Whenever an
entry in the writeback bu�er becomes available, the Eager Queue checks the cache set on the top of
the queue to see if the dirty bit of the LRU line in the indexed set is set. If it is, the line is moved into
the writeback bu�er.

An alternate implementation considered during this research was Autonomous Eager Writeback.
This implementation used a small independent state machine which autonomously polled each cache
set in round-robin fashion and checked the dirty bit of its LRU line, initiating eager writeback on those
lines when the writeback bu�er was not full. Whether eager queues or the autonomous state machine
is more feasible is highly dependent on the processor and cache organization. For this study we present
results for the more conservative approach which used eager queues.

4 Simulation Framework

Our simulation environment was based on the SimpleScalar tool set [1], a re-targetable execution-
driven simulator which models speculative and out-of-order execution. The machine employs a Register
Update Unit (RUU), which combines the functions of the reservation stations and the re-order bu�er
necessary for supporting out-of-order execution [9]. Functional unit binding, instruction dispatch and
retirement all occur in the RUU.

The microarchitectural parameters used in our baseline processor model are shown in Table 1.
Table 2 lists the latencies of each functional unit modeled in the simulation. A non-blocking cache
structure, writeback bu�er and eager queue associated with each cache level were added to the simulator
for this study. The number of entries in each bu�er was re-con�gurable from 1 to 256, and varied from
simulation to simulation.

A pseudo-Rambus DRAM model was used in the external memory system. This single-channel
RDRAM with 64 dependent banks can address up to 2GB of system memory. In the model, 32
independent banks can be accessed simultaneously (contiguous banks share the same sense ampli�er
for driving data out of the RAM cells). Row control packets, column control packets and data packets
can be pipelined and use separate busses. RDRAM address re-mapping[3] was modeled to reduce the
rate of bank interference. The peak bandwidth that can be reached in our RDRAM model is 1.6GB/sec.

A simpli�ed uncacheable write-combinable memory[2] was implemented for the purpose of correctly
simulating our benchmark behavior. Whenever a data write to an uncacheable region results in an L1

6

Processor Architectural Parameters Speci�cations

Core frequency 1 GHz
1st Level I-Cache 2-way, 256 sets, 32B line, virtually-indexed physically-tagged
1st Level D-Cache 4-way, 128 sets, 32B line, virtually-indexed physically-tagged
2nd Level Cache Uni�ed, 4-way, 4096 sets, 32B line, physically-indexed physically-tagged
I- and D-TLBs 2-way, 128 sets, 32B line size, virtually-indexed virtually-tagged
Backside bus 500 MHz (i.e. half-speed L2), 64bit wide
Frontside bus 200 MHz, 64bit wide
Memory model Rambus DRAM model (1.6GBytes/sec peak bandwidth)
Branch predictor 2-level adaptive predictor, 10-bit history, gshare scheme

Instr. fetch/decode/issue/commit width 8 / 8 / 8 / 8
Load/Store Queue size 32
Register update unit size 64

Memory port size 2
INT/FP ALU size 4 / 4

INT/FP MULT/DIV size 1 / 1

Table 1: Summary of the Baseline Processor Model.

Processor Architectural Parameters Cycles in Processor Clock

1st Level I- and D-Cache 3 cycles, pipelineability = every 1 cycle
2nd Level Cache 18 cycles, pipelineability = every 10 cycles
I- and D-TLBs 2 cycles, pipelineability = every 1 cycle

Backside bus arbitration 4 cycles
Frontside bus arbitration 10 cycles

RDRAM Trcd, RAS-to-CAS 20 cycles
RDRAM Tcac, CAS-to-data return 20 cycles

RDRAM Trp, Row Precharge 20 cycles
INT ALU latency/thruput 1 / 1

INT multiplier latency/thruput 3 / 1
INT divider latency/thruput 20 / 19
FP ALU latency/thruput 2 / 1

FP multiplier latency/thruput 4 / 1
FP divider latency/thruput 12 / 12

Table 2: Latency Table (in core cycles) of Functional Units in the Baseline Processor.

cache miss, the write operation will immediately request access to the bus and drive data out to the
system memory directly (skipping a next-level cache look-up). Only cache line writes are modeled -
any partial cache line update will be treated as a full cache line write in the simulator.

For modeling multiple agents on the memory bus, a memory traÆc injector was also implemented.
This injector allowed us to imitate the extra bandwidth consumed by other bus agents by con�gurable
periodic injection of data streams onto the memory bus.

4.1 Benchmarks

In order to evaluate the e�ectiveness of the Eager Writeback technique, we ran extensive simulations on
the SPEC benchmark suite and two kernels representative of graphics applications. By concentrating
the analysis on small, representative kernels, we can illustrate the potential bene�ts of our scheme
in far greater detail than can be achieved running an entire application. The �rst of these kernels
is a small 3D geometry processing kernel (mini-geometry), which is present in most triangle-based
rasterization algorithms. Two di�erent graphics rendering con�gurations were simulated, one which
was very simple (i.e. ambient light with no external light sources), and one which included multiple
di�use light sources. The ambient light con�guration reduces the computational requirements of the

7

mini-geometry()
while (frames)

for (objects in each frame)
for (every 4 vertices)

/* Transformation */
tx = m11 � InV []x +m21 � InV []y +m31 � InV []z +m41;
ty = m12 � InV []x +m22 � InV []y +m32 � InV []z +m42;
tz = m13 � InV []x +m23 � InV []y +m33 � InV []z +m43;
w = m14 � InV []x +m24 � InV []y +m34 � InV []z +m44;
OutV []rw = 1=w;
OutV []tx = Xoffset + tx �OutV []rw;
OutV []ty = Yoffset + ty �OutV []rw;
OutV []tz = tz �OutV []rw;
/* Texture coordinates copying */
OutV []tu = InV []u;
OutV []tv = InV []v;
/* Lighting Loop */
IDr = IDg = IDb = 0:0;
for (every light source)

dot = LDir[]x � InV []nx + LDir[]y � InV []ny + LDir[]z � InV []nz ;
IDr = IDr +Ambientr +Diffuser � dot;
IDg = IDg +Ambientg +Diffuseg � dot;
IDb = IDb + Ambientb +Diffuseb � dot;
OutV []cd = ((int)IDr << 24)j((int)IDg << 16)j((int)IDb << 8j�);

/* Device driver loop */
for (each transformed and lit vertex)

/* Assume Tri-Strip triangles */
/* Copy entire OutV records to graphics AGP memory */
GfxCommand[vertex � 2] = OutV [vertex� 2];
if (even� numberedvertex)
GfxCommand[vertex] = OutV [vertex];
GfxCommand[vertex � 1] = OutV [vertex� 1];

else
GfxCommand[vertex � 1] = OutV [vertex� 1];
GfxCommand[vertex] = OutV [vertex];

Figure 6: Algorithm of the mini-geometry kernel

algorithm in order to maximize frame rate at the expense of picture realism 1. The multiple light
source con�guration increases the computational demands, thereby reducing the relative impact of bus
utilization as the processor spends more time processing between each data element request.

The second kernel represents a very general streaming data algorithm which processes large data
sets. This kernel continually walks though the cache with a new set of data, experiencing frequent
cache misses as well as dirty writebacks.

4.1.1 Mini-Geometry Kernel

The 3D geometry processing kernel, shown in Figure 6, is representative of a very frequently used algo-
rithm in most triangle-based rendering engines. Geometry processing, consisting of intensive oating-
point operations on a large quantity of data from memory, is mainly performed by the processor. It is
one of the two key portions of a three-dimensional graphics rendering pipeline (the other portion being
rasterization, which is typically performed by a dedicated graphics accelerator).

This kernel consists of three nested loops wrapped by two outer loops which iterate through frames
and 3D objects in the world space. The �rst innermost loop processes vertices for each 3D object
assuming the entire object is modeled by a single triangle strip. The basic functionality performed
inside this loop are transformation, lighting, and command output.

1This would be preferred in the DOOM application when processor performance is lacking.

8

cache walk()
oat arrayA[MAX], arrayB [MAX];
for (m = 0;m < loop;m++)

for (arrayA[i] 2 each set of L2 cache)
write arrayA[i] to way 0;
write arrayA[i+ 1 � 8 � set size] to way 1;
write arrayA[i+ 2 � 8 � set size] to way 2;
write arrayA[i+ 3 � 8 � set size] to way 3;

for (arrayA[j] 2 each cache line in L2 cache)
read arrayA[j];
compute arrayA[j];
write arrayA[m];

for (arrayB [k] 2 each set of L2 cache)
read arrayB [k] into way 0;
read arrayB [k+ 1 � 8 � set size] into way 1;
read arrayB [k+ 2 � 8 � set size] into way 2;
read arrayB [k+ 3 � 8 � set size] into way 3;
write arrayAa[m];

Figure 7: Algorithm of the Cache Walk Kernel

The transformation function projects the new location of each vertex on screen through a 4x4
matrix multiplication and a viewport transformation. The lighting function calculates the interaction
of each vertex with light sources and generates the color intensity for each vertex. This calculation
involves a dot product between the light direction vector and the vertex normal vector using a Phong
illumination model [10]. A single parallel light source with di�use only components is assumed in
the lighting model. For a parallel light source, per-vertex normal transformations can be replaced by
an inverse transformation of the light source location on a per-scene basis, thus eliminating a large
number of computations. A color packing conversion then packs four single-precision oating-point
RGBA color intensities into a packed 4-byte integer. (We assume the machine ISA of interest supports
four wide SIMD computation).

After �nishing with all the vertices in one object, a loop imitating the functionality of a device driver
is invoked (the command output function). This driver loop breaks one triangle strip into individual
triangles and copies these transformed and lit vertices to the uncacheable graphics memory.

4.1.2 Cache-walk Kernel

The Cache-walk kernel is presented in Figure 7, and consists of three inner loops that exercise the L2
cache. The �rst loop walks through the L2 cache dirtying lines. The second loop reads each cache line
in arrayA[], performs some oating-point computation and passes the results to inner loop invariant
array elements. Finally the third loop reads another arrayB[] that evicts arrayA[] from the caches.

5 Simulation Results and Analysis

The simulation results are presented and analyzed in this section. For each kernel studied, we present
two di�erent data sets, one with no memory contention from other potential bus agents, and one with
arti�cially injected memory traÆc.

5.1 Spec95 Benchmarks

Table 3 shows the simulation results for the SPEC95 benchmark suite using 3 con�gurations - Baseline,
Eager and Free Writeback. The Baseline case uses a single entry writeback bu�er, while Free Writeback

9

sim cycle Baseline Eager Free Writeback
benchmark cycles cycles speedup cycles speedup

go 4106741898 4106316586 1.000 4105050891 1.000
gcc 1425690611 1423578223 1.001 1419981686 1.004
li 401639628 401635232 1.000 401481752 1.000
ijpeg 2125521487 2123322070 1.001 2117908634 1.004
perl 3705579465 3701065936 1.001 3683430936 1.006

tomcatv 5436594306 5436670500 1.000 5436456381 1.000
su2cor 4625207540 4625248569 1.000 4625117247 1.000
mgrid 2138832527 2132120132 1.003 2061823555 1.037
fpppp 8404705112 8410760399 0.999 8404047239 1.000
wave5 2221747518 2208702430 1.006 2179225372 1.020

Table 3: Performance of SPEC95 Benchmarks. (WB bu�er = 1, EQ = 4)

Baseline Eager (EQ=0) Eager (EQ=4) Eager (EQ=256) Free Writeback
write bu�er size cycles cycles speedup cycles speedup cycles speedup cycles speedup

No light, WB Buf=1 25364637 23876911 1.062 21838002 1.162 21837952 1.162 21798206 1.164
No light, WB Buf=4 25320139 21820627 1.160 21820566 1.160 21820566 1.160 21798206 1.162
Nno light, WB Buf=256 25320139 21820566 1.160 21820566 1.160 21820566 1.160 21798206 1.162

3 di�. lights, WB Buf=1 30643341 29200004 1.049 27176616 1.128 27176333 1.128 27134147 1.129
3 di�. lights, WB Buf=4 30643153 27158044 1.128 27158049 1.128 27158044 1.128 27134147 1.129
3 di�. lights, WB Buf=256 30643153 27158044 1.128 27158044 1.128 27158044 1.128 27134147 1.129

Table 4: Simulated cycles of Mini-Geometry Kernel.

models a system in which dirty writebacks do not generate any memory traÆc on the bus (thus it serves
as an upper bound on performance.)

Looking at the table it is apparent that there is little performance gain possible for the programs
in this suite, since the di�erence in the cycle count between the baseline case and the upper bound
is negligible. This is not surprising, since it is well-known that the SPEC95 benchmark suite does
not exercise the memory system aggressively. The SPEC95 suite is not a good candidate for memory
system performance studies primarily due to its small working set size. For the rest of this study we
will focus on the benchmarks that more aggressively exercise the memory system, and are arguably
more representative of future workloads.

5.2 Analysis of Mini-Geometry Kernel

5.2.1 Without Injected Memory TraÆc

Table 4 contains the number of mini-geometry kernel execution cycles for a variety of memory con-
�gurations. In this table, each row represents a di�erent combination of writeback Bu�er size and
lighting conditions, while the columns contain di�erent writeback strategy cycle counts. The �rst col-
umn, Baseline, contains the cycle count using a conventional writeback policy. The next 6 columns
contain the results for 3 di�erent variations of the Eager Writeback scheme and the speed-up of each
scheme over the baseline case, with each scheme identi�ed by the size of its Eager Queue (EQ). The
simplest design choice is EQ=0, in which Eager Writebacks are dismissed if the writeback bu�er is full.
The other two cases can queue up attempted eager writebacks within Eager Queues of speci�ed sizes.
The rightmost column contains the Free Writeback case, which as stated earlier is the upper bound to
available performance.

There are several things of interest to note in this table. Perhaps most signi�cantly, it can be seen
that increasing the depth of the writeback bu�er has virtually no impact on the performance of the

10

Baseline case. In fact, going from 1 to 256 entries in the writeback bu�er only improves performance
by 0.17%. This is because a large number of dirty writebacks are competing for bandwidth with the
demand fetches, and the bus congestion can not be alleviated by a deeper writeback bu�er.

On the other hand, adding Eager Writeback increases the performance of the system by 4.9% to
16.2% (depending on the light sources and the depth of the Eager Queue). For the simplest case of no
Eager Queue and a single entry writeback bu�er, the speedup ranges from 6.2% (for no light source)
to 4.9% (with 3 light sources). This speedup is smaller than for the other cases, because many eager
writebacks are dropped due to the lack of space in the writeback bu�er. When the number of writeback
bu�er entries is increased (or the Eager Queue size is increased), the speedup achieved approaches the
upper bound.

The \bandwidth shifting" e�ect is quite apparent in Figure 8 and Figure 9. These two �gures
present the utilization pro�le of memory bandwidth requested by the processor using the Baseline
(Figure 8) and Eager Writeback (Figure 9) con�gurations, running the mini-geometry kernel. The
y-axis plots the instantaneous bandwidth2 versus the execution timeline on the x-axis.

The 12 broad spikes that saturate the peak RDRAM bandwidth in Figure 9 occur within the driver
loop, where command output is being written into the write-combining graphics memory while eager
writebacks of dirty lines are concurrently taking place. Since within the driver loop there is still some
computation occurring, the bandwidth is not fully utilized, and eager writeback writes can use the
available idle slots and maximize bandwidth. Conversely, in the baseline case, the same writebacks
occur within the geometry computation loop. This means these requests compete for the bus with the
return of the data requested by vertex loads, and thus slow down the processing. This maximization
of the utilization of the bandwidth during the driver loop leads to a lower and sparser average memory
bandwidth in Eager Writeback than in the Baseline case outside the driver loop.3

The overall performance improvement is obviously gained from the shifting of dirty writeback traÆc
to where this traÆc does not impede the return of any critical data. This can be seen in Figure 10,
which presents an execution pro�le of the benchmark. In this �gure the sequence of vertex data
load requests appears on the y-axis, and the cycle upon which the corresponding data item returns is
plotted on the x-axis. As execution begins, the pro�les of Baseline and Eager Writeback are completely
overlapped, because data is returning at the same time for both schemes. Beginning at around 2.6
million cycles, these two curves start to deviate from one other, and continue to diverge as execution
time increases. This implies that the speed-up due to Eager Writeback will continue to climb as the
loop frame continues to execute, and would be greater than the measured 16.1% if larger simulations
are run.

By looking carefully at this �gure it is possible to distinguish the geometry computation loop from
the device driver loop. The segments with shorter but steeper slopes are where the driver loop is
executing. The steepness of the slope occurs because the requested data, OutV [], was returned faster
(since the loop read the output vertices generated in the transformation and lighting stages from the
L2 cache directly, rather than from memory).

Table 5 shows how Eager Writeback a�ects the performance bottleneck in the Register Update Unit
(RUU) of the processor. The layout of this table is similar to Table 4, and contains the number of
cycles the processor is stalled due to the RUU being full.

As the table shows, Eager Writeback is able to remove a substantial number of stall cycles due
to a full RUU and keep the execution pipeline running smoother. These stalls are reduced because
in conventional writeback schemes dirty writebacks are competing with demand fetches for available
bandwidth, causing delays in data arrival and the �lling of the reservation stations in the RUU. The

2This was calculated by sampling the data phase on the memory bus every 2000 core clocks, e.g. if 1600 bytes are seen
on the bus in 2000 core cycle period, its instantaneous bandwidth is 800MB/sec for a 1GHz processor.

3It should be emphasized that the total bandwidth required by a system using Eager Writeback is not reduced, rather
it is re-distributed by the early eviction of dirty cache lines.

11

0

200

400

600

800

1000

1200

1400

1600

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

MB
yt

es
 p

er
 s

ec

Execution Timeline

Mini-Geometry Kernel: Baseline Writeback (wb=1, mshr=8)

Baseline FrontsideBus Bandwith

Figure 8: Memory Bandwidth Pro�le by Baseline Writeback for Mini-Geometry Kernel (No light)

0

200

400

600

800

1000

1200

1400

1600

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

MB
yt

es
 p

er
 s

ec

Execution Timeline

Mini-Geometry Kernel: Eager Writeback (wb=1, EQ=4, mshr=8)

Eager WB FrontsideBus Bandwith

Figure 9: Memory Bandwidth Pro�le by Eager Writeback for Mini-Geometry Kernel (No light)

baseline Eager (EQ=0) Eager (EQ=4) Eager (EQ=256) Free Writeback
RUU Full cycles cycles cycles improved cycles improved cycles improved cycles improved

No light, WB Buf = 1 8404023 6678659 20.5% 4452469 47.0% 4452265 47.0% 4409553 47.5%
No light, WB Buf = 4 8375679 4439397 47.00% 4439226 47.00% 4439226 47.00% 4409553 47.35%

3 di�use lights, WB Buf=1 8045791 6541028 18.7% 4361651 45.8% 4361259 45.8% 4313710 46.4%
3 di�use lights, WB Buf=4 8033850 4344799 45.92% 4344670 45.92% 4344653 45.92% 4313710 46.31%

Table 5: Resource Hazard Improvement of Mini-Geometry Kernel.

12

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

L
o
a
d

I
n
s
t
r
u
c
t
i
o
n

S
e
q
u
e
n
c
e

f
o
r

I
n
p
u
t
/
O
u
t
p
u
t

V
e
r
t
i
c
e
s

Data Arrival Timeline in Clock Ticks

Load Resolution Time Comparison (wb=1, EQ=4, mshr=8)

Baseline
Eager Writeback

Figure 10: Load Response Time for Input Vertex in Mini-Geometry Kernel

bandwidth sim cycles RUU Full cycles
injection (no light) Baseline Eager speed-up Baseline Eager improved
0 GB/sec 25364637 21838002 1.16 8404023 4452469 47.0%

0.4GB/sec (160B/400clks) 27323771 25434535 1.07 10529817 8448695 19.76%
0.8GB/sec (320B/400clks) 33567580 33775835 0.99 16760998 17024045 -1.6%
1.2GB/sec (480B/400clks) 60699573 59162773 1.03 44206642 42864369 3.0%

0.4GB/sec (1280B/3200clks) 32539684 28636072 1.14 15604083 11364679 27.2%
0.8GB/sec (2560B/3200clks) 47365936 42559653 1.11 30356564 25269290 16.8%
1.2GB/sec (3840B/3200clks) 87400980 83426435 1.05 70248220 66015191 6.0%

Table 6: Memory TraÆc Injection to Mini-geometry Kernel. (Eager Queue = 4)

eager writebacks shift the dirty writes to an earlier time, freeing up the bandwidth to handle just data
reads and reducing the pressure on the RUU.

5.2.2 With Injected Memory TraÆc

In order to evaluate the e�ectiveness of Eager Writeback in a real system, we implemented a memory
traÆc injector which we used to model other bus agents requesting the memory bus and consuming
memory bandwidth. For this benchmark study, we injected three di�erent external bandwidths using
two di�erent injection frequencies onto the bus during the simulations. The external bandwidths chosen
were 400MB/sec, 800MB/sec and 1.2GB/sec. For each bandwidth con�guration, data was injected at
a high frequency (every 400 processor clock cycles) and a low frequency (every 3200 processor clock
cycles). Data was injected onto the bus in blocks - for example, in the 800MB high frequency case,
every 400 cycles the injector took over the bus and held it until it had completed transferring 320 Bytes
of data. The injections are uniformally distributed throughout the simulation.

The results for simulations of the mini-geometry kernel using no light sources are shown in Table 6.
The top line of the table is the base case with no injected memory traÆc, while the other entries are
for the di�erent injected bandwidths at the di�erent frequencies. In this table we can see that (as

13

sim cycle Baseline Eager (EQ=0) Eager (EQ=4) Eager (EQ=256) Free Writeback
write bu�er size cycles cycles speedup cycles speedup cycles speedup cycles speedup
WB buf = 1 10230328 9054559 1.130 9053851 1.130 9053851 1.130 9045154 1.131
WB buf = 4 10067331 9052957 1.112 9052957 1.112 9052957 1.112 9045154 1.113

Table 7: Simulated cycles of Cache walk Kernel.

expected) memory traÆc injection causes extra stall cycles in the RUU. In addition, as the amount
of injected bus traÆc increases, the opportunity to do Eager Writeback decreases and the RUU stalls
increase dramatically.

The table also shows that Eager Writeback provides virtually no speedup when a bandwidth of
0.8GB/sec is injected at the higher frequency, while the same bandwidth injected at a lower frequency
allows a speedup of 11%. By examining the dirty writeback bandwidth utilization pro�le of this scenario
(Figure 11 and Figure 12), one can see that many eager writebacks (i.e. the spikes) are prevented
from occurring by the higher frequency injection. The advantages of Eager Writeback are lost and it
performs almost on par with the baseline scenario, due to more frequent bus contention.

5.3 Cache walk Kernel

The mini-geometry kernel highlighted the problem of implicit dirty writebacks causing loss of perfor-
mance due to delays in receiving data. Finite memory peak bandwidth is another serious performance
issue, which is exposed by the Cache walk kernel.

5.3.1 Without Injected Memory TraÆc

Table 7 contains the results of simulation runs of the Cache walk kernel, presented in the same format
used in Table 4. For this benchmark, an eager queue of length 0 (EQ=0) is enough to approximate the
optimal case of no dirty writeback traÆc at all. Further size increases of the EQ provide only marginal
performance gains.

Looking at the memory bandwidth utilization pro�les for this kernel (Figure 13 and Figure 14), we
see three spikes that appear repeatedly in both writeback schemes (because the outer loop contains
three iterations). The spikes are much wider in the Baseline case, however, indicating the program
is spending more execution cycles in these phases. Examining the algorithm, it is clear these spikes
are related to the time during the third inner loop where incoming arrayB[] data items collide and
share memory bandwidth with the induced dirty writebacks of arrayA[]. Because the �nite memory
bandwidth (1.6 GB/sec in this study) must be shared between both memory accesses4, the rate of
demand fetches for arrayB[] in the third inner loop is (theoretically) cut in half and thus the overall
performance degrades.

Figure 13 also shows three bandwidth grooves where memory bus bandwidth has dropped to zero.
This corresponds to the second inner loops, where all data references hit in the cache. To take the
advantage of this available resource, Eager Writeback �lls these bus idle states with early evictions of
dirty data cache lines as shown in Figure 14. By shifting these bandwidth requests to idle cycles, the
memory bandwidth during the course of the third inner loop can be fully dedicated to the demand
fetches of arrayB[], speeding up the cache �ll requests.

As was done for the mini-geometry kernel, we examined how Eager Writeback interacted with
internal processor resources when running this benchmark. Table 8 shows that the Load/Store Queue
is used heavily by this benchmark, and that Eager Writeback can remove more than half of the stalls

4Read and write turnarounds between demand fetch and dirty writeback streams also prevent peak memory bandwidth
from being achieved.

14

0

200

400

600

800

1000

1200

1400

1600

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

MB
yt

es
 p

er
 s

ec

Execution Timeline

Mini-Geometry Kernel: Eager Writeback (wb=1, EQ=4, mshr=8) 320 Bytes per 400 clks injected

EagerWB Dirty Writebacks Bandwidth on Frontside Bus

Figure 11: Dirty WB L2-to-Mem Bandwidth with 320B/400clks Injection (Eager) for Geometry

0

200

400

600

800

1000

1200

1400

1600

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07

MB
yt

es
 p

er
 s

ec

Execution Timeline

Mini-Geometry Kernel: Eager Writeback (wb=1, EQ=4, mshr=8) 2560 Bytes per 3200 clks injected

EagerWB Dirty Writebackes Bandwith on Fronside Bus

Figure 12: Dirty WB L2-to-Mem Bandwidth with 2560B/3200clks Injection (Eager) for Geometry

15

0

200

400

600

800

1000

1200

1400

1600

0 2e+06 4e+06 6e+06 8e+06 1e+07

MB
yt

es
 p

er
 s

ec

Execution Timeline

Cache_walk Kernel: Baseline Writeback (wb=1, mshr=8)

Baseline FrontsideBus Bandwith

Figure 13: Memory Bandwidth Distribution by Baseline Writeback for Cache walk Kernel

0

200

400

600

800

1000

1200

1400

1600

0 2e+06 4e+06 6e+06 8e+06 1e+07

MB
yt

es
 p

er
 s

ec

Execution Timeline

Cache_walk Kernel: Eager Writeback (wb=1, EQ=4, mshr=8)

Eager WB FrontsideBus Bandwith

Figure 14: Memory Bandwidth Distribution by Eager Writeback for Cache walk Kernel

16

baseline Eager (EQ=0) Eager (EQ=4) Eager (EQ=256) Free Writeback
Bottlenecks cycles cycles improved cycles improved cycles improved cycles improved
IFQ Full cycles 5770175 4594401 20.38% 4594631 20.37% 4594631 20.37% 4587638 20.49%
RUU Full cycles 4274868 4260784 0.33% 4260703 0.33% 4260703 0.33% 4258811 0.38%
LSQ Full cycles 1978596 864867 56.29% 866341 56.21% 866341 56.21% 862880 56.39%

Table 8: Resource Constraint Improvement of Cache walk Kernel. (Writeback bu�er = 1)

bandwidth simulated cycles IFQ Full cycles LSQ Full cycles
injection Baseline Eager speed-up Baseline Eager improved Baseline Eager improved
0 MB/sec 10230328 9053851 1.13 5770175 4594631 20.4% 1978596 866341 56.2%

0.4GB/sec (160B/400clks) 11807448 10039848 1.18 7340618 5576536 24.0% 2903145 1205358 58.5%
0.8GB/sec (320B/400clks) 15025957 12389159 1.21 10540877 7908077 25.0% 4428473 1882587 57.5%
1.2GB/sec (480B/400clks) 24250335 21412735 1.13 19717746 16880309 14.4% 8309036 5480188 34.05%

0.4GB/sec (1280B/3200clks) 12379290 10991058 1.13 7908538 6521201 17.5% 2030932 1417595 30.2%
0.8GB/sec (2560B/3200clks) 16593748 15115348 1.10 12101456 10622058 12.2% 4264295 2818313 33.9%
1.2GB/sec (3840B/3200clks) 29048835 27135235 1.07 24495295 22585042 7.8% 8903039 7007451 21.3%

Table 9: Memory TraÆc Injection to Cache walk Kernel. (Eager Queue = 4)

due to a full Load/Store Queue. As the LSQ is kept less full, instructions are able to leave the IFQ
faster and as a result cycles lost due to a full IFQ are reduced substantially.

5.3.2 With Injected Memory TraÆc

We also repeated the experiments involving injecting memory traÆc onto the bus for this benchmark
program. The results are shown in Table 9, and indicate that higher frequency injection seems to have
a greater impact on the Baseline case than on the Eager Writeback case. The number of simulated
cycles for the Baseline case using high frequency injection increases faster than for the Eager Writeback
case, while the increase stays roughly the same for both schemes while injecting lower frequency traÆc.

The reason the cycle count climbs faster for the Baseline case than for the Eager Writeback case
can be understood by analyzing Figure 15. This �gure contains an execution pro�le of the Cache walk
benchmark, plotting the arrival time for each load instruction. From left to right, the four curves
represent Eager Writeback with no extra bus injection, Baseline with no extra bus injection, Eager
Writeback with higher frequency injection, and Baseline with higher frequency injection. Each curve
can be divided into 3 repeated patterns, which bear the following three piecewise line segments: at
(zero increment), steep rise, and slowdown knee. These 3 line segments correspond to the three inner
loops in the benchmark.

The �rst loop contains only data stores, so the load instruction count stays at as execution time
continues. The steep vertical climb corresponds to the second inner loop, which has a high number of
cache hits (a large number of loads completing in a short period of time). Finally, the third segment
represents the behavior of the third loop, which loads another array that misses in both the L1 and L2
caches.

This third segment, shown as a knee in the curve, is the key to the performance deviation between
Baseline and Eager Writeback. Figure 16 shows a close-up view of part of Figure 15, focusing on the
knees of the curve. The slopes (tan�) of these knees are the key - the atter the slope, the longer it will
take to complete. Comparing the slope changes between Baseline and Eager Writeback, it is obvious
that the slope of the Baseline segment is much shallower than that of the Eager Writeback segment.
This means that for the same number of loads in the third loop, the execution time of the Baseline case
was more sensitive to and severely delayed by other transactions, which in this case are composed of

17

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07

L
o
a
d

I
n
s
t
r
u
c
t
i
o
n

S
e
q
u
e
n
c
e

f
o
r

I
n
p
u
t

V
e
r
t
i
c
e
s

Data Arrival Timeline in Clock Ticks

Load Resolution Time Comparison (wb=1, EQ=4, mshr=8)

Eager Writeback with No Memory Injection
Baseline with No Memory Injection

Eager Writeback with Injected 320B/400clks
Baseline with Injected 320B/400clks

Figure 15: Load Response Time for Data Reads in Cache walk Kernel (Higher Frequency Injection)

the dirty writebacks induced by the loads and the periodic injection of memory traÆc. For the Eager
Writeback case, the dirty writebacks were mostly completed in the second loop, so the slope of the
knee is steeper and the third loop can be completed more swiftly than its Baseline counterpart.

Repeating the same experiment using lower frequency injection (as plotted in Figure 17 and Fig-
ure 18) reveals that the slope of the knees of the curve are much more similar to one another. As a result,
roughly the same number of penalty cycles were added to both Baseline and Eager Writeback, and
the speedups due to Eager Writebacks are smaller in Table 9. These results suggest higher frequency
memory interference can deteriorate performance in the baseline case more in a bandwidth-limited
code.

6 Conclusions

Systems employing write-back caches have to contend with the following two issues: (1) Dirty write-
backs contend with demand fetches for bandwidth and can impede the delivery of data, and (2) Finite
memory bandwidth shared between demand fetches and implicit dirty writebacks limit the performance
of memory bound programs. These performance issues are important to a large and growing class of
programs { those that consume large amounts of memory bandwidth and generate many data stores.

In this paper we have presented a new technique for dealing with these issues, called Eager Write-
back, which can e�ectively improve the overall system performance by shifting the writing of dirty
cache lines from on-demand to times when the memory bus is idle. We have shown that applying
this technique can alleviate bandwidth constraints and improve performance for two kernels that are
representative of these classes of applications. We have shown that when conventional writebacks com-
pete with memory loads and defer the delivery of data, the Eager Writeback technique was able to
remove the competition by evicting dirty data earlier. We have also shown that when \�nite" memory
bandwidth limits overall performance, eager writeback can alleviate this situation by utilizing earlier
idle bus cycles.

Further investigation of this Eager Writeback mechanism will include the e�ects this approach has

18

120000

125000

130000

135000

140000

145000

150000

155000

160000

3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

L
o
a
d

I
n
s
t
r
u
c
t
i
o
n

S
e
q
u
e
n
c
e

f
o
r

I
n
p
u
t

V
e
r
t
i
c
e
s

Data Arrival Timeline in Clock Ticks

Load Resolution Time Comparison (wb=1, EQ=4, mshr=8)

Eager Writeback with No Memory Injection
Baseline with No Memory Injection

Eager Writeback with Injected 320B/400clks
Baseline with Injected 320B/400clks

Figure 16: Zoom-In of the Load Response Time for Data Reads in Cache walk Kernel (Higher Frequency
Injection)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07

L
o
a
d

I
n
s
t
r
u
c
t
i
o
n

S
e
q
u
e
n
c
e

f
o
r

I
n
p
u
t

V
e
r
t
i
c
e
s

Data Arrival Timeline in Clock Ticks

Load Resolution Time Comparison (wb=1, EQ=4, mshr=8)

Eager Writeback with No Memory Injection
Baseline with No Memory Injection

Eager Writeback with Injected 2560B/3200clks
Baseline with Injected 2560B/3200clks

Figure 17: Load Response Time for Data Reads in Cache walk Kernel (Lower Frequency Injection)

19

120000

125000

130000

135000

140000

145000

150000

155000

160000

3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

L
o
a
d

I
n
s
t
r
u
c
t
i
o
n

S
e
q
u
e
n
c
e

f
o
r

I
n
p
u
t

V
e
r
t
i
c
e
s

Data Arrival Timeline in Clock Ticks

Load Resolution Time Comparison (wb=1, EQ=4, mshr=8)

Eager Writeback with No Memory Injection
Baseline with No Memory Injection

Eager Writeback with Injected 2560B/3200clks
Baseline with Injected 2560B/3200clks

Figure 18: Zoom-In of the Load Response Time for Data Reads in Cache walk Kernel (Lower Frequency
Injection)

on other system performance issues. For example, Eager writeback can potentially reduce context
switching time overhead by ushing dirty lines in advance of the context switch. In addition, Eager
Writeback can push modi�ed data closer to the globally observable memory level earlier to reduce
coherence miss latency, and as a result, respond to other processors' requests faster. Similarly, the
same analysis performed in this paper can be applied to write-update and write-invalidate protocols in
a shared memory system to reduce coherence traÆc.

References

[1] Doug Burger and Todd M. Austin. The simplescalar tool set, version 2.0. Technical Report 1342, Computer
Science Department, University of Wisconsin-Madison, 1997.

[2] Intel Corporation. Pentium pro family developer's manual, volume 3: Operating system writer's manual.
Intel Literature Centers, 1996.

[3] Rambus Corporation. Direct rambus memory controller (rmc.dl) data sheet.
http://www.rambus.com/docs/RMC.d1.0036.00.8.pdf, 1999.

[4] Standard
Performance Evaluation Corporation. Spec cpu95 benchmarks. http://www.specbench.org/osg/cpu95/,
1995.

[5] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kau�mann Publishers, Inc., 1990.

[6] David Kroft. Lockup-free instruction fetch/prefetch cache organization. In Proceedings of 8th Annual

International Symposium on Computer Architecture, 1981.

[7] Simplescalar Tool set. X benchmark suite. http://www.cs.wisc.edu/ austin/simple/xbenchmarks.tar.gz,
1998.

[8] Kevin Skadron and Douglas W. Clark. Design issues and tradeo�s for write bu�ers. In Proceedings of 3th

International Symposium on High Performance Computer Architecture, 1997.

20

[9] Guri Sohi and Sriram Vajapeyam. Instruction issue logic for high-performance interruptable pipelined
processors. Proceedings of 14th Annual International Symposium on Computer Architecture, 1987.

[10] Alan Watt. 3D Computer Graphics. Addison-Wesley Publishers, 1993.

21

