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Abstract

The growing di�erence between processor and main memory cycle time necessitates the use of
more aggressive techniques to reduce or hide main memory access latency. Prefetching data into
higher speed memories is one such technique. However, speculative prefetching can signi�cantly
increase memory tra�c.

We present a new technique, called Static Filtering (SF), to reduce the tra�c generated by
a given hardware prefetching scheme while preserving its reduced miss rate. SF uses pro�ling to
select which load instructions should be marked \enabled" to do data prefetching. This is done
by identifying which load instructions generate data references that are useful prefetch triggers.
SF enables the hardware prefetch mechanism only for the set of references made by \enabled"
loads. Our results from applying SF to two well-known hardware prefetching techniques, Next
Sequential Prefetching (NSP) and Shadow Directory Prefetching (SDP), shows that SF preserves
the decrease in misses that they achieve and reduces the prefetch tra�c by 50 to 60% for NSP and
by 64 to 74% for SDP. In addition, timing analysis reveals that when �nite memory bandwidth is
a limiting factor, applying SF does in fact increase the speedup obtained by a baseline hardware
prefetching technique.

The other major contribution of this paper is a complete taxonomy which classi�es individual
prefetches in terms of the additional tra�c they generate and the resulting reduction (or increase)
in misses. This taxonomy provides a formal method for classifying prefetches by their usefulness.
A histogram of the prefetches by category provides a new basis for comparing prefetch techniques.

1 Introduction

Memory access latencies are much larger than processor cycle times, and this gap has been
increasing over time. Prefetching has been shown to be an e�ective approach to hiding large
memory latencies. The success of speculative prefetching techniques relies on the accuracy of their
address predictions. However, due to misspeculation many useless prefetches may be issued. Such
overly aggressive prefetching techniques may expose a more fundamental limit to performance, the
memory bandwidth bottleneck; the available bandwidth limits the rate of tra�c between di�erent
levels of the memory hierarchy. As the total tra�c of a program run increases, eventually the
available bandwidth between the cache and memory becomes a performance bottleneck.

Several software and hardware methods have already been proposed to reduce the number of
useless prefetches. Software prefetching techniques derive hints from global program analysis and
insert explicit prefetch instructions only when they are deemed likely to be useful. But existing
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software-based selection methods are limited to the kind of data access patterns (constants or
strides) that can be recognized at compile time. Hardware prefetching techniques, on the other
hand, tend to be far more aggressive in triggering prefetches (for example, prefetch the next
sequential block on every cache miss). To reduce useless prefetches, these hardware techniques
typically rely on simple 1-bit con�dence indicators to dynamically turn o� prefetching when the
prefetch is deemed likely to be useless. These selective techniques increase prediction accuracy
by issuing fewer prefetches. However, this increased accuracy may come at a cost of decreased
coverage, which increases the misses, thereby defeating the original purpose of prefetching. E�ec-
tive prefetching thus depends on achieving good miss coverage with su�cient accuracy to avoid
polluting the cache and saturating the memory bus with useless prefetches.

In this paper, we propose a new technique, Static Filtering (SF), to decrease useless prefetches
for a given hardware technique while preserving its ability to reduce cache misses. SF uses pro�ling
to statically select which load instructions should by enabled to trigger data prefetching. Using the
pro�le information, we augment the given hardware prefetching technique to initiate a prefetch
associated with a demand load only if the load has been marked \enabled" by SF. We show
that by doing the selection statically (via pro�ling) we can improve upon the prefetch techniques
that use purely dynamic con�dence mechanisms. In this paper, we apply SF on two well known
prefetching techniques: Next Sequential Prefetching (NSP) and Shadow Directory Prefetching
(SDP). Our results indicate that SF is an e�ective �lter to reduce the useless prefetches generated
by these techniques while retaining the achieved reduction in misses.

The other major contribution of this paper is a complete taxonomy for classifying prefetches.
Consider the tra�c and misses of a cache with some prefetch technique relative to a conventional
cache that does not prefetch. This taxonomy analyzes each prefetch and assigns it 0, 1 or 2 blocks
of additional tra�c and a -1, 0, or +1 net change in misses that is causes. More importantly,
the sum of the extra tra�c (misses) based on the taxonomy and the tra�c (misses) of the
conventional cache matches the total tra�c (misses) of the cache with the prefetch technique,
thereby making the taxonomy complete. This taxonomy therefore leads to new metrics to evaluate
a given prefetching technique by quantifying the penalty of additional tra�c incurred to potentially
save a cache miss and hide the memory access latency. A histogram of the prefetches by category
provides a new basis for comparing prefetch techniques.

The rest of this paper is organized as follows. Section 2 describes the Static Filter. Section 3
describes the prefetch taxonomy. In section 4, Next Sequential Prefetching and Shadow Directory
Prefetching, the baseline techniques used in this study are described, followed by the simulation
environment and the benchmarks used to evaluation SF applied to these techniques. Section
5 presents and discusses simulation results. We present related prior work in the area of data
prefetching in section 6. Section 7 concludes the paper and mentions some promising directions
for future work.

2 Trading Misses For Bandwidth

The primary goal of prefetching is to hide memory access latency by eliminating demand misses.
However, to maximize the bene�ts of prefetching, it is important to minimize the number of useless
prefetches that degrade the performance by polluting the cache and increasing bus contention.
Cache pollution can be mitigated to some extent by adding separate prefetch bu�ers and probing
them in parallel with the cache. However, using prefetch bu�ers does not decrease the additional
tra�c generated by useless prefetches and bus saturation due to this tra�c can limit system
performance. In this paper, we consider prefetching directly into the cache.

Figure 1 sketches typical performance curves as a function of memory bus bandwidth for an
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Figure 1: System performance vs Memory bus bandwidth

aggressive data prefetching technique, a selective prefetching technique and a conventional cache
with no prefetching. When e�ectively unlimited bandwidth is available, aggressive prefetching
techniques can achieve the best performance, as seen in the Figure 1 prior to point A. As the
available bandwidth is decreased, the performance of an aggressive technique deteriorates faster
than a more selective prefetching technique, as in the region from point B to point C in Figure 1.
As the bandwidth becomes more limiting, the bus becomes a performance bottleneck and aggres-
sive prefetching can result in lower performance than no prefetching at all, as in the C to D region
of Figure 1. Eventually, for example past D in Figure 1, even selective prefetching may be worse
than none at all. Aggressive techniques perform well with unlimited bus bandwidth; however,
in reality, aggressive techniques can easily saturate the bus with excessive tra�c. Therefore, it
becomes critical to to reduce the number of useless prefetches, while retaining prefetches that do
contribute to performance improvement.

2.1 The Static Filter

For a given prefetching technique an access to block x is called a prefetch trigger of block y, if a
prefetch of y can be initiated when we access x. Most hardware prefetching techniques use data
addresses as prefetch triggers. For example, in NSP an access to block x is a prefetch trigger
of block x + 1. However, most schemes use some additional enable mechanisms to qualify the
trigger i.e., to actually perform the prefetch when its trigger occurs only if the enable condition is
set. For example, NSP does not prefetch block x + 1 if the access to x is not a cache miss. Static
Filter (SF) uses pro�ling to provide an additional enable mechanism that must also be satis�ed.
The pro�le is used to determine which load instructions tend to generate data references that are
useful prefetch triggers and mark those loads as enabled. At run time SF disables the hardware
prefetch mechanism unless the load making a trigger access is enabled. Since the characteristics
of the load instructions of the program tend to be stable across runs, pro�ling can be used to
select enabled loads. We now describe the two phases of SF | pro�le and implementation.
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2.1.1 Pro�le Phase

The pro�le phase of SF proceeds in two steps. In the �rst step, we identify the data addresses
that were most successful prefetch triggers for the hardware technique. In the second step, we
enable the load instructions that generate references to those useful prefetch triggers.

If we had complete knowledge of future data references, we could identify successful prefetch
triggers as follows: Suppose the baseline technique P, issues a prefetch for cache block x that is
next referenced at time t1. Suppose further that x replaces the current least recently used block
y whose next reference is at time t2. Now, there are two possibilities.

� Case 1: t2 < t1:
The prefetched block will de�nitely pollute the cache by replacing a more useful cache block.

� Case 2: t2 > t1:
Prefetching x is potentially useful because, by evicting y early, we can bring a more useful
block into cache.

In reality, even in the pro�le phase we cannot e�ciently gain knowledge of future references
to cache blocks. We have therefore implemented an approximate technique to identify successful
prefetch triggers in the pro�le phase based on the history of access patterns.

In the pro�ling phase of SF, we simulate a conventional cache without prefetching; whenever
a block is brought into cache we maintain (or create) an entry in a table (we used a table of 2K
entries for our experiments) that records the current time and the PC of the load instruction
that accessed the data. Whenever there is a demand miss to cache block y we check if at least
one of its prefetch triggers, x, is present in the table. If x is present1, we know the time that x
was most recently brought into cache (say, t2) and the load instruction (say, L1) that accessed
x to begin that cache tour. P would have prefetched y along with x at time t2. To determine if
that prefetch is potentially useful, we check the time t1 of the most recent access to z, the block
chosen for replacement now (to accommodate y) as shown in Figure 2. If t2 > t1 the prefetch
is deemed potentially useful; if t2 < t1 it is not.

most recent

t1: most recent

t2: first reference

tour

reference to z

to x in its 
(x could have prefetched)

(Miss, replaces z)

y

Figure 2: Detection of Useful Prefetch Trigger

For each load instruction we can now �nd the ratio of the number of misses incurred to the
number of potentially useful prefetches triggered by the load. If the potentially useful prefetches
are more than 50% of the misses we mark this load instruction enabled.

2.1.2 Implementation Phase

In the implementation phase, the baseline technique P with SF issues a prefetch only if the prefetch
triggering data access is caused by an enabled load. Our results show that by so restricting the
prefetches we achieve a signi�cant reduction in the tra�c requirements of P while preserving the
reduction in miss rate that P achieves without SF.

Static Filter requires the load instruction to be marked \enabled" for data prefetching. In
this paper, we use pro�ling and collect the list of enabled load instructions and use a hardware

1If x is not present, we do not have the necessary information and assume that by default the prefetch of y is not

potentially useful.

4



table at run-time to store these candidate load instructions. However, we can also use 1-bit of
the load opcode to indicate whether the load is a candidate for issuing prefetches. This requires
a modi�cation to the existing ISA; however, modern processors including Pentium-3, PA-8500
and AMD K6-3 have special instructions for prefetching data into the cache. With the current
trend of more ISAs providing support for prefetch instructions, it is to be expected that in the
future the compiler will be used to give more prefetch hints to the program using bit(s) of the
opcode. We are simply proposing that these prefetch instruction can also be used to improve the
performance of the hardware prefetch mechanisms.

3 Prefetch Taxonomy

Prior work in prefetching has generally measured the e�ectiveness of prefetching techniques us-
ing coverage and accuracy. These metrics show the overall performance of a prefetch algorithm.
However, they do not provide insight into the usefulness of each prefetch issued by the algorithm.
Such insights are essential for providing meaningful comparisons among prefetch techniques, un-
derstanding the underlying causes of their performance, and gaining knowledge that helps derive
new more e�ective techniques.

In this section, we introduce a systematic classi�cation of all prefetches according to their
usefulness. We analyze the e�ect of each prefetch on the memory tra�c and the number of cache
misses. Using the taxonomy we can classify all the prefetches issued into disjoint categories and
and analyze their bene�ts. To achieve this classi�cation, we simultaneously model two identically
con�gured caches, a conventional cache without any prefetching, conv-cache, and a cache with
some prefetching technique of interest, pf-cache. The taxonomy is used to quantify the amount
of extra tra�c generated by each prefetch and the number of misses saved (or incurred) due to
that prefetch.

We measure the tra�c between the primary cache and the next level of the memory hierarchy
(say L2) as the number of cache blocks that are transferred from L2 to the primary cache.

Suppose block x is prefetched into pf-cache and replaces block y. Prefetching x causes one
block of tra�c for pf-cache. The usefulness of this tra�c can be assessed by using the cache access
outcome (hit/miss) for the next reference to x and to y in both the pf-cache and conv-cache. The
following four categories are obviously disjoint and complete.

� x remains in the pf-cache until its next reference and is therefore a hit in the pf-cache but
y is replaced before its next reference and therefore misses in the conv-cache: x is a useful
prefetch and replaced a block (y) that is not useful.

� x is a hit in the pf-cache and y is a hit in the conv-cache: x is a useful prefetch; however, it
was prefetched too early because it evicted another useful block, y.

� x is replaced in the pf-cache and y is replaced in the conv-cache: x is a useless prefetch and
caused additional tra�c.

� x is replaced in the pf-cache and y is a hit in the conv-cache: x is not only a useless prefetch;
it also caused cache pollution.

However, if x is a hit in the pf-cache and y is a hit in the conv-cache, it is not straight-forward
to quantify the usefulness of the prefetch in terms of the extra tra�c generated and the miss saved.
It becomes complicated to analyze this case because the outcome of y's access in the pf-cache and
the outcome of x's access in the conv-cache are not considered in the above classi�cation.

Our taxonomy described below is su�ciently re�ned to be able to precisely account for the
extra tra�c and the misses saved or incurred that should be attributed to each prefetch.
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In the pf-cache there are only two possible outcomes for block x; it is either a hit or is replaced
before its next reference. When block x is a hit in the pf-cache, it can have either a hit or a
miss in the conv-cache. On the other hand, when block x is replaced before being referenced
in the pf-cache, the next reference of x may be satis�ed by another prefetch or demand fetch.
A second prefetch of x (after the replacement of the �rst prefetched block, but before the next
reference to x) is simply classi�ed independently of the �rst prefetch into one of the above two
cases. Observe that independent of the outcome of the next reference to x in the conv-cache, we
can conclude that an x prefetch that is replaced causes one additional block of tra�c in pf-cache
relative to the conv-cache; therefore, we refer to the x reference in conv-cache as \don't care." All
the possibilities can be enumerated as follows; summary is presented in Table 1.

� The next reference to x is a hit in both pf-cache and conv-cache. Based on the outcome of
y's next reference we have the following 3 cases.

{ Case 1: pf-h-m/conv-h-h: The next reference of y is a hit in the conv-cache and a
miss in the pf-cache. Therefore, the pf-cache has 2 additional blocks of tra�c (1 block
for prefetching x and 1 block for fetching y) and has 1 additional miss relative to the
conv-cache.

{ Case 2: pf-h-pfed/conv-h-h: y is a hit in the conv-cache and in the pf-cache y is
prefetched before the time of its next reference (some other case will begin with that
y prefetch, and will account for its cost). Therefore, pf-cache has 1 additional block of
tra�c (for prefetching x) and has no additional misses relative to a conv-cache.

{ Case 3: pf-h-dc/conv-h-repl: y gets replaced in the conv-cache before its next reference.
As a consequence we need not check the outcome of y's next reference in the pf-cache.
Therefore, pf-cache has 1 additional block of tra�c (for prefetching x) and has no
additional misses relative to a conv-cache.

� The next reference to x is a hit in the pf-cache and is a miss in the conv-cache. As above,
considering all possible outcomes for y's next reference leads to the following 3 cases.

{ Case 4: pf-h-m/conv-m-h: The next reference to y is a hit in the conv-cache and a
miss in the pf-cache. Therefore, the pf-cache has 1 additional block of tra�c and has
no additional misses relative to the conv-cache.

{ Case 5: pf-h-pfed/conv-m-h: y is a hit in the conv-cache and y is prefetched in the
pf-cache before its next reference (some other case will begin with that y prefetch and
account for its cost). Therefore, the pf-cache has no additional blocks of tra�c and
saves a miss relative to the conv-cache.

{ Case 6: pf-h-dc/conv-m-repl: y gets replaced from the conv-cache before its next ref-
erence. As a consequence we need not check the outcome of y's next reference in the
pf-cache. Therefore, the pf-cache has no additional blocks of tra�c and saves a miss
relative to the conv-cache.

� x gets replaced before its next reference in the pf-cache and as mentioned earlier the outcome
of x's next reference in the conv-cache is irrelevant.

{ Case 7: pf-repl-m/conv-dc-h: The next reference to y is a hit in the conv-cache and
a miss in the pf-cache. Therefore, the pf-cache has 2 additional blocks of tra�c and 1
additional miss relative to the conv-cache.

{ Case 8: pf-repl-pfed/conv-dc-h: y is a hit in the conv-cache and y is prefetched in the
pf-cache before its next reference (some other case will begin with that y prefetch and
account for its cost). Therefore, the pf-cache has 1 additional block of tra�c and has
no additional misses relative to the conv-cache.
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{ Case 9: pf-repl-dc/conv-dc-repl: y gets replaced from the conv-cache before its next
reference. As a consequence we need not check the outcome of y's next reference in the
pf-cache. Therefore, the pf-cache has 1 additional block of tra�c and has no additional
misses relative to the the conv-cache.

We observe that the next reference to block ymay be a hit in the pf-cache only if it is prefetched
later after being replaced now. It is important to note that in each of the 9 cases, pf-cache has at
least as much tra�c as conv-cache. The above taxonomy accounts for the extra tra�c and extra
misses associated with every prefetch and we derive the following 3 groups from the 9 unique case
pairs.

� Polluting Prefetches : The prefetches which generate 2 additional blocks of tra�c and 1
additional miss relative to the conventional cache clearly cause cache pollution and degrade
performance. Cases 1 and 7 above fall into this category.

� Useless Prefetches : The prefetches which generate 1 additional block of tra�c and no
additional misses relative to the conventional cache are issued too early and cause wasted
bandwidth. These are not as harmful as the polluting prefetches. Cases 2, 3, 4, 8 and 9
above fall into this category.

� Useful Prefetches: Case 5 and 6 comprise all the useful prefetches. They cause no additional
tra�c and save a miss relative to the conventional cache. Only these two cases are useful.
However, each occurrence of case 5 is clearly linked with some other case involving the
later prefetch of y into the pf-cache. In addition, since the next reference to y hits in the
conv-cache, the case for this later y prefetch must be 1, 2 or 3. Such linked chains of cases,
beginning with case 5 may not be useful. However, case 6 is always useful.

From the 9 cases we observe that the extra tra�c is always one more than the extra miss.
Note that when the pf-cache incurs one less miss relative to the conv-cache we represent it as -1
extra misses. If the 9 cases presented above completely and disjointly accounted for all the extra
tra�c and all the extra misses, the following 2 equations would be satis�ed.

Missespf cache = Missesconv cache+ polluting prefetches� useful prefetches (1)
Tra�cpf cache = Tra�cconv cache+ 2 � polluting prefetches + useless prefetches (2)

We do know from the way that the 9 cases and their costs are constructed, that they are
disjoint. However, our simulation studies have shown that this 9 case classi�cation, although
it completely covers all prefetches, does not completely attribute all extra misses and tra�c to
them. Speci�cally, we have not accounted for �m extra misses and �t extra tra�c in the pf-
cache, Intriguingly, the simulations always indicated that �m = �t. A �nal (non-prefetched) case
accounts for �m and �t and completes the taxonomy.

Consider the following example with the pf-cache and the conv-cache having the same contents
(blocks x and y) as shown in Figure 3(a). Block y is the least recently used block.

conv-cachepf-cache

x x

z

w x

w xz

x y

yy

b

a

c )

)

)

Figure 3: Prefetch Side-e�ect example
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Now if the prefetching technique initiates a prefetch for block w, we obtain the cache state
shown in Figure 3(b). The pair (w, y) falls into one of the 9 case-pairs identi�ed above. Note that
the contents of conv-cache does not change. While in this state, suppose the program references
block z; we have a miss in both the pf-cache and the conv-cache and the resulting cache contents
are shown in Figure 3(c). Finally, suppose that there is now a reference to x; it is a miss in the
pf-cache and a hit in the conv-cache. This miss leads to 1 extra block of tra�c and 1 extra miss
in the pf-cache relative to the conv-cache. An ideal prefetch algorithm would not have prefetched
block w and would have instead prefetched block z. This is therefore a consequence of poor
speculative prefetching. We refer to the occurrences of this case as case 10: prefetch side-e�ects
in our results. Case 10 is detected by noting when,

� Di�erent blocks are replaced on a demand miss in both caches. For example, the demand
miss to z in Figure 3 and

� the block replaced (x in Figure 3) in the pf-cache is subsequently hit (before being replaced)
in the conv-cache.

In every simulation that we have run, the number of case 10 occurrences exactly equals deltam
extra = �t as shown in equations 3 and 4. Thus we conjecture that the 10 case taxonomy is
complete.

Missespf cache = Missesconv cache + polluting prefetches� useful prefetches + �m (3)
Tra�cpf cache = Tra�cconv cache + 2 � polluting prefetches + useless prefetches + �t (4)

Category Cases Extra Tra�c Extra Misses

Polluting Prefetches (Case 1) pf-h-m/conv-h-h 2 1
(Case 7) pf-repl-m/conv-dc-h 2 1

Useless Prefetches (Case 2) pf-h-pfed/conv-h-h 1 0
(Case 3) pf-h-dc/conv-h-repl 1 0
(Case 4) pf-h-m/conv-m-h 1 0
(Case 8) pf-repl-pfed/conv-dc-h 1 0
(Case 9) pf-repl-dc/conv-dc-repl 1 0

Useful Prefetches (Case 5) pf-h-pfed/conv-m-h 0 -1
(Case 6) pf-h-dc/conv-m-repl 0 -1

Prefetch Side-e�ect (Case 10) 1 1

Table 1: The Prefetch Taxonomy

In our results, we use the above taxonomy to quantify how well SF reduces the useless and
polluting prefetches and how well it preserves the useful prefetches. Discriminating between
useless and polluting prefetches separates the fraction of prefetches that cause only additional
tra�c from the fraction that cause additional misses as well as additional tra�c.

4 Experimental Framework

We now briey describe the two baseline techniques, Next Sequential Prefetching (NSP) and
Shadow Directory Prefetching(SDP) that we will use to illustrate the e�ectiveness of SF. This is
followed by a discussion of the simulation environment and the benchmarks used in this study.

4.1 Next Sequential Prefetching

Next sequential prefetching (NSP), proposed in [20], is a simple prefetching technique in which
a prefetch for block (b + 1) is issued (if not already present in the cache) whenever block b is
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accessed. To control the number of useless prefetches, a variant called tagged prefetching is also
proposed. In this variant, a tag bit is associated with each cache block. This bit is set when the
block is brought to cache by a prefetch access. A prefetch to the next sequential block is triggered
when there is a cache miss or when there is a hit to a block whose tag bit is set; after initiating
the prefetch the tag bit is reset. In essence, this technique exploits the spatial locality exhibited
by the applications and uses the data addresses to predict the physically contiguous successor as
the prefetch address. In this paper we use only the tagged variant of NSP.

These simple precise rules for when to issue a prefetch (on a demand miss or on the �rst access
to the block after being prefetched) and what to prefetch (the next consecutive cache block) make
NSP easy to implement. However, when the application does not exhibit sequential memory
access patterns, NSP wastes memory bandwidth and potentially leads to cache pollution.

4.2 Shadow Directory Prefetching

Shadow Directory Prefetching (SDP), proposed in [15], is a hardware based prefetching technique
in which a history of the referencing pattern is maintained in a hardware table. A shadow address
is maintained in the L2 cache directory along with the currently resident address. The shadow
address refers to the block accessed after the currently resident block was last accessed. Whenever
we have a L2 cache hit, we issue a prefetch for the corresponding shadow address in the directory.
To reduce the number of useless prefetches, a 1-bit con�rmation scheme is used. A con�rmation
bit is added to each directory entry in L2 cache indicating whether the prefetched block was used
(1) or not used (0) when it was last prefetched.

SDP relies on the repetition of data access patterns and on a stable relationship between
the resident address and the shadow address. SDP exploits the correlation between the resident
address and the shadow address, to predict prefetch addresses. The advantage of SDP is that it
can a prefetch data that do not exhibit sequential or stride reference behavior. However, if the
application has a large working set or if the application's data access patterns are not repetitive,
SDP can lead to an excessive number of useless prefetches.

4.3 Simulation Environment

For our simulations, we used the SimpleScalar simulator [2]. The functional cache simulator of the
tool set was used for the pro�le phase and the implementation phase. We used the detailed out-
of-order timing simulator to evaluate our technique. We modeled a 4-way superscalar processor
with a traditional 5 stage pipeline and a bi-modal branch predictor with 2K entry table. We
simulated 4 integer ALUs, 4 oating point adders, 2 integer and oating point multiply/divide
units. We assumed a perfect L1 instruction cache. We simulated a 16 KB L1 data cache. We
used di�erent block sizes (8, 16 and 32 bytes) and di�erent associativities (1, 2 and 4). We found
that the trend of the results was the same for all degrees of associativity, and so we present results
only for a 4-way associative cache with 32 byte blocks. The L1 cache was accessed in 1 cycle and
the memory was accessed in 30 cycles for the �rst 8 bytes, and 2 cycles for each 8 bytes thereafter.
The processor used 2 read/write ports and a 16-entry load-store queue.

In the implementation phase of SF, we simulated 5 caches | a conventional cache with no
prefetching, a cache with a given baseline hardware technique (NSP or SDP), and a cache with
the baseline technique enabled by SF (SF-NSP or SF-SDP).

We present results for both integer and oating point benchmarks, namely, six benchmarks
from SPECint95 and �ve benchmarks from SPECfp95 (Due to time constraint we have not been
able to collect results for the other benchmarks of the SPEC suite). All these benchmarks were
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compiled with gcc -O3 option. We used the train input set for our pro�le phase and the ref input
set for our implementation phase and limited the execution to 1 billion instructions.

5 Results

We use the following metrics to evaluate the usefulness of SF.

� Total Tra�c : The total number of cache blocks transferred from L2 to the primary cache.
This is measured as the sum of the misses and the total prefetches issued.

� Prefetch Tra�c Analysis: The usefulness and accuracy of prefetches are illustrated by
the distribution of prefetches based on case-pairs identi�ed in Table 1 in section 3.

� Miss rate: The ratio of misses to total number of data references. Miss Ratio in conjunction
with total tra�c illustrates the tradeo� between misses and bandwidth for the baseline
techniques with and without SF.

� Normalized Speedup: The speedup achieved by the prefetching technique relative to the
conventional cache.

5.1 Analysis of Next Sequential Prefetching with SF

5.1.1 Total Tra�c

Compress Gcc Go Ijpeg Li Perl Ave
4(a) SPEC Int benchmarks

0.0

10.0

20.0

T
ra

ff
ic

 (
m

ill
io

n
s 

o
f 
ca

ch
e

 b
lo

ck
s)

Conv Cache
SF−NSP Cache
ORIG−NSP Cache

Apsi Applu Turb3d Swim Wave5 Ave Ave − Swim
4(b) SPEC Fp benchmarks

0.0

50.0

100.0

T
ra

ff
ic

 (
m

ill
io

n
s 

o
f 
ca

ch
e

 b
lo

ck
s)

Conv Cache
SF−NSP Cache
ORIG−NSP Cache

Figure 4: Tra�c(millions of blocks): Cache: 16KB, 4-way, 32B blocks

Figure 4(a) and Figure 4(b) present the total tra�c for SPECint and SPECfp benchmarks.
In each group of bars, the leftmost bar is the tra�c in the conventional cache, the second bar
is for a cache using SF-NSP technique and the rightmost bar is for a cache using original NSP
technique.

Using SF we observe an average of 30% reduction in tra�c for integer benchmarks. Float-
ing point benchmarks are known to have sequential access patterns and NSP is a very e�ective
prefetching technique for these benchmarks. However, SF still achieves an average of 25% reduc-
tion in tra�c for the oating point benchmarks (excluding swim). The last group of bars shows
the average tra�c excluding swim. For swim NSP has almost twice as much tra�c as SF-NSP.
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This leads to more cache pollution as we will see when we compare the corresponding miss rates
for NSP and SF-NSP in Figure 6(b).

5.1.2 Prefetch Tra�c Analysis

Although total tra�c is a measure of the number of blocks of data transferred from L2 to the
primary cache, it does not provide insights about the prefetch tra�c. Figure 5 shows the prefetch
tra�c based on our taxonomy. The results are normalized with respect to SF-NSP. For each
benchmark, the �rst bar gives the distribution for SF-NSP, the second bar for NSP. The height of
the second bar is proportional to the ratio of prefetches of NSP relative to SF-NSP. The di�erence
in heights is the ratio of the extra prefetch tra�c generated by NSP without SF.

gcc go ijpeg li perlCompress
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Figure 5: Prefetch Tra�c Analysis: Cache: 16KB, 4-way, 32B blocks
(left bar = SF-NSP (normalized to 1), right bar = NSP)

For both the integer and oating point benchmarks, we observe that SF-NSP has only about 2
to 3% polluting prefetches. This suggests that using a �lter like SF, we may eliminate the need for
separate prefetch bu�ers and instead bring prefetches directly into the cache with more con�dence.
In the case of integer benchmarks their irregular access patterns cause polluting prefetches in NSP;
which is eliminated using SF. For example, go with NSP has 12% polluting prefetches; which is
reduced to 2% using SF-NSP.

NSP has a large fraction of useless prefetches. We see that compress with NSP has 43 times
as many prefetches as with SF-NSP and 82% of these prefetches are useless. In the case of gcc
51% of the prefetches are useless prefetches using NSP and only 13% are useless using SF-NSP.

Overall, SF-NSP is dominated by useful prefetches, indicating the improvement due to the
selectivity of SF. However, for some benchmarks like go, li and apsi, SF may be too selective and
decrease coverage, as we will see in Figure 6. We observe that for swim NSP has 10 times as many
prefetches as SF-NSP. However, SF's reduction in tra�c will not be e�ective unless SF preserves
the decrease in miss ratio achieved by NSP.

Table 2 presents the number of occurrences of the side-e�ect case identi�ed in section 3. Note
that each occurrence of the side-e�ect case incurs 1 additional block of tra�c and 1 additional
miss relative to the conventional cache. We see that issuing fewer prefetches using SF we have in
general (except for turb3d and wave) decreased the total number of side-e�ect cases.
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Benchmarks Prefetch Side-E�ects

SF-NSP NSP

compress 14,118 27,190

gcc 45,436 374,931

go 71,774 581,908

ijpeg 23,461 55,390

li 3,509 23,702

perl 21,428 273,032

Benchmarks Prefetch Side-E�ects

SF-NSP NSP

apsi 731 14,771

applu 5,183 5,739

turb3d 9,094 610

swim 48 16418

wave 37,081 35,994

Table 2: Prefetch Side-E�ect Cases
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Figure 6: Miss rate: Cache: 16KB, 4-way, 32B blocks
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5.1.3 Miss Rate

Figure 6(a) and Figure 6(b) show the miss ratio for SPEC int and SPEC fp benchmarks respec-
tively. In each group of bars, the leftmost bar is the miss rate in the conventional cache, the
second bar is for a cache using SF-NSP technique and the rightmost bar is for a cache using
original NSP technique.

We observe that relative to a conventional cache, NSP achieves an average of 24% and 46%
reduction in misses for integer and oating point benchmarks respectively. On the other hand,
SF-NSP reduces the miss rate by 20% and 48% for the integer and oating point benchmarks
respectively; which implies that we are not eliminating very many useful prefetches by using SF.
However, for li and ijpeg, NSP performs better than SF-NSP because of their predominantly
sequential data access patterns for which SF is too selective, while NSP has many potentially
useful prefetches. On the other hand for gcc and go where selectivity is more important, the
NSP miss ratio is well preserved. SF-NSP even has a lower miss rate than NSP for gcc because
the additional useful prefetches in NSP were more than o�set by the polluting prefetches. A
clear trade-o� between misses and tra�c is seen when we compare SF-NSP and NSP results
for compress; using NSP a 10% reduction is miss rate is achieved with a 40% increase in tra�c
relative to SF-NSP.

The oating point benchmarks have considerably higher miss rates than the integer bench-
marks. For a conventional cache with no prefetching, the average miss ratio is 8%. This implies
that a 16KB cache may be too small to capture the working set of these benchmarks. This makes
prefetching more critical for improving performance and both NSP and SF-NSP have comparable
performance. Since the miss rate of swim (27%) is more than twice that of the other benchmarks
we have shown the last group of bars excluding swim from the average. In fact, for swim NSP
has more misses than SF-NSP because of cache pollution due to the excessive prefetching in NSP.
This is con�rmed by our observation in Figure 5(b) that the NSP:SF-NSP prefetch tra�c ratio
for swim is very high (about 10 times).

5.1.4 Normalized Speedup
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7(b) SPEC Fp Benchmarks
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Figure 7: Normalized Speedup (Conventional Cache speedup = 1)

Results from the previous sections show that SF signi�cantly reduces wasted bandwidth of
NSP while preserving the achieved reduction in miss rate. Finally, we present the improvement in

13



execution time using NSP and SF-NSP. Figure 7 shows the speedup normalized with respect to the
conventional cache. We present the average speedup for integer and oating point benchmarks.
In this experiment, we varied the available bus bandwidth over a wide range: We started with a
design where the bus is fully pipelined and can take a new request from the processor each cycle.
We refer to this as high bandwidth in the X-axis of Figure 7. We modi�ed this design restricting
access to the bus to account for bus arbitration overhead, multi-cycle data transfer and more
limited pipelining. In the most restrictive con�guration, we assume that the bus is non-pipelined
with the bus blocked for the duration of the data transfer. We refer to this as low bandwidth in
the X-axis of Figure 7.

Figure 7(a) shows the average normalized speedup for the integer benchmarks. In the case of
a very high bandwidth system we observe that NSP has a 5% speedup relative to the conventional
cache; SF-NSP has 4% speedup. As we restrict the bus access, we see that SF-NSP has 3 to 4%
speedup and NSP has 2% speedup. As the system becomes limited by the available bandwidth
we see that the performance of NSP degrades faster than SF-NSP.

In the case of oating point benchmarks, the original NSP performs very well and by applying
SF, we have eliminated almost all the pollution prefetches and hence the overall speedup increases
from 5% to 6% with SF.

5.2 Analysis of Shadow Directory Prefetching with SF

To demonstrate that SF can be applied to a more sophisticated hardware prefetching technique we
now present results for our second baseline technique SDP. For the results presented in this section,
the baseline SDP uses 1-bit con�rmation and SF-SDP does not use any dynamic con�rmation
and relies on SF to eliminate useless prefetches.

5.2.1 Total Tra�c
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Figure 8: Tra�c (millions of blocks): Cache: 16KB, 4-way, 32B blocks

Figure 8(a) and Figure 8(b) present the total tra�c. As in the case of NSP, the leftmost bar
is the tra�c in the conventional cache, the second bar is for a cache using SF-SDP technique and
the rightmost bar is for the cache using original SDP technique. SDP is a more sophisticated
prefetching technique that achieves similar performance as NSP with fewer prefetches. SDP has

14



only 79% of NSP tra�c for integer benchmarks and 87% for oating point benchmarks. Hence,
we do not achieve the same the improvement using SF on SDP as on NSP. Using SF we observe an
average of 20% reduction in tra�c for integer benchmarks and 15% for oating point benchmarks.
As in the case of NSP, swim has a very high tra�c and hence the last group of bars of Figure 8(b)
show the average tra�c excluding swim.

5.2.2 Prefetch Tra�c Analysis

As with NSP, we use our taxonomy to analyze the usefulness of each prefetch. Figure 9 shows
results based on our classi�cation of prefetches. The results are normalized with respect to SF-
SDP. For each benchmark, the �rst bar gives the distribution for SF-SDP, the second bar for
SDP. The height of the second bar is proportional to the ratio of prefetches of SDP relative to
SF-SDP. Again, the di�erence in heights show the amount of extra prefetch tra�c generated by
SDP without SF.
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Figure 9: Prefetch Tra�c Analysis:Cache: 16KB, 4-way, 32B blocks
(left bar = SF-SDP (normalized to 1), right bar = SDP)

As with NSP, we observe that SF reduces the the polluting prefetches of SDP to 2 to 3%.
However, in the case of go and li SF-SDP also decreases the useful prefetches and this may
decrease the coverage as we will see in Figure 10(a). For oating point benchmarks, we observe
that SDP has a very small fraction of polluting prefetches. Except for swim and wave, the other
benchmarks do not have any polluting prefetches.

SDP has a considerable fraction of useless prefetches. In the case of li and applu using SDP
we see 53% and 82% useless prefetches respectively; using SF-SDP it is reduced to 19% and 64%
respectively. NSP performs well for these benchmarks exploiting their sequential access patterns.

SF-SDP is dominated by useful prefetches, indicating the improvement due to the selectivity
of SF. However, as opposed to SF-NSP, we see that SF-SDP decreases the total number of useful
prefetches too and this will increase the miss rate as we will see in Figure 10(b).

Table 3 presents the number of occurrences of the side-e�ect case identi�ed in section 3. We
see that issuing fewer prefetches using SF we have consistently decreased the total number of
side-e�ect cases relative to SDP.
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Benchmarks Prefetch Side-E�ects

SF-SDP SDP

compress 67,927 439,852

gcc 40,535 216,086

go 13,993 394,167

ijpeg 10,215 103,897

li 1,184 37,237

perl 17,715 97,386

Benchmarks Prefetch Side-E�ects

SF-SDP SDP

apsi 154,686 218,877

applu 255 4,317

turb3d 1,430 15,473

swim 480 9418

wave 7,021 5,984

Table 3: Prefetch Side-E�ect Cases
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Figure 10: Miss rate: Cache: 16KB, 4-way, 32B blocks
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5.2.3 Miss Rate

Figure 10(a) and Figure 10(b) show the miss ratio. Again, in each group of bars, the leftmost bar
is the miss rate in the conventional cache, the second bar is for a cache using SF-SDP technique
and the rightmost bar is for a cache using original SDP technique. We observe that both SDP
and SF-SDP do not show signi�cant improvement in miss rate for these benchmarks. We see that
SF-SDP has 10 to 15% increase in the miss rate relative to SDP. However, we see that SDP issues
70 to 80% more prefetches relative to SF-SDP to achieve this reduction in miss rate.

For integer benchmarks SDP performs as well as NSP; however, for oating point benchmarks
it does not perform as well as NSP. For oating point benchmarks, the shadow address is not
predictable due to the streaming behavior of the applications and hence the prefetches are pre-
dominantly not useful. Again we observe that swim has a very high miss rate and we use the last
group of bars to show the average miss rate excluding swim. It is important to note SF performs
comparable to the purely dynamic technique of using 1-bit con�rmation.

5.2.4 Normalized Speedup
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Figure 11: Normalized Speedup (Conventional Cache speedup = 1)

Figure 11 shows the speedup normalized with respect to the conventional cache. The exper-
imental framework is similar to the one used for NSP. Here again, we observe that SF-SDP has
better performance relative to SDP when we have a �nite bandwidth. However, we see that the
speedup using SDP is less than that using NSP. Correspondingly, the speedup using SF-NSP is
more than that using SF-SDP.

Our results using NSP and SDP as baseline techniques show that SF is an e�ective �lter
in reducing useless and polluting prefetches while retaining the useful prefetches of the baseline
techniques.

6 Related Work

Several methods exist for prefetching data into cache. Grouping of consecutive memory words
into a cache block is itself one form of prefetching. Caches exploit spatial locality by this implicit
prefetching of data. The key tradeo� in prefetching between miss rate and tra�c manifests itself
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even in this primitive form of prefetching: large cache blocks directly cause more memory tra�c
as they contain more data that will not be used during a particular cache tour and cache blocks
that are too small or too large cause higher miss rates, which in turn leads to increased memory
tra�c. Furthermore, adapting to application behavior would be helpful as di�erent applications
and di�erent parts of an application exhibit di�erent degrees of spatial locality and hence have
di�erent optimal block sizes.

The critical issues of prefetching are when to issue the prefetch and what data to prefetch. In
considering the question of when to prefetch, we note that data that is prefetched too early might
replace a useful block and may even get replaced before it is referenced. On the other hand, a late
prefetch hides less of the access latency, or none at all. Regarding what to prefetch, clearly the
data prefetched should be useful and should not pollute the cache. To do e�ective prefetching, we
need to carefully select both what data to prefetch and when to issue each prefetch. In addition it
is important to evaluate block prefetch strategies over a range of block sizes to assess the degree
of spatial locality found in di�erent applications.

Software prefetching uses some special form of fetch instruction to preload data into cache.
Most software prefetching work ([8], [9], [12], [16], [19]) has focused on scienti�c applications
with regular access patterns. For applications using linked data structures and recursive data
structures, techniques have been proposed ([10], [11], [14], [18]) to tolerate latency by speculatively
scheduling a load su�ciently in advance. Although software prefetching can be done statically
using compiler analysis it does not perform well for applications with access patterns that are less
easy to predict. It has the disadvantage of software overhead, both in the number of instructions
issued and in code size. This is one of the reasons why we did not apply SF to a software-based
baseline technique.

Hardware-based prefetching ([4], [1], [3], [7], [13]) relies on speculation about future memory-
access patterns based on previous patterns. Most hardware techniques work well for applications
with stride access patterns. More recently techniques have been proposed ([17]) for prefetching
linked data structures using dependence analysis and have a prefetch engine run ahead of the
execute engine to detect possible prefetch candidates. Markov Prefetching ([6]) predicts cache
misses based on previous miss patterns. It is an evolution of shadow-directory prefetching where a
miss address has more than one successor miss addresses. Our evaluation of Markov predictors on
SPECint benchmarks showed a signi�cant increase in bandwidth requirements relative to shadow
directory prefetching. These hardware techniques do not require changes to existing binaries,
and hence need no programmer or compiler intervention. However, they do involve considerable
hardware logic to detect access patterns at run-time. In addition, hardware prefetching techniques
do not have access to global program knowledge and hence cannot control prefetching decisions
very well when presented with a variety of data access patterns. We expect a technique like SF
can be used to selectively issue prefetches based on the bus contention or available bandwidth. SF
can be extended and applied to the above hardware techniques to improve their prefetch accuracy
and reduce their bandwidth requirements.

Hybrid prefetching [5] tries to combine the low run time overhead of hardware prefetching
with the e�ectiveness and accuracy of software prefetching, but the only reported evaluations are
on scienti�c applications.

7 Conclusions and Future Work

Our contributions in this paper are two-fold:

� A complete taxonomy for classifying each prefetch, and measuring its usefulness.

� A static �lter for reducing useless prefetches in any given baseline prefetching technique.
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The taxonomy analyzes each prefetch and assigns it 0, 1 or 2 blocks of additional tra�c and
a -1, 0, or +1 net change in misses that it causes relative to a conventional cache. This leads to
new metrics to evaluate a given prefetching technique by quantifying the penalty of additional
tra�c incurred to potentially save a cache miss and hide the memory access latency.

The Static Filter, introduced in this paper can be used to reduce the bandwidth requirements
of any given hardware baseline prefetching technique, while preserving its achieved reduction
in miss rate. SF analyzes the data access patterns of an application and uses the result to
prefetch selectively and reduce wasteful tra�c. Prior work in issuing selective prefetches rely
on the dynamic con�dence mechanisms based on the history between the data addresses of the
application. In this paper we have demonstrated that by statically selecting a subset of load
instructions to enable data prefetching, we can reduce useless prefetches more e�ectively without
degrading the overall performance. To illustrate the advantages of SF, we chose traditional Next
Sequential Prefetching and Shadow Directory Prefetching as the baseline techniques.

Our results show that SF achieves signi�cant reduction in prefetch tra�c of the baseline
techniques (50 to 60% for NSP, 64 to 74% for SDP) without overly increasing the miss rate. In
addition, timing analysis reveals that when �nite memory bandwidth is a limiting factor, applying
SF does in fact increase the speedup obtained by a baseline hardware prefetching technique.

In this paper we focused on providing information derived from pro�ling to a hardware based
prefetching technique. Our results indicate that hardware based prefetching techniques bene�t
from SF. However, the threshold used to determine whether a load is marked \enabled" for data
prefetching was �xed statically. In addition, the analysis was done separately for each cache
con�guration. To adapt SF dynamically to various cache con�gurations and to use a dynamic
threshold, run-time information about the usefulness of a resident block in cache could be used.
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