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Abstract

This report examines how the compiler can more efficiently use a large number of
processor registers. The placement of data items into registers, calledregister allocation,
is known to be one of the most important compiler optimizations for high-speed comput-
ers because registers are the fastest storage devices in the computer system. However, reg-
ister allocation has been limited in scope because of aliasing in the memory system. To
break this limitation and allow more data to be placed into registers, new compiler and
microarchitecture support is needed.

We propose the modification of register access semantics to include an indirect
access mode. We call this optimization the Smart Register File. The smart register file
allows the relaxation of overly-conservative assumptions in the compiler by having the
hardware provide support for aliased data items in processor registers. As a result, the
compiler can allocate data from a larger pool of candidates than in a conventional system.
An attendant advantage is that the smart register file reduces the number of load and store
operations executed by the processor. The simple addition of an indirect register access
mode not only simplifies alias handling, but also provides opportunities for other optimi-
zations. This dissertation examines several such optimizations.
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1 Introduction

The performance of the memory hierarchy has become the most critical eleme
the performance of desktop, workstation and server computer systems. This is prim
due to the growing gap between memory and processor speed. Memory latency has
decreasing by 7% per year while processor frequency has been increasing at a rate o
per year since 1986 [56]. This growing gap results in pipelines that are idle for as muc
half of all cycles and CPIs no better than 1.5 on a two-issue superscalar processor [
Designers have found that using on-chip cache memory is one way to combat the me
problem. Putting caches on chip is possible because integration levels have been in
ing according to Moore’s law [58]. The result is processor chips with 128KB or more
on-chip L1 and L2 cache [66].

Another reason that memory performance is critical to computer speed is tha
about 35% of instructions in the typical instruction stream are memory operations [5
This is true for both CISC and RISC architectures. Thus with only one port to memo
three instructions per cycle is about the most an architect could expect to execute.

This “memory problem” forms the motivation for this research. There has bee
much research on it already, some of which will be described in Section 2. This work
focuses on the highest level in the memory hierarchy, the register file, and compiler 
rithms to manage it effectively. The compiler has information about data access patt
and aliasing relationships that can direct optimizations to improve performance. In th
case of the register file, it can do this in several ways:

1. Allow the use of more processor registers.
2. Reduce the number of load and store operations.
3. Specify prefetching information to hide memory latency.
4. Schedule loads above potential dependencies to further hide latency.
The compiler already allocates some data to registers but has little direct con

over lower levels of the memory hierarchy. Consider the memory hierarchy for a typi
high-performance desktop or server system today: 1) A small register file with many
and write ports (say 12R, 4W) which is only directly addressable by the compiler; 2)
L1 data cache, which has one or a very few ports but which is addressed by a runtim
computed address; 3) A similarly configured L2 cache with even fewer ports; 4) A si
ported main memory addressed by an arbitrary computed address.

In such a configuration, the gap between the access semantics of registers a
those of L1 data cache is quite wide, both in number of ports and the flexibility of addr
ing. This report considers the “Smart Register File” (SRF) which is a register file whi
trades flexibility in access semantics for number of ports and access time. These re
are “smart” because they are co-managed by the hardware and the compiler.

More generally, a “Smart Short Term Memory” is any on-chip memory structu
which is co-managed by the compiler and hardware. Typically, data resides for a sh
time in a short-term memory. As such, the short term memory is not the “home” loca
for the data [9]. An example of a short term memory is a compiler-managed zero-pa
which is referenced by base+index addressing mode. Such a memory structure is a
promise between the direct-only addressing of a register file and the computed addr
L1 data cache. It is in the memory hierarchy so it can be co-managed by the hardwar
3
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data can be assigned to the zero-page by the compiler. This particular example allow
of the benefits we enumerated above. First, the compiler can eliminate load and sto
instructions if there are specialized instructions in the ISA for accessing the zero-pa
Second, the compiler can do some prefetching into the zero-page if it so desires. An
example is a hardware-managed L1 data cache with prefetch hints supplied by the c
piler. It is “smart” because it attempts to combine the intelligence from the hardware (l
dynamic or runtime knowledge) and from the compiler (global static knowledge) and
apply it to the problem of memory latency.

For the remainder of this report, we discuss one possible design for a short te
memory which we have not seen in the literature. We call this design the Smart Reg
File, or SRF for short.

1.1 The Smart Register File

The aim of this research is to develop ways to increase microprocessor perfo
mance by enabling more data to be stored in the registers. Specifically, we will dem
strate that a key problem is the aliasing problem, which we propose to solve with a
combination of compiler and hardware innovations. The results presented in this res
will show the potential performance increases.

The crux of our proposed solution is to employ some additional hardware ass
ated with each register in the processor so that aliasing can be detected as the prog
executing. By providing direct support in hardware for aliased data items in processo
isters, overly-conservative compiler assumptions can be relaxed and a better allocat
data to registers can be obtained. This allows registers to be used more efficiently (w
there are free registers). It may also increase register pressure to the point of requir
more registers in the architecture, but the SRF does notrequirea large number of registers

The next subsection introduces the alias problem and how it restricts register
cation. The following subsections outline the benefits of the SRF; it will be described
detail in Section 3.

1.1.1 The Alias Problem

An alias is a condition where a datum is referenced through more than one n
The alias problem can be explained either from a hardware or compiler perspective. I
hardware, it is also called the memory disambiguation problem. The hardware would
to execute a load instruction as early as possible in order to allow dependent instructio
start. However, if there is a pending store already in the pipeline whose address is n
known, the hardware must assume the worst–that the unknown address is the same
address being requested by the load. Thus the load must wait for the store to finish 
tion. The memory disambiguation hardware enforces the program ordering on mem
operations. The load and store are said to containambiguousmemory references until the
addresses are resolved.

Ambiguous memory references affect the compiler as well. Some rudimentar
alias analysis is required of the compiler and most aggressive optimizations need
advanced alias analysis to be correct and effective. Figure 1 shows some C code whe
4
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alias problem becomes evident. Variablep points tox; thus the data in variablex has two
names. Thus it cannot be stored in a processor register, which has only one name.

In first order alias analysis, the compiler can determine whether a variable can
be aliased by whether its address is ever taken. If not, then the variable cannot be re
to through more than its own name and an alias cannot occur. However, the compile
not determine statically the values ofcomputed addresses. Thus it often cannot be sure
whether an alias could occur or not. It must assume the worst–that the computed add
can refer to the same location. If it were to copy the value of a variable into a registe
then the value of that variable was changed through a second name, the copy would
inconsistent with the actual value in memory.

More advanced alias analysis requires examination of the whole program, ev
across module boundaries, to determine if two addresses can refer to the same data

The final result of all this is that the compiler must be conservative. It does this
leaving variables in memory and referring to them through load and store instruction
These extra load and store instructions are not always necessary, though, because th
ing condition might not happen all the time. That is, the compiler assumed it would h
pen all the time but a certain percentage of the time (dynamically), there is no alias.
these extra operations that we would like to remove.

The SRF allows the compiler to relax conservative assumptions and refer to ali
data through a register name.  Thus more data can be stored in processor registers
existing register sets can be used more efficiently.

1.1.2 Using More Registers

Studies have shown that the number of high-speed registers that can be effec
used is limited to a few dozen [4, 62]. There are several reasons for these results. Firs
average programmer does not keep track of more than a few variables in a function
the number of temporaries used by the compiler is typically small.

In processors that support multiple instruction issue (both superscalar and VL
EPIC styles) the availability of large numbers of registers is particularly important. W
only a few registers, program performance can be limited by spill instructions inserte
the compiler to deal with the small number of registers. These additional instructions

int x;
int *p;
p = &x;
...
x = 1;
*p = *p + 2;
...
print x, *p

Figure 1. Code demonstrating the alias problem. The variable x cannot be allocated to a regis-
ter because it’s address is taken and it is potentially modified through the pointer p (The ellipses
are unspecified code which could contain arbitrary control flow.) The load of *p for the addition
cannot be executed before the initialization of x because it might get an out-of-date value.
5
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nullify the benefit of multiple issue as the extra issue slots are used for the data move
operations instead of operations directly related to the algorithm.

For certain classes of benchmarks, aggressive loop unrolling, software pipelin
(and modulo variable expansion), unroll-and-jam, and inter-procedural optimizations
as inlining can significantly increase the number of registers required. Even the tradit
optimizations such as copy propagation, common subexpression elimination, induct
variable elimination, and code hoisting increase register pressure by adding tempor
scalar values and extending scalar lifetimes [16, 36].

Furthermore, whole classes of variables are ignored in most register allocatio
studies (e.g. those referenced above). sGlobal variables are not usually allocated to
ters, even though they may be able to reside in a register for their entire lifetime. Ther
significant numbers of global variables that fall into this category, as will be shown late
this report. Structure or array elements are also not usually placed into processor reg

Finally, aliased variables are not considered as candidates for register allocat
either because of the alias problem. As will be shown, these variables are responsible
significant number of memory accesses.

Aggressive allocation of global and aliased variables and use of advanced com
transformations mean that future architectures will need more registers to be efficien

To summarize, the smart register file allows another class of variables to be a
cated to registers. While this will allow better use of existing register sets, it will also te
to require more registers in the architecture to avoid spilling due to higher register pr
sure. Larger register sets are already appearing, as in the IA-64 architecture. This res
will assume a register file larger than the typical 32 registers of a RISC architecture.

1.1.3 Eliminating load and store instructions

As a side-effect of having more registers and allowing aliased variables to ap
in registers, SRFs reduce the number of load and store instructions necessary to mo
these variables between memory and the register file. This elimination of memory o
tions has several benefits. First, it reduces the amount of instruction fetch and decod
needs to be performed by the processor.

Second, it reduces the pressure on memory load and store ports, freeing the
more critical memory operations and allowing the hardware to exploit more parallelis
The trade-off is that the microarchitecture must be more complex so it can track alia
operations and maintain data consistency.

1.1.4 Prefetching to hide memory latency

The SRF that will be examined in this work allows the hardware to prefetch d
when data addresses are placed into the register file. This is simple extension on ex
instruction set architectures. Essentially, the load-effective-address instruction signa
prefetch of the data at that address, under the assumption that it will be referenced 
6
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1.1.5 Scheduling loads above potential dependencies

In addition to prefetching, the SRF architecture allows load instructions to be
moved above control flow and even data flow upon which the load is potentially dep
dent. It can do this safely, without generating spurious exceptions, because the data
are left in their home blocks and exceptions are checked at the time of use rather th
time of preload. This also has the effect of prefetching but allows the prefetches to b
scheduled farther from their use. This transformation, along with the others mention
this section, will be discussed in detail in later sections.

1.2 Foundational Assumptions

This section enumerates two assumptions that form the foundation of this wo
First, we assume that binary compatibility is not of primary importance, unlike most pr
ous work. Strict backward binary compatibility means that the architecture cannot be
trarily changed to accommodate new microarchitectural techniques. With the adven
binary-to-binary translation technology such as FX32! [55], this constraint can be
removed so the compiler, architecture, and system designer is free to select a bette
in the design space than previously allowed. Still, many of the techniques proposed h
can be applied directly to existing architectures with little modification.

Second, we assume that the compiler is capable of complex analyses and tra
mations. Work in the early- to mid-1980s assumed it was too expensive to do global r
ter allocation because of compiler runtime or software bugs [17, 35]. We are not as
concerned with compiler runtime as with the runtime of the generated code, especia
light of trends in processor speed and memory size that are evident in today’s proce
We do not leave the job completely up to the compiler, though, as is the case in sev
VLIW architectures. We believe the best trade-off is somewhere in the middle, where
strengths are taken from both the compiler and hardware. This philosophy may mea
some duplication of effort as some things may be done by hardware that were also do
the software.

1.3 Outline

The remainder of this report is organized as follows. Section 2 describes prev
research related to SRFs. Section 1 describes our first SRF designs and demonstra
potential utility of it as well as relating it to some of the previous work.

2 Background and Related Work

This section on background work briefly outlines the various areas of research
are related to the smart register file (SRF). We start by discussing the basic trade-of
between the use of registers and cache memory. We then look at basic register alloc
and spilling and show how it fails to allocate variables to registers under conditions w
7
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aliases are present. Alias analysis, a compilation step which is necessary for correc
mization, is examined next. The optimization called register promotion is then descr
it uses the results of alias analysis and tries to alleviate the aliasing problem somewha
moves scalars from memory into registers in regions where the compiler is sure ther
no potential aliasing relationships. We then briefly compare work in compiler-based 
trol and data speculation to this research. The section ends with some summary rem

2.4 Registers, Caches and Memory

A fundamental trade-off in computer architecture is the structure of registers 
cache memory in the processor. This trade-off will be examined in this section.

The benefits of registers are primarily short access time and short instruction
encoding. Registers are accessed with direct addresses which simplifies value looku
Since there are generally few register locations (compared to memory locations), the
ter address can be encoded in a few bits. However, registers complicate code gener
because machine calling conventions typically require some registers to be saved a
function call boundaries. This is an important consideration since function calls occu
quently [75]. There are many other trade-offs in the design of a register architecture
processor. Table 1 catalogs them.

Cache memory structures have also been studied extensively, at least back to
with the slave memories described by Wilkes [71]. Since our focus is on the register
caches will not be considered here in any further detail. An excellent early survey is 

This research is concerned primarily with the problem that registers cannot
generally contain aliased data. Even though registers have significant disadvantage
compared to cache memory, it is desireable that aliased scalar variables (and even 
scalars) should be referred to through register names because of the sheer speed of
access. Caches and main memory can contain such aliased data because the hard
maintains consistency among the copies at the various levels. The movement of data
memory address space to the register address space has in the past meant that con
could not be maintained simply because address information was not associated wi
register data. Registers are meant for extremely fast access and adding hardware to
this consistency must not be allowed to slow them down too much. This work is
concerned with this very tradeoff.

The remainder of this section surveys some of the work related to the SRF. T
keys to understanding all of this previous research is that it attempts do one or both o
following:

1. Reduce the number of memory operations
2. Reduce the apparent latency of memory operations
Both are essential to microprocessor performance because of the growing ga

between processor and memory speed [56].

2.5 Register File Design

Research into the trade-offs between register files and caches has resulted in a
variety of engineering solutions since the earliest days of computer architecture. Hard
8
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registers (also called scratchpads) have been used since the early 1960s [38]. Table
a selected overview of this history. We will comment on a few of the machines listed in
table where they are relevant.

The CDC 6600 series machines had a total of 24 registers. Loads to 7 of the 
address registers had interesting side effects. A load into register A[1,2,3,4,5] result
the data at that address being automatically loaded into data register X[1,2,3,4,5], re
tively. Similarly, loading an address into A6 or A7 resulted in a store from X6 or X7 to th
address. This allowed efficient encoding of vector operations because the load and 
operations did not need to be explicitly specified. The Cray-1 later made this vector 
mization explicit in its vector registers and instructions [64].

The Cray-1 [42] has a set of primary registers and a set of secondary or back
ground registers. There are fewer primary registers, which allows them to be fast, w
the secondary registers are slower but many in number. Long-lived values are stored
secondary register files and promoted to the primary register files when used. The C
contains a total of 656 address and data registers (including the vector registers but
counting the control registers).

Registers Cache

– storage size 1-128 registers (4B-512B) + storage size 256B-64KB typical

+ fast access (few and direct index) – slower access (large, computed add
tags, memory management and protection
checks necessary)

+ fewer address bits (less instruction band-
width because of denser code)

– more address bits

+ lower memory traffic (fewer ld/st insts,
cache and memory accesses, and power)

– more ld/st insts (expand the code again

– aliases (computed addrs) and stale data + no synchronization

– more ld/st for synchronization at alias + no fcall boundary saves

– more ld/st at fcall boundary + data can be automatically kicked out 
context switch boundary

– more ld/st at context switch boundary – more costly to multi-port because of
many entries

+ multiple ports less expensive because
few entries

– hard dependence check (computed
address)

+ easy dependence check for hazards + no aliases or stale data

– cannot take address of variable resident
in (the C ’&’ operator)

+ can take address of variable resident in

– limited addressing modes (direct) + any addressing mode (computed)

– word-sized data only (ISA dependent) + any-sized data

– must have compiler to manage + dumb compiler will do

Table 1. Comparison of registers and cache.
9
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Date, Refs Machine Description

1961 [51] Burroughs B5000 Stack-based computer. Registers hold t
top two values on the stack. Eliminates
some data movement introduced by stack

1961 [41, 42] Ferranti ATLAS 128 24-bit registers for data or address
computation; 1 accumulator register

1962 [43] ETL Mk-6 Still looking for info on this one...

1964 [42, 64] CDC 6600 8 18-bit index regs, 8 18-bit address reg
and 8 60-bit floating point regs. Side
effects of loading an address into an
address register are described in the text.

1964 [77] IBM System/360 16 32-bit integer regs, 16 64-bit floating
point regs.

1966 [42] TI Advanced Scientific
Computer (ASC)

16 base regs, 16 arithmetic, 8 index, 8 vec
tor-parameter regs, all 32-bits

1970 [42, 79] PDP-11 8 16-bit integer regs (PC and SP
included), 6 64-bit floating point regs.
Extended to 16 integer regs in 1972.

1977 [42] Cray-1 8 24-bit addr (A) regs, 64 24-bit addr-save
(B) regs, 8 64-bit scalar (S) regs, 64 64-bit
scalar-save regs (T), 8 vector (V) regs. A
vector is 64 64-bits regs.

1978 [42, 80] VAX 16 32-bit regs for integer or floating point.
(PC, SP, FP, and AP regs included).

1978 [42] Intel 80x86, IA-32 8 integer, 8-entry floating point stack (16
bits, extended to 32-bits later)

1987 [76] Sparc 8 globals, 16-register window with 8 ins
and 8 locals, as well as access to 8 outs
which are the next window’s ins, all 32-
bits. Number of windows from 3 to 32. 32
64-bit floating point regs.

1987 [64] AM29000 256 registers, all completely general pur-
pose. 64 global, 128 “stack cache”, 64
reserved.

1992 [81, 82] Alpha AXP 32 integer, 32 floating point, 64-bits each

1998 [47] IA-64 128 integer, 64 predicate, 128 floating
point registers, some with rotating seman-
tics for software pipelining.

Table 2. A partial history of hardware registers.
10
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The hierarchical register file, which is very similar to the Cray-1 organization, 
proposed in [73]. The authors present the classic argument that a large fast memory
can be simulated by a small fast store and a large slow store (in their case, 1024 regis
The results show speedups of 2X over a machine with only 8 registers. The trade-of
noted include higher instruction bandwidth and storage, larger context switch times,
increased compiler complexity. The instruction bandwidth and storage requirement i
reduced by including an indirect access mode where a short specifier can be used t
cate the source value “comes from the instruction which is N instructions before the
rent instruction.”

2.5.1 Large Architected Register Files

Sites presented perhaps the first in-depth discussion of the advantages of be
able to support large numbers of registers, in his paper “How to use 1000 registers” [9
also noted the limitation caused by aliasing and coined the termshort-term memory to
denote a high-speed register set under compiler control. Besides cataloging some o
design issues related to short term memory systems, it was noted that it is often not
ble to maintain data values in registers due to aliasing problems. If such values are p
in registers, they must be written and read from main memory as necessary to main
coherence. Even though a machine may have 1000’s of registers, it is likely that mo
them will be left unused by conventional compilers (in 1979).

2.5.2 No Architected Register File

Work done in the 1980s at Bell Laboratories took a different approach by sug
ing the complete removal of registers from the compiler-visible architecture. The wo
was embodied in the “C-machine” and its “stack cache”, the “CRISP”, and later the “H
bit” [31, 32, 33, 34, 35]. Instead of programmer-visible registers, the architecture has
“stack cache” which is a special purpose data cache for program stack locations; as
it caches references to local scalar, array, and structure variables in the function link
stack. The goal of this cache was to eliminate register allocation from the compiler a
reduce the amount of data movement at function call boundaries. This allows the us
large number of hardware registers (entries in the stack cache) without needing com
allocation and without requiring every implementation of the ISA to have the same n
ber of registers. Initial proposals were for 1024 registers in this cache, but the first rep
implementation had 64 entries [34].

The essential features of the stack cache that distinguish it from a normal dat
cache are as follows: 1) it has no tags; 2) it caches a contiguous range of memory, i
top of the program stack; and 3) the range being cached is delimited by high and low
address registers. Alias checking is enabled by comparing any computed address w
high and low ranges of the stack cache; if the address falls within the limits of the high
low bounds, the data is in the stack cache. If not, memory is accessed (there is no o
internal data cache in the processor). In this way, data objects can be allocated to the
cache without fear of aliasing (because the stack cache is in memory address space
cial handling is needed when the stack cache is overflowed, but this is rarely the case
11
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authors found that a large percentage of data addresses can be computed early in t
line because they are simple base+offset calculations where the base is the stack (or
pointer. The stack pointer remains constant for the life of the function (except when 
ing out to children functions).

The stack cache was designed to incorporate the best features of both registe
cache memory. It was direct mapped and had no tag comparison, so it was fast. The
instruction encoding only required a short stack offset from the current stack frame, m
like the short direct register specifier of a conventional architecture. The stack cache c
hold strings, structures, and other odd-sized data. Finally, the compiler could take th
address of a variable in the stack cache.

It is important to note that the C-machine research assumes that compilation
expensive and that compilers are hard to write correctly. Therefore, simplifying the c
piler was the motivation for the decision to eliminate register allocation in favor of the
more straightforward stack allocation of local variables. The single-pass compilers in
1980s were not able to determine if a variable could be placed in a register because
aliasing. The requirement of simple compilers is no longer widely held, as evidenced
the large number of optimizing compilers for register-based architectures. In fact, lat
versions of the CRISP compiler used an optimization similar to register allocation to p
variables into the stack space in order to reduce stack cache misses. The other prim
assumption in the CRISP work is that function calls are frequent and that overhead 
function linkage mechanism is very important to overall performance. This is still true
today ([74, 75]) so an important criterion of a register-architecture is how it handles f
tion calls.

2.5.3 Register Windows

The Sparc architecture’s register windows [76] are a hybrid register/memory a
tecture intended to optimize function calls. It is a cross between the C-machine’s sta
cache and a conventional single-level register file. Each subroutine gets a new wind
registers, with some overlap between adjacent register windows for the passing of fun
arguments. Because the windowed register file is large and many ports are required
implement parallel instruction dispatch, Sun researchers proposed the register cach
scoreboard [48, 49]. The register cache takes advantage of the locality of register refe
and the fact that register file bandwidth is not utilized efficiently for large multiported fil
This is another fundamental trade-off between registers and memory. Sun and other
report that about 50% of data values are provided by the bypass network [48, 49, 50
there is an average of less than one read and 3/4 writes per instruction. The Sun wor
noticed that a small number of the architected registers are heavily used (stack and
pointer, outgoing arguments, etc.). Because of these factors, the register file cache 
quite small and still capture a large portion of the register references. Fully associative
ister caches of size 20 to 32 were found to have miss rates of less than a few percent
can provide a significant savings in cycle time and power consumption compared to
140-register file in the SPARC architecture (for an implementation with 8 windows [7
Other architectures that could benefit from a register cache include the IA-64 and
AM29000 because they have a large number of architected registers. It is unclear fro
previous work what the compiler could do to more evenly utilize the register file.
12
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There is other work that attempts to reduce the implementation cost of large 
ter files. One is a technique called “virtual-physical registers” which is described in [4
Here the goal is to allocate physical registers as late as possible so that their live rang
terms of processor cycles) are reduced. This is based on the observation that the ac
lifetime of a value begins at the end of instruction execution rather than when the ins
tion is decoded. The difference could be a large number of cycles. Tags, called virtu
physical registers, are used to specify instruction dependencies, but these have no s
associated with them. The actual physical register storage is not allocated until instru
writeback. This has the effect of either 1) increasing the perceived instruction window
or 2) allowing the window to be reduced in size without negatively affecting performan
The second option is interesting because it allows the processor to implement a sm
number of physical registers. The only difficulty is that sometimes the processor ma
out of physical registers and the instruction cannot be written back. In this case, the
instruction is re-executed.

2.6 Register Allocation and Spilling

The problem of allocating scalar variables to registers, called theregister alloca-
tion problem, is usually reduced to a graph coloring problem [12, 13, 14, 85], where a
optimal solution is well-known to be NP-complete. Other research has cast the proble
set of constraints passed to an integer programming solver [22, 23], or bin packing [
We focus on graph coloring in this work because it is the most common technique for
mizing compilers. This section outlines some previous work in expanding the registe
of an architecture so that the compiler can do more effective allocation and spilling.

Mahlke et. al. examined the trade-off between architected register file size an
multiple instruction issue per cycle [4]. They found that aggressive optimizations suc
loop unrolling, and induction variable expansion are effective for machines with large
moderate, and even small register files, but that for small register files, the benefits ar
ited because of the excessive spill code introduced. Additional instruction issue slots
ameliorate this by effectively hiding spill code. This work noticed little speedup or red
tion in memory traffic for register files larger than about 24 allocatable registers (ofte
fewer registers were required). We hypothesize that because of a conventional applic
binary interface [88] and traditional alias management the compiler was not able to 
advantage of any more registers.

Register Connection is an approach used by the IMPACT research group wh
adds registers to the architecture. It does so in a way that is very careful to maintain
ward compatibility and requires a minimum of changes to the instruction set architec
Connect instructions map the logical register set onto a larger set of physical registe
instead of actually moving data between the logical and physical registers. This is si
to register renaming [83, 84] but is under compiler control so that register allocation 
code optimization and scheduling can take advantage of the larger set of registers a
able. This technique is helpful for instruction sets with very few registers (8-16) but d
not help much after 32 registers (where not much spill code is generated). The conne
instructions were carefully designed to minimize execution delay and code size.
13
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The compiler-controlled memory [8] combines hardware and software modific
tions to attempt to reduce the cost of spill code. The hardware mechanism proposed
small compiler-controlled memory (CCM) that is used as a secondary register file for
code. The compiler allocates spill locations in the CCM either by a post-pass allocator
runs after a standard graph-coloring allocator, or by an integrated allocator that runs
the spill code insertion part of the Chaitin-Briggs register allocator. A number of rout
in SPEC95, SPEC89, and various numerical algorithms were found to require signifi
spill code, but rarely were more than 250 additional storage locations required to hous
spilled variables. Potential performance improvements were on the order of 10-15%
did not include effects from larger traditional caches, write buffers, victim caches, or
prefetching. These results show the potential benefit of providing a large number of 
tected registers–not only simplifying the compilation process in the common case, but
reducing spill code and memory traffic.

2.7 Alias analysis

Compiler alias analysis is yet another field related to the SRF. Alias analysis 
important because it enables optimizations such as common sub-expression elimina
loop-invariant code motion, instruction scheduling and register allocation to be appli
correctly to the program. While alias analysis is used to determine potential data de
dencies for all of these optimizations, we view it as taking two distinct roles. The first i
register allocation, where it determines whether a variable can beallocatedto a register or
not. The second is in code transformation, where it determines whether a codetransforma-
tion is legal. While both kinds of decisions are necessary for correctness (the overrid
concern), the first is a data layout decision and the second is a code-layout decision.
analysis is used to ensure correctness of an optimization but if it is conservative it lim
the scope and potential of applied optimizations. In other words, alias analysis is ne
sary, butaggressive alias analysis is needed to allow good optimization.

In deciding how the code-layout can be changed, the compiler is deciding whe
it is semantically correct to move code out of loops, to eliminate redundant computati
or to otherwise re-arrange the code.

When the compiler addresses the data-layout problem, it must trade off the s
of the allocated memory against the functionality of it. In the case of an on-chip, dire
addressed register file, the speed is very high but its functionality is low because da
accessed by statically specified indexes. Furthermore, the conventional register file 
not have built-in checking for aliases between data in a register and data in memory

The remainder of this section is organized into subsections describing the va
previous research. These could also be divided into software, hardware, and combin
hardware/software solutions.

2.7.1 Background on Alias Analysis

A location in a computer's memory is referred to by a numerical address whic
computed during the execution of any instruction that accesses that particular locati
Memory aliasing occurs when a storage location is referenced by two or more names
14
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can happen in languages like C that have pointers. Data at a memory location can b
porarily kept in a register only if we can assure that all instructions that might refer to
memory location can be made to refer to the register instead. Because instructions 
pute the address of the data they refer to at their time of execution, it is often impossib
tell before execution (i.e. at compile time) which instructions refer to a particular mem
location; thus we run the danger of substituting two or more registers for what appea
be different memory locations, when we should have substituted only a single regist
this occurs, copies of the same data will be placed in two or more registers, leaving 
the possibility that the copies can be changed separately. Thus data that was mean
resent the value of a unique variable can end up with two or more distinct values. Cl
this is wrong.

The allocation of data to registers is done by a compiler–the program that tra
lates a programming language like C into basic machine instructions. The compiler 
lyzes a program before it executes and thus cannot detect if address aliasing does o
when the program runs. To avoid possible errors the compiler must make conservat
assumptions about the values of addresses, and, as a consequence, must be conse
about what data can be kept in registers. This in turn means that whole classes of da
not be placed in registers, at least for part of their lifetime.

Aliasing through memory is problematic because modification of a value thro
the use of one name will change the value examined through another name when b
names refer to the same location in memory, (e.g., a[i] and a[j] may refer to the same
tion). If the compiler can determine with certainty that the names refer to disjoint loc
tions, it is possible to allocate each name to a machine register where the value will re
Similarly, if the compiler can be certain that both names always refer to the same loca
it is possible to replace uses of both names with a single register name and allocate
location to a machine register.

Unfortunately, making such determinations is difficult. The use of pointers or
accessing of arrays with different index variables creates new names. Furthermore, 
pointer or index can be modified programmatically, thus changing the names at runt
Such locations cannot be easily placed in registers because a traditional machine re
has only one name.

Such values can be allocated to registers within regions of the program wher
compiler can determine the exact set of names that refer to the location. In fact, this
necessity in a load-store architecture, because the memory value must be placed in a
ter before use. However, such allocations are short-lived, because a modification of 
memory value through another name will not be reflected by a change in the value i
register. Thus, the value must be updated by re-loading the value from memory. Likew
any modification of the value through the register name must be written out to memo
case the value is accessed through an alias.

Languages with stronger typing than C allow the compiler to make more assu
tions during alias analysis because only those names which have the same type as th
able can refer to the variable.
15
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2.7.2 Modern Processor Memory Disambiguation

The conventional disambiguation hardware in a microprocessor (see for exam
[10]) is not open to the compiler. This forces the compiler into the very conservative m
described in the last section, which requires loads and stores around the references
aliased data. Furthermore, loads cannot be moved past branches or stores on which
may (or may not) depend.

2.7.3 Static Analysis

The fact that aliasing information is not provided by the hardware to the comp
code forces most compilers to do static alias analysis to prove correctness of optimi
tions. Examples can be found in [16, 18, 28, 29, 87]. These references represent a ra
complexity in the analysis phase; compile time is an important consideration in such
yses because they are so complex.

As far as register allocation is concerned, the simplest approach is to note wh
variables are potentially aliased and then simply not allocate them to registers. For c
motion, simple heuristics can be employed to determine whether a load has a poten
dependence on a previous store.

When the aliasing relationship between two instructions is not known, they can
moved relative to each other conditionally by the software. This is done by runtime m
ory disambiguation [65], where explicit comparison instructions are used to route the
to the best execution path. If two addresses do not match, then the better code schedu
be selected. In the case they do match, the original, less aggressive code schedule m
provided.

2.7.4 Register Promotion

In function-level1 register allocation, a variable is typically marked as ’allocatabl
or ’not allocatable’ depending on whether it can be resident in a register for its entire
time or not. In a conventional compiler and processor, a variable cannot be placed p
nently into a register if there is more than one name used to access that variable. For
language, if the address of the variable is taken the variable is said to be aliased and c
be placed in a register. Global variables are also typically marked ’unallocatable’ bec
register allocation algorithms are designed to run at the function level instead of the 
gram level. Those variables which cannot be permanently allocated to registers are 
memory and require a load before each use and a store after each definition.

Register promotion [27, 24, 25, 26] allows aliased variables to be placed into re
ters in code ranges where aliasing cannot occur. The variable ispromoted to a register by
loading it from memory at the beginning of the range. At the end of the range, the vari
is demoted back to memory so that subsequent definitions and uses through other na
are correctly maintained. It is apparent that this optimization increases register pres

1. “Function level” register allocation is typically called “global” register allocation. We use the
former to avoid overloading the term “global.”
16
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because more values are maintained in registers during the non-aliased regions. The
and stores are removed from these regions.

Several variants have been examined which use different code regions as the
unit of promotion. [24] considered loops as the basic range for promotion; [25] used
trary program intervals as the promotion regions; and [26] did not consider explicit p
gram regions but instead used a variant of partial redundancy elimination to remove
unnecessary loads and stores. All of the previous work shows substantial reductions
number of dynamic load instructions executed and varying reduction in the number 
stores eliminated.

The promotion loads and demotion stores can be placed in infrequently exec
paths in the control flow graph; this is shown to require more static loads and stores
results in fewer dynamic loads and stores. Register pressure was shown to increase
to 25% in the most common cases [25].

The studies typically show that 0-25% of loads are removed and up to 40% o
stores are removed, depending on the program.

Explicit load/store instructions are needed for register promotion, and the comp
must demote a value to memory whenever there is a potential aliasing relationship.

2.7.5 CRegs

The Short-Term Memories described by Sites are the inspiration for CRegs [5
7]. CRegs solves the aliasing problem much the same way as the Smart Register Fi
posed here. Registers have associated address tags which are checked against loa
stores to keep the registers and memory consistent. However, because the compile
assign aliased variables to different registers, memory contents potentially have dupli
in the CReg set. On a store, an associative lookup must update all copies of the data
CReg array.

The associative update feature requires that the maximum number of aliased
be limited to a small number so that the update hardware does not become too cum
some. The register file is divided into sets (similar to a set-associative cache) and the
piler must assign aliased data items into a given set. The modifications to the compile
analysis and register assignment were discussed in [5]. In practice, there were found
at most two names for a datum, indicating that the extent of associativity only needs

Figure 2. A example of register promotion. Without register promotion, the load and store are
executed every time around the loop whereas with promotion, the loop has no loads or stores.

C Code Without Register Promotion With Register Promotion
// i potentially
// aliased somewhere
// but not in loop
while (ctr) {
  i = i + 1;
  ctr--;
}

  beq rctr,0,L2
L1: ; loop body

ld ri, -8(sp)
  add ri,ri,1

st ri, -8(sp)
  sub rctr,rctr,1
  jmp L1
L2: ...

ld ri, -8(sp)
  beq rcond,0,L2
L1: ; loop body
  add ri,ri,1

  sub rctr,rctr,1
  jmp L1
L2: st ri, -8(sp)
17
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about 2 or 4 to satisfy most programs. In the case where there are more potential al
for a datum, the datum is simply allocated to memory and only loaded when used an
immediately stored upon definition. A diagram of a partitioned register file is shown 
Figure 3.

CRegs reduces the number of memory operations by eliminating redundant l
and stores from the program. These loads and stores were introduced in the conven
architecture because of aliasing. Simulations in [7] indicate CRegs can eliminate up
23% of memory operations for an overall decrease of up to 14% of total dynamic ins
tions. No CPI-based performance numbers were given, but these instruction counts
cate that CRegs (or similar techniques such as the SRF) can provide significant
performance benefits.

A CRegs design based on the MIPS-X processor core is proposed in [6]. The
design shows possible techniques to implement data forwarding in the presence of al
The 32-register file is divided into 8 sets of 4 registers each. Notable is the way that 
information is computed and stored in “mask” bits with each register. This allows alia
to be recognized early in the pipeline. The mask bits then control the forwarding and
update of data in the processor pipeline.

Figure 4 shows an example adapted from the earliest CRegs paper. The con
tional code in the second column shows that the store to a[i] requires the compiler to
reload the values of a[j] and a[k] because it is uncertain of the runtime values of i, j, a
(note the boldfaceld instructions). If i were to be the same as j, then the update of a[i] a
updates a[j]. The goal of CRegs is to eliminate these extra load instructions. The third
umn shows the CRegs code that implements the array calculations. The reloads have
eliminated. The store is there to update memory as well as forward the new value to
registers for a[j] and a[k]if there is an alias. Since a[k] already has an address associat
with it, the hardware knows where to put the new value of a[k] and can lazily write it ba

2.7.6 Variable Forwarding

Variable Forwarding, or register forwarding as it is is alternately known, was p
posed as an improvement to CRegs [90]. It attempted to achieve the same benefits 
CRegs, namely reduction in alias-synchronizing memory traffic while improving on
CRegs in two primary ways: 1) eliminate the need for compiler alias analysis before r
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Data

Data
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Figure 3. A diagram of the partitioned CRegs register file.
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ter allocation; and 2) simplify the implementation. Load instructions map the load add
with the register where the value is loaded. If another register is already mapped to 
address, the original register and the new register are combined into aforwarding group.
The original register is theleaderof the forwarding group and accesses to the data mapp
to the leader, whether through memory or through another register in its forwarding gr
is forwarded to the leading register. When the leading register is stored (thus unmap
it), it is removed from the group and the other members of the group must be told th
new lead register. This update requires a doubly-linked list of pointers amongst the r
ters in the forwarding group so that each member can be visited and updated with th
proper leader information. An associative memory maintains a mapping from memo
address to register leader (if any). No performance results were presented.

The elimination of compiler alias analysis simplifies the software side of the p
lem but complicates the hardware over CRegs because a value can be mapped to an
ters in the register file.

2.7.7 IMPACT and EPIC

Work done at Illinois on the Impact EPIC architecture [46] is concerned with
scheduling load instructions ahead of control dependencies and aliased stores. Allo
loads to move past stores in the instruction schedule has a large impact on performa
because otherwise the scheduling is very constrained. In previous work, the same
researchers proposed the memory conflict buffer (MCB), which associates addresse
registers and tracks later writes to the addresses [63]. In this way, a load can be sche
above a store and the hardware will report when an aliasing condition actually occur
Explicit check instructions which access the MCB state are required to determine if 
aliased memory operation occurred between the check and the earlier, hoisted load

C Code Conventional Assembly CRegs Processor
void foo(int i,j,k)
{
  a[i] = a[j] * a[k]

  a[k] = a[j] + a[k]
}

ld raj,0(ra,rj,4)
ld rak,0(ra,rk,4)
mul rt,raj,rak
st 0(ra,ri,4),rt
; reload a[j],a[k]
ld raj,0(ra,rj,4)
ld rak,0(ra,rk,4)
add rt,raj,rak
st 0(ra,rk,4),rt

ld raj,0(ra,rj,4)
ld rak,0(ra,rk,4)
mul rt,raj,rak
st 0(ra,ri,4),rt

add rak,raj,rak

Figure 4. Code demonstrating the CRegs ISA. The destination appears on the left. The nota-
tion ’ra’ indicates the register which contains the base address of array a. ’rai’ signifies the register
which contains either the value of a[i]. The target machine supports base+scaled index+offset
address mode, like the x86. The boldface load instructions are needed to synchronize raj and rak
with the valued stored to memory. The dashed arrows in (a) and (c) represent the potential depen-
dency that exists between the store to a[i] and the second reads of a[j] and a[k]. The solid arrows
in (b) show the load instructions that must be inserted by the conventional compiler to handle the
case when their is actually an alias from the store. The code in (c) shows that CRegs can eliminate
two loads and the final store instruction.
19
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instruction (called achecked load), at which time recovery code can be initiated. The
recovery code and check instructions increase both the static and dynamic instructio
counts, but the speedups reported are significant for benchmarks limited by memory
guities. The later research [46] is concerned with generating efficient recovery code.

If a checked load instruction is followed by instructions which use the loaded va
speculatively, exception information can be propagated through the uses so that one
can happen at the end of a long string of code. This reduces the number of check o
tions.

The Merced implementation of IA-64 utilizes a hardware structure very simila
the memory conflict buffer call the Advanced Load Address Table (ALAT). It allows t
IA-64 compiler to advance load instructions and associated uses beyond branches a
stores [47]. To propagate exception information through a string of instructions, a NaT
is employed. There is one per architected register. When the NaT bit is set on a reg
(say because of a page fault), all subsequent instructions which use that register esse
become NOPs and set their output register’s NaT bit.

2.7.8 Memory Renaming

Tyson and Austin proposed memory renaming which allow loads to execute e
in out-of-order processors [10]. This optimization is done entirely in hardware with n
modification to the binary. This is achieved by tracking the loads and stores that frequ
communicate with each other. Once a stable relationship has developed between a 
and a store, the load’s data can be accurately predicted to be coming from the store
associated with. This allows memory to be bypassed entirely in the critical path–the
address and the data are both predicted at once by the producer-consumer relation
between the load and store. A value file contains the data shared between the load 
store. The key to early (speculative) resolution of the load is that the load and store 
are used as the index of the value in the value file.

The prediction must be checked by performing the actual load, but this is off t
critical execution path. The authors found that some of the load-store pairing comes
aliased data and global data, which they assume cannot be allocated to registers.

The producer-consumer relationship between stores and loads is highly predic
(about 70%) and allows their memory renaming technique to achieve an average 14
speedup across the SPEC integer benchmarks. The stability between a store and it
suming load indicates that aliasing does not happen very often in practice.

2.7.9 Other

Other work has focused on early generation of load addresses, prediction of 
addresses, or prediction of load values in order to speed up program execution. Non
these techniques assumed compiler involvement and thus worked with conventiona
binary programs.
20



art
rt, the
n be
at
sis
to

erta-
hen

ould
 even
time

fied
is-

ocate
still

ry dur-
ssed

ister
an

entry
e, the
tly

any
 Intel
. The
 the

ta
 and
way,
data
lloca-
nce in
2.8 Summary

This section has outlined a number of areas of research that are related to Sm
Short Term Memories. Because the SRF relies on both hardware and software suppo
previous work is a large body of computer architecture research. The previous work ca
divided into three major categories: 1) that which deals with register file design; 2) th
which deals with register allocation; and 3) that which deals with memory alias analy
and optimization in the face of aliasing. All of these are important foundational work 
the SRF designs considered in the rest of this paper.

3 Preliminary Studies

This section details work that has been done to lay the foundation for the diss
tion. First we examine one architecture for a "Smart Register File," or SRF for short. T
we present some initial experimental results. These show that the SRF potentially c
have a significant impact on performance because about 10% of local variables and
higher percentages of global variables cannot be allocated to registers for their full life
because of aliasing. Static and dynamic analyses are shown to verify this result.

3.9 The Smart Register File

The goal of the Smart Register File (SRF) is to allow aliased data to be speci
through a short register name during the region where aliasing occurs. As we have d
cussed in the previous section, the register promotion optimization can be used to all
aliased values to registers in regions where they are not aliased. But this optimization
requires loads and stores to surround such regions so that the value resides in memo
ing the regions of aliasing. In the region where the value is aliased, it must still be acce
by explicit load and store instructions.

The SRF is conceptually a register file separate from the general purpose reg
file. Each SRF register contains an address. When the SRF register is specified as 
instruction operand, the hardware does a load from the address contained in the SRF
to get the data (on a data read) or a store to write the result (on a data write). Therefor
SRF is a register file with an implicit level of indirection which is executed transparen
by the hardware. Many architectures have special-purpose address registers and m
CISC architectures can access data indirectly like the SRF. The Motorola 68000 and
IA32 architectures are examples [60, 61] where operands can be specified indirectly
CDC 6600 even automatically loaded or stored a data register based on a change in
contents of an address register.

By putting the addresses of aliased data items into the SRF (instead of the da
themselves), it is possible for the hardware to keep those data items in a data cache
index it by the SRF contents. The data cache is part of the memory hierarchy. In this
we are attempting to utilize the benefits of both registers and caches. The SRF and 
cache together form a Smart Short-Term Memory because the compiler manages a
tion of addresses into the SRF and the hardware takes care of data value maintena
21
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the data cache. In effect, the compiler is sharing alias information with the hardware
increase overall performance.

The cache can be managed as a traditional cache where the hardware stores
back to a lower level in the memory system only if it is dirty. The hardware does mem
dependence checking in the same way it does in a conventional microprocessor des
[67, 68].

The remainder of this section discusses in more detail how the SRF functions
particular, it explains how the SRF may help processor performance in the presence
aliased variables.

3.9.1 Smart Register File Implementation

The SRF can be implemented in two ways. The first way is a register file whic
separate from the general purpose register file. The most significant bit of the regist
specifier can be used to distinguish which register file is being requested. An 8-bit reg
specifier can therefore provide access to 128 general purpose registers and 128 ind
registers. Because of this split design, special instructions are required to move data
between the SRF and the GPRF or to source data from both register files in a single
instruction. This is because in the most common programming languages, data and
addresses are interchangeable, such that a data value produced as the result of an 
metic operation is used later as the base address of some memory operation. The in
tion opcode would have to specify which register file the sources come from and wh
register file the destination goes to. Data that are later used as addresses would hav
moved from the GPRF to the SRF.

The second (and preferred) implementation is as part of the existing general 
pose register file. The most significant bit in the register specifier in this case indicat
which indirection level the hardware should use to access the data (0=data is in the 
ter, 1=data is in memory at the address specified in the register). Thus an 8-bit regis
specifier in this scheme provides access to 128 registers, any of which can be used
mal mode or indirect mode depending on the setting of the most significant bit in the
ister specifier. This unified configuration does not require special instructions to move
between registers, as SRF entries and GPRF entries are mixed in a single register fil
register can be used in either direct or indirect mode at any time.

Throughout the rest of this section, we will assume a configuration like the sec
one. A diagram is shown in Figure 5. R2 is being used indirectly as indicated by the
in the indirection field of the instruction. We say that R2 is being used as a “smart re
ter.” For the add instruction depicted, the second source’s value is in R3 but the first
source’s value is accessed indirectly through R2. The result of adding 5 + R3 is plac
directly into register R1.

3.9.2 An Example

This example is taken from the CRegs work [5]. Figure 6(a) shows a small C
function which demonstrates the problem with aliasing. At compile-time it is not know
whether i equals j or k. In a conventional architecture, a[j] and [k] need to be reloade
22
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after the store of a[i] because the store to a[i] may have changed the value of either a
a[k] (or both if i equals j equals k). These extra load instructions are shown in boldfa
type in Figure 6(b). The compiler does not know at compile time the values of i, j, or k
it must include these load instructions.

Notice that there are three fewer instructions in the SRF sequence (Figure 6(
First, there are no explicit store instructions. The second load of a[j] and of a[k] have b
eliminated. These instructions have been replaced with simplemap instructions which
load the address of the data into their respective indirect registers. As a side effect, th
at the address is prefetched in anticipation of a future use. The multiply and add opera
can access their values indirectly and no loads and stores are explicitly specified.

If i equals k, the hardware will conceptually forward the store of a[i] to later us
of the data at that address, no matter which register is used to specify it. The hardware
actually do forwarding directly or through the data cache.

Since themap operation operates on addresses, it can be scheduled in advan
the uses of the values. The prefetch side effect is quiet in that exceptions are not rep
until the value is used indirectly through the register (this would be a program error).

3.9.3 Smart Register File Design Considerations

The SRF has some of the benefits of both the register file and the cache (see
1). Namely, it allows instructions to be encoded using small register specifiers, even
though these specifiers map to long addresses through the SRF entry. It eliminates 
need for loads and stores whose purpose is to synchronize data between the registe
and memory address spaces, thus reducing the number of instructions fetched and 
cuted.

But when we say "elimination of loads," what do we mean? An operand spec
with a ’*’ tells the hardware that it can find the data in the data cache. While this is

Figure 5. A diagram of the smart register file, cache, and instruction format. The add
instruction shown is formatted as a RISC instruction, with an additional bit per register specifier.
This indirection bit tells whether the register is used directly (0) or indirectly (1).

Data Cache

Register File

100 5
R2: Addr = 100

ADD 0 / R1 1 / R2 0 / R3

Address Value

add R1, *R2, R3
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implicit and not specified in the instruction stream, it is still a load operation from the
spective of the hardware.

So it appears that we have not gained any benefit except shrinking the size o
instruction stream. It should be noted, however, that this is a significant benefit. Few
instructions mean fewer cache misses [89]. Register allocation and traditional optim
tions such as loop-invariant code motion speed up program execution by eliminating
loads/stores and moving code out of loops. Fewer instructions also means fewer fetc
decode cycles which are very expensive on some processors.

Finally, some may suggest that there are a lot of free execution cycles in the typ
superscalar processor, i.e. that “instructions are free.” We argue the reverse. First, in
tions are only free if they are largely independent of the algorithm (not on the critical
path). Second, the more complex semantics of a SRF instruction provide a well-defi
interface which the hardware can implement in a variety of ways depending on speed
cost considerations. For example, the hardware may decide to decode the more com
cated indirect instructions into RISC-like micro-operations much like the Pentium III c
does, immediately recovering the instruction stream as if it had the loads and stores
Or it may decide to do direct execution on the indirect instructions.

3.9.4 SRF with Data File

A more clever implementation can keep the value with the SRF entry instead o
the cache, and eliminate even the implicit load from the cache. This is illustrated in Fig
7 where R1 is the "owner" of address 100 and thus the value can be maintained with
register file in a structure we call the SRF data file. This condition is indicated by the "
ister/cache ownership field" (R/C) being set to R to indicate register ownership. Both
cache and the data file have a copy of this field. For the cache, the R/C field serves 
valid bit for the owner register number. If R is set, then the register owner field is also
If C is set, then the cache owns the value and the register owner field is not applicable

C Code Conventional Assembly SRF Processor
void foo(int i,j,k)
{
  a[i] = a[j] * a[k];

  a[k] = a[j] + a[k];
}

ld raj,0(ra,rj,4)
ld rak,0(ra,rk,4)
mul rt,raj,rak
st 0(ra,ri,4),rt
; reload a[j], a[k]
ld raj,0(ra,rj,4)
ld rak,0(ra,rk,4)
add rt,raj,rak
st 0(ra,rk,4),rt

map raj, 0(ra,rj,4)
map rak, 0(ra,rk,4)
map rai, 0(ra,ri,4)
mul *rai,*raj,*rak

add *rak,*raj,*rak

(a) (b) (c)

Figure 6. Code demonstrating the SRF ISA. Here, ’rai’ signifies the register which contains
either the value of a[i] (in the conventional assembly column) or its address (in the SRF column).
Columns (a) and (b) are as in Figure 4. The code in (c) shows that the SRF can eliminate these
two extra load instructions.
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SRF data file uses the R/C field to determine when the value field is valid. If R is set,
the value is valid because the SRF owns the address of that value. If C is set, then the
must be obtained from the cache (or memory hierarchy).

Further stores through *R1 (notice the star) can write their value directly into 
data file. This is feasible because a given data value is not aliased in certain regions
program (recall register promotion). The cache does not need to be accessed as long
"owns" the memory location. The data written can be trickled back to the cache at th
hardware’s convenience or at serialization points.

If there is an alias for the data item, then the cache becomes the owner for it 
the processor reverts back to implicit loads and stores on every access. Figure 7 sh
case where both R30 and R31 contain address 200. The data is owned by and stored
cache and the R/C field is set to C in the ownership fields. Stores through *R30 and *
are routed to the cache because the cache owns the data.

The only remaining problem is how to maintain the ownership relationship. An
aliasing condition occurs when one SRF entry contains an address and another one
to the same address. The data value that was associated with the first entry needs t
moved back to the cache so it can be "shared" with the new SRF entry. When an addr
written into an SRF entry, the cache is queried to see whether another entry has the
address. If not, then the data value can be associated with the SRF entry directly, an
cache is told that the register file owns the data (R) and which register is the owner. O
wise, the original register owner is divested of its ownership of the value and both SR
entries must access the data indirectly through the cache. In this case, the data at th
address is owned by the cache and is marked C in both cache and SRF data file.

One shortcoming of the SRF with data file mechanism is that once an aliasing
dition is encountered, the cache always owns the value. We are currently investigating
to handle this. Another problem is how to handle register ownership in the case that
cache datum owned is evicted from the cache because of a miss to a conflicting dat
Owned lines could be locked down in the cache so that this would not happen. Or, t
could be un-owned at the time of eviction; the next access would cause a cache mis
re-own the datum.

This design avoids the associative searches which have been present in prev
designs. Whether this is implementable with reasonable cost and whether it is necess
speed up the operation of the SRF-based processor are matters for experimentation

Figure 7. Eliminating load and store operations with the SRF data file.

Data Cache

Register File
100 –

R1: Addr = 100

Address ValueOwner

R1

200 7–

R30: Addr = 200

R31: Addr = 200

5

SRF Data
File

R

C

C

–

–

ValueOwner

R
C
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The assumption is that aliasing actually happens infrequently. The compiler is
allowed to omit the loads and stores in the common, unaliased case. The hardware 
ages the data in the infrequent case that an aliasing condition does occur. An optimiz
to this approach is to have the compiler indicate the frequency of aliasing between t
variables and let the hardware decide if and when to enregister the value. If aliasing
quent for a certain address, the hardware could decide to leave the value in the cac
the time.

Optimizing to keep an aliased value in the register file has demonstrated a pr
lem: when we mix the semantics of memory and registers too closely, it is difficult to k
values consistent in both address spaces. This is precisely the problem that earlier C
work attempted to overcome [5, 6, 7]. In that work, the compiler was required to allo
aliased items to a subset of the registers. The hardware had to do an asociative writ
update whenever a value was written into the register file. The associative search in C
is unwieldy and probably not practically implementable, particularly in a multi-ported r
ister file at clock rates acceptable to the market. By the ownership relationship for the
at a particular address, we can replace the associative search with a direct lookup in
data cache tag store. Only in the case when this tag indicates that there is an aliasin
dition do we need to inform the owning SRF entry to "un-own" the value and submit 
data cache management (this requires a data file read and a cache write). This can b
directly without an associative search because the cache already knows which regis
owns the value–it can go to the register directly and inform it of the aliasing condition

Finally we consider the problem of SRF entries that point to bytes and halfwo
and overlapping data. The instruction which initializes the SRF entry (say, amap) can also
mark the register as pointing to byte-sized data. Then when the hardware uses the S
entry indirectly in a later instruction, it can format the incoming (loaded) or outgoing
(stored) data properly. Two extra state bits are required at each register to implemen
(00=byte, 01=16-bit, 10=32-bit, 11=64-bit). The extra bits at each register do not pos
great problem. The Intel IA64 architecture already provides for a 65th bit on each reg
that specifies whether an exception has occurred during the production of the value
register (the bit is called the Not-a-Thing bit or NaT bit [47]). The tag store in the cac
may need valid bits for each byte of data. Overlapping data structures such as C unio
a problem for this mechanism and are thus far handled as in the conventional comp
architecture. We leave these things for future work.

3.9.5 SRF with Alias Cache

The final SRF implementation we consider in this report is based on the Alias
Cache. The alias cache is diagrammed in Figure 8.

The alias cache is designed to overcome some of the problems with the SRF
File. Specifically, we note that the data file implementation had two problems. First, 
agement of the ownership relation is cumbersome. Second, the ownership informati
stored in the cache is very sparse and thus wasteful of storage. The alias cache rem
these two problems by compressing the sparse ownership information in the data ca
into a small side cache which is accessed in parallel with the L1 data cache. The ali
cache has several advantages:

1. It is small, so it will return data sooner than the data cache.
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2. It is indexed by memory address, so it is in the memory space and can be
aged by the hardware like a cache as far as dirty writeback, LRU allocatio
etc. are concerned.

The data file access time is very fast since the data is often owned by the reg
we trade some of this speed for easier bookkeeping. For these reasons, we feel the
cache has a more promising future than the SRF data file.

Various aspects of the alias cache will be examined as part of the ongoing stu
in this research project. Parameters of interest include its size, associativity, and num
ports.

The alias cache implementation of the SRF can be viewed as a cross betwee
SRF ISA and the Variable Forwarding associative memory, except in our case the as
tive memory (alias cache) contains the actual data instead of pointing to a register th
contains it. Since the alias cache is the only repository for aliased data, the implemen
is not required to implement a doubly-linked list in order to keep track of the single lo
tion for the data. Instead, the data is kept in one place and all registers refer to it indir

3.9.6 Smart Register File Benefits

We have already mentioned that the SRF implicit indirection level is similar to
addressing modes in CISC architectures. CISC ISAs allow memory operands to be 
without explicit load and store instructions. The SRF proposes to add this access sem
back to a RISC architecture, in essence to close the gap between direct-only access
isters and the completely flexible addressing of the first level of the memory hierarch
This has several potential benefits, some of which this section outlines.

3.9.6.1 Elimination of Loads and Stores

The SRF allows the compiler to eliminate load and store instructions necessar
alias synchronization; these operations are required in a conventional RISC instruct
set architecture. In a conventional ISA, whenever the compiler is not sure whether a
value can be modified by a store, it must insert a load after the store to update the va
the register. When the SRF is used, the aliased value can be used through the SRF
hardware has to "load" the data from the data cache, but the load does not need to b

Figure 8. The SRF Alias Cache.

Data Cache

100

Value

2007

5
TagDataAddress

100

200

5

7

Alias Cache
(SPLICS)

R2: Addr = 100

R7: Addr = 200

R8: Addr = 200

Register File
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ified in the instruction stream–it is implicit. This is shown in the example given in Fig
1. As we discussed above, the SRF with data file can even eliminate the implicit loads
stores.

3.9.6.2 Prefetch

A load into an SRF entry (a "load effective address" operation) effectively signa
load (or prefetch) of the data at that address. If the data is already present in cache 
some other entry in the SRF contains the same address, then we have avoided a da
in the presence of an alias. Data which the compiler deems important can be prefetc
simply by issuing a load effective address operation early in the instruction stream.

3.9.6.3 Miscellaneous Benefits

Members of complex data types such as structures or arrays can be kept in S
registers. Structures and arrays are often aliased because of pointers to them or ind
into them. Therefore the conventional compiler cannot easily put critical data fields o
records or arrays into registers. The SRF allows these values to be kept in registers

3.9.6.4 Hardware Management

The hardware can decide when to execute store operations because it can tr
when data is dirty. If a data item is not modified, no store operation is necessary. Th
data value in the data cache that is aliased with a later load need not be stored to m
before the load occurs. We call this the elimination of dirty stores. This was also dem
strated in Figure 1 by the elimation of the two store instructions.

3.9.6.5 Reduction in Memory and Register Port Pressure

The SRF ISA allows a reduction in use of register and memory ports. As show
Figure 9, if the variable x is resident in memory, then incrementing it can be implemen
more cheaply by the SRF processor than the conventional RISC because no tempo
register is required. If we ignore themap operation required to load the address of x (su
pose that this instruction is amortized over many increments of x), then the SRF proc
saves two register writes. If the data file and ownership status bits are added to the 
the implicit load and store operations can also be eliminated.1

The SRF ISA may also allow a reduction in the number of address computati
because addresses of data are stored in the SRF entries. This is similar to the comm
subexpression elimination optimization when applied to addresses. As shown in the e
ple of Figure 1, the conventional processor executes six address computations. The
executes three and stores them in registers for future use. This frees integer units for
more relevant to the algorithm. While CSE can eliminate address computations, the
ventional processor requires registers to store the addresses as well as registers to s

1. Though somewhat contrived, this example serves to illustrate the point. Obviously, a good com
piler will allocate the local x to a register. We could make x a global or a structure field instead
28
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values when they are loaded from memory. The SRF only requires one compiler-vis
register for both.

3.9.6.6 Speculative Code Motion

The SRF allows loads to be statically scheduled above branches upon which
may depend. The indirect register may be loaded with a NULL pointer, for instance, 
the hardware will not signal the exception until the instruction which uses the register
rectly. This is called control speculation in the literature [46, 47].

An example is shown in Figure 10. The load inside the if statement has been
scheduled above the comparison and changed to amap. All uses of val inside the if are
also translated to uses through an indirect register. Since the uses only appear insid
home block of the load, we guarantee that no exceptions are generated that would no
been generated by the original assembly. A quiet load (deferred exception) or prefet
[76] would have a similar result except that two instructions would be specified–the
prefetch and another load at the home location.

In the SRF architecture, no explicit check instructions are required since the h
ware can carry the exception information with the register value and only signal the ex
tion when the value is used. For example, if the hoisted SRF load is to an illegal, prote
or unmapped page in memory, the exception is deferred until the use of the data fro
SRF register.

Furthermore, themap instruction need not have a special opcode indicating a
speculative mode. Checks are not required because no fixup is required in the case
exception. (If an exception happens, it happens at the point of use, which has not be
moved from the original code; in this case, the exception was a program exception an
program will halt.)

With a check instruction, as in EPIC [47], uses of the loaded value can also b
moved above the branch and the check can be placed in the home block of the load
uses so that only one check is needed; in this case, the hardware simply forwards th
exception information through the data dependencies. Section 2 describes this in m
detail.

C Code Conventional Assembly SRF Processor
/*
 * local x in memory
 */
int x;
x = x + 1;

/*
  1 mem read,
  1 mem write
  2 reg writes,
  2 reg reads,
*/
ld rt, [x]
add rt, rt, 1
st [x], rt

/*
  1 mem read (maybe),
  1 mem write (maybe),
  1 reg write,
  2 reg reads
*/
map rx, [x]
add *rx, *rx, 1

(a) (b) (c)

Figure 9. SRF reduction of register and memory port pressure. The SRF code contains one
less register write than the conventional code.
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With the appropriate hardware and software, this can be extended to allow da
speculation. Data speculation allows the scheduling of loads above potentially depe
stores. Check instructions are also required for data speculation because an incorrec
ulation requires fixup of some sort. The hardware verifies that this was legal, and if n
the software provides a fixup routine. The fixup routine can either be out-of-line code
which the processor branches to [63] or inline with the assistance of predication to en
only certain portions to execute in the fixup mode [46].

3.9.6.7 Summary of Benefits

The advantages of the SRF fall into three categories. First, the SRF allows th
removal of load and store instructions which reduce the number of instructions exec
by the processor. The second advantage is that it allows more registers to be used. R
allocation is an important optimization which is often limited in scope because of alias
among variables; the SRF allows aliased variables to be placed in registers. Third, the
allows some speculative motion of loads above branches and aliased store instructi
The effect is a prefetch operation, which reduces perceived memory latency.

3.9.7 Smart Register File Design Space

The SRF instruction set architecture presented above allows any register to be
in either direct mode, as in a conventional processor, or indirect mode. The compile
makes the decision at compile time which registers are directly specified and which 
not. It may use a single register in both ways in certain types of code. Obviously if no
isters are used in indirect mode, the machine is reduced to a conventional architectu
When reduced in this fashion, we can reclaim the indirection bit to double the numb
specifiable registers.

The other end of the spectrum is to only allow indirect access through the regis
Such a processor would have only SRFs. Here again we could reclaim the indirectio
in the register specifier to double the number of registers that can be specified. This
tecture requires that we perform an "address allocation" step in the compiler to com
the addresses into the number of available registers. This is analogous to the registe
cation step in current compilers. We do not pursue this design because the SRF pro
presented allows both traditional and indirect accesses to registers. The compiler ca
determine where it falls along the spectrum (from all direct registers to all indirect re

Figure 10. An example showing how the SRF allows control speculation.

C Code Conventional Assembly SRF Processor

if (ptr != NULL) {
  val = ptr->data;
  ... use val ...
}

   cmp rptr, 0x0
   beq L1

ld rval, +16(rptr)
   ... use rval ...
L1:...

map rval, +16(rptr)
   cmp rptr, 0x0
   beq L1
   ... use rval ...
L1:...

(a) (b) (c)
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ters) based on profiling or other information. This is, of course, at the cost of the ind
tion bit in the register specifier.

3.10 Applying the SRF to Existing Instruction Set Architectures

Because of the extra indirection specification necessary for the registers, the
architecture is not trivially compatible with existing RISC instruction set architectures
However, there are are least two options that still allow the proposed technique to be
in commercial computers:

1. Partial recoding of an existing ISA. The indirection specification can be m
in some instructions but not allowed in others. For example, there may be
available bits in the three-operand instruction encoding (in the function fie
for example).

2. Full recoding of an existing ISA. The ISA could be recoded to a larger ins
tion format (say 48 or 64 bits) and binary translation techniques could be 
to translate from the old ISA to the new. Binary translation is becoming a w
established technique that allows designers to break old design constrain
while allowing old code to run correctly [55].

Note that many CISC architectures already have the SRF-like semantics. The
IA32 architecture can specify memory operands as part of most operations. The mo
basic way to do this is indirectly through a base register. This is specified in assembly
parentheses around the value, as in (eax). Our SRF notation would say *eax. The SR
sented here only allows this base-register indirect address mode instead of the full co
ment of address modes (base+scaled index+offset) allowed in the IA32 ISA.

3.11 Comparison with Previous Work

The SRF is similar to a lot of the previous work which we have discussed in t
previous section. The most notable difference is the number of different ideas that it
attempts to bring together. For example, CRegs removes load and store instructions
IA64 allows loads to be rescheduled above stores. The SRF allows both.

Memory renaming [10] attempts to connect a load with the store producing its d
value in order to short-circuit the path through the memory system. That work showed
memory renaming is particularly effective for aliased data as well as global and heap
The SRF allows the compiler to put more of these kinds of data into registers and co
pletely eliminates the load and store instructions necessary in the conventional arch
ture. The stability found in the renaming work implies that aliases happen infrequent

The SRF can work without register promotion if a simple compiler is desired, o
concert with promotion if there are large ranges where it would be beneficial to use 
lar through a normal, direct register.

Figure 11 diagrams the basic difference between CRegs and the SRF. For da
which is not aliased, both the SRF and CRegs store the data in the register and nee
auxiliary mapping information for bookkeeping. When data is aliased, though, CReg
keeps the data in the original register file entry andaugments that with address informa-
tion. The SRF puts the address in the original register file entry andaugments that with the
31
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data as a performance optimization. The SRF maintains only one copy of the data, how
ever, even if the same address resides in two or more registers. The important differe
that SRF keys its memory accesses by theaddress. The address is read-only; read-only
items do not have an aliasing problem, so it does not matter how many copies of the
address are present into different registers. Furthermore, the address is a level of in
tion away from the data. This allows the hardware to maintain a single copy of aliase
data, but with multiple addresses pointing to it. On the other hand, CRegs uses thedataas
the key; since data is written, it can be aliased, and copies of the data can reside in mu
registers. When a write occurs CRegs must synchronize all copies. SRF does not hav
problem.

3.12 Initial Experiments

The first experiments are designed to determine the potential of the SRF des
All experiments are run on the SPEC95 integer benchmarks [69] with the MIRV comp
on an IA32 processor. Recall that the IA32 has 8 general purpose registers, 6 of whic
available for user variables.

3.12.1 Register Pressure

The first question is to determine how many variables are actually allocated to
isters and what is the register pressure in each function. The data in the second colu
Table 3 shows the maximum number of live local variables in the SPEC95 integer be

Data AddressCRegs aliased:

Address Data as optimizationSRF aliased:

SRF unaliased:

Data

Reg File Auxiliary Info

CRegs unaliased:

Reg File Auxiliary Info

Figure 11. Contrasting the SRF and CRegs.

Data

Nothing

Nothing
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marks. The data was gathered immediately before register allocation in the MIRV ba
end. The number cited is the largest number of simultaneously live integer scalar valu
any function in the benchmark; most other functions in the benchmarks have much l
register pressure. The conclusion is that 10 to 20 registers is enough for local variab
This agrees with several previous papers in the literature. Note that no compiler opti
tions are turned on except for global copy propagation, constant folding, and strengt
reduction. With optimizations such as loop unrolling, function inlining, and software p
lining these numbers would be higher.

The third column of Table 3 cites the number of local variables that were not 
catable because of aliasing (in the functions which had the highest register pressure).
are marked unallocatable for their entire lifetime because of the potential for aliasing
These variables require synchronizing loads and stores whenever they are reference
least loads and stores for promotion/demotion. It is interesting to note that in additio
the maximum live local variables, there is often another 10% of variables that are not
catable to registers for their entire lifetime. The SRF can handle these variables and
nate all the loads and stores associated with them.

The vortex benchmark is notable because it has a function (C_MapRefToDb)
which has 35 variables live at one location in the program and 8 additional variables
are not allocatable. It has 49 local variables and 10 incoming parameters. It passes so
its local variables by address to other functions. This is a common cause of aliasing

3.12.2 Global Variables

We see that there is not much need for more than 32 registers given the tradi
way of doing register allocation. However, for these benchmarks, there are a signific
number of global variables, as shown in Table 4. Accesses to these globals are respo
for a large number of loads and stores in the programs, and thus we conclude that a
ing globals to registers is very important. Allocation of global variables is the first wa
make use of a large number of processor registers. We can envision utilizing a registe
of 128 entries where 50 or more registers are devoted to global variables. We do no

Benchmark Maximum Live
Locals

Unallocatable Local
Variables

compress 11 1

gcc 41 5

go 21 2

ijpeg 31 0

li 9 5

m88ksim 15 0

perl 20 0

vortex 35 8

Table 3. Maximum live local variables and unallocatable local variables.
33



/n/rodan/l/users/postiffm/papers/srftr/Sections.fm June 28, 1999 10:12 am

ne if
s is

ot be

r
y the

 parts
e
ting
n
nction
ually

h the
gis-
t from

ined.
even
 In
ency

end
ro-
cy
have lifetime range data for these global variables but future experiments will determi
this is a worthwhile idea. Work by Wall [70] indicates that allocating globals to register
an important optimization.

The last column in Table 4 shows the percentage of global variables that cann
placed into a register for their entire lifetime. This percentage is computed by linking
together the benchmark at the MIRV IR level and processing the MIRV IR with a filte
that determines whether the global variable’s address is ever taken. If it is, then we sa
variable cannot go into a register (even though it may be able to be enregistered for
of its lifetime). The integer benchmarks fall into two categories. For the majority of th
benchmarks, most global variables are allocatable for their entire lifetime. Two interes
cases arego andvortex, where there is a high percentage of globals that are aliased. I
both benchmarks, most of the variables in question are passed by address to some fu
which changes the global’s value. The number of call sites where this happens is us
fairly small for any given variable. In vortex, a heavily used variable calledTheoryis mod-
ified through a pointer in memory management code. It appears that this use throug
pointer is for initialization only (so register promotion could promote the global to a re
ter). The SRF allows these globals to be enregistered, providing even further benefi
a large register file.

The data shown above does not quantify the importance of the variables exam
It is possible that the globals are not used very frequently. The aliased globals may be
less important, in which case the SRF would not provide much performance benefit.
order to determine if this is the case, we have run experiments to determine the frequ
of use of global variables in the program.

The results of the first experiment is shown in the 16 graphs of Figure 12 at the
of this section. It shows histograms for static usage counts of global variables in a p
gram. The static usage count of a variable is an estimate of dynamic usage frequen
determined by the following formula:

(Eq. 1)

Benchmark Global
Variables Allocatable Not Allocatable % Not

Allocatable

compress 29 28 1 3%

gcc 1019 923 96 9%

go 83 71 12 14%

ijpeg 32 31 1 3%

li 79 79 0 0%

m88ksim 107 105 2 2%

perl 211 205 6 3%

vortex 604 389 215 36%

Table 4. Global variables statistics in SPECint95.

static frequency count 2
loop nest level

all uses and definitions
∑=
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That is, a reference to a variable within a function is given weight 1 (20). A use
within a loop is given weight 2loop nest level. This is a simplified version of a standard com
piler formula for computing a weighted usage count without having to profile the progr
[16]. It is used to indicate a variable’s relative importance for the sake of register allo
tion or other optimizations. The formula is using the heuristic that a variable used in a
will probably be used by several iterations of the loop and is more important than a v
able not used in a loop. This estimate is neither a lower nor an upper bound on the u
frequency of the variable because uses may be reached more or less frequently dep
on the control flow that the program actually follows.

The static frequency count histograms show the static frequency count informa
for each of the SPECINT95 benchmarks. For each benchmark, there are two graph
one on the left shows the frequency count information for the global variables that a
allocatable to registers. The graph on the right shows the frequency count informatio
the global variables that cannot go into registers. For example, for compress95 (Figu
upper left), there are 6 global variables which have a static frequency count of 2 or l
globals have a frequency count of 3 or 4. 1 variable has a frequency count between
and 1000. The graph for compress95’s unallocatable variables shows that 1 unalloc
global variable has a count of 9 or 10. The sum of the heights of the bars in both graph
compresss95 is equal to the number of global scalar variables in the benchmark.

Since the data presented in Figure 12 is only static, we cannot draw broad co
sions from it. However, it does show that for most benchmarks, the static frequency co
do not rise above 30 to 40. The notable exception is go, where there are 17 globals 
have frequency counts above 100. Four additional globals which are heavily used ar
allocated to registers. This indicates the importance of both allocating globals to reg
and also allocating aliased globals to registers. In the case of go, the globals are glo
configuration parameters which are assigned and compared against in many places
benchmark.

The second experiment is analogous except the benchmark is executed and 
variables annotated with a dynamic frequency count, so the data is much more mea
ful. Counters are used to keep track of the execution frequency of the block stateme
the program; these are then used to compute how many times a given global variab
accessed. This data is more accurate than the static frequency count estimate. The
are shown in Figure 13. The bins are chosen to be the same as in the static frequency
case, even though some variables are used more than 1 million times.

The dynamic frequency graphs for globals show that most of the time only a 
percent of the unallocatable variables are actually used very much (compress95, ijp
li95, m88ksim and perl). The notable exceptions are go and vortex, where the freque
used unallocatable global variables are a significant proportion of all the frequently u
globals (roughly 20% and 33%, respectively). We now compare these dynamic usag
counts with the static data in Table 4. For go recall that 12 out of 71 (14%) of global 
ables are not allocatable. The dynamic frequency count information shows that abou
of those variables are “heavily used,”, i.e. in the leftmost bin in Figure 13. There are 
additional 10 unallocatable variables that are also heavily used. Thus, about 10 out 
important variables (20%) are aliased and not able to be placed into registers for the
entire lifetime. Similarly for vortex, 45 out of 145 variables are heavily used, or abou
35
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33%, compared to the 36% static estimate. The static percentage is giving a good ap
mation to the importance of aliased and unaliased variables in the program.

These high dynamic usage counts indicate that for go and vortex, performanc
could be improved (perhaps significantly) if these globals were allocated to SRF regis
which do not require load and store operations.

It is also interesting to compare the static and dynamic data and see if they a
agreement. The dynamic frequency graphs in Figure 13 show that the dynamic usag
somewhat bimodal, at least for the bin configuration that we have selected. Many vari
are either used very little or are used many times. The static graphs in Figure 12 do
show this quality. Instead, variables are bunched toward the left side of the graphs in m
cases, indicating that the typical global variable is only used in a handful (a couple o
dozen or less) locations in the program source code.

This section has provided information about the global variables in the SPECin
programs and shown that allocation of global variables to registers could have a ver
nificant impact on performance because there are so many globals. For certain clas
benchmarks, global variables are aliased a lot and could benefit from the SRF desig
sented earlier in the section. The next section does a similar analysis for local variab

3.12.3 Local Variables

Table 5 shows how many local variables appear in the static representation o
SPEC programs and of those how many can be allocated to registers for their entire
time. The data show that for go, li, m88ksim, and vortex, a significant percentage of 
ables have their address taken and cannot be allocated to a register for their entire life
The SRF processor could allocate these variables to indirect registers. Of course, so
those variables could be placed into registers for part of their lifetime using the regis
promotion optimization mentioned earlier. The following are the reasons why so man
local variables are used by address:

1. In go, there are many calls to list manipulation functions which take a poin
to an index into the list and potentially modify it

2. In li, the first parameter (a pointer to a list node) of many functions is passe
another function called xlarg. It is passed by address and modified.

3. In m88ksim, there are many calls to a function rdwr() which reads or writes
simulator memory; it takes a pointer to a value which is either read from (o
memory write) or written to (on a memory read). Error messages and statis
printing are also a major source of addresses being taken.

4. In vortex, there are many call sites to TmFetchCoreDB where a pointer to
pointer is passed; the pointer is modified.

Of the remaining benchmarks (compress, gcc, ijpeg, and perl), only 2 to 4% o
variables are not allocatable to registers. It should be noted, however, that these sm
centages of variables are responsible for a high percentage of the scalar loads and st
the program. They are still important to optimize.

The data in the Table 5 does not show what happens when aliased data is inc
in the allocation because we do not yet have a simulator capable of executing code fo
SRF-based processor. It also does not consider local or global complex data types l
structures and arrays, whose individual elements can be allocated to SRF entries.
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Static and dynamic frequency counts for all local variables in SPECINT95 are
shown in Figure 14 and Figure 15, respectively. Similar conclusions can be drawn for
variables that were drawn for global variables. The benchmarks go and vortex show
nificant number of heavily used local variables whose addresses are taken; these are
tially aliased. These two are joined by li95. Li had no aliased global variables, but th
are at least 40 aliased variables which are used heavily compared with the 300 or s
unaliased variables.

The dynamic frequency graphs show the same kind of bimodal distribution th
was noted earlier regarding the frequency counts of global variables. This information
be used to guide register allocation decisions to keep the most important variables in
ters.

3.13 Summary

This section has introduced the smart register file and discussed several pote
advantages to this structure over current microprocessor architecture. These benefits
mainly from eliminating explicit load and store operations as well as allowing prefetch
and code scheduling flexibility. The SRF allows more classes of values to be allocat
registers.

The second half of the section shows some experimental evidence that there
significant amounts of data in the aliased and global classes which the SRF attempt
enregister. The benchmarks which seem to be most amenable to SRF optimization ar
go, vortex, and li. These benchmarks generally have high percentages (more than 10
variables that cannot be allocated to registers using conventional means. Future wor
quantify the actual performance improvement that is possible.
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Benchmark Local Variables Allocatable Not Allocatable % Not
Allocatable

compress 116 114 2 2%

gcc 19811 1905 754 4%

go 3608 3503 105 3%

ijpeg 3175 3155 20 1%

li 1806 1516 290 16%

m88ksim 1658 1562 96 6%

perl 2512 2476 36 1%

vortex 11970 10660 1310 11%

Table 5. Local variable statistics in SPECint95.
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Figure 12. Static global variable frequency counts for SPECint95.
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Figure 12 (cont). Static global variable frequency counts for SPECint95.
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Figure 13. Dynamic global variable frequency counts for SPECint95.
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Figure 13 (cont). Dynamic global variable frequency counts for SPECint95.
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Figure 14. Static local variable frequency counts for SPECint95.
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Figure 14 (cont). Static local variable frequency counts for SPECint95.
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Figure 15. Dynamic local variable frequency counts for SPECint95.
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Figure 15 (cont). Dynamic local variable frequency counts for SPECint95.
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