Relaxed Multicast Protocols
using
Concurrency Control Theory

Paul Jensen Nandit Soparkar

Electrical Engineering & Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122 USA

Contact author: Paul Jensen, pjensen@eecs.umich.edu
Track: Long presentation

Abstract

Techniques for coordinating distributed executions include process groups and transactions,
each with different properties in a trade-off in terms of the degrees of consistency and perfor-
mance. Transaction concurrency control theory may be used to characterize process group
multicast semantics; our framework [18] which uses conflict relations among events, and
the acyclicity properties of a particular precedence graph, may be used to describe the cor-
rectness of multicast orderings. In this paper, we describe protocols to realize new relaxed
multicast orderings as obtained by the use of concurrency control techniques. In particular,
we demonstrate efficient, time-stamp based protocols for relaxed orderings that depend on
data, operation, or any similar attributes that bring about such weaker orderings. In fact,
we provide a protocol for any arbitrary reflexive and symmetric relation that may be defined
among the message types, and this makes our approach amenable to incorporating applica-
tion semantics into multicast protocols. Using the precedence graph acyclicity framework,
we can show that our protocols produce correct multicast delivery orderings. Furthermore,
we discuss the efficiency of our protocols in terms of some qualitative performance metrics.

1 Introduction

With the continuing expansion of networks, and the increasing accessibility of the Internet,
the number and nature of distributed applications is growing. However, due to applica-
tion requirements such as consistency of shared data, performance, scalability, and failure
resilience, the design of such applications is very complex in large-scale distributed environ-
ments. The use of middleware to relieve the burden for application designer has become
increasingly important; some aspects of research in this regard have been explored by us
(e.g., see [18, 19, 17, 30]). In this paper, we focus on efficient protocols for effecting message
orderings that can be shown to provide consistent states based on our previously described
techniques (i.e., in [18]). Our protocols are sound and complete in general in that they are
provably correct in terms of producing only the requisite orderings, and also, they allow all
possible histories that are consistent under the orderings.

There are two widely used approaches for managing data consistency in distributed envi-
ronments incorporated within the middleware layer: the process group model [10, 7] and the
transaction model [3]. The process group model is characterized by modeling the distributed
system as a collection of processes that communicate by multicasting messages. Techniques
are provided for ordering concurrent messages as well as ensuring atomicity of message de-
livery in the presence of process and link failures, and changes in group membership. The
transaction model is characterized by operations being grouped into units called transac-
tions, and techniques are provided for ordering concurrent transactions and ensuring their
atomicity. In both models there is a need to order concurrent events, and to ensure atomicity
in the presence of failures.

Some applications are better coordinated by group multicast techniques whereas others
are better suited to transactions (e.g., see [4, 9]). Generally, the multicast approach is more
efficient and provides adequate consistency criteria for some applications, and transactional
systems are better suited to cases where a high degree of consistency criteria is needed.
However, there are numerous other distributed applications which could benefit from a good
meld of the performance and consistency criteria (e.g., see [4, 9]). To this end, one goal of
our work has been to improve the multicast approach by proposing more efficient multicast
techniques based on applications semantics and transaction models.

We have developed a framework to apply transaction concurrency control to multicast
orderings. Each message multicast is viewed as a transaction, and the message are delivered
at each site to the application after enforcing the appropriate ordering in a manner similar to
a database scheduler ordering operations in concurrent transactions. We consider variations
of standard message orderings to exhibit our approach in incorporating (hitherto difficult
[9, 25]) application semantics. Our approach helps in ratifying larger classes of message
orderings as being correct, thereby increasing the potential for improved performance. We
review our framework in Section 2.

In this paper, we describe protocols to effect standard and certain relaxed orderings sug-
gested by our theory, and we explain how they meet the required correctness criteria. Our
protocols are developed by extending standard protocols for FIFO, causal, and total ordering
in a straightforward manner. Furthermore, we have developed a technique to provide correct

protocols for general relaxed ordering classes. The protocols extensions incur little overhead
as we discuss based on certain qualitative metrics that we provide. Note that we do not
consider issues of fault tolerance in this paper.

2 Enabling Techniques

We survey related distributed systems work done by others, and thereafter, we provide a
brief synopsis of our own work from [18] in order to describe our protocols. We do not
discuss the numerous relaxed transactional techniques (e.g., see [12, 16]); at the current
stage, our approach is independent of, and different from, such techniques since it applies to
the multicasting as opposed to transaction executions per se.

2.1 Background

One of the early toolkits for process groups, ISIS [8, 5], provides protocols to ensure totally
and causally ordered multicasts. A number of toolkits which provide similar group mem-
bership, failure, ordering and atomicity semantics have emerged for multicasting (e.g., see
[29, 24]). In addition, a number of protocols for multicast (e.g., see [26, 13, 8, 14]) and group
membership (e.g., see [1, 11, 15]) semantics have been proposed in the literature. In most of
this work, there is little consideration given to application semantics similar to our effort in
which message content may be used to influence the orderings. That is, others do not deal
with the relaxed ordering semantics for multicasts that we consider, and we describe how
available protocols may be extended to incorporate our approach.

Multicasts may be ordered in a distributed system in several ways. For instance, total,
FIFO, and Causal orders have been described in the literature (with some variation on
their precise meaning). In [31], the different definitions for total order multicast arise from
the semantics of delivery agreement guarantees among the processes in the face of various
faults; and these are not considered in this paper. Work related to fault tolerance would
complement, and be amenable to integration with our work.

Managing the consistency of replicas in a distributed environment is also related to our
research, and several schemes based on a state-machine approach [27] can be implemented
using totally ordered multicasts. Replication schemes which exploit message orderings (e.g.,
see [6, 7, 20, 23]), and grouping of messages have been investigated as techniques for improv-
ing performance of distributed protocols. In [20], the replication scheme has events grouped
into three categories, each with different ordering semantics, and each providing a different
level of the trade-off between consistency and performance. Our framework can be tailored
appropriately to represent the ordering semantics provided by most of these approaches.
And yet, in contrast to our work as well as typical relaxed transactional approaches, the
available protocols generally do not use application-level semantics to define weaker ordering
semantics.

2.2 A Concurrency Control Approach to Multicast Orderings

Below, we summarize our framework (see [18] for details) to describe our protocols.

e We assume that a set of multicast messages, if effected sequentially (i.e., are serial),
will represent a consistent sequence of state changes in the distributed application
environment.

e We identify “conflict” relations between the multicast primitives which indicate the
events which may not commute. Intuitively, two events conflict if the order of their
occurrence is significant with respect to consistency considerations.

e We regard as being “equivalent” those histories of multicast primitives (events) that
arise as a consequence of commuting non-conflicting events. Concurrent message mul-
ticast histories are regarded as being correct (i.e., preserving consistency) if they are
equivalent to a serial history.

Our model assumes the processes execute asynchronously, and the physical messages may
be delayed or re-ordered. The processes are denoted by P = {p1, pa,}, and the execution
of a process is a sequence of events. An event is one of a global send, receive, or a local event.
A global send event, gsend, results in a physical message being multicast to all processes, and
a receive event, rcv, delivers a message to an application; the rcv event may occur after a
delay from the physical arrival of the message. A local event is executed by a process locally,
and the global history H is the “happened-before” relation (denoted with the symbol —, see
[21]) on the process events.

Arriving messages are delivered to the applications such that consistent histories are gen-
erated. A local delivery module at each process determines when delivery is to occur. The
input to a delivery module is the sequence of messages as the arrive, and the output of the
delivery module is in an appropriate order of the corresponding rcv events.

Consider the three well-known “incidental” orderings, which are shown to represent classes
with the same names in [18]. Our notation for the send and receive events is: gsend;(m) is
the broadcast of message m from site ¢ to all other sites, and rcv;(m,) is the delivery of
message m at site j originating from site 1.

e Sender-based FIFO Order (i.e., gsend;(m) — gsend;(m') = rcv,(m, i) — rev.(m/',1)):

1. rcvj(m, i) conflicts with rev;(m’, 1)

2. gsend;(m) conflicts with gsend;(m')
e Causal Order (i.e., gsend;(m) — gsend;(m') = rcv.(m, i) — rcv,(m', j)):

1. rcvy(m,) conflicts with rev, (m/, j) iff (gsend;(m) — gsend;(m') or gsend;(m’) —
gsend;(m)

2. gsend;(m) conflicts with gsend;(m’) iff gsend;(m) — gsend;(m') or gsend;(m’) —
gsend;(m))

e Total Order (i.e., rcv.(m,i) — rev.(m', j) = revg(m, i) — revg(m', 5)):
1. revy(m,4) conflicts with rcv,(m/, j)

Each global history is complete in that for every message in the history, all the events of
the message are included in the history. A global history serial, w.r.t. to the gsend and rcv
events if each individual message is contained within an interval of time as measured by a
physical global clock, and distinct messages are contained in disjoint time intervals. Given
a set of conflict relations M, two histories H; and Hs are said to be conflict equivalent w.r.t.
M, if they contain the same set of events and for two conflicting events o and p in H; and
Hy, 0 —» pin Hy iff o = p in Hy. An allowable global history H is one where, for a set of
conflict relations M, H is conflict equivalent to a serial history. For a given history H, the
precedence graph, PG(H), has the messages as its nodes, and an edge m 2 m/, iff m has an
event that happened before, and conflicts with, an event of m/’.

Equivalence Theorem [18]: For a given set of conflict relations M, a global history H is
conflict equivalent wrt M to a serial history iff PG(H) is acyclic.

Corollary [18]: For a global history H and a set of conflict relations M, H is in the class
of orderings allowed by M iff PG(H) is acyclic.

Three additional classes of relaxed incidental orderings, which are relaxed FIFO, relazed
causal, and relazed total, are obtained by augmenting the orderings FIFO, causal, and total
respectively with semantic information. We use (type(m),type(m')) € Con to represent a
conflict relation on message types, where type is simply a function to indicate the nature of
the message contents, and Con is the conflict relation on the message types. The relation
Con and function type are unspecified, and in general, they may be derived from application
semantics.

e Relazed FIFO Order (i.e., ((gsend,(m) — gsend,(m'))A((type(m), type(m')) € Con)) =
revg(m, p) — revg(m', p)):

1. revi(m, j) conflicts with rev;(m/, j) iff (type(m), type(m’)) € Con
2. gsend;(m) conflicts with gsend;(m') iff (type(m), type(m’)) € Con

e Relazed Causal Order (i.e., (gsend;(m) — gsend;(m'))A((type(m), type(m')) € Con) =
revg(m, i) — revg(m/, §)):

1. rcvi(m, j) conflicts with rev;(m/, k) iff ((type(m), type(m')) € Con and (gsend;(m) —
gsendi(m') or gsendi(m') — gsend;(m)))

2. gsend;(m) conflicts with gsend;(m’) iff ((type(m), type(m’)) € Con and (gsend;(m) —
gsend;(m') or gsend;(m') — gsend;(m)))

e Relazed Total Order (i.e., ((rcv;(m, j) — rcv;(m/', k))A((type(m), type(m')) € Con)) =
rev.(m, j) — rev.(m', k)):

1. revi(m, j) conflicts with rev;(m/, k) iff (type(m), type(m')) € Con.

3 Multicast Ordering Protocols

We describe protocols for the message ordering classes. To show that a protocol ensures
the correct ordering of message deliveries by the Corollary, prove that a global history that
evolves under the protocol results in an acyclic PG w.r.t. the corresponding message order
class.

3.1 Incidental Ordering Protocols

Protocols to ensure FIFO, Causal, and Total order message delivery are well known, and as
an illustration, we use our framework to prove the correctness of a simple FIFO protocol.
In the protocol, the sender timestamps each message using a sequence number, and then
increments the sequence number. The recipients of messages deliver only in order of the
sequence numbers. To show that this protocol results in an acyclic PGrrro, assume to
the contrary. An edge from message node m to m’ in PGprro implies that gsend(m) —
gsend(m’) by the conflict definitions, and the timestamps ensure that for any two messages,
revi(m) — revy(m') < gsend(m) — gsend(m’). The existence of a cycle in PGprro,
my B my, 2 m, would imply that gsend(my) — gsend(ms) — gsend(m;), which is
impossible since the happened-before relation is a partial order.

We now discuss relaxed incidental orderings. For orderings permitted with consideration
given to affected data items, for each of the timestamp-based protocols for FIFO, Causal,
and Total orderings, the timestamps may be augmented with the identity for the data item
in question. Also, for every data item, a different timestamp counter is maintained. Events
for messages which pertain to the same data item are not allowed to commute, whereas
events pertaining to different data items may commute. Again, our framework may be used
to prove that this protocol would work correctly. Note that while the protocols for the simple
case of a single data item per message is similar to maintaining separate message groups, it
is not easy to characterize the more complex cases using other available techniques.

Now consider the cases for operation-based relaxed incidental orderings. We provide proto-
cols for all three variants of relaxed incidental orderings for a subset of the conflict relations,
specifically, the case where the conflict relation C'on is an equivalence relation. Rcv events
pertaining to messages within an equivalence class are not allowed to commute, whereas
other rcv events may do so. Observe that these protocols are essentially the same as for the
case of separate data items described above. In fact, the subject of this observation is more
that coincidental as we explain below.

3.2 Data-Oriented Protocols

We describe the type function and Con relation for the data-oriented orderings in order
to provide protocols for each of the data-FIFO, data-causal, and data-total orderings. For
these data-oriented orderings, we consider N data items z;,xs,...xxy. A message pertains
to one or more data items. The type of a message is the subset of the data items to
which the message pertains. Two messages conflict if the messages pertain to at least one
common data item. The data-oriented order classes are defined as the relaxed incidental
order classes of Section 2.2 with the function type and relation C'on defined as described,
where type(m) C {z1, %o, ...z}, and type(m) Con type(m') iff type(m) N type(m') # (.

The protocols described for each of the three classes are intended to illustrate the ordering
aspect. Although the message type is described using data items, it is more general. For
example, the messages could pertain to particular operations, and as long as the conflict
relation of the operations can be capture using the C'on relation we described, our protocols
are valid. Also, note that for simplicity, we use broadcasts even though our approach is
applicable to multicasts as well.

3.2.1 Data FIFO

We assume there are K processes pq, po,...px and there are N data items xq, o, ...z xy. Mes-
sage type b is an N-bit binary number b = b;...by where bit b; = 1 iff the message references
data item x;. At a given site ¢ we define sequence numbers for the local state as follows.
There are N sender sequence numbers, one for each data item, denoted by s; where j iden-
tifies the data item. Also, there are N x K receiver sequence numbers, one for each process
and data item, denoted r;;, where j is the process and £ is the data item.

Sending a message m of type b = by...by at process p;:
Store the type b in the message header.
Store each sequence number s; where b; = 1.
Increment each s; where b; = 1.
Send the message.

Delivering a message m of type b = b;...by at site p;:
Let v be a vector of N sequence numbers.
For each j where b; =1,
set v; to the sender sequence number stored in message m.
If for all _] where bj = 1, tj =Tij
then
deliver m
increment r;; where b; = 1
else
delay m until condition true.

3.2.2 Data Causal

The protocol for data-causal is a simple modification of the vector clock approach (see
[22, 8, 2]). Again, we assume K processes, N data items, and an N-bit binary number for
the data type. The idea is to maintain at each site, N vectors (one for each data item), where
each vector is of length K (one integer element for each process). We denote the vector by
v;; where ¢ refers to the process and j refers to the data item. The procedures for sending
and delivering of messages are as follows.

Sending a message m of type b = b;...by at process p;:
For each j where b; =1
Increment v;;.
Store the vector v in the message header.
Store the process number 7 in the message header.
Store the message type b in the message header.
Send the message.

Receiving a message m of type b = b;...by at process p;:
Set w to the vector stored in the message.
Set j to the sender process number from the message.
If for all k& where by =1,
(wix =vig + 1) and (for all j # 4, wjx < vj))
then
deliver m
else
m must be delayed until condition is true.

3.2.3 Data Total

A protocol similar to data-FIFO may be used to implement data-total — the only difference
being that the sender sequence number must be a global sequence value. A way to do this is
to have a token site px be the designated sequencer for all messages. When a process needs
to broadcast a message, it first sends the message to process pg, and then p, broadcasts
the message in data-FIFO order to the other processes. In effect, many of the the available
protocols for Total ordering may be modified in a manner similar to our modification for
data-FIFO and data-causal (e.g., by using a separate timestamp for each data item) to obtain
data-total ordering.

There is even greater opportunity for improvement for the total ordering protocols con-
sidering that the sequencing can be distributed, e.g., for protocols that use a token holder,
we can have a different token for each message class, and the tokens can reside at different
sites. Total ordering protocols that distribute the sequencing must be carefully constructed
to avoid deadlock situations. In this regard, there are many possibilities for relaxed total
order protocols, the exploration of which is beyond the scope of this paper.

3.3 Properties of Protocols

Our protocols as described here have several useful properties. Soundness and completeness
are w.r.t. a given ordering class, and all our protocols are sound since the allow only a subset
of histories of the given class. A protocol is complete if it allows every history in the given
order class. Completeness is pertinent with regard to allowing a greater number of realizable
orderings. A protocol is non-blocking if it avoids deadlocks (i.e., it never reaches a state in
which a message cannot be delivered without violating correctness).

Our data-oriented protocols are sound since they do not allow a cycle in the precedence
graphs. Our data-oriented protocols are also complete (i.e., they allow all histories within
the given order class). This is seen by considering any history H in the class and noting
that it would have an acyclic PG(H), and we can select timestamps which follow both the
precedence in PG(H) and the rules of the protocol. Furthermore, the protocols we provide
are trivially non-blocking since, by incorporating appropriate conditions for progress, we can
preclude indefinite waits.

Qualitative metrics of efficiency include the completeness and non-blocking criteria men-
tioned above. In addition, the relaxed ordering classes also imply that the protocols allow a
greater degree of concurrent execution (see [18]) — as argued for transaction systems.

4 Protocols for More General Conflicts

It is desirable to provide an efficient protocol for any arbitrary C'on relation to accommodate
ad hoc message conflict relations derived from application requirements. In our work, we
only consider cases where the C'on relation is symmetric, since we assume the existence of
this property for the definition of commutativity of events and conflict equivalence. Though
we argue that it is possible to devise a protocol which is sound and complete for arbitrary
symmetric C'on relations, there are some difficulties for these as discussed below. We present
sound and complete protocols for Con relations which are symmetric and reflexive, and
discuss how the same technique leads to sound (but not necessarily complete) protocols for
arbitrary Con relations.

4.1 Symmetric and Reflexive Message Conflicts

We consider protocols which will ensure relaxed FIFO, relaxed causal, and relaxed total for
any arbitrary Con relation which is symmetric and reflexive. We use a particular conflict
relation AndCony for which we have protocols, in fact, the data-oriented protocols of Sec-
tion 3.2. Then, given any arbitrary symmetric and reflexive relation C'on, we describe how to
map the message types to the elements of AndCony such that the relations are equivalent.
With the new mapping in place, we can use the protocols for the AndCony relation (i.e., the
data-oriented protocols). Finally, we illustrate how the mapping is done using an example.

Define AndCony as a relation on N-bit binary numbers, where two numbers are re-
lated if there is at least one position where both numbers have a digit equal to 1 (i.e.,

AndCony={(b,0') : b AND & # 0 }). For AndCony, we can directly apply the data-
oriented protocols described in Section 3.2.

We map the given message types (i.e., the range values of type) to binary numbers such
that the relation C'on is equivalent to the relation AndCony. Let G be an undirected graph
where the nodes are the range values of type, and the edges are defined by the relation
Con such that there is an undirected edge between v and v iff (v,v") € Con (i.e., implies
(v',v) € Con). Find a set of cliques in G, cliques, cliques, ...cliquey, which cover all the
edges in G, (in the worst case, the cliques would correspond to the edges themselves). Now,
for each node v (which corresponds to a message type) in G, define a function btype which
maps nodes to k-bit binary numbers such that btype(v) = b;...b, and b; = 1 iff v is in clique;.
Now, with the relation AndCony where N = k, and the types of messages defined as a
composition btype o type, the relations are equivalent. That is, for any two messages m and
m', ((type(m), type(m')) € Con iff (btype(type(m)), btype(type(m')) € AndCony), which we
prove as follows.

Proof:
(=)
Assume (type(m), type(m’)) € Con.
Let v = type(m) and v' = type(m').
Then G has an undirected edge between v and v'.
There is a clique, say clique;, which includes v and v’ to cover this edge.
The 3™ bit of both btype(v) and btype(v') is 1, and therefore
(btype(v) AND btype(v') # 0), implying
(btype(v), btype(v')) € AndCony.

(<)

Assume (btype(type(m)), btype(type(m'))) € AndCony.

Let v = type(m) and v' = type(m’).

By AndCony definition, (btype(v) AND btype(v') # 0).

btype(v) and btype(v') have at least one common bit, say the 7™ bit, which is 1.
By the mapping definition, v and v' are both in cligue;, implying

G has an undirected edge between v and v'.

Therefore, (v,v") € Con.

Therefore, by using the type function btype o type, we can directly apply the protocols from
Section 3.2 to any arbitrary symmetric and reflexive C'on relation.

In Figure 1 we show a simple example for mapping the message types of the given Con
relation to the binary numbers of the AndCony relation. The Con relation is represented
by the undirected graph (for simplicity, we do not show the reflexive edges). The graph
consists of five message types (numbered 1-5) and five edges. All five edges can be covered
with three cliques (as shown encircled by dotted lines) which are labeled 100, 010, and 001.
As shown in the figure, each of the five message types is mapped to a new type; a binary
number constructed by setting a bit for each clique that the message type is in. For example,

10

— 110
— 011
010
— 100
—= 001

ga b~ WON B

Figure 1: Mapping message types of symmetric, reflexive conflicts for data-oriented protocols.

type 1 is in cliques labeled 100 and 010, so the new type becomes 110. Now, the AndCons
relation, along with the new types, will lead to the expected message conflicts, as shown to
the right in the figure.

4.2 Symmetric Message Conflicts

We can provide sound protocols for any arbitrary Con relation. This is done by using the
same technique presented in Section 4.1. We use the given Con relation to form a new
relation C'ong, by adding appropriate additional relationships to make C'ong, symmetric and
reflexive. Then, we apply the mapping technique from Section 4.1, and finally, we use an
appropriate data-oriented protocol. Such a protocol will be correct since it ensures a strict
subset of histories defined by the conflict class of Con (since Cong, covers all the edges of
Con).

Although we believe that protocols which are sound and complete exist in principle for
arbitrary symmetric message conflict C'on relations, the existence of practical protocols is not
evident. In the following we describe a protocol for relaxed causal ordering with symmetric
message conflict relations, and argue for its correctness. The key idea of the relaxed causal
ordering protocol is to make the causal ordering protocol cognizant of the conflict relations.
Now, causal delivery can be effected, in principle, by piggy-backing on each message the
causal history of that message [28]. To ensure relaxed causal ordering, the delivery of a
message is delayed only if a message in its causal history has not been delivered (i.e., causal
ordering) and the receive events at that site for the two messages conflict. The argument
to show that this protocol results in an acyclic PG is similar to the case for FIFO: Assume
to the contrary there is a cycle m; Ly my 22 m, where gsend;(m;) — gsend;(ms) and
revg(mq, i) — revg(ms, j). The protocol would not allow receives processed in this order,
and rcvg(my,i) would be delayed until after rcvg(ms,j). Therefore, the protocol would
ensure an acyclic PG.

Providing sound and complete protocols for general symmetric message conflict relations
can be regarded as being similar to serializability graph testing (see [3]) for database trans-
actions. In our case, we test the precedence graph, where a message is delivered only if it

11

does not create a cycle in the precedence graph. The shortcoming with such an approach
is that it incurs significant overhead as it is necessary to exchange histories, and possibly
conflict information, which may be quite large.

5 Conclusions

Our previously reported framework [18] is useful for unifying two widely used models for
distributed computing: process groups and transactions. Our framework allows us to con-
sider new classes of message event histories based on relaxed ordering semantics, and in this
paper, we described the associated multicast delivery protocols. Our protocols are sound
and complete for a variety of conflict relations. Furthermore, we provided protocols the re-
laxed orderings with fairly general conflict relations to accommodate semantics which could
be derived from the applications. We demonstrated how the protocols achieve the required
correctness criteria and discussed how they may lead to improved performance.

References

[1] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Membership Algorithms for Multicast Commu-
nication Groups. In Proc. 6th Intl. Workshop on Distributed Algorithms (WDAG-6), (LNCS
647), pages 292-312, Haifa, Israel, November 1992.

[2] O. Babaoglu and K. Marzullo. Distributed Systems, chapter Consistent Global States of Dis-
tributed Systems: Fundamental Concepts and Mechanisms. Addison-Wesley, 1993.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading, MA, 1987.

[4] K. Birman. A Response to Cheriton and Skeen’s Criticism of Causal and Totally Ordered
Communication. ACM Operating System Review, 28(1):11-21, January 1994.

[5] K. P. Birman. The Process Group Approach to Reliable Distributed Computing. Comm. of
the ACM, 36(12):37-53, December 1993.

[6] K. P. Birman and T. A. Joseph. Low-Cost Management of Replicated Data in Fault-Tolerant
Distributed Systems. ACM Trans. on Computer Systems, 4(1):54-70, February 1986.

[7] K. P. Birman and T. A. Joseph. Reliable Communication in the Presence of Failures. ACM
Trans. on Computer Systems, 5(1):47-76, February 1987.

[8] K.P.Birman, A. Schiper, and P. Stephenson. Lightweight Causal and Atomic Group Multicast.
ACM Trans. on Computer Systems, 9(3):272-314, August 1991.

[9] D. R. Cheriton and D. Skeen. Understanding the Limitations of Causally and Totally Ordered
Communication. In Proc. of the 14th ACM Symp. on Operating Systems Principles, pages
44-57, Asheville, NC, December 1993.

[10] D. R. Cheriton and W. Zwaenepoel. Distributed Process Groups in the V Kernel. ACM Trans.
on Computer Systems, 3(2):77-107, May 1985.

12

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

F. Cristian. Reaching Agreement on Processor Group Membership in Synchronous Distributed
Systems. Distributed Computing, 4:175-187, 1991.

A. K. Elmagarmid. Database Transaction Models for Advanced Applications. Morgan Kauf-
mann Publishers, Inc., San Mateo, CA, 1992.

S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A Reliable Multicast Framework
for Light-weight Sessions and Application Level Framing. In Proc. of the ACM SIGCOMM
Symp., pages 342-356, Cambridge, MA, August 1995.

A. Gopal, R. Strong, S. Toueg, and F. Cristian. Early-Delivery Atomic Broadcast. In Proc. of
the 9th. Annual Symp. on Principles of Distributed Computing, pages 297-310, Quebec City,
Quebec, 1990.

F. Jahanian, S. Fakhouri, and R. Rajkumar. Processor Group Membership Protocols: Specifi-
cation, Design, and Implementation. In Proc. of Symposium on Reliable Distributed Systems,
Princeton, NJ, October 1993.

S. Jajodia and L. Kerschberg. Advanced Transaction Models and Architectures. Kluwer Aca-
demic Publishers, Norwell, MA, 1997.

P. Jensen and N. Soparkar. Real-time concurrency control in groupware. In Proceedings of the
Engineering Systems Design and Analysis Conference, Montpellier, France, July 1996. Also
available as: Tech. Report: CSE-TR-265-95 from The University of Michigan, EECS Dept.
Ann Arbor, MI, USA.

P. Jensen, N. Soparkar, and A. Mathur. Characterizing multicast orderings using concurrency
control theory. In Proceedings of the 17th International Conference on Distributed Computing
Systems, Baltimore, Maryland, May 1997.

P. Jensen, N. Soparkar, and M. Tayara. Towards Distributed Real-Time Concurrency and
Coordination Control. In Advanced Transaction Models and Architectures, chapter 12. Kluwer
Academic, 1997.

R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing High Availability Using Lazy
Replication. ACM Trans. on Computer Systems, 10(4):360-391, November 1992.

L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Comm. of
the ACM, 21(7):558-565, July 1978.

F. Mattern. Virtual Time and Global States of Distributed Systems. In Proc. of the Intl.
Workshop on Parallel and Distributed Algorithms, pages 215-226, Gers, France, October 1988.

S. Mishra, L. L. Peterson, and R. D. Schlichting. Implementing Fault-Tolerant Replicated
Objects Using Psync. In Proc. of IEEE 8th. Symp. on Reliable Distributed Systems, pages
42-52, Seattle, WA, October 1989.

L. Moser, P. Melliar-Smith, D. Agarwal, R. Budhia, and C. Lingley-Papadopoulos. Totem: A
fault-tolerant multicast group communication system. Communications of the ACM, 39(4):54—
63, April 1996.

13

[25]

[26]

[27]

[28]

[29]

[30]

[31]

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-To-End Arguments in System Design. ACM
Trans. on Computer Systems, 2(4):277-288, November 1984.

A. Schiper and A. Sandoz. Uniform Reliable Multicast in a Virtually Synchronous Environ-
ment. In Proc. of the 13th. Intl. Conf. on Distributed Computing Systems, Pittsburgh, PA,
1993.

F. B. Schneider. Implementing Fault-Tolerant Services using the State-Machine Approach.
ACM Computing Surveys, 22, December 1990.

R. Schwarz and F. Mattern. Detecting causal relationships in distributed computations: in
search of the holy grail. Distributed Computing, 7:149-174, 1994.

R. van Renesse, K. Birman, and S. Maffeis. Horus: A flexible group communication system.
Communications of the ACM, 39(4):76-83, April 1996.

C. Wallace, P. Jensen, and N. Soparkar. Supervisory control in workflow scheduling. In
Proceedings of the Int’l Workshop on Advanced Transaction Models and Architectures, Goa,
India, August 1996.

U. G. Wilhelm and A. Schiper. A Hierarchy of Totally Ordered Multicasts. In Proceedings
of the IEEE Intl. Symposium on Reliable Distributed Systems (SRDS-14), Bad Neuenahr,
Germany, September 1995.

14

