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Abstract

We address the problem of controlling large distributed robotic systems such as factories. We intro-
duce tools which help us to compose local, hybrid control programs for a class of distributed robotic
systems, assuming a palette of controllers for individual tasks is already constructed. These tools,
which combine backchaining behaviors with Petri Nets, expand on successful work in sequential
composition of robot behaviors. We apply these ideas to the design of a robotic bucket brigade and
to simple, distributed assembly tasks.
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1 Introduction

One of the basic limitations in engineering systems is our rudimentary understanding of large
scale, complicated, engineered systems such as factories. We do have tools, in control theory for
example, for constructing elegant and precise components which react with their environments in
simple and provably correct ways, and we also have tools for compiling gigantic logical systems,
such as computer operating systems or central processing units. We currently only have a limited
understanding of how to compose situated systems, such as robots and other objects, which sense
and actuate in the real world directly, with each other into more complicated systems. With such
compositional tools we could, in principle, synthesize quite complicated, yet completely understood,
dynamic systems from simple systems. The systems in which we will be particularly interested in
this paper are automated factories.

Many simulation based design tools exist so that factories can be designed with as little re-
configuration in hardware as possible. The idea is that the factory designer can design and test a
virtual factory in software and hopefully discover and solve problems in candidate designs before
beginning the costly process of putting together an actual factory, with robots, conveyer belts,
power and control cables, and other supporting hardware. In general, the cost of fixing a design
flaw is much greater once the factory has been built than before it was constructed. However, the
cost of designing the layout of the factory, the logic and control of its robots, and communication
and coordination procedures between components, remains almost as high. This is because the pro-
cess of translating the formal specification of the product, in terms of its geometry and assembly
procedures, into a factory which assembles the product remains a craft practiced only by experts
in factory layout and control software programming and lacks a complete set of formal methods for
designing factories as well as verifying factory designs. These problems have been noted in other
systems as well:

Hand coding functions for maintaining the system’s internals traditionally requires the
programmer to reason through system wide interactions, along lengthy paths between
the sensors, control processor and control actuators. This reasoning requires think-
ing about the behavior of a hybrid system, composed of complex real-time software
constructs, distributed digital hardware and continuous physical processes.

— Brian C. Williams, [30]

Thus, the problem of automating this process is difficult and poorly understood, and the tasks
of designing factories and of reconfiguring factories to accommodate product changes are slow. A
higher cost of getting a product to market, and more importantly a longer time to market, is the
main effect of this lack of automation.

We would like to be able to understand more completely, in order to further automate the factory
design process, is a theory of distributed, modular control of robotic systems. Such a theory must
include elements of logical control, continuous control, communication and concurrency issues, and



a compositional semantics for factory components blended in a way that facilitates the automatic
synthesis of factory designs — from layout to control — from the most basic description of the
product as possible. We view the synthesis procedure as a sort of compilation of a factory from
a syntactic description of the product via an assembly graph. This requires a solid foundation in
composing factory components — actually, controlled hybrid dynamic systems — that respects the
common needs of factory design including: decentralized control, modularity, resistance against
disturbances both physical and logical, and of course speed and efficiency.

Of course, a completely automatic factory synthesis procedure is a long way off. In order to
simplify these basic steps toward our goal, we abstract away to more fundamental research prob-
lems. Essentially, the question is this: What are the fundamental tools for compiling distributed,
concurrent processes (factories) from syntactic representations of processes (product descriptions)?
Or, said another way, how can we construct cooperative systems of robots to perform tasks which
have been represented syntactically? Such tools must be concise, formal, provably correct, compo-
sitional, and scalable. The resulting distributed process must be correct and robust.

We address the problems of concurrency and composition of behaviors in this paper by intro-
ducing a formalism which subsumes the work in sequential composition. We define a way in which
simple Petri Nets can contain a more general form backchaining robot behaviors. We call the
resulting nets Threaded Petri Nets, or TPNs. We also describe a simple net composition method
which lends itself well to the kinds of decentralized assembly tasks encountered in manufactur-
ing systems. This method allows us to compose many single robot programs into decentralized,
concurrent programs for groups of robots that are guaranteed not to deadlock. Finally, we give
several increasingly complicated examples of how this formalism may be used to automatically
construct provably correct distributed robotic systems: a robot bucket brigade, a simple assembly
arrangement, and the beginnings of a factory compiler.

1.1 Overview

In Section 2 we discuss the context of this research and related work. In Section 3, we introduce
our method of composing simple Petri Net cycles, called gears, into a class of Petri Nets called gear
nets. Gears represent single robot behaviors, and gear nets represent the safe composition of many
robot behaviors. We prove that our composition method produces live Petri Nets. In Section 4,
we add to the Petri Net a way to keep track of certain sequential components which correspond to
the actions of robots and the paths of parts in a distributed manipulation setting. In Section 5 we
present two examples of how our formalism can be used to model certain simple arrangements of
robots. Then, in Section 6, we show how we can build a compiler which synthesizes simple “toy”
factories, from product assembly descriptions, which we can prove correct using these tools.

We also include two appendices. In the first, we review some basic notions from control theory.
In the second we provide the basic definitions pertaining to Petri Nets and partial order theory.
The latter appendix is recommended reading even for those with experience in Petri Nets because
of a slight deviance from the usual notation.
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Figure 1: (a) A product assembly graph. (b) A work flow graph where the two lowest mate
operations have been identified and the glue operation has been parallelized.

2 Background and Related Work

In this section we review research related to synthesizing factories and we present, briefly, some of
the foundations upon which the present work is built.

2.1 The Product Assembly Graph

The product assembly graph, or PAG, is the starting point of our problem. Every product has a PAG
which encodes how the product is put together. The PAG for a product is actually a tree. The root
node represents the assembled product, the leaves represent the raw materials, or atomic parts, and
nodes represent operations on subassemblies which produce compound subassemblies. See Figure
1(a) for an example. A closely related concept is the work flow graph, WFG, which encodes more
details about the methods involved in assembling the product. In a WFG, for example, we may
specify that some operation be done in parallel, if it is a lengthy operation. Figure 1(b) shows a
WEFG obtained from the PAG in in Figure 1(a). In general, the WFG is obtained after careful
examination of existing manufacturing methods and subsequent optimizations of the methods. In
Section 6, we will discuss how some aspects of the process of optimizing a PAG to obtain a WFG
are automated in our formalism.

Programs such as Archimedes [12] exist which take as input a CAD description of a product
and produce a PAG for the product. Most of these algorithms operate by virtually disassembling
the product, removing the easiest to remove piece first, to obtain an assembly tree. Information
about the trajectory of the subassemblies is noted, so that it may be used to construct motion
controllers later, by careful attention to the geometry of the product. Beyond that, work by



Wilson, [31], annotates the PAG with information about what tools to use and how they should
be controlled, thereby bringing the PAG one step closer to being directly usable by the factory
designer. Many other research groups have contributed various optimizations and augmentations
of the basic algorithms to this field. The general focus, it seems, has been to provide feedback
to the designer of the product about how design changes might lead to manufacturing changes —
information that is very important to the marketability of the product. Less research has been done
on translating the PAG, or the WI'G, directly into a layout and program for a factory, although the
STAAT program [28] produces elementary conveyer belt layouts, for instance. Some researchers
have programmed workcells (six degree of freedom robot arms, for example), that can interpret
some PAGs as programs for assembling the product. These workcells are slow and impractical
at present, however, and more importantly, they do not take advantage of the distributed and
parallel nature of assembly. A notable step in the direction of concurrency is the thesis of Bruce
Romney, [27], in which assembly and fixturing (holding the subassembly in place), are considered as
concurrent activities and planned for accordingly. In most implementations, however, a topological
sort of the PAG is used to choose a linear sequence of assembly steps implying a purely sequential
assembly process. In contrast, we will see that the larger, distributed robotic systems available to
us will allow us to take advantage of the parallel nature of the assembly graph.

Another approach to synthesizing assembly controllers is given in [16]. For simple situations,
there is an automatic method for constructing a control law which guides a single robot to assemble a
product from its parts based on the notion of an artificial energy landscape wherein the configuration
of least energy is the one in which the product is assembled. It is not at all obvious how this
method can be extended to three dimensional systems with orientable parts. In this paper we take
the view that the product assembly graph (PAG) of a product corresponds to a sort of discrete and
parallelized version of such a potential function. The individual steps of the assembly — the nodes
in the assembly graph — may be given by artificial potential field controllers, but the overall logic
of the assembly is given by the PAG. This allows us to use multiple robots, more like what might
be seen in a high volume factory setting.

In this paper we introduce a method for annotating the PAG, as though it were a parse tree,
with many sequential processes. Then we will compose the processes according to the structure of
the tree to produce a concurrent process which may be directly interpreted as a description of a
complete working factory. We intend that this representation of the product be used directly to
construct a factory thereby bypassing the time consuming process of programming the individual
robots in the factory.

2.2 Petri Nets

One of the most basic tools for analyzing and designing factories, and in general specifying concur-
rent systems, has been the Petri Net. A good introduction is the book by Wolfgang Reisig, [23]. A
summary of the essential definitions can also be found in Appendix II of this paper. Petri Nets are
used to model everything from parallel processing computers and distributed systems to baroque
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Figure 2: (a) An example of a Petri Net with tokens representing a marking. (b) A possible next
marking.

style counterpoint, and the literature on the subject is vast. Furthermore, there are many types of
Petri Net, seemingly one for every field to which they have been applied. We will limit ourselves
to a very simple kind of Petri Net, the condition/event net, which has been studied extensively, as
well as a subclass of these nets called marked graphs. We will augment the interpretation of a state
(or marking) of a net with information about the continuous dynamics of the factory. In particular,
when a condition holds in a run of our nets, we will take that to mean that some subset of the
robots in the corresponding factory is functioning under a certain controller corresponding to the
condition. An example of a condition/event net is shown in Figure 2.

We introduce the most basic definitions in this section and refer the reader to Appendix II for
a slightly more detailed introduction. A simple Petri Net (or Condition/Event Net) is a graph
consisting of conditions (or places), which are represented by circles, and events (or transitions),
which are represented by squares. There may be a directed edge only between a condition and an
event or between an event and a condition. A marking is a set of conditions that are said to hold
during that marking. A marking thus gives the state of the system. A transition may fire in some
marking if the conditions before it are represented in the marking and the conditions after it are
not. The result is a new marking where the conditions before the transition are removed and the
conditions after it are added to the marking. Figure 2 shows an example of this process.

We adopt a somewhat unconventional notation for Petri Nets which we believe is slightly more
concise for our purposes. To the best of our knowledge this notation is introduced in [11]. A Petri
Net is given by a pair (T, P) where T is a finite set of transitions and P C 27 x 2T is the set of places
of the net. A place is thus represented by the transitions that come before it and the transitions
that come after it. We write [ay, ..., a; b1, ...,b;] € P to denote that {{a1, ..., a;}, {b1,...,b;}} € P.
In the case that all places are of the form [a;b], the net can be viewed simply as a graph where the
transitions are nodes. Such a structure is called a marked graph and is studied in [7]. We will use
some of what is known about marked graphs in Section 3 where we develop a class of Petri Nets
which are composed of cycles, which we call gears.

Much of the research in Petri Nets is about analyzing nets to determine if they are live (every



transition can eventually fire) and safe (no undesirable marking is reached). In contrast, we are
concerned with building nets up from simple, sequential components, so that the resulting nets are
guaranteed to have certain properties such as safety and liveness. People who have looked into
composing Petri Nets are Kindler, [15] and Park et al., [21]. Kindler’s work focuses on ensuring
that the operational semantics of the components of a net compose as the nets do. Park et al.
synthesize marked graphs for factories from sequential function charts. Our compositional method
is also quite similar to those found in work on bottom-up synthesis of Petri Nets, especially [17]
where simple Petri Nets are combined along paths and invariants of the resulting net are obtained
from the constituent nets.

2.3 Distributed Manipulation and Cooperative Robotics

The manipulation of an object by more than one robot is an aspect of the fields of distributed
manipulation and cooperative robotics. In distributed parts manipulation the emphasis tends to
be on large numbers of simple, and usually tiny, actuators, such as MEMS ciliary structures [29] or
air jets [3]. The programming of these arrays is usually done with programmable force fields [13]
where each actuator in a rectangular array is assigned a direction to “push” so that the resulting
array of directions has an equilibrium point in some desired place. Although the emphasis here
is on parts feeding and not on assembly, the work is headed in that direction. Switching between
force fields in a controlled manner and concurrent control will need to be addressed eventually.

In cooperative robotics, the emphasis is on coordinating the behaviors of a small number of large
robots such as mobile robots, or robot arms. Many researchers have investigated this area and we
will mention only a few. Khatib and his group at Stanford, for example, have developed techniques
for controlling pairs of mobile robots equipped with robotic arms in the context of manipulating
and carrying objects [14]. The emphasis is on the dynamics of manipulation and stability. Another
interesting line of research is reported in [18] where the authors do on-line control of two robot
arms in a shared workspace. The arms must avoid each other and obstacles while removing parts
from a conveyer belt. In this paper two types of deadlock are considered — so called computational
deadlock (which we will call logical) and physical deadlock. Logical deadlock occurs when one robot
is waiting for another which is waiting for another and so on some cycle of mutual waiting and
is akin the the kind of deadlock which can occur in an operating system environment. Physical
deadlock occurs when a robot or subassembly are physically oriented in such a way that some other
robot can not proceed with its task. Of course, if the physical space of the factory is correctly
modeled, physical deadlock is really just another kind of logical deadlock wherein physical spaces
are considered shared resources. The emphasis in [18] is on coordinating high level plans, however,
as it is in much research on coordinated robotics. In the present research, however, we consider
the bottom up synthesis of simple behaviors into an already coordinated, reactive, concurrent set
of behaviors for the robots involved.

We will require the coordinated behavior of many robots as they go about the task of assembling
products. Since communication and computational resources are at a premium in manufacturing



settings, our robots will have to switch between partner robots so that control remains local. The
local control of small groups along with the switching between groups must be done in such a way
as to ensure that the system is live and that the product assembly processes are maintained.

2.4 Control Theory

In our formalism, robots will operate under continuous feedback control with discrete switching
between control functions. In fact, we assume that the low level controllers for the devices we use
exist already: our focus will be on switching among controllers taken from an already constructed
palette of controllers.

The simplest way to specify the dynamics of a robot is with the formula

i:f(‘r?u)

where z : R — (' is the state of the robot, C' is the set of states the robot may take, @ is its rate of
change (i.e. fl—“]f) and u is the control input. In reactive control, u is a function of = and so the robot
must know its own state via sensors of some kind. Thus, the formula says that the change in z is
a function of the state z and the controllable input «. When a robot with state z is cooperating

with with another robot with state y, we have a system like

(#,9) = fz,y, us, uy)

where u;, a function of z and y, is the input controllable by the first robot and u,, also a function
of x and y, is the input controllable by the second robot. In such a system, obviously, there must
be some way for each robot to estimate the state of the other robot. We will provide for this kind
of state sharing with an ideal communications link between the robots and an ideal sensor system
and we will not consider the problem of state estimation in this paper. In the obvious way, this
may be extended to the case of any number of robots and any other nonactive objects. Sometimes,
to simplify matters, we consider the case where f(z,u) = u. In the appendix, we elaborate on these
definitions and present other fundamental definitions of the field of dynamic systems and control.

In a factory situation especially, robots must switch between different controls (e.g. different
fucntions u of z). Discrete switching between continuous dynamics fall under the general field of
hybrid control. There are several formalisms for hybrid control systems. Here we will review one
of the most common and then explain how the present research relates to it. A Hybrid Automaton,
introduced in [1], is a discrete graph with information about continuous dynamics attached to the
nodes and edges. Essentailly, to each node v a predicate on the state variable, such as z < 1 is
given and an equation for the rate of change, such as @ = z 4+ 1 is given. If the discrete state of
the system is v, then as long as the predicate for v is true, then & will correspond to the equation
for v. As soon as the predicate on z is false, the state changes to a neighbor of v in the graph
whose predicate is true for z. In this manner, a piecewise continuous trajectory of the system can
be given and some analysis can be done. Systems such as thermostats and train crossing gates are



specified and proved correct, in [10] for example, by combining the above with model theory and
modal logic.

In our formalism, we will also be concerned with discrete modes of control — the dynamics in
different modes only changes because u changes. Essentially, we will consider a mode to be given by
a goal, or attracting equilibrium point (z,04; such that f(z 041, 2) = 0) and a domain of attraction,
that is, the set of all states for which u eventually drives the system to z,,,;. We denote by G and
D the goal set (usually a small open set around the goal point) and the domain of a controller.
These notions are described formally in Appendix I. In Section 5.1 we will give a simple example of
how such controllers can be designed. Once the control modes are designed, modes may be strung
together in such a way that the goal of one controller is in the domain of the next, as in [6] where
different juggling behaviors are composed. One of the contributions of the present paper is the
extension of this idea of backchaining controllers to concurrent systems.

2.5 Compositional Control

Preimage backchaining was introduced into the motion planning literature in [19] as a method
of sequentially composing motion strategies. In [5] this method was extended to robot juggling
in work that serves as the basis of our current research. The idea is to start with a palette of
controllers @4, ..., ®, for a robot. Suppose ®; has domain Dy and goal G. Order the palette by
setting ®; > ®; (read ®; prepares ®;) whenever §; C D;. If the palette is suitably designed, then
a switching strategy may be obtained which drives the robot to a goal from any initial condition
in (J_; D;. In the work on juggling, this technique was used to switch between catching, juggling,
palming and tossing behaviors, resulting in a quite sophisticated overall behavior. In this paper
we expand these ideas to include the notion of concurrent composition of behaviors for the case of
several robots in a shared workspace.

One quality we would like our factory to have is smoothness of motion. We recognize that
humans perform tasks with a fluidity that roboticists can only poorly approximate. We believe
that the road to building such robots is paved with a theory of composing control laws or more
generally, dynamic systems in various ways. We have already discussed the sequential composition,
but this is just the beginning. More elusive is the parallel composition of controllers of coupled
systems. In the present paper, we consider loosely coupled systems and discrete composition.
Although, we do not claim to have a theory of dynamic, smooth concurrent systems, we do believe
that we are headed in that direction. In this section, we will review the important thread of research
in robot juggling.

In [4], Biihler and Koditschek present a 2-dimensional juggling robot: a 1 degree of freedom
arm leaned against a wall capeable of bouncing a ball repeatedly to some specified height. They
also experimented with two balls at once. Later Rizzi and Koditschek built a three degree of
freedom arm capable of bouncing a ball in three dimensions, [26]. As if this wasn’t enough, Rizzi
then expanded this work to control two balls at once, [25]. To accopmplish this, Rizzi essentially
combined two copies of a one ball juggle in parallel using notions of urgency and ball phase to



control the two balls so that they (1) did not hit each other and (2) were attracted toward being
180° out of phase. Although the juggler proved to be experimentally sound with this task, a
theoretical treatment remains elusive.

To explain the relavance of the research just described, consder the following situation. Suppose
we have two robots, say C7 and C3 which carry subassemblies from place to place in a factory and
that we have a third robot G whose job it is to put some glue on any subassembly brought to it
by Cy or C5. Since Cy and C5 have other things to do as well, the strategy for G is to attempt to
never keep either C'y or Cy waiting. We propose that to do this, it must “juggle” between the task
of servicing €'y and C;. We belive that the present research is the discrete version of this problem.

2.6 The Minifactory

Finally we review what has actually been the inspiration for the present research all along. At
the Microdynamic Systems Laboratory at Carnegie Mellon University, a modular, reconfigurable
robotic factory system, called the Minifactory, is being developed, [20], [22], along with a consider-
able software support and simulation system, [9]. The Minifactory project is a collection of modular
robots and other components which, in theory at least, may be assembled quickly and programmed
almost as quickly into a factory which can assemble some small product, usually electronic and
very precisely specified. In practice, many of these details have yet to be worked out.

The main structure in a Minifactory is a set of platens which serve as the factory floor. On
the platens, robots called couriers float on bearings of air and move around in the factory with
subassemblies on their backs. These couriers are very precise and can navigate the platens to
within a micron’s accuracy. Mounted above the platens are various types of manipulators and
parts feeders which can insert parts and perform other simple operations on the subassemblies
being carried about by the couriers. FEach robot is controlled separately by its own computer
running a real time operating system and the computers are connected to each other in a sort of
parallel or distributed architecture by high speed ethernet switches, also provided by the minifactory
architecture. See IMigure 3 for a picture of an example minifactory. Note that the couriers replace
the conveyer belts in a traditional factory, allowing fewer restrictions on the paths of subassemblies
between manipulators.

The simulation software and programming environment for the Minifactory is called the Archi-
tecture for Agile Assembly, or AAA. AAA provides a fairly complete simulation of the factory and
lets the user easily reconfigure, move and edit the programs of robots within the factory. However,
at this point, the programming of robots is a difficult, time consuming process. It is based on an
object oriented communications system and factory reservation areas as shared objects. Fairly low
level knowledge of how the robots are controlled is needed to program them successfully. Current
work on AAA includes constructing a palette of controllers from which the programmer may choose
low level behaviors and on augmenting the simulation and user interface.

The minifactory idea poses many challenges. First of all, there is no general and formal method
by which concurrent robotic systems, which may block each other logically and physically as we
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Figure 3: A schematic of a part of a Minifactory taken from [22].

mentioned in Section 2.3, can be constructed. What is required is a provably correct means of
constructing robot programs so that the global behavior of the factory is ensured. Second, in order
for the Minifactory paradigm to be viable, a much simpler method of obtaining programs and
layouts for the robots in the factory, other than the creativity of the specialist, must be found.

3 Gear Nets

In this section we consider how to compose sequential Petri Net components, each representing the
behavior of a robot, in such a way that the resulting net represents the combined behavior of the
robots. Such a thing is called a compositional semantics. 1t requires an sort of standard interface
for combining nets in such a way that the semantics (what the net does) of the resulting net can be
obtained in exactly one way from the semantics of the components. Here we give a compositional
semantics for a very simple class of Petri Nets called gear nets, which are a kind of marked graph.
These simple nets form the basis for a more complete structure which we introduce in Section 4.
Gear nets only describe the discrete states of the robots involved in the factory and do not include
information about the state of any partially assembled products or about the low level dynamics
of the factory. First we describe gears, then gear nets and their relation to marked graphs, and
finally the properties of gear nets which allow us to compose gears.

The simplest thing a robot in a factory can do, besides remain idle, is to cycle repeatedly

11
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Figure 4: A gear corresponding to a simple, sequential program for a factory robot.

through some set of behaviors. A robot might, for example, (1) pick up a part at a parts feeder,
(2) bring the part to a station to be glued to another part, (3) take the result to a manipulator
to be added to some other subassembly and then start the sequence again. Thus our most basic
Petri Net component is a cycle, which we choose to call a gear, and which represents the sequential
program that a robot repeatedly executes during a run of a factory. Formally, we have

Definition 3.1 A k-gear is a net (T, P) where T = {to,...,tx—1} and P = {[t;;tix1] | 1 € Z/k}.
m C P is a legal marking for a k-gear if |m| = 1.

(Recall the definition of a Petri Net given in Appendix II). Figure 4 depicts a gear corresponding
to the example just given. The places of a gear correspond to the control mode of the robot.
Obviously, given an initial state (control mode), a gear has only one kind of process, namely a
linearly ordered one. We point this out with the following property and will make use of it later in
this section when we compose the processes of gears to obtain a concurrent process.

Property 3.1 Any process for a gear is totally ordered.

Notice that the control modes of the gear shown in Figure 4 tell only what the single robot in
question is doing while, in fact, the robot must coordinate with the controller of the glue station
and with the manipulator in order to function correctly. Thus, the program of the robot must be
synchronized with the programs of other robots. Of course, the programs of other robots are also
given by gears. What is needed is a means by which gears are composed, so that any control modes
that any robots must execute in synch with each other, are identified. Furthermore, it is important
that each robot involved in a control mode wait, before entering the mode, for the other robots
involved. With these constraints in mind, we are led to a definition of a gear net as the union of
gears. However, we must be careful. Not any union will do. One problem is that arbitrary unions
of cycles can introduce spurious cycles into the unions, possibly resulting in deadlock situations.
See Iligure 5 for an example of this. Therefore, our definition is more careful.
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Figure 5: A union of gears that is not a gear net.

Definition 3.2 A gear net is defined recursively:
1. A gear is a gear net.

2. If (T, P) is a gear net and (S,Q) is a gear then (T'US, PUQ) is a gear net as long as the
following conditions hold:

(a) Let (Th, P1), ..., (Tk, Px) be the set of gears in (T'US, PUQ) which intersect (S,Q). Then
ﬂle P; ={[a;b]} and ﬂle T; = {a,b} for some transitions a and b;

(b) there exists a transition ¢ € S — T such that [c;a] € Q.

A legal marking for a gear net is one in which each gear in the net is marked exactly once.

Since all places in a gear net are of the form [z; y], gear nets are a kind of marked graph. See Figure
6 for an example of the construction of a gear net in which the inductive nature of the definition is
illustrated. Note that a legal marking gives the state of every gear in the gear net. This corresponds
to the fact that each robot is in exactly one state in its program. Conditions (a) and (b) require
that gears be added with a “standard interface”. This ensures that the nets remain deadlock free.
Before we prove this, and also justify the added definition of legal marking, we point out some facts
about marked graphs noted in [7]. First, define a marking m to be live if there is a transition e
such that ®e C m. We have

1. If (S,Q) is a cycle in a marked graph and m —% m’ then |m N Q| = |m' N Q|. That is,
transition firing does not change the size of markings on cycles.

2. A marking m of a marked graph is live if and only |m N Q| > 0 for all directed cycles (5, Q)
in the graph.

3. If m is live and m —% m’, then m’ is live.
Next we prove that gear nets are live. To do so we need an auxiliary result which states that we

do not add spurious cycles as we build up gear nets in Definition 3.2.
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Figure 6: The iterative process of constructing a gear net from simple gears.

Proposition 3.1 If (T, P) and (S,Q) are as in Definition 3.2 and (S, Q") is a gear contained in
(T'US,PUQ), then either (S",Q") = (S,Q) or (5',Q’) is contained entirely within (T, P).

Proof: Suppose that (S’,Q’) is not contained entirely in (7, P). Then there is some transition in
(S,Q) that is also in (S, Q). Thus, the transition ¢ which is unique to (5, Q) and which precedes «
in the definition must be in (S’,Q’). Since a® = [a;b] (otherwise the definition fails), (', Q') must
contain the path ¢,a,b. Now, after b must come some transition in (5, ) since the cycle (5',Q’)
must return to ¢ which is unique to (S, Q). It follows that (S’,Q’) = (5,Q). O

Next we have our first main result, from which it follows that gear nets are deadlock free.
Proposition 3.2 Fvery gear net has a legal marking.

Proof: The result is obvious for simple gears. Note that by the previous proposition, we need only
consider the gears we add in the definition when we go to the inductive step. Now suppose that
(T, P) is a gear net which has a legal marking m and (S5, Q) is a gear for which the definition of
gear net holds. If mN@Q = 0, then take any p € Q — P. It follows that m U {p} is a legal marking
for (TUS, PUQ). Otherwise, m must mark (5, Q) exactly once, by condition (1) of the definition,
so m is a legal marking of (TUS,PUQ). O

These propositions, together with the facts about marked graphs that we presented, are enough to
show that gear nets are deadlock free. We know there is one legal marking for any gear net. By
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fact (1), legal markings lead to legal markings. Fact (2) gives us that gear nets are live under legal
markings. Thus, we have:

Theorem 3.1 (Liveness) Gear nets are deadlock free under legal markings.

The next Theorem says that gear nets are reversible. This means that any initial (legal) marking
we may choose is reachable via detached sets of events from any other legal marking. Formally, say
that for a Petri Net (7', P) and a marking m, define the set R(m) to be the set of all markings m’
such that there exists a sequence of markings mq, ..., my with mg = m and m; = m’ and a sequence
of detached sets of events (g, ..., G_1 such that

mo —Go Gk mpg .
Then we have

Theorem 3.2 (Reversibility) Given an initial marking mg of a gear net (T, P), mg € R(m) for
all legal markings m of (T, P).

Proof: We proceed by induction on the form of the gear net. Certainly a gear is reversable given
any initial marking. Now suppose that (7', P) and (5,@)) are as in the definition of gear net and
that mg is the initial (legal) marking of (7', P) U (S,Q). Then there are legal markings my, ..., my
of (T, P) and detached sets of events G, ..., Gx—1 such that

moN P —Go mi -GGk mr=mnN2~FP

for any marking m of (7, P) U (S,Q). That is, moN P € R(m N P). Now we can construct a
sequence from this sequence to show that mg € R(m). Suppose that p is the single place in mgN Q.
Add it to all markings m4 through m;, where GG; contains a (from the definition). If [c : a] (that is,
p # [c 1 a]) is not in m;, then we can find a sequence of transitions ¢y, ...,¢; € S to take ¢ to [c: a].
Then

m; U {p} =" ... =" m;U{[c:a]}

“patches up” the sequence. Further such adjustments to the rest of the sequence eventually lead
back to m. Thus, mg € R(m). O

Now that we have shown that gear nets are deadlock free and reversible, are we guaranteed that
factories so composed are correct? We are as far as the logic of the programs is concerned. However,
we will also need to consider the dynamics of the gear net (the processes they admit), so that we
can introduce parts lines later in Section 4. It turns out the the kind of processes (semantics) that
a gear net admits is directly related to the way the net was composed (syntax). In the rest of this
section we elaborate on this. In [15], Kindler presents a compositional semantics for Petri Nets
based on the idea that the semantics of a Petri Net is given by the set of closed (complete) processes
for that net. Here we present a less sophisticated idea enabled by the fact that our gear nets are

15



so simple. Noting the fact that each gear has a linear process — recall Property 3.1 — we simply
“glue” the processes for gears together in a way similar to the way we glued the gears themselves
together.

For course, before we can assert that we have a process for a gear net, we must be certain that
gear nets are contact free. This is given to us by the definition of a legal marking and by fact
(1): if a gear net were to admit contact under some marking m, then there would be a gear (5, Q)
|@ N'm| > 1, which is a contradiction.

Now, suppose we have a gear net (7, P) and a gear (5,()) such that (T"U S, PU Q) is a gear
net with intersection {a,b,[a;b]}. Say that (U, Ki,01) is a process for (T, P). Also say that
(Uz, Kq,03) is a process for (S,Q) with as many occurrences of [a;b] as (Uy, K1, 01) and minimal
element mapping to a place unique to (S,)). We assume these two processes are disjoint. Then
we can construct a process for (T'U S, PUQ) as follows.

Definition 3.3 For a process (U, K, o) and an element a € U UK, define the occurrence of a as

occ(a) ={bCa : a#bAo(b)=0c(a) }|

Definition 3.4 For any i,j € {1,2}, any « € U; UK;, and any b € U; U K;, say that a ~ b
whenever o;(a) = 0;(b) and occ(a) = occ(b).

We can then look at the equivalence classes of ~ as a process for (T'U S, PUQ). Formally, denote
by [z] the equivalence class of z with respect to ~. We construct a net (U, K, o) as follows

U = (Uuly)/ ~
K = {3 e{,2}Adac[z]nU;ATbe [y]NU,; Ala;b] € K}
o(la]) = oi(a)

where 7 in the definition of o is chosen such that a € U; U K;. U is just the set of equivalence
classes of ~ restricted to transitions. K is the set of all pairs from U which contain pairs in one of
the original processes. Finally, since o;(z) is the same for all z in any particular equivalence class,
we may simply choose one of the representatives from the class and use the o; that corresponds to
it for the whole class.

The rest of this section is devoted to proving that this is a process for (T"U S, PU Q). First we
have a property of the occurrence number of an element of a process.

Property 3.2 If (U, K, 0) is a process for a Petri Net (T, P) and [z;y] € K, then occ(z) < oce(y).

Proof: Let A={aCz|a#zAoc(a)=o0(z)}. Then occ(z) =|A|. If « € A and [a;b] € K, then
o(b) = o(y) since processes preserve the flow relation. Now, the set B = {b|Ja € A,[a;b] € K} is
the same size as A. We claim that occ(y) = |B| or |B| 4 1. If there is no b such that b © A A, then
B ' ={b|b#yAno(b) =0(y)} = B. Otherwise, B = BU{b} where b is the single element such
that b C A\ A. O

Next, we show that (U, K, o) is an occurrence net which amounts to showing it is acyclic.
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Lemma 3.1 If (U, K,0) is constructed from (Uy, K1,01) and (Uz, Kq,03) and ~ as above, then
(U, K,0) is an occurrence net.

Proof: That | *[p]| < 1 and |[p]*| < 1 is obvious from the definition of (U, K, ). We must prove
that (U, K, o) is acyclic, which we do by contradiction.

To that end, suppose that [tg], ..., [tx] are transitions forming a simple cycle. First we will show
that it must be the case that occ([t1]) = ... = occ([tr]). We know there are z1, 2}, z9, 2%, ..., Tk, 2},
such that for each 7, z;,2! € [t;] and [z!;2,11] € Ky U K, where the subscripts are taken modulo
k. Thus,

oce(z1) < oce(zg) < ... < oce(zy) < oce(xy)

from which it follows that occ([t1]) = ... = oce([t]).

Now, because (Uy, K1, 01) and (U, K3, 02) are processes, the cycle can not be contained entirely
within either, and thus there must be a path [t;],...;[t;] in the cycle with [t;] N U; # @ for
i € {1,...,1}. Furthermore, we can suppose that o([t;]) = o([t;]) = b (where b is as in the
definition of gear net). Now, since the occurrence number of all the elements in the path is the
same, it must be that ¢;, ~¢;, and so [t;,] = [¢;]. It follows that [t; ], ..., [t;] actually forms a cycle
when restricted to (Us, K3, 02) which is a contradiction. O

Now we are ready for the main result:
Theorem 3.3 (U, K, 0) is a process for (TUS, PUQ).

Proof: We have already shown that (U, K,o) is an occurrence net. We must show the extra
conditions on o.

First, if D is a slice of (U, K, o), then o|D is injective. To prove this, suppose that o([z]) = o([y])
but [z] # [y] for some [z],[y] € D. Without loss of generality, we may assume that [z] N Ky # (
and [y] N Ky # (. But the only way this can be so is if o([z]) = o([y]) = [a;b] where [a;b] is as in
the definition of gear net. Now, clearly, all elements which map to [a; b] are linearly ordered (since
they are in (Us, K9, 03) for example), and thus [z] and [y] can not be in the same slice — which is
contradiction.

Second, if D is a slice then o(D) is a legal marking. To prove this, notice that there is only one
element [2] € D such that [z] N Ky # 0, for otherwise D would not be a slice. Now since o({[z]})
marks (S, Q) , it follows that o(D) marks (5, Q) exactly once. Now, if o([z]) = [a; b] then o(D) is
a legal marking for (7', P) and otherwise o(D — {[z]}) is a legal marking for (7', P).

Third, o( *[p]) = *o([p]) and o([p]*) = o([p])°®. This is straightforward and we will show, as an
example, the inclusion o( *[p]) C *o([p]). Say o([q]) € o( *[p]). Then [q] € *[p]. We can choose
i € {1,2} such that there are elements p’, ¢’ € K; and p’ € [p] and ¢’ € [¢]. Thus, [¢'; p'] € K; which
implies that [o(¢'); o(p')] € P;. But then [o([¢]); o([p])] € P; or equivalently o([¢]) € *o([p]).

These three properties along with Lemma 3.1 give the desired result. O

Figure 7 illustrates this theorem by showing a gear net and a gear, their corresponding processes
and the composition of each pair.
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Figure 7: The composition of a gear net and a gear along with the corresponding composition for
their processes.

3.1 Sources and Sinks

In this section we add places to simple Petri Nets which serve as sources and sinks and which, in
later sections, we will use to represent parts feeders and output buffers. A source is a place that
is almost always marked and which remains marked even after a marking containing it transitions
to another marking. A sink is a place that is never marked, even when it is in the postset of a
transition that has just fired. These notions are common in the Petri Net literature, but since we
will make slight modifications to them for our use, we present the definitions here.

Definition 3.5 A Petri Net with sources and sinks is a Petri Net (T, P') where P' is a disjoint
union of sets P, Psoyree, and Pgpp. All places in Psyypee are of the form [0, t] for some transition
t € T and all places in Pyy,i, are of the form [s, ] for some transition s € T.

As we described, the firing rule for these nets is slightly different.

Definition 3.6 Let m C P’ be a marking for a Petri Net with sources and sinks (T, P') and let
G C T be a detached set of m-enabled events. The follower marking of m with respect to G is
the marking:

m/ = [(m - .G) U G. U (Psource - .G)] - Psink

18



Essentially, this definition is the same as the definition of follower marking (Definition 7.5)
except that (1) with the term (Psouree — *G) we add to m' all sources except those which would
cause contact and (2) by always subtracting Pj;,i, we ensure that sinks are never part of a marking.

We can use sources and sinks in gear nets to augment them so that they model factories with
parts lines by placing sources on those gears which correspond to robots which pick up parts and
sinks on those robots which deposit parts in parts feeders. Since sources are always marked, except
right after they have caused a transition to fire, they do not affect the liveness of the gear they
are attached to nor do they affect the liveness of the gear net. Similarly, sinks do not ever cause
contact, so they never prevent any transition from firing that would have fired in their absense.
Thus, gear nets with sources and sinks are also deadlock free.

4 Threaded Petri Nets

Although condition/event nets allow us to express certain aspects of the behavior of a factory, they
are not enough. Missing are the details of what the robots and subassemblies are doing between
transitions of the net — where they are physically and what part is being manipulated by which
robot. We use the term transient machine to mean a temporary coupling of some number of robots
(possibly only one) and parts (possibly none) in a controlled dynamic system. In this section we
add, to the basic notion of a net, machinery to keep track of which transient machines are active
and when. The resulting structure we call a Threaded Petri Net (TPN). From a TPN, we are able
to obtain three different views of the factory: the factory centric view, in which we may analyze the
global factory dynamics, is given by slices of the hybrid process of the net; the robot-centric view,
in which we may analyze the dynamics of an individual robot, is given by sequential components
of the net and their linear processes; and the product centric view, in which the trajectory of
a subassembly, as it is passed from robot to robot, is traced through the factory process. Our
intention is to build certain types of TPNs and use the ideas in this section to prove that they
assemble products correctly. We stress that the additions we make here do not affect the liveness
of the underlying net, as we will show.

We assume that the entire state of the factory, robot states and subassembly states, is given by a
vector z € R"™. Welet N ={1,...,n}. For simplicity we assume that the state of each factory entity
1 is given by a single, one dimensional component of z, say z;. The first addition we make is to
associate with each place in the net a dynamic system, or transient machine, on some subset of the
components of z. Thus, given a Petri Net (7, P), we will have for each p € P, a dimension [, < n,
a function F}, : R — R’ which gives the dynamics of the transient machine, and the domain
and goal of I}, which we will denote D, and G, respectively (see Appendix I for a more thorough
explanation of these terms). Later, more restrictions on F), will be given. We must have that for
any two transient machines which may operate concurrently, the dynamic systems corresponding
to the machines must be decoupled. This detail is dependent on the physical model of the robotic
system, and need not be considered in this section, which is more general. We use this idea of a
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place in the following definition:

Definition 4.1 A Threaded Petri Net consists of
1. A setT of transitions;
2. A set P C 2T x 2T of places;
3. For each p € P, dimension, dynamics, domain and goal l,,, F,, D, and G,;

4. For each e € T, a bijective function

de: [ JA{py x {1,y = U A{a) x{1,...,15)

pe L qeet
called the redistribution function;

subject to the condition that for each e € T,

D=2

pE e g€e®

(so that it is possible for d. to be bijective).

Note that the difference between a TPN and a condition/event net is not only the additional
information associated with each place. We have also added the redistribution functions, d. for
each e € F/, which define what happens to each degree of freedom as mode changes occur.

Figure 8 represents a TPN for a three robot brigade (see Subsection 5.1) with a parts feeder and
an output bin. The underlying net is constructed from a gear net with a parts line added. Grey
lines are meant to represent the redistribution function of each transition. By following a line from
a place p, through a transition e, and to another place ¢, the mapping d. on that line is obtained.

We are now in a position to redefine what a marking is for our new kind of net. In addition to
specifying which modes are active, we must say which degrees of freedom in N they are acting on.

Definition 4.2 A marking is a pair (m, f,,) where m C P and

fu s APy x {1,y = N

peEm

which specifies which degrees of freedom of the system each mode is operating on. A legal marking
is one where f,, is bijective. We will be concerned only with legal markings in what follows.
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Figure 8: Schematic of a TPN Model of a A Three Robot Brigade (See Subsection 5.1). Grey lines
illustrate the redistribution functions of the transitions.

Now we can say how the state of the system is changing given a particular marking (m, f,,).
Given j € N = {1,..,n}, suppose that f'(j) = (p,7). That is, under the marking (m, f,,) the jth
component of z is changing according to the ith dimension of the mode dynamics of p. Then,

.f] =Tm; 0 Fp(‘rfm(p,l)7 cany :Cfm(pylp))

where 7; gives the ith projection of the /,-dimensional vector function F},. This is valid until some
mode changes, which leads us to a definition of how events are triggered.

Definition 4.3 Let (m, f..) be a legal marking. e € T is m-enabled with respect to x € R” if
1. *¢eCm ande®* Nm=0;
2. For each p € ‘e, (*’rfm(p,l)v ...,:Cfm(mp)) €G,;

3. For each q € e*, (mfmode_l(%l), ...,xfmode_l(m)) € D,.

Notice that condition (1) is just the usual definition of m-enabled for condition event nets. The
second two conditions impose the restriction that the dynamic systems in the preset of the enabled
event must be in goal states and the systems in the postset must all be prepared. These two
conditions do not affect the logical dynamics of the underlying net — they simply require the
designer of the system to ensure that the transient machines constructed for the places have goals
and domains so that events can become enabled. We will present an example of such a system in
Section 5.1. For now, we will just point out that this is our first attempt at distinguishing between
logical and physical deadlock.
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Now suppose we have a marking (m, f,,). If we have, with respect to some z € R" a detached
set of m-enabled events G C F, the follower marking (m/, f,,+) is calculated as follows. As with
condition/event nets m’ = (m — *G) UG®. f, is the function given by

N fm(pg) if pEM = G
S (P ) _{ fmod Y (p,j) otherwise }

where e is the single event in p* N G. Since legal markings (m, f,,) are such that f,, is bijective,
we can be sure that every state variable z € R™ is accounted for when the system is in the set of
transient machines given by m. We would also like that only legal markings are reachable from
given legal markings, so that once the distributed process is underway, there is no point at which
some part of z is not acting under a mode of the net. The following property gives us this.

Property 4.1 Say (m, f..) is a legal marking, that G is a detached set of events and that G is
m-enabled (with respect to some x; it doesn’t matter for this property). If (m, fn) = (M, fr),
then (m/, f,.1) is also a legal marking.

Proof: We show that the domain and codomain of f,,; have the same cardinality and that f,, is
surjective from which it follows that f,, is bijective. Note that since f,, is bijective, |dom(f,.)| =

2pem lp = [N|. Now,

\dom (f)| = Zzp:Zzp— Z I, + Zzp:Zzp+o

peEm’ peEmM pE *G peG*® peEM

since *G'NG* = 0 and by the final condition in the definition of transient machine net. Thus, the
domain and codomain of f,,; are the same size. Next we show, directly from the definition of f,,,
that f, is surjective. First, suppose that

Je€tal U 15 {1 b))

pEmMm— *G

Then f.1(j) is the preimage of j under f,,,. Otherwise, d. o f,;!(j) is the preimage of j under f,,.
O

Finally, we define what a process is for a TPN. We simply add to the definition of process a
summary of the redistribution functions.

Definition 4.4 A threaded process for a TPN (T, P) with initial marking (mo, fum,) is a quadru-
ple (U, K, 0,d) where (U, K, 0) is an occurrence net with dimensions and redistribution functions,
c:UUK = TUP and d:U,cx{p} x {1,....1[,} = N, such that

1. (U, K,o) is a process for (T, P);
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2. for each slice D of (U U K, C), suppose that

G1

(m07fmo) — 7"'7_>Gn (mcr(D)7fcr(D))'

Then the function d' defined by the restriction of d to U,epip} x {1,...;1p} is such that
d/(pmj) = fU(D)(U(p)vj)'

Figure 9 shows a threaded process for the net in Figure 8. There are several immediate and
satisfying properties of threaded processes. First, slices of (UU K, C) are legal markings. Formally:

Property 4.2 Let D be a slice and consider the marking (o(D), f) where f(p,j) = d(q, j) whenever
geD ando(q)=pand 1< j <1, Then (c(D), f) is a legal marking.

Proof: This follows directly from condition (2) of the definition of threaded process. O

The next theorem characterizes the subprocess of a threaded process that corresponds to a
particular component z; of z. We prove that such a subprocess is a convex, linearly ordered subset
of a threaded process. This means that the subnet of a TPN corresponding to the component is a
sequential subprocess. We will use form of this theorem later to show that parts lines in factories
indeed deliver parts from parts feeders to their destinations.

Theorem 4.1 Let (U, K,0,d) be a threaded process for a TPN (T, P) and let j be an index in
N ={1,...,n}. Then

1. The set X; = {p € K | d(p,j) =t for some j € {1,...,1,}} is totally ordered in (U U K,C)
and

2. if p1 and py are elements of X; such that p; C py then whenever p1 C q C po, we have that
qg € X;.

Proof: First, suppose that p,q € K are such that d(p,j) = d(q, k) for some k,j and that, to the
contrary, p || ¢. Then there is a slice D of (UUK,C) with p,q € D. Let d' be the restriction of d as
in Definition 4.4. Since d'(p,j) = fo(p)(c(p),J) and d'(q, k) = f,py(o(q), k) and since o(p) # o(q)
(otherwise they would be related under C), we have that Jo(p) is not a bijective and thus not a
legal marking which is a contradiction. Thus, X; is totally ordered.

Next suppose that p € X; is not a maximal element of (U U K,C). We show that there is a
q € X, such that for some e € U, e € p* and ¢ € €* from which (2) follows. First let D be a slice
with p € D and let e be the single event in p® (unique by definition of occurrence net). Now we
progress D by firing e. Let D’ be the slice (D — {p}) Ue®. Since d,) is bijective, it must be that
the index i is mapped to some place in o(D’), call it o(¢). Thus, ¢ € e*. O

Evidence of the truth of this theorem can be seen in Figure 9 where, for example, we can follow
each index from the bottom of the process up along a line in the process. The following corollary
expresses this theorem in terms of TPNs only.
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Figure 9: A threaded process for the hybrid net shown in Figure 8
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Corollary 4.1 Suppose that

(m07fmo) _>G1 _>Gk (mk7fmk)

is a run of a TPN (T, P). Giveni € N, let p; € P be the place in m; such that f,, (p;,l) =1 for
some l. Then p; € *pjqy for each 7 € {0, ...,k — 1}.

5 Examples

In this section we describe two examples which demonstrate the above formalism. The first, the
most simple, nontrivial example, is what we call a bucket brigade. 1t includes: task level information,
where we specify a palette of controllers, which correspond to places in a TPN; task switching and
concurrency; and a simple notion of product flow. Second, we describe a simple assembly process
in terms of three robots.

5.1 The Bucket Brigade

Bucket brigades correspond to individual lines in an assembly process and we expect their analysis
to contribute to our understanding of more complicated factories. Figure 8 shows the TPN we will

use to model the brigade.
robot) robot with part
o)
>0 o

ou

2 3
workspace

0 1

( {(I+

Figure 10: A simple, three robot bucket brigade

A simplistic, three robot bucket brigade consists of three robots, Ry, Ry and Rs, a parts feeder
and an output buffer arranged in a line as in Figure 10. The task is for Ry to pick up parts, one at
a time, transfer them to Ro, which transfers them to R3. Rs deposits the parts in an output buffer.
Suppose the robots have width 2r where 0 < r < 1. Define the workspace to be the closed interval
of the real line [0, 3] and suppose that the robots have continuous state variables, zy, 29 and z3,
corresponding to their positions on this line. We assume that the range of each robot is restricted,
so that z; € [{ — 1,] only and also that robots can not inhabit the same place at the same time.
That is, the distance between any to robots must be greater than 2r. Each robot also has a discrete
state, corresponding to whether or not it is carrying a part, denoted by, by, b3 € {0,1}. Say b; = 1
if R;is carrying a part and b; = 0 otherwise. Finally, there are some enormous number, n, of parts
with state variables zq, ..., z,. Since this example is for illustrative purposes only, the physics are
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Table 1: Table of transient machines used in the bucket brigade example

Dimension of Domain Goal

Name Robots Config. Space (for robots) Point Function

Fpick Ry 2 [0,1—r] 0 R picks up part

Farop R3 2 [2+ 73] 3 R3 drops of part

Fyait, Ri, 1 €{1,2,3} 1 f—14ri—7] i—1 R; waits in safe place

Frota, R;, i€ {1,2,3} 2 f—14ri—7] 7 — ; R; waits in safe place with part
Firans, s Ri1,Rs 3 [ry1] x [1,2 = 7] (1-r,14r) R; transfers part to R»
Firanss s Ry, Rs 3 M+r2]x[2,3=r] | (2=r,247) Ry transfers part to R3

not entirely realistic: the velocity of the robots is directly controllable (Z = u), parts move with the
robots they are near (so that when b; = 1, z;, = z; for some part with index k), and part transfers
happen instantaneously as long as the robots involved are close together.

The first step in constructing the brigade is to specify the palette of controllers. There are nine:
Foick, Firop, Fuwait; and Fpoq, for ¢ € {1,2,3}, Firans, 5, and Firans, 5 - The use of these controllers
is summarized in the table in Figure 1. Note that controller goals are given by a point z* in the
table but we usually consider them to be a set, B.(z*) = (2* — ¢, 2" + ¢) We will describe each of
them qualitatively and show, as an example, how one of them might be actually determined using
a navigation function. The details of the rest should then be clear.

Fpicr is a two-dimensional controller. One dimension corresponds to the position R; and the
other to the position of the kth part, which we assume stationary in the parts feeder (so z; = 0).
There is a single attracting equilibrium point at 0 where R, is next to the parts feeder with a part.
The parts feeder operates by proximity. That is, if b = 0 and ||z1]| < ¢ then by will eventually
become 1. In the bucket brigade, when by = 0, Ry will run &y = Fj;ex(z1) until by = 1. Since the
controller does not affect the part, z; = 0.

Fyrop is similarly used by Rs to drop off a part at the output buffer. It is used when b3 =1 and
eventually results in b3 becoming 0.

Fyait;, for each 7, is a one-dimensional controller with attracting equilibrium point 7 — % It
is used when R; needs to wait for another robot, the parts feeder or the output buffer. F, .,
essentially drives R; to a safe place in the workspace and keeps it there. Fj 4, is the same except
it is two dimensional and used when the robot is waiting and holding a part.

Firans, , 18 a three-dimensional controller for Ry to hand R, a part, the position of which we
assume to be given by z;. It has attracting point (z1,22) = (1 — r,1 4 r) (implying that z is
attracted to 1 — r). That is, it drives R, Ry and the part to a configuration where the robots are
touching. When (b1, b2) = (1,0) and ||z2 — z1|| < € for some ¢, the state instantaneously becomes
(b1,b2) = (0,1) and z; = z2. That is, for Ry to transfer a part to Rz, the robots need only get very
close to each other and the transfer happens. We note, according to our notion of controller, that
Firans, , 18 being run asynchronously. Half by Ry and half by Ry. That is, Ry obtains an estimate
of &1 of z1 via its sensors and an estimate #9 of z9 via the communication system and runs the
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feedback controller

Ty =710 Ftranng ($1, $2)

concurrently and asynchronously while Ry runs 73 o Firans, »- Once again, while the controller is
running, the change in the part’s position is the same as that of the robot that is holding it. The
description of Firans, 5 18 similar.

Lest the reader be suspicious that these controllers are entirely fictitious, we review a method
by which a function suitable for Fj.,,,, , may be constructed using a navigation function, [24]. A
navigation function is an artificially constructed potential field over a compact domain, with a single
minimum point (the goal), and which achieves a uniform maximum at the boundary of the domain.
The control law is the negative gradient of the navigation function and is guaranteed to drive the
system to the goal point. Since Z; = #; while Ry is holding the kth part, we describe Firans, , as
though it were a two dimensional controller, although technically, it is a three dimensional one.
Recall that we wish for Fj .5, , to have a stable equilibrium at (z7,23) = (1 —r — ¢, 14+ 7+ ¢)
(the € is added so that the goal is not on the boundary of the domain. Thus we first construct a
function where this is the case:

(@1, 22) = (21— 27)* + (22 — 23)°

will do. Next, we construct a function that goes to zero along the boundary of the domain).

Recall (Table 1) that the boundary includes zy = r and z3 = 2 — r. It also includes the
configuration where z; and z, are closer than 2r, that is, where the robots are physically touching.
The function

Blzr,22) = (21— r)* (22 — 24+ 1)*(|lzz — 1] |* = (2r)?)?
has this property. We let
2 7(m17 ‘r?)k
Ty, Ty) = ———
) = 5 a)
where k is chosen large enough so that (27, z%) is the only minimal point. Finally, the navigation
function is

¢
¢ = -
14+ ¢
We define Fi,qns, , (71, 22) = —V¢(x1,72). This reactive control law can be shown to have a single,

stable equilibrium point at (z7,z}) and to avoid the boundary of its domain. The vector field

that results may be normalized and tuned for use. This technique was used for all the transient
machines described above to build a satisfying simulation of arbitrary length bucket brigades and
of a class of simple “toy” factories described in Section 5.2.

Once the transient machines are specified, we may construct rules for switching between them
for each robot. The first robot repeatedly receives parts from the parts feeder and hands them to
the second robot. Thus, R; runs the program
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While True
Ifby =0
Wait for parts feeder
Run #1 = Fpier(21) until b =1
Else
Wait for Ry to be ready
Run &, = 71 0 Firans, o (21, 22) until by =0
EndIf
End While

The second robot receives parts from the first and hands them to the third. So R runs the program

While True
If by =0
Wait for R; to be ready
Run &3 = m3 0 Firans, o (€1, 22) until by =1
Else
Wait for Rs to be ready
Run &3 = 71 0 Firans, (22, 23) until by =0
EndIf
End While

Finally, the last robot receives parts from the previous robot and deposits them in the output
buffer. So Rs runs the program

While True
Ife; =1
Wait for output buffer
Run &3 = Fyrop(23) until b3 =0
Else
Wait for Rs to be ready
Run &3 = m3 0 Firans, (€2, 23) until b3 =1
EndIf
End While

Notice that any line in a program that says “wait for ...” has the meaning “run F,,;;, until the
robot (or feeder or buffer) is ready” and presumes some simple communication system that we do
not describe in any detail here.

The dynamics of the bucket brigade we have constructed can be modeled by the tools we
presented in Sections 3 and 4. Figure 8 shows the resulting TPN. There are three gears, one for
each robot. Gear two corresponds to the program of Ry, for example, and consists of transitions
{t1,t2,t4,t5} and places waity = [t5,t1], trans, o = [t1,12], holdy = [ta, 4], transy 3 = [t4, t5).

As an example, we supply one redistribution function in detail, namely, d¢,. Fhoq, expects a
robot position and then a part position, in that order. F},,;, expects a robot position. Firans; ,
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expects the position of the sending robot, the receiving robot and the part in that order. Then we
have:

di, (holdy,1) = (trans; o, 1)
dy, (holdy,2) = (transs,3)
dy, (waity, 1) = (trans;s,?2)
The rest of the redistribution functions should now be apparent from Figure 8.

Let p = [0, t3] and ¢ = [t7, @]. The initial marking, (mo, fm,) is given by mg = {wait,, waity, waits, p}
and

fmo (waity, 1) 1
fmo (waity, 1) = 2
fmo (waits, 1) = 3

fmo(Bs1) =k

for some k. Note that the addition of parts feeders results in our having to expand and contract the
index set N. In this example, the set will always include {1, 2,3} and, depending on what parts are
present in the brigade and the parts feeder, may also include some set {k, ..., k;} of part indices.

Now we can show two things. First, the bucket brigade never deadlocks by Theorem 3.1. This
follows from the fact that its underlying structure is a gear net and because the domains of each
place include the goals of the places that precede it. As an example, consider trans; ;. Its domain
is Dtrans, , = [, 1] X [1,2 —r] according to Table 1 (we ignore the part position since it is the same
as one of the robots). Now, *trans; g, = {hold;, wait,} and we have that

1 3
9hold1 X gu}aitg = Be(§) X BE(i) - D7“7“(1,n5172-
Second, we can deduce from Theorem 4.1 that the parts move from one end of the brigade to
the other. Suppose that at some marking (m;, f,,,) that pick € m; and f,, (pick,2) = k. That is
that Ry has picked up part k. Then we know there is a sequential sequence of places that control

part k. In fact, the sequence is
< pick, holdy,trans, o, holdy, transsy 3, holds, drop > .

Now if we trace the position of the robot carrying the part in the goals of these controllers from
pick to hold (see Figure 1 again), we see that the initial state of the part is z; = 0 and the final
state is zp = 3.

There are several things to notice about this example. Control is decentralized as we required
in our statement of the problem. Communications is kept low: each robot need only communicate
with at most one other robot at a time. And the dimension of the control laws is limited to two: we
could, in principle, build bucket brigades with an arbitrary number, n, of robots using the above
method, yet we would not have to build anything that is fundamentally different from what we
already have. Thus, the method scales.
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Figure 11: Factory setup for a simple mate operation.

5.2 Assembly

We may also use gear nets and TPNs to model a simple assembly process. Three robots perform
this task on a T-shaped guidepath. The first two pick up parts at their respective parts feeders and
then, in a synchronized operation with the third robot, attach the two parts together and place
the resulting assembly on the third robot. The third robot drops the assembly off in a parts bin.
Figure 11 shows how the robots are arranged.

We will not describe this example in as much detail. There are wait; and hold; operations as
before, two pick operations corresponding to the two different parts, one drop operation. New to
this example is the mate operation. It controls two robots, each carrying a part, and a third robot
to meet at the intersection of the guidepaths. Once there, the assembly of the two parts occurs,
and the result is place on the third robot. The TPN which models this is shown if Figure 12. Note
that the two parts lines originate at the parts feeders, meet at the mate operation and end up at
the output buffer. We could also have identified the two parts lines after the mate operation and
drawn only one output line for the assembly.

Once again, we can show that the factory does not deadlock using the properties of gearnets.
We can also show that the two types of parts progress through the factory using the properties of
TPNs.

6 Compiling from the Product Assembly Graph

In the previous section, we demonstrated that the tools we have developed, gear nets and hybrid
petri nets, can be used to analyze a simple factory-like situation. In this section, we illustrate how
we can expand on those ideas to automatically generate gear net based hybrid nets from simplified
product assembly graphs.

We represent a class of PAGs recursively as follows. We start with some number of operation
types, OP,...,OPF,, where OF; takes k; subassemblies and returns a single assembly that results
from performing some corresponding operation on the subassemblies. The class of PAGs are then

defined by:
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Figure 12: A simple, three robot bucket brigade

1. The object atomic() is a PAG representing a simple part.

2. If OP; is an operation and suby, ..., subg, are subassemblies, then OP(suby,...,suby,) is a
subassembly

For example, we have developed a “toy” factory which has these operations:
1. MATE (suby, subs)
2. WELD(suby)

Note that each PAG can be represented as a tree with the nodes representing operations and their
children, the subassemblies in the operation.

To each operation, we assume that a template controller, a so called transient machine, is
already built. We also assume there are transient machines for picking up parts at parts feeders
and dropping them off at output buffers. The four templates for PICK, DROP, MATE and WELD
are shown in Figure 13. They are represented by Petri Net fragments. The lines going in represent
the constituent robots and parts feeders and the lines going out represent the robots and output
buffers.

To compile, we annotate the PAG with these Petri Net fragments and then connect them so
as to create a gear net. We know that the resulting net is live because it is a gear net. This
process is shown in with a simple example in Figure 14. In future work we intend to describe
the compilation procedure formally and prove that it produces gear net based TPNs. The layout
must also be obtained from thge resulting net. For our “toy” factory, the layout is essentially given
by an embedding of the PAG into the plane. We have not investigated more complicated layout
procedures.
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Figure 13: Templates for various “toy” factory operations.

7 Conclusions

Our research aims at developing a method for composing concurrent dynamic systems. Our initial
attempt to do so has led us to invent a class of Petri Nets which can contain the notion of a control
mode at each place in the net. We have dealt with composition using gear nets, which can be
used to describe certain concurrent processes which must occasionally be locally synchronized. We
have shown that for simple situations, where a palette of controlled dynamic systems with stable
equilibrium points is supplied, that we have partially accomplished such a composition.

We plan to extend this work in several directions. First, we intend to investigate the compilation
technique discussed in Section 6. We may add optimizations to the compiler of various types. For
example, we may assign the two or more programs in the gear net to one robot which must,
therefore, switch between the two programs. The resulting program for that robot is not a gear,
but it is a well defined object that we believe has properties which we may use to show the resulting
net is live.

Second, we believe it is important to extend this work to apply in situtations where the dynamics
across transitions must account for the momentum of the system and for smoothness properties. In
the present work, and in fact in much of the work in hybrid systems in general, discrete transitions
between dynamic modes are instantaneous. For many systems, this is a convenient way to abstract
away from impulse dynamics and the like. However, in control of physical systems which involve
robots or manipulation of unactuated objects, such as in some robot juggling or locomotion tasks,
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control must be smooth across transitions in order to be realistically implemented with present day
actuator technology. It is particularly important in distributed robot systems that we develop a
means to acheive this smoothness while still keeping the dimension of the local couplings of robots
low.

Appendix I: Dynamic Systems

In this section we very briefly define the terms from dynamic systems that we use in this paper.

We represent the state of a dynamic system at a time ¢ € R by an n-dimensional point z(¢)
in some n-dimensional space such as R” or, more generally, an n-dimensional manifold, M. We
frequently omit the ¢ and just write z. We denote by & the derivative of z with respect to ¢t. That
is,

dxy dz,
TR %)
Similarly, Z is the second derivative of  with respect to t. We can specify a dynamic system with
a function, called a vector field, from the space z lives in, M, to the tangent space of M. For
example, F': R™ — R”. From F we may obtain a system & = I'(z).

The solution of the equation # = F'(z), which may not exist in a closed form, is the function

f:Rx M — M such that
df

T dt

Starting with a point zg, the forward orbit of zg is the set {f(¢,z0) | t € R¥}.

A fixed point of a system is a point z* such that F'(z*) = 0 (or, equivalently, f(t,z*) = z* for
all ). 2* is a stable fixed point if there is a neighborhood U of M around z* such that for every
y € U, the forward orbit of y contains z*. The largest U with this property is called the domain
of attraction of z* (or the controllable set) and is written D. Often we consider a subset of D
that contains z* called the goal and written G.

i =

F(z) (£, 2)|=0-

Appendix II: Petri Nets and Partial Orders

In this appendix we give the basic definitions of Petri Nets and partial orders as they pertian to
the semantics of Petri Nets. We use the notation of [11] to represent Petri Nets as this is the most
convenient and concise we have found for our purposes. We shall show the relationship of this
with the more standard definition as well. Note that our definition of Petri Net is actually what is
commonly referred to as a condition/event net, see [23].

Definition 7.1 A Petri Net is a pair (T, P) where T is a finite set of elements called transitions
and P C 2T x 2T whose elements are called places. If {{ai,...,a;},{b1,....,b;}} € P we write
[a1,...,a; b1, ...,bj] € P.
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Note that places are also called conditions and transitions are also called events. If p =
[a1,...,a;; b1, ...,b;] is a place then left(p) = {ai,...,a;} and right(p) = {b1,...,b;}. We usually
assume that whenever ¢ € T there are places p,q € P such that ¢t € right(p) and t € left(q) so
that all transitions have actual post conditions. We say that a net (S, Q) is contained in (7', P) if
@ C P (which implies that S C T).

The usual definition of a Petri Net is a triple (T, P; F') where FF CT x PU P x T is called the
flow relation. We may recover the flow relation from (7', P) in our definitions as follows.

Definition 7.2 The flow relation F' of a Petri net (1, P) is the relation where (t,p) € I if
t € left(p) and (p,t) € I if t € right(p).

The next definition (and the notation, believe it or not) are straight from the petri net literature.

Definition 7.3 Given a Petri Net (T, P), the preset of an element v € TU P is set {y |y I z}
and is denoted *xz. The postset of z is the set {y |z F y} and is denoted x°.

Next we describe the dynamics of a Petri Net.
Definition 7.4 A marking of a Petri Net (T, P) is a subset m of P.

Usually when we introduce a Petri Net, we will give a condition on markings by defining what
a legal marking for the net is. The intention is that the only possible states of the Petri Net are
those given by legal markings. Thus, legal markings should be closed under the dynamics of the
net.

Definition 7.5 Say m is a marking of a net (T, P). A transitionst € 1" is m-enabled if *t C m
and t* "m = (. Ift is m-enabled, we define m' to be the follower of m under t is

m' = (m— *t)Ut.
We write m —' m' in the case that t is m-enabled and m' is the follower of m under t.

Definition 7.6 Two transitions t; and t, are detached if *t1 N *ty =t1°Nt,* =0. Aset GCT
is detached if its elements are pairwise detached.

For G C T, we denote by °G and G* the union of the presets and postsets of events in G
respectively. Given a detached set G, we write m —© m/ in the case that every ¢ € G is m-enabled
and

m' = (m—- *G)UG".

Obviously, we can create sequences of markings (mg, m1, mz,...) when there exist detached sets

Go, (1, ... such that
Go Gy

mg — % my — ' Mo -G
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thereby obtaining a possible run of the net.

A particular kind of Petri Net we will use in this paper is the marked graph which is a Petri
Net (T, P) such that | *p| < 1 and [p*| < 1 for every p € P. In a sense, marked graphs are Petri
Nets without nondeterminism, since every condition leads, in one and only one, way to the set of
transitions in its posetset. The literature on marked graphs, for example [7], usually calls a marking
for a marked graph a function m : P — N (where N is the natural numbers including zero). We
will not have use for integers markings where places are marked other the with 0 or 1 so we use
will stay with the notion that a marking is a subset of P.

Finally, we describe the partial order semantics of a net.

Definition 7.7 An occurence net (U, K) is a Petri net that is acyclic and where | *p| < 1 and
Pl < 1.

When a net is acyclic, we can consider it as a certain kind of ordering on places and transitions
called a partial order, which is a a set, X along with a relation C where C is reflexive ( z C z for
all z € X ), transitive (z C y and y C z imply = C z ), and antisymmetric ( z C y and y C z imply
z =1y ). If we start with an occurence net (U, K) and set C= I"*, the transitive closure of F', then
(U, K,C) is a partial order. We write z||y to mean that z and y are uncomparable, whenever z
and y are elements of a partial order such that z [Z y and y [Z z. If S C U U K is such that for all
z,y € S either z C y or y C  then S is called a totally ordered set. If S maximal (i.e. no other
element z can be added to S and still preserve total ordering), then S is called a line or a chain.
If S C UUK is such that for all z,y € S, z||y, then S is called an antichain. If S is maximal with
this property then S is called a cut. A cut consisting of all places is called a slice. Partial orders
for Petri Nets are covered briefly in [23] and more thoroughly in [2]. Partial orders are covered in
most introductions to discrete math and thoroughly in [8].

Finally, we have the notion of a processes.

Definition 7.8 A process for a Petri Net (T, P) is a triple (U, K, o) where (U, K) is an occurence
net and o : U UK — T U P such that

1. If D is a slice of (U, K,C), then o|D is injective and o(D) is a legal marking and

2. o(*z) = *o(z) and o(2*) = o(x)°.
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