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Abstract

The advent of electronic commerce and personal
communications on the Internet heightens concern-
s over the lack of privacy and security. Network
services providing a wide range of security relat-
ed guarantees are increasingly based on public key
certificates. A fundamental problem inhibiting the
wide acceptance of existing certificate distribution
services is the lack of a scalable certificate revocation
mechanism. We argue in this paper that the resource
requirements of extant revocation mechanisms place
significant burden on certificate servers and network
resources. We propose a novel mechanism called
Windowed Revocationthat satisfies the security poli-
cies and requirements of existing mechanisms and,
at the same time, reduces the burden on certificate
servers and network resources. We include a proof
of correctness of windowed revocation and a trace-
based performance study illustrating the scalability
and general applicability of windowed revocation.

1 Introduction

Over the past several years, the use of the Internet has
grown immensely. Applications on the Internet allow
geographically distant users to communicate, leading
to social, educational, and commercial interactions
that were previously impossible. Unfortunately, be-
cause of the openness of the Internet, the form and
content of these interactions are vulnerable to attack.
Limiting these vulnerabilities is essential to the fu-
ture success of these applications and the continued
growth of the Internet.

A popular approach to securing communication
over large networks is to use public keys. Re-
searchers and standards bodies have argued at great
length over possible architectures for providing an
authentication service under which public key cer-
tificates can be securely distributed. A central point
of contention in these discussions is the mechanisms
over which public keys are revoked.

A certificateis a data structure that defines an as-
sociation between an entity (theprincipal) and a pub-
lic key. A trusted authority, called aCertificate Au-
thority (CA), states its belief in the validity of the
association by digitally signing the certificate.1 Cer-
tificate revocation is the mechanism under which a
CA can revoke the association before its documented
expiration. The CA may wish to revoke a certificate
because of the loss or compromise of the associated
private key, in response to a change in the owner’s
access rights, a change in the relationship with the
trusted third party, or strictly as a precaution against
cryptanalysis [FL98]. As stated by the CA, there-
vocation stateof a certificate indicates the validity
or cancellation of its association. Averifier deter-
mines the revocation state through theverificationof
the certificate.

In this paper we investigatewindowed revocation,
a novel approach to certificate revocation within a
global certificate distribution service, called aPublic
Key Infrastructure(PKI). The central design objec-
tives of windowed revocation are:

1Several Public Key Infrastructures employ models not based
on trusted third party (CA) certificate distribution (see Sec-
tion 4). Although windowed revocation may be applied to both
CA and non-CA environments, for simplicity we only describe
windowed revocation within CA based architectures.
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1. Correctness- All entities within the PKI must
be able to correctly determine the revocation s-
tate of a certificate within well-known (time)
bounds.

2. Scalability - The costs associated with the man-
agement, retrieval, and verification of certifi-
cates should increase at a rate slower than in-
creases in the size of the serviced community.

3. General Guarantee Statement- Windowed
revocation must be able to support guarantees
consistent with existing security policies and re-
quirements.

As with many security solutions, certification re-
vocation mechanisms are subject to the fundamental
tradeoff between security and scalability. Solutions
with strict security objectives require more resources
than systems with more relaxed security objectives.
Thus, security requirements have a direct influence
on scalability. Our proposed architecture provides a
flexible framework for managing this tradeoff by in-
corporating the following design principles into the
key revocation mechanism:

1. Revocation window: By bounding the time
over which the revocation of a certificate is an-
nounced, we limit the size of such announce-
ments.

2. Push delivery: With limited revocation an-
nouncement size, we can contemplate the active
delivery of this information to verifiers. This
reduces the load on the CAs by curtailing the
number of verifier initiated retrievals.

3. Certificate caching:A cached certificate may
be used until it expires, is revoked, or the issuer
specified time-to-live (TTL) is reached. The ex-
piration of a TTL indicates that the associat-
ed entity’s policy requires the certificate to be
revalidated.

4. Scheduled Announcement:By stipulating that
CAs generate revocation announcements at a
documented schedule, we allow verifiers to de-
tect lost announcements.

5. Multicast delivery: Given verifiers’ ability to
detect missing revocation announcements, we

can use unreliable transport protocol without
sacrificing the security of certificate revocation.
This allows the use of IP multicasting, where
available, to further reduce the bandwidth re-
quirements of the revocation mechanism.

6. Lazy verification:Verification of a cached cer-
tificate’s revocation state is postponed until the
certificate is used. By deferring retrieval of lost
CRLs, we reduce the load on CAs; by deferring
certificate verification and CRL processing, we
to reduce the load on verifier hosts.

In this paper we describe windowed revocation
and present results of a series of simulation experi-
ments designed to assess windowed revocation’s vi-
ability as revocation mechanism within PKI archi-
tectures. In the next section we define and illus-
trate windowed revocation. Section 3 presents per-
formance characteristics of windowed revocation ob-
served from simulation experiments. Section 4 gives
a brief overview of work related to PKI systems and
certificate revocation. We conclude in Section 5. We
prove the correctness of windowed revocation in Ap-
pendix A.

2 Architecture

In this section, we develop a working definition of a
Public Key Infrastructure and presentwindowed re-
vocation as a mechanism for providing a provable
bound on the use of revoked certificates.

2.1 Public Key Infrastructure

A common approach in designing Public Key Infras-
tructures (PKI) is the definition of aCertification Hi-
erarchy. The certification hierarchy is a collection of
certificate authenticating bodies calledCertification
Authorities (CA) organized into one or more trees.
Fig. 1 presents an example Privacy Enhanced Mail
[Ken93] hierarchy. The leaves of each tree represent
certificates for hosts, users, or services. The topol-
ogy of the tree infers a hierarchy of authentication,
where parent CAs assert the validity for the certifi-
cates of all its immediate children.

Each CA is responsible for the registration, dis-
tribution, and potential revocation of the certificates
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Figure 1: PEM Hierarchy

for its immediate children in the hierarchy. Registra-
tion is the process whereby, after the child provides
credentials, the CA digitally signs the child’s certifi-
cate. Any entity wishing to validate the authenticity
of a registered certificate need only verify the CA’s
digital signature.

There exists a bootstrapping problem with the cer-
tificate hierarchy approach. When authenticating a
certificate, the verifier must also authenticate the cer-
tificate signer’s certificate. The channel over which
the signer’s certificate is received may not be known
or trusted by the verifier, so the signer’s certificate
must also be authenticated. Logically, it would ap-
pear that the certificate authentication process does
not terminate.

A widely accepted compromise used to address
this problem is the integration oftrusted pointsinto
verifier software. During certificate verification, the
verifier recursively traverses a logical path (called the
certification path) from the certificate to sometrust-
ed point. All certificates along the path are verified as
described above, save the trusted point’s certificate.
A certificate for a trusted point authority is typical-
ly installed with the verifier software and manually
updated as needed. PEM requires all verifiers trust
the root entity, called an Internet Policy Registration
Authority (IPRA).

As the IPRA CA is the trusted point for all ver-
ifiers in PEM, the certification path begins with the
IPRA and traverses the tree toward the leaf (certifi-
cate). Thus, certification paths are knowna priori
by the location of the certificate within the tree. The
authentication of a certificate requires the acquisition
of all certificates and associated revocation state in-

formation within the certification path.
The Secure DNS (DNSSec) [Gal96, EK99] sys-

tem leverages the vast installed base of the Domain
Name System [Moc87] to support certificate distri-
bution. DNS name servers perform CA functions,
and the root server (.) is the trusted point for all ver-
ifiers. Certification paths mirror DNS name resolu-
tion, where the path is constructed from the root to
the certificate holder.

Many of the proposed PKI architectures [MJ98a,
CY97] define a hierarchy similar to the PEM ar-
chitecture described above, but differ in the trust-
ed points and mechanism for certificate revocation.
For simplicity, throughout our description of win-
dowed revocation we assume a singly rooted hier-
archy. However, windowed revocation is in no way
dependent on a single trusted root hierarchy.

2.2 Certificate Revocation

As previously noted, the purpose of revocation is to
nullify the association stated by the existence of a
digitally signed certificate. In this section we explore
the resource requirements of extant revocation mech-
anisms. The trade-off between security and scalabili-
ty we alluded to in Section 1 is formally expressed in
what we call thewindow of vulnerability. The win-
dow of vulnerability describes the maximum time
that any verifier may unknowingly use a revoked cer-
tificate. Intuitively, the window of vulnerability pro-
vides the granularity of revocation notification, and
thus the security afforded by a revocation mechanis-
m.

We recognize two fundamental approaches used
to distribute revocation state: explicit and implic-
it. In PKI architectures that employ explicit revo-
cation, each CA explicitly states which certificates
are revoked, and indirectly which are not revoked. In
X.500 [Cha94] based systems, each CA periodical-
ly generates a list of certificates that have been re-
voked, but have not yet expired. The presence of the
certificate in the list,2 called aCertificate Revocation
List (CRL), explicitly states revocation. A discus-
sion on the semantic limitations of CRLs is given in
Section 2.4. The canonical CRL based PKI is the

2The entire certificate is generally not present in the list, but
is referenced by some unique identifier. This identifier is com-
monly known as a serial number.
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Privacy Enhanced Mail (PEM) [Ken93] system, an
architecture originally designed for the distribution
of certificates used to secure electronic mail.

Verifiers retrieve and cache the latest CRL during
the certificate verification process. Because CRLs
are the only medium from which revocation state can
be obtained, the window of vulnerability in explicit
revocation is equal to the periodicity of CRL publi-
cation. A revoked certificate is included in a CRL
from the time it is revoked until its validity period
expires.3 Given that revocation is announced until
certificate expiration, and the certificate lifetime is
commonly measured in years, even modest revoca-
tion rates may induce large CRLs.

Another potential scalability limitation of explicit
schemes is that verifiers may become synchronized
around CRL publication. When a verifier determines
that a new CRL has been published, she may imme-
diately attempt to retrieve it. Thus, many verifiers
may request the CRL at or near the moment of publi-
cation. The burst of requests immediately following
CRL publication, which we callCRL request implo-
sion, may cause network congestion and introduce
latency in the certificate verification process. A num-
ber of approaches designed to reduce the costs asso-
ciated with CRL acquisition and construction have
been proposed in the literature. We describe several
of these approaches in Section 4.

In PKI architectures that employ implicit revoca-
tion, the revocation state is implicitly stated in a ver-
ifier’s ability to retrieve the certificate. Any certifi-
cate retrieved from the issuing CA is guaranteed to
be valid at or near the time of retrieval. Associat-
ed with each certificate is atime-to-live(TTL) which
represents the maximum time the certificate may be
cached. Thus, in implicit revocation, the window of
vulnerability is exactly the TTL. The Secure DNS
(DNSSec) [Gal96, EK99] architecture uses a form
of implicit revocation.4

3In most existing approaches, a certificate’s lifetime is de-
fined by an explicitly stated validity interval. If unrevoked, a
certificate is valid from thenotBefore to notAfter times-
tamp fields included in the certificate. The certificate is assumed
invalid at any time outside this interval. A certificateexpires
when thenotAfter time is reached.

4The original DNSSec [Gal96] operates in anoff-line mod-
e that provides a high degree of scalability at the cost of a
loose bound on the window of vulnerability. Later modifications
to DNSSec [EK99] provided atransactional authenticitymode

In implicit revocation, the certificate retrieval pro-
tocol must have freshness and authenticity guaran-
tees. Without such guarantees, the PKI may be sub-
ject to a number of masquerading and replay attack-
s. Providing these guarantees for each certificate re-
trieval may limit the scalability of the PKI.

A central parameter to PKIs employing implicit
revocation is the length of the certificate TTL. PKI
administrators must trade-off security (as stated by
the bound on revoked certificate use) with the fre-
quency of retrieval. A long TTL may expose the ver-
ifier to a revoked certificate. A short TTL requires
the verifier to re-acquire the certificate frequently. In
extant systems, each retrieval requires heavyweight
operations by the verifier, the CA, or both.

2.3 Windowed Revocation

In windowed revocation, we use explicit notification
as the primary revocation mechanism. CRLs are gen-
erated per a CA-specified schedule documented in
the associated certificates. Revoked certificates are
included in scheduled CRLs for a period equal to
their revocation window. The size of a certificate’s
revocation window is specified by the CA and doc-
umented in the certificate. The revocation window
limits the length of time a certificate may be cached
without further validation via a more recent CRL.
Because revocation is explicitly stated in the CRL
only for the revocation window, the verifier will have
no means of determining the correct revocation state
afterwards. Therefore, if a verifier does not acquire
an associated CRL during the revocation window, it
must drop the certificate from its cache. A verifier
acquires a CRL either through active retrieval from
the CA or by passively receiving one pushed by the
CA.

The scalability of traditional explicit PKI archi-
tectures is limited by the requirement that verifiers
actively retrieve CRLs. Windowed revocation mit-
igates the costs of CRL delivery by using a push
mechanism, where available. Each entity holding a
cached certificate may passively listen for revocation
announcements from the corresponding CA. There-
fore, verifiers subscribing to the CRL push delivery

which is roughly equivalent to our definition of implicit revoca-
tion. To the first order of approximation, the off-line mode can
be considered a looser form of implicit revocation.
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Figure 2: Implicit, explicit, and windowed revoca-
tion in PKI architectures.

service can verify cached certificates without incur-
ring the costs of direct CRL acquisition. If a pushed
CRL is lost in transit and it is required by a verifier,
the verifier may retrieve it from the CA (or refresh
the certificate by re-acquiring it). Hence CRL push
delivery may use unreliable transport protocol, such
as IP multicasting. Note that the use of unreliable
transport protocol does not affect the security of CR-
L delivery (see Section 2.4).

We illustrate implicit, explicit, and windowed re-
vocation in Figure 2. In the figure we show the life-
time of a certificateC1, which has a documented va-
lidity period from notBefore (t0) to notAfter
(t8). At time t4, C1 is revoked. AssumeC1 is veri-
fied at timest1 andt3 in each example.

In traditional explicit revocation, the certificate
and last generated CRL is retrieved at timet1. Each
subsequent use (e.g. at timet3) of the certificate re-
quires that the most recent CRL be checked for a re-
vocation announcement. Because a cached certifi-
cate is only authenticated as required by use, there
is no bound on the time in which a CRL may be
retrieved by the user. Therefore, the CA must an-
nounce the revocation of each certificate starting
from the CRL immediately following the revocation
of the certificate (t5) until the expiration time of the
certificate (t8).

In implicit revocation, the user securely retrieves
and cachesC1 at timet1. No further verification is

performed betweent1 and the expiration of the cer-
tificate’s TTL att2 (t2 = t1 + TTL length). At t2,
the certificate is dropped. The certificate need not be
re-acquired until it is needed again at timet3. Be-
cause verification is performed only during retrieval,
the revocation ofC1 will not be discovered until it is
dropped due to the expiration of the TTL at timet6

(t6 = t3 + TTL length) and re-acquired afterward.
Windowed revocation bounds the time at which

a certificate may be cached through therevocation
window. When the certificate is retrieved (t1) it is
guaranteed to be fresh and unrevoked. After revoca-
tion (t4), the CA need only include the certificate in
the CRL for one revocation window (t5 to t7). At
t7, the CA knows that one of the following two cas-
es has occurred at each host cachingC1: either 1)
a CRL was acquired within the revocation window,
andC1 was dropped, or 2) the revocation window
has expired, andC1 was dropped. In either case,
windowed revocation stipulates that the certificate
will no longer be cached by any host at the end of
the revocation window, hence the CA can discontin-
ue announcing the revocation. After the revocation
window has been reached, the CA may purge the re-
voked certificate from its internal lists. Unless need-
ed for some other purpose, such as support for non-
repudiation, no master list of revoked certificates is
required. Similar to explicit revocation, the window
of vulnerability in windowed revocation is equal to
the periodicity of CRL publication (see Appendix A
for a correctness proof).

When the CRL associated with a certificate can-
not be obtained, the certificate must be re-acquired.
As CAs are prohibited from returning revoked cer-
tificates, and the retrieval process is freshness and
authenticity protected [MJ98b], all retrieved certifi-
cates are guaranteed to be both fresh and unrevoked.
Thus, a byproduct of the certificate acquisition pro-
tocol is an instantaneous proof of the revocation state
of the certificate. Therefore, if a recent CRL cannot
be obtained, the revocation state can be determined
by the direct re-acquisition of the certificate.

By providing low cost delivery of CRLs in the av-
erage case (with multicast CRL delivery) we avoid
the vast amount of active CRL retrievals normally as-
sociated with traditional PKI architectures (see Sec-
tion 3). In the aberrant case, where the most recent
CRL has not been received, we provide a means of
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recovery through direct retrieval.
In reference [MJ98b], we present extensions to

X.509 v3 certificate format to support windowed re-
vocation. In the same reference we also discuss po-
tential extensions to windowed revocation, such as
the use offreshness CRLs, and our handling of im-
plementation issues such as relationship between a
CA and its directory, revocation of the trusted point
certificate, secure retrieval of certificates, providing
push delivery where IP multicasting is not available,
etc.

2.3.1 Certificate Cache Management

We present the following algorithm used by the veri-
fier to determine the revocation state of a cached cer-
tificate. In the following text, a distinction is made
between thelast published CRLand thelast acquired
CRL. The last published CRL is the last CRL gen-
erated by the CA previous to the verification of the
certificate. The last acquired CRL is the last CRL
acquired by the verifier.

1. If the difference between the current time and
the time the certificate was acquired is less than
the CRL publication period, the certificate may
be used.

2. If the last published CRL has been acquired
from the CA and the certificate has not been re-
voked, it can continue to be used.

3. If the last published CRL has not been acquired:

(a) If the difference between the current time
and the last acquired CRL is less than the
revocation window, the last published CR-
L is retrieved. Once retrieved, the CRL is
used to determine the revocation state of
the certificate.

(b) If the difference between the current time
and the last acquired CRL is greater than
the revocation window, the certificate is
dropped and must be re-acquired. The ex-
piration of a revocation window indicates
that revocation announcements for the as-
sociated certificate may have been missed.

(c) If the last published CRL cannot be re-
trieved, the certificate is dropped from the

cache, and must be re-acquired from the
CA.

At the time of retrieval, two timers are associated
with each cached certificate: theclean timer(�) and
the revocation window timer. Therevocation win-
dow timeris set to the revocation window (w) times
the CRL publication period (p). If we denote the time
of CRL publication astCRL, the clean timer associat-
ed with each un-revoked certificate, after acquisition
of the new CRL, is reset totCRL + �, and the revo-
cation window timer is reset totCRL+wp. Revoked
certificates are removed from the cache.

The clean timer is set by a verifier to a value
commensurate with its security policies and require-
ments. Without loss of generality, in this section we
assume clean timer equal to the CRL publication pe-
riod. See Section 2.5 for further discussion on verifi-
er selection of clean timer sizes.

As clean timers expire, the associated entries are
marked “dirty.” Certificates with unexpired clean
timers may be used without further verification. Be-
cause the certificate acquisition process provides an
instantaneous proof of its non-revoked status, certifi-
cates with unexpired clean timers are provably within
their windows of vulnerability.

After the initial clean timer expires, we can do one
of two things: either (1) use CRLs to re-assert cer-
tificates’ non-revoked status, or (2) perform lazy ver-
ification and revalidate a dirty certificate only when
it is needed again. In the former case, since CRLs
are acquired and processed at the time of their pub-
lication, cached certificates not revoked by the last
published CRL will never be marked dirty and may
continue to be used. In this case, we use CRL pub-
lication as a form of cache invalidation message. In
the latter case, if the certificate is to be used within it-
s revocation window, the last published CRL will be
consulted for its revocation status; otherwise, a cer-
tificate with expired revocation window timer will be
automatically dropped from the cache and must be
re-acquired if it is to be used again. If a certificate
is to be validated within its revocation window but
the last published CRL cannot be acquired, the cer-
tificate must also be dropped and re-acquired. Given
the high cost of signature verification, we opted for
the latter case in our design (see Section 3.7 for per-
formance data). For the same reason, when a CRL
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is consulted to validate a certificate, all cached cer-
tificates associated with the CRL are revalidated or
revoked at the same time.

We now illustrate the certificate cache manage-
ment process with an example. In this example, the
CRL publication period for the CA associated with
certificatesC1 andC2 is equal to 1 (where a CRL
is generated att; t + 1; t + 2; : : :). The revocation
window sizes documented in bothC1 andC2 are 2
(times the CRL publication period). Betweent + 1

andt+2, certificateC1 is revoked. Betweent+2 and
t+3, certificateC2 is revoked. Figure 3 describes the
revocation and subsequent inclusion in CRLs ofC1

andC2.
By definition, the CRLs published by the CA at

timet+2 andt+3 will contain the revocation of cer-
tificateC1. The revocation of certificateC2 will be
included in the CRLs published at timet+3 andt+4.
The CRL published at timet+ 4 will no longer con-
tain the revocation state of certificateC1. In Figure 3,
the inclusion of a certificate in published CRLs is in-
dicated as shaded boxes. Note that any CRL request
will return the most recently published CRL. Thus,
the response to a CRL request received between time
t + 3 and t + 4 will include the CRL published at
t+ 3.

Consider an end-user host (H1) whose cache con-
tains both certificatesC1 andC2. Assume that the
host received the CRL published at timet+ 1. Thus
at timet+1, the host set the revocation window timer
for bothC1 andC2 to t+3. We now describe several
possible scenarios relating to this example.

If certificate C1 is accessed by an end-user be-
tweent+2 andt+3, the host must acquire the CRL
published at timet+ 2. If this process fails, the host
will drop and attempt to re-acquire the certificate.

In the case when both CRLs at timet+2 andt+3

cannot be acquired, the host is unable to determine
the revocation state of eitherC1 or C2. The revoca-
tion window timers of both certificates expire at time
t+3, and the host will remove both certificates from
its cache.

Now consider a second host (H2) who retrieves
certificateC2 at timet + 2. It knows at the time of
retrieval thatC2 is fresh and unrevoked, so it sets the
clean timer associatedC2 to expire att + 3 and the
revocation window timer to expire at timet+4. The
certificate is handled as in the previous case, with the

t t+1 t+2 t+3 t+4 t+5 t+6time

Revocation Window = 2
(CRL Pub. Periods)

Certificate
C1 revoked

Certificate
C2 revoked

CRL <none>

<none>

<none>C1

C1,C2

C1,C2

C2

C1

C2

CRL
Publication

Period

Figure 3: Example CRL generation - In this example,
we show the revocation of certificatesC1 andC2 and
their inclusion in subsequent CRLs.

exception of the different timer expirations.
Note that while thesizeof the revocation window

is the same in all hosts for a given certificate, thestart
timeof the revocation window timer itself is not. In
each host, the revocation window is reset each time
the validity of a certificate is asserted.

We address the latencies incurred by the delivery
of CRLs by stipulating that clean timers must factor
in the propagation delay. The propagation delay is a
short period that estimates the maximum time need-
ed for the generation and delivery of the CRL. This
value is site dependent, and must be set by the local
network administrator.

2.4 Scalability of Design

Windowed revocation is scalable both in its band-
width requirements and the size of the supported
community. As indicated throughout this paper, the
scalability of windowed revocation is based on its
use of the revocation window and CRL push deliv-
ery. By limiting the size of CRLs through the use of
the revocation window, we reduce the costs associat-
ed with their distribution.

Through certificate caching, we attempt to scale
the total number of supportable verifiers. Given our
reduced CRL size, we can push deliver CRLs to ver-
ifiers. This allows verifiers to passively maintain the
validity of their cached certificates without having
to independently request information from the CAs.
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We avoid unnecessary validation by allowing veri-
fiers to postpone the verification of a cached certifi-
cate’s revocation state until the certificate is to be
used. Also, lost CRLs are reliably retrieved only
when a certificate verification is needed. While a
push mechanism for CRL delivery is mentioned in
[Pro94, FB97], we are not aware of any existing de-
sign that uses the push mechanism with provable cor-
rectness.

As verifiers passively receive CRLs immediately
following publication, the effects of CRL request im-
plosion may be decreased or eliminated. In the nor-
mal case, the CRLs will arrive shortly after publica-
tion, alleviating the need for their direct acquisition.

Our use of IP multicasting in CRL push delivery
minimizes network bandwidth usage by not duplicat-
ing data transmission to multiple destinations where
their paths overlap. For scalability reasons, IP mul-
ticasting uses the unreliable transport protocol, UDP,
for data delivery [DC90]. Our ability to use unre-
liable transport protocol for push delivery of CRLs
rests fundamentally on the use of documented sched-
uled intervals. A verifier with a cached certificate
knows the periodicity at which CRLs are expected.
If a CRL is not received at the expected time and a
certificate validation is needed, the verifier uses a re-
liable transport protocol to revalidate the certificate.

An important distinction to note is that our use of
unreliable transport protocol in no way affect the se-
curity of received CRLs. The security of received
CRLs is based on digital signature, and as such are
as secure as the signers’ CRL generation process
[MJ98b].

2.5 General Guarantee Statement

We bound the time in which a revoked certificate can
be used by its associated clean timer. Any certificate
which is cached longer than its clean timer is subject
to verification explicitly through a fresh CRL, or im-
plicitly by re-acquisition from the CA. The revoca-
tion window allows the CA to control the resources
required to process CRLs. Smaller revocation win-
dows reduce the size of CRLs, but require hosts to
re-acquire certificates more frequently.

An advantage of this approach is that a CA us-
ing windowed revocation can mimic traditional key
revocation mechanisms. By setting the revocation

window equal to the maximum lifetime of any cer-
tificate, the CRLs generated will be functionally e-
quivalent to those found in explicit revocation sys-
tems. In this way, no cached certificate will ever
have its revocation window timer expire before the
certificate expiration date. To mimic implicit revoca-
tion, windowed revocation CAs simply set the CR-
L publication period to 0 and never publish CRL-
s. This forces all certificates to be re-acquired after
their clean timers expire.

In [Riv98], Rivest exposes a fundamental limita-
tion of CRLs: verifiers’ inability to control the win-
dow of vulnerability. With traditional CRLs, a ver-
ifier receiving signed content must accept the valid-
ity of that content based on revocation information
which is only as recent as the latest CRL publication.
While this problem exists in PKIs with strictly ex-
plicit revocation, windowed revocation allows verifi-
er control over the window of vulnerability through
the direct acquisition of certificates. In acquiring the
certificate, the verifier obtains an instantaneous proof
of the revocation state of the certificate. Verifiers
who wish to retrieve revocation state at rates faster
than the CRL publication period can do so by setting
a certificate’s clean timer to a period smaller than the
CRL publication period, and setting revocation win-
dow timer to 0. In this case, the certificate is dropped
after the clean timer expires.

To summarize, the guarantee provided by win-
dowed revocation isexactly the general certificate
guaranteeproposed by Rivest in [Riv98]:

“This certificate is definitely good from
(date-time-1) until (date-time-2). The is-
suer also expects this certificate to be good
until (date-time-3), but a careful acceptor
[i.e. verifier] might wish to demand a more
recent certificate. This certificate should
never be considered as valid after (date-
time-3),”

where (date-time-1)is the time a certificate is re-
trieved or a CRL is acquired and processed,(date-
time-2)is (date-time-1)plus the CRL publication pe-
riod, and(date-time-3)is the end of the certificate
lifetime.
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2.6 Correctness

We prove the correctness of windowed revocation in
Appendix A. We prove thatthe length of time any
revoked certificate may be used is bounded by the
length of the verifier’s clean timer. Hence a verifier
can control its window of vulnerability without loss
of correctness. Each verifier may have differing de-
mands, all of which may be met safely.

3 Performance Evaluation

In this section we present results from several trace-
based simulations. We evaluate the performance of
windowed revocation and compare it against those of
both explicit (PEM) and implicit (DNSSec) revoca-
tion mechanisms. To understand the behavior and
benefits of revocation window independently from
those of multicast push delivery, our simulations of
windowed revocation, except those in Sections 3.6
and 3.7, do not implement push delivery; instead,
verifier hosts actively, and reliably, retrieve CRLs
from CAs if a cached certificate is to be revalidated
within its revocation window.

As indicated in Section 2.2, the limiting factor in
the scalability of any revocation mechanism is the
level of its resource consumption. In the following
analysis, we estimate the resource consumption of a
revocation mechanism by two metrics: the number
of signatures generated and verified and the amount
of network bandwidth generated, for a given work-
load. The high cost of public key cryptographic op-
erations makes signature generation the dominating
factor in CPU consumption at CAs (the generation of
a RSA digital signature using a 1024 bit key requires
.97 seconds on a Sparc II [Sch96]); similarly, sig-
nature verification dominates verifier host CPU con-
sumption.5 The number of certificates and CRLs de-
livered is used to compute bandwidth consumption.

Before presenting quantitative performance data,
we first present the worst-case performance analy-
sis of windowed revocation in the next section. We
found that CPU consumption of windowed revoca-

5The costs at the CA for providing freshness and authentic-
ity guarantees may be amortized over a number of certificate
requests [EK99]. These approaches are similarly applicable to
windowed revocation [MJ98b] and can be factored out in our
study.

tion is upper bounded by implicit revocation and
bandwidth consumption upper bounded by explicit
revocation. In Section 3.3, we present results from
trace-driven simulations confirming these findings
in the average case. The effect windowed revoca-
tion has on certificate caching is presented in Sec-
tion 3.4. Our claim that explicit and implicit revoca-
tions are special cases of windowed revocation (see
Section 2.3) is graphically illustrated in Section 3.5,
where we experimented with various settings of the
protocol parameters.

Finally, we turn our attention to the benefits of
multicast push delivery and lazy verification in Sec-
tions 3.6 and 3.7.

3.1 Worst Case Performance

The worst-case CPU usage scenario for windowed
revocation is when all cached certificates must be
revalidated outside their revocation windows. Out-
side its revocation window, a certificate revalidation
requires re-acquisition of the certificate. Since win-
dowed revocation stipulates that CA can only return
fresh and unrevoked certificates, each certificate ac-
quisition requires an expensive cryptographic oper-
ation at the CA. Hence if all certificate revalidation
occurs outside their revocation window, windowed
revocation degenerates into implicit revocation. For
a given workload, the worst-case CPU requiremen-
t of window revocation is thus the same as that of
implicit revocation.

The worst-case bandwidth usage for windowed re-
vocation, assuming no push delivery, is when al-
l cached certificates must be revalidated after their
clean timers expired, but before their revocation win-
dows expire.6 In this scenario, each certificate ac-
cess could potentially induce a CRL retrieval, caus-
ing bandwidth consumption to grow linearly with
the number of certificates revalidated. Hence in this
worst-case bandwidth consumption scenario, with-
out push delivery, windowed revocation behaves
similar to explicit revocation. However, because
the CRLs in explicit revocation are larger, the total
bandwidth consumed in traditional explicit revoca-

6This analysis assumes the bandwidth cost of CRL retrieval
is greater than the cost of certificate acquisition. The actual total
cost of CRL retrieval is dependent on revocation window size
and revocation rate.
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tion will be an upper bound on that of windowed re-
vocation.

This worst case analysis further illustrates that im-
plicit and explicit revocations are special cases of
windowed revocation.

3.2 Simulation Setup

Following the motivation behind the design of
DNSSec, we model our simulated PKI on a DNS
(Domain Name Service) hierarchy. To drive the sim-
ulations, we collected a trace of DNS name resolu-
tion requests and used them to model certificate re-
quests. The lack of deployed PKI systems available
for study precludes us from collecting real certifi-
cate request traces. We argue that DNS likely has
the usage characteristics that PKI architectures will
encounter. Similar to certificate requests, DNS re-
quests are most often used as precursors to session
initiations [DOK92].

We collected 2,857,654 DNS requests represent-
ing 14,999 name servers and 33,989 hosts. The da-
ta collection was done on our departmental primary
name server over a one week period, between 1:25p-
m, Monday, October 26, 1998 and 3:02pm, Monday,
November 2, 1998.

In our simulation, each timestamped DNS request
is interpreted as a certificate request. The model PKI
contains 14,999 CAs and 33,989 hosts. The modeled
entities retrieve certificates and CRLs, subject to the
timestamps, protocol, and architecture parameters.

The trace data used to drive the simulations de-
scribed in this section contain all the DNS traffic
within our local network environment. The trace
includes a complete recording of the departmental
nameserver and local host traffic, but contains on-
ly partial data for external nameservers and DNS
clients. Because the trace data does not contain all
the DNS name lookups for external nameservers and
clients, we use it to model only the PKI traffic of a lo-
cal environment. Thus, we present performance data
for a departmental CA modeled from the local name-
server, and 2000 verifier hosts modeled from the lo-
cal DNS clients. While the environment modeled is
limited in scope, it is sufficient for the purposes of
understanding the salient features of windowed revo-
cation, its performance relative to existing approach-
es, and to demonstrate its design flexibility.

The performance data presented throughout this
section was generated as follows. The cited band-
width statistics represent the total number of bytes
transmitted over the network interface of a CA mod-
eled from the local departmental nameserver. The
number of bytes is calculated from the number of
certificates and CRLs sent by the modeled CA. In
those instances where certificate retrieval must be se-
cure (e.g. in windowed revocation and implicit mech-
anisms), each acquisition requires one signature gen-
eration by the CA. Recall that in PEM, because the
revocation state of certificates is only asserted by
CRL, they need not be securely retrieved. Addition-
ally, each CRL publication requires the generation of
a digital signature. Therefore, the reported number
of signatures generated is calculated from the num-
ber of certificates securely acquired and the number
of CRLs published. Verifier related performance da-
ta is calculated by averaging hourly samples taken
at each of the 2000 verifier hosts modeled from the
local DNS clients.

The implementation of PEM in our simulator
models the DNS root as the IPRA and each name
server, a CA. The CRL publication period is set to 12
hours. Our simulation of DNSSec implements only
transaction authenticitymode, and we assume that
zone signatures do not expire during the simulation
[EK99]. DNSSec servers do not allow recursive re-
quests. To ease comparison of simulation results, we
set the TTL of all simulated certificates in the im-
plicit scheme to 12 hours. Unless otherwise noted,
the CRL publication period under windowed revoca-
tion is also set to 12 hours and the revocation win-
dows of all simulated certificates are set to 4. The
trusted point for all simulations is the root CA, and
all hosts are assumed to have infinite certificate and
CRL cache sizes (the cache size never goes beyond
20 MB in all cases).

UNIX password change data collected from the
modeled domain is used to estimate revocation rates.
In analyzing all password changes logged over the
past five years (1993-1998), we found that in the
studied domain a password was changed, on aver-
age, once every 9 hours. If certificate revocation
maintained this rate, and each revocation occurred 6
months into a one year certificate lifetime, the result-
ing PEM CRL would contain about 500 entries and
be greater than 5 kilobytes. While 5 kilobytes may
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appear small, CRLs are delivered many times over
short periods. Thus, CRL size has a multiplicative
effect on bandwidth usage. In the simulated PEM
environment, the average bandwidth consumed per
hour for the delivery of CRLs is over 1 megabyte.
Under the same assumptions, a windowed revocation
CRL would contain on the average 5 certificates, be
about 90 bytes, and consume a little over 4 kilobytes
per hour for CRL delivery.

3.3 Resource Consumption

In this section, we compare windowed revocation to
explicit and implicit revocation mechanisms found in
the PEM and DNSSec PKIs, respectively. Recall that
to understand the behavior and benefits of revocation
window independently from those of multicast push
delivery, we do not implement CRL push delivery in
all experiments described here.

Fig. 4 shows the bandwidth usage of PEM, win-
dowed revocation, DNSSec, and an idealized X.509
based implicit mechanism.7 The x-axis shows the
time (in hours) since the start of the trace. The y-axis
shows the total bandwidth usage. The total band-
width usage includes that from certificate acquisi-
tions and CRL retrievals. Note the presence of the di-
urnal pattern normally seen on network traffic traces.
The size of certificates in DNSSec8 (� 242 bytes) is
significantly smaller than the X.509v3 certificates (�
1024 bytes) used by both PEM and windowed revo-
cation. In light of the difference in certificate sizes,
it is not surprising that DNSSec generates less band-
width than both of the other schemes. Fig. 5, howev-
er, shows that DNSSec induces the CAs to generate
more digital signatures per hour than windowed re-
vocation. The x-axis again shows the time (in hours)
since the start of the trace; the y-axis shows CPU
consumption expressed as the number of signatures
generated. Re-verification in windowed revocation
may be achieved by retrieving a CRL, thus avoiding
some of the signature creations required by DNSSec
in all cases. Note that PEM generates a constan-
t number of signatures (one signature per publication

7The idealized implicit mechanism is an approximation of
the Online Certificate Status Protocol (OCSP) [MAM+98]. OC-
SP is described in the Related Work section of this paper.

8Certificates in DNSSec are called key resource records (R-
R). Key resource records are semantically identical to the certifi-
cates found in other PKIs.
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Figure 6: Average Cache Size: average cache size of
hosts in the studied domain. In these experiments, no
CRL push mechanism is simulated.

period in signing the CRL), and thus its CPU require-
ments are not shown in Fig. 5.

Fig. 4 further shows that windowed revocation
consumes 83% less bandwidth than PEM. This can
be attributed to two factors, the number of CRLs
delivered and the size of the CRLs. For this work-
load, windowed revocation transmitted about 65%
less CRLs than PEM. Unlike windowed revocation,
each time a PEM verifier retrieves a certificate, it
must also retrieve the latest CRL. Under the proto-
col parameters above, the average reporting period
for a revocation is 2 days in window revocation and
6 months in PEM. The size of a CRL in both PEM
and windowed revocation is a direct result of the re-
vocation rate and the length of time a revocation is
announced. In the simulated environment, the ratio
of PEM to windowed revocation CRL sizes is exact-
ly the ratio of the reporting period, or about1 : 90.
Therefore, the cost associated with the delivery of a
singular CRL in PEM is about 90 times greater than
in windowed revocation.

In Fig. 4, the line labeled “Implicit” shows the
bandwidth costs of an idealized implicit mechanis-
m distributing X.509v3 certificates. In our modeled
environment, certificate revalidation via CRL con-
sumes less bandwidth than direct certificate acqui-
sition. As a result, windowed revocation uses 40%
less bandwidth than a strictly implicit mechanism
distributing the same certificates.
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Figure 8: CPU costs in a series of simulations
with varying revocation window sizes (CRL pub-
lication period = 12 hours).

3.4 Effect on Certificate Caching

Fig. 6 shows the average verifier cache size (on
the y-axis) under PEM, windowed revocation, and
DNSSec. DNSSec drops a certificate from its cache
at the expiration of the certificate’s TTL. Should the
certificate need later re-verification, it must be re-
acquired from the CA. Windowed revocation, on the
other hand, simply marks a certificate that has been
cached longer than its clean timer as dirty. Should
the certificate need re-verification before expiration
of the certificate’s revocation window, only the last
published CRL needs to be acquired and processed.
Hence we see that windowed revocation caches al-
most three times as many certificates as DNSSec at
the end of the simulations shown in Fig. 6. We con-

sider the difference in the number of cached certifi-
cates as DNSSec’s “lost opportunity” to provide bet-
ter performance. DNSSec forces the re-acquisition
of a large number of certificates that have not been
revoked and would still have been validly cached un-
der windowed revocation.

Fig. 6 also shows that at the end of the simulations,
PEM caches twice as many certificates as windowed
revocation. A certificate stays in the verifier’s cache
only if it is requested before the expiration of its re-
vocation window. A dirty certificate with an expired
revocation window is dropped from the cache. Since
PEM does not have the concept of revocation win-
dow, a cached certificate stays cached until its revo-
cation or the expiration of its lifetime. Fig. 6 shows
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Figure 9: Total bandwidth costs in a series of
simulations with varying CRL publication periods
(revocation window size = 4).
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Figure 10: CPU costs in a series of simulations
with varying CRL publication periods (revocation
window size = 4).

that half of the cached certificates under PEM are not
accessed within four times the CRL publication pe-
riod and are thus good candidates for replacement
should the cache overflow.

3.5 Protocol Parameters

The next set of experiments were designed to identi-
fy the effects of protocol parameter values on perfor-
mance. We investigated the two primary windowed
revocation parameters: revocation window size and
CRL publication period. Again, we assume no mul-
ticast CRL delivery in these experiments.

The size of the revocation window determines the
length of time a certificate will be included in the
CA’s CRLs, and indirectly, the length of time any
verifier may cache a certificate without further verifi-
cation. Intuitively, as the revocation window size in-
creases, it is more likely that a certificate will require
refreshing via CRL than by being dropped and re-
acquired. Thus, longer revocation windows should
require more CRLs to be delivered, but less direc-
t certificate acquisitions. This intuition is support-
ed by the results of several simulations presented in
Figs. 7 and 8. From Fig. 6, we determine that it takes
about 100 hours for the certificate cache to warm up.
Hence we only report resource consumption from the
100 hour on in the next five figures.

These results serve to illustrate the fundamental
tradeoff in windowed revocation: that between net-
work bandwidth (CRL size and request rate, as deter-
mined by the revocation window) and CA load (num-

ber of signatures generated).
Results of simulations with varying CRL publica-

tion periods are given in Fig. 9 and 10. These fig-
ures illustrate that smaller CRL publication periods
increase the load on the CA. As the CRL publication
period decreases, the length of the revocation win-
dow, which is expressed as multiples of CRL publi-
cation periods, also decreases, increasing the prob-
ability of certificates being revalidated beyond their
revocation windows. The figure also indicates that
the total number of CRLs delivered increases as the
CRL publication period decreases. Thus, decreases
in CRL publication period lead to increases in all P-
KI costs.

3.6 Benefits of Multicasting

We have so far concentrated our study on the be-
havior and benefits of windowed revocation without
multicast push delivery. We now turn our attention
to the benefits of push delivering CRLs. In the simu-
lated environment with a CRL publication period of
12 hours and a revocation window of 4 (48 hours),
we observed that only 3% of the total bandwidth is
consumed by the delivery of windowed revocation
CRLs. Hence the use of a push mechanism for CR-
L delivery under this scenario will reduce bandwidth
consumption by less than 3%. In contrast, when ap-
plied to traditional PEM, a CRL push mechanism re-
duces bandwidth consumption by 53%. This demon-
strates that when the cost of certificate acquisition
is constant, the advantage of pushed CRLs increas-
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es as the size of CRLs increases. Windowed revoca-
tion alone, even without pushed CRLs, uses 83% less
bandwidth than traditional CRL based mechanisms.
We expect that in communities larger than the one
we have simulated, CRL size will be larger and thus
the advantage of pushed CRLs under window revo-
cation should increase with the size of the serviced
community.

3.7 Benefits of Lazy Verification

In Section 2.3.1, we made a design decision not to
use periodically published CRLs as cache invalida-
tion messages, instead we opted to perform lazy ver-
ification and revalidate a dirty certificate only when
it is needed again. When used in conjunction with
pushed CRLs, lazy verification means that a CRL re-
ceived from a CA is not processed until a certificate
associated with the CRL needs to be revalidated. Al-
l our performance results so far are from windowed
revocation with lazy verification. We now present
performance data informing this design decision.

In our simulated environment, all CAs maintain
the same publication period and generate CRLs on
the same schedule. Using CRLs as cache invalida-
tion messages means that at the time of CRL pub-
lication, each verifier will receive a CRL from each
CA from which it acquired a currently cached certifi-
cate. The influx and subsequent processing of these
CRLs cause periodic bursts of signature validation-
s at the verifier hosts, illustrated by the line labeled

“Without Lazy Verification” in Fig. 11. This behav-
ior is clearly undesirable. This problem is similar to
those experienced by a number of push based Inter-
net services. Without careful engineering, the costs
associated with push mechanism may increase net-
work congestion and client host load.

Another salient feature apparent of the line labeled
“Without Lazy Verification” in Fig. 11 is the con-
tinuing rise of CRL processing cost over time. Un-
der windowed revocation, certificates refreshed via
CRLs will never be dropped from cache. Assum-
ing infinite cache size, the cache will thus hold ev-
ery certificate ever acquired, and continue to receive
the associated CRLs. As can be seen from the line
labeled “With Lazy Verification” in the same figure,
the undesirable effects of synchronized CRL delivery
and ever increasing cache occupancy are not present.
Lazy verification avoids these effects by not refresh-
ing certificates at every CRL publication. Thus, un-
used certificates are dropped due to the expiration of
the revocation window timer. (We call windowed re-
vocation with lazy verification WRLV and without
lazy verification WR henceforth.)

While lazy verification successfully prevents syn-
chronized bursts of signature validations and allevi-
ates the bursts of bandwidth consumption associat-
ed with CRL deliveries, it does not completely re-
move such bursts in bandwidth demand. Hence to
further study the effect of certificate holding time
on bandwidth demand, we experimented with win-
dowed revocation without lazy verification but with
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a hold timerassociated with each cached certificate
(WRHT henceforth). The hold timer specifies the
maximum time a certificate may be cached without
verifier access. Certificates not accessed before the
expiration of its hold timer are dropped from cache;
when a certificate is accessed its hold timer is reset
to its initial value.

The line labeled “Hold Timer = 48 hours” in
Fig. 11 shows the result of a simulation of WRHT
with a hold timer value equal to the revocation win-
dow (48 hours). In this case, the number of signa-
tures does not increase linearly over time as in the
WR case, but reaches a steady state, with smaller
load bursts at CRL publication times.

In Fig. 12, the average verifier certificate cache
sizes for a range of simulations with varying hold
timer values are shown. For comparison, we also
include the average verifier cache sizes from simula-
tions of the PEM and DNSSec systems. Note that the
cache sizes increase linearly with hold timer length.
A hold timer equal to the DNSSec TTL shows a s-
moothed approximation of DNSSec caching. The
cache operates as in DNSSec, but avoids the peri-
odic drops (and subsequent re-acquisitions) of cer-
tificates associated with TTL expirations. Notice
also that WRLV with pushed CRLs has the exact
same cache characteristics as that of WRLV without
pushed CRLs.

Given revocation window size of 4 (48 hours),
the performance of WRHT with hold timer of 48
hours tracks those of WRLV up to 48 hours. After
which, their performance diverges with the WRHT
caching less certificates. WRLV refreshes all un-
revoked cached certificates associated with a CR-
L whenever the CRL is processed and drops only
those certificates that have not been refreshed within
their revocation windows. WRHT drops certificates
that have not been accessed for a period of time, re-
gardless of their clean and revocation window timer-
s. Therefore, we see smaller cache occupancy under
WRHT than under WRLV when the hold timer value
is equal to the revocation window. Note that the trend
between hours 110 and 160 towards smaller cache
sizes is due to the reduced number of requests on the
system. These hours span a Saturday and Sunday,
when less data is requested by verifiers.

In conclusion, in environments where pushed
CRLs are synchronized and the bursts of bandwidth

demand is intolerable, system administrators can au-
tomatically drop cached certificates that have not
been used for a specified amount of time. This mech-
anism, which we call thehold timer, is independent
of and does not effect the correct operation of win-
dowed revocation.

4 Related Work

The Privacy Enhanced Mail [Ken93] architecture
(PEM) stipulates that all revoked certificates in each
domain be included in periodic CRLs. Due to the
long lifetimes of certificates, the size of these lists
made CRL distribution difficult. Several approach-
es to reducing the size the CRLs have been proposed
[AZ98, HFPS98], many of which have been includ-
ed in the IETF Public Key Infrastructure Working
Group (PKIX) draft standards.

CAs supporting delta CRLs [HFPS98] periodical-
ly publish a traditional CRL, called a base CRL, and,
more frequently, delta CRLs that contain only revo-
cation information generated since the last base CR-
L. Unlike CRLs in windowed revocation, delta CRLs
continually increase in size between base CRLs. Fur-
thermore, verifiers are required to acquire, validate,
and cache the potentially large base CRLs.

In systems that use freshness CRLs [AZ98], delta
CRLs are generated at multiple rates. Verifiers re-
trieve CRLs generated at a rate commensurate with
their security requirements. In windowed revocation,
each verifier may acquire revocation state at any rate
by dropping and re-acquiring certificates as needed.
CRLs in windowed revocation may also benefit from
multiple publication rates.

In an effort to reduce the costs of CRL processing,
some systems present revocation information in au-
thenticated dictionaries [NN98, Koc98, Mic96]. Us-
ing authenticated dictionaries, verifiers need not re-
trieve the entire CRL, but request only enough infor-
mation to validate the certificate. These approaches
often involve heavyweight cryptographic operations,
long interactive protocols, and/or significant CA re-
sources.

The Online Certificate Status Protocol (OCSP)
[MAM +98] defines an implicit revocation mechanis-
m to be used in conjunction with the explicit mecha-
nism in PKIX PKIs. It does not attempt to reduce the
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resource consumption of the existing explicit mech-
anism.

There is a direct parallel between global certificate
and name-space management. In recognition of this
fact, the authors of DNSSec [Gal96, EK99] designed
an architecture for certificate distribution and revoca-
tion using the existing DNS service. As with DNS,
certificates are retrieved from the source domain and
held for a short time. Later validation is performed
by re-acquisition of the certificate. As DNSSec re-
quires each certificate to be digitally signed once per
(short) configurable period, and that each response
to a request with transaction authenticity enabled be
digitally signed, it is unclear how well it will scale in
large networks.

The Pretty Good Privacy (PGP) [Zim94] system
provides a suite of tools for generating, managing,
and revoking certificates within a local environment.
PGP does not specify certificate distribution or revo-
cation protocols.

The Simple Distributed Security Infrastructure (S-
DSI) [RL96, BFL96] and the closely related Sim-
ple Public Key Infrastructure (SPKI) [Ell98] system-
s provide a language and toolkit under which user
and group certificates can be created, distributed, and
revoked. SDSI requires certificate owners to docu-
ment areconfirmationTTL. When this TTL expires,
the validity of the certificate is required to be re-
established. This is functionally equivalent to the im-
plicit revocation mechanism found in DNSSec.

5 Conclusions and Future Work

In this paper, we presented a novel approach to key
revocation in Public Key Infrastructures.Windowed
revocation attempts to limit the size of CRLs by
announcing revocation only for a documented peri-
od. The time a certificate can be held by a host is
bounded by the announcement period, called there-
vocation window. Thus, all certificates will be ver-
ified: (1) explicitly by CRL or, (2) implicitly by re-
trieval. Through manipulation of the revocation win-
dow, CAs may influence CRL sizes and the frequen-
cy with which certificates are retrieved. We allow an
end-to-end push mechanism for CRL delivery using
multicast. With push delivery, the costs and latencies
associated with verifier initiated CRL retrieval can be

alleviated.
We are in the initial stages of constructing a refer-

ence implementation for windowed revocation. We
plan to integrate the windowed revocation services
with SSLeay [HY98], a widely-used session layer
providing secure point to point communication. We
intend to integrate windowed revocation into systems
currently supporting the PKIX working group stan-
dards.
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Figure 13: We show the lifetime of certificate hostC, which is valid fromt1 to tn. At time ti, a verifier
retrieves the certificate. In response, the clean and revocation window timers are set toti + � andti + wp,
respectively, where� is the verifier selected clean timer value,p is the CRL publication period of the CA,
andw is the revocation window. The CA publishes CRLs at times: : : ; tk � p; tk; tk + p; : : :

A Proof of Correctness

In this appendix, we formally prove the bound on the use of revoked certificates. In Figure 13, we describe
the lifetime of certificateC. C is valid from timet1 until its expiration at timetn. CRLs are generated
by the CA at the publication periodp. � is the clean timer value selected by the verifier. The revocation
window ofC isw. We denote an arbitrary CRL publication time astc. At time ti,C is retrieved and cached
by a verifier. At some timetr, C is revoked. Before presenting the proof, we formally define two central
properties of windowed revocation.

Property 1: Fresh Certificate Retrieval.This property ensures that all certificates are fresh and unrevoked
at the time of retrieval. More formally,tr > ti holds for the retrieval and revocation of any certificateC.

Property 2: Windowed Revocation.This property ensures that all revoked certificates are included in the
CRLs published within the documented revocation window. Formally,
C 2 CRLj for all CRLs published attc +mp, where
min(tc)jtc > tr, 0 � m � w.

Intuitively, tc is the CRL publication time immediately following the revocation, i.e. the publication time of
the first CRL that contains the revocation.

Theorem 1: The length of time any revoked certificate may be used is bounded by the length of the clean
timer (�).9

Proof: After retrieval, the initial clean timer forC is set toti+ �, and the revocation window timer is set to
ti + wp. It is sufficient to show the theorem holds for verifications (and use) ofC at timetÆ, for all tÆ � ti.

� Case 1:tÆ < ti + � : The certificate is verified before the initial clean timer expires.

ti � tÆ < ti + �, (from case definition)

ti < tr, (property 1)

) tÆ � tr < �,

so the theorem holds.

� Case 2:ti+� � tÆ < ti+wp : The certificate is verified after the initial clean timer expires, but before
the revocation window expires.

9Note that the bound on the use of revoked keys is actually the clean timer length plus the propagation delay value. For simplicity
and without loss of correctness, we omit mention of the propagation delay value.



a) If � < p, then the certificate was dropped after the clean timer expires (see Section 2.5). Thus,
the theorem holds.

b) If � � p andC is not marked dirty, then there exists someCRLj published at timetj < tr

that was received by the host. Attj, we knowC has not been revoked. The clean timer has not
expired, sotÆ � tj < �.

Therefore,

tÆ � tj < �, (C is not marked dirty)
tj < tr, (C 62 CRLj)
) tÆ � tr < �.

Intuitively, a certificate having an unexpired clean timer means that it has not been longer than�

since a statement of the certificates non-revoked status has been received from the CA, thus the
theorem holds.

c) If � � p, C is marked dirty, and the most recentCRLj published at timetj is retrieved.

tÆ � tj < p (by definition)
� � p (from case definition)
) tÆ � tj < �,

The information received inCRLj is within � of the verification time (tj). This indicates that the
CRL is recent enough to be within the window of vulnerability defined by the clean timer value.

If tr > tj, C 62 CRLj, the clean timer is reset totj + �. This case reduces to case 2(b).

If tr � tj, then it suffices to proveC 2 CRLj. By property 2,C 2 CRLj if and only if

tc � tj � tc + wp,

wheretc is min(tc)jtc > tr, the CRL publication on or immediately followingtr. From this, we
can conclude that:

) tc � tj,
ti < tr, (property 1)
tr � tc, (property 2)
) ti < tc,
) ti + wp < tc + wp,
tj < ti +wp, (from case definition)
) tj < tc + wp.

Hence:

) tc � tj < tc + wp,

and

) C 2 CRLj.

So the theorem holds. A similar argument holds for certificates whose revocation window is reset
in response to a received CRL.

� Case 3:tÆ � ti + wp : The revocation window timer expired, so the certificate is dropped. Thus, the
theorem holds. (see Case 2(c) for a description of reset revocation window timers.) 2


