
1

A Fully Associative Software-Managed Cache Design

Erik G. Hallnor and Steven K. Reinhardt
Advanced Computer Architecture Laboratory

Dept. of Electrical Engineering and Computer Science
The University of Michigan

1301 Beal Ave.
Ann Arbor, MI 48109-2122

{ehallnor,stever}@eecs.umich.edu

Abstract
As DRAM access latencies approach a thousand instruction-execution times and on-

chip caches grow to multiple megabytes, it is not clear that conventional cache structures
continue to be appropriate. Two key featuresfull associativity and software manage-
menthave been used successfully in the virtual-memory domain to cope with disk
access latencies. Future systems will need to employ similar techniques to deal with
DRAM latencies. This paper presents a practical, fully associative, software-managed sec-
ondary cache system that provides performance competitive with or superior to traditional
caches without OS or application involvement. We see this structure as the first step
toward OS- and application-aware management of large on-chip caches.

This paper has two primary contributions: a practical design for a fully associative
memory structure, the indirect index cache (IIC), and a novel replacement algorithm, gen-
erational replacement, that is specifically designed to work with the IIC. We analyze the
behavior of an IIC with generational replacement as a drop-in, transparent substitute for a
conventional secondary cache. We achieve miss rate reductions from 8% to 85% relative
to a 4-way associative LRU organization, matching or beating a (practically infeasible)
fully associative true LRU cache. Incorporating these miss rates into a rudimentary timing
model indicates that the IIC/generational replacement cache could be competitive with a
conventional cache at today’s DRAM latencies, and will outperform a conventional cache
as these CPU-relative latencies grow.

1. Introduction
With each succeeding generation of microprocessors, advances in instruction-execution rates further

outpace improvements in DRAM access latencies. For the earliest microprocessors, a DRAM access easily
fit into a CPU cycle; today, a DRAM access today represents a hundred or more CPU cycles and several
hundred instruction-execution opportunities. This processor-memory gap has largely been addressed
through the use of caches. Here again, steady, rapid advances in technology have brought about significant
changes. Early microprocessor caches were off-chip and a few kilobytes in size, while we now see on-chip
SRAM caches in excess of one megabyte [9]. We believe that the conjunction of these two trendsmiss
latencies approaching a thousand instruction-execution times and multi-megabyte on-chip cachesshould
spur a re-examination of how secondary (level-two) caches are organized and managed.1

In many ways, the cache-DRAM relationship is becoming similar to that between DRAM and disk
storage [6][19]. In the latter case, systems employ two mechanisms to aggressively minimize the impact of
disk accesses: software-based replacement and prefetching policies and fully associative address mapping.
Software-based policies enable relatively sophisticated algorithms for maximizing storage efficiency and
prefetching accuracy. Full associativity allows the replacement algorithm to retain the most important
pages without regard to address mapping conflicts.

This paper presents a practical, fully associative, software-managed secondary cache system whose
performance is competitive with and often superior to more conventional alternatives. We use the term

1. The miss latencies and capacities of primary (level-one) caches have undergone a less dramatic transformation, since the size
of these caches is constrained by the processor cycle time and the miss latency is kept low by the now-common presence of a sec-
ondary cache.

2

“software managed” to describe a cache in which software explicitly controls the placement of data in the
cache, determining precisely which block will be evicted to make room for new data. Cache-management
software may execute on the primary CPU itself, perhaps as one thread of a multithreaded CPU, or on a
dedicated controller.

Our system consists of two parts: a hardware design, the indirect index cache (IIC), and a replacement
algorithm, generational replacement. The IIC provides a practical implementation of a fully associative
data store using indirection, mapping physical addresses to data array indices in a manner similar to page-
table-based virtual-to-physical address translation. Unlike virtual address translation, the IIC is transparent
to the operating system. Also unlike virtual memory, the IIC initiates miss handling in hardware, keeping
software off the critical path of main-memory accesses. Our replacement algorithm, generational replace-
ment, is designed to tolerate the filtered address stream provided by the primary caches while operating
with low state-management overhead.

Our preliminary evaluation of the IIC and generational replacement employs a set of Windows NT sys-
tem address traces from Intel and an S/390 trace from IBM. We find that, for a unified one megabyte sec-
ondary cache, our proposed design provides miss rates 8% to 85% better than a traditional four-way
associative LRU cache, even with profile-based page coloring. Our design also compares favorably to a
four-way LRU cache with a 256-entry victim buffer. A simple timing model incorporating estimated IIC
overheads indicates that the IIC with generational replacement is competitive with a more traditional orga-
nization when main-memory access times are 100-200 cycles larger than secondary cache hit times.

In the long run, the primary advantage of fully associative data stores is the flexibility they provide to
upper-level management algorithms. Of course, the sophisticated applications, compilers, and operating
systems that leverage this flexibility will not spring into existence overnight. In the following section (Sec-
tion 2), we elaborate the potential advantages of a fully associative, software-managed secondary cache.

Section 3 describes the IIC and generational replacement in detail. Section 4 provides a preliminary
evaluation of the IIC using generational replacement. Section 5 discusses related work. We present our
conclusions and future directions in Section 6.

2. Arguments for software-managed caches
In this section, we discuss the potential applications of a fully associative, software-managed second-

ary cache. We have identified three areas in which such a cache offers an advantage over low-associativity,
hardware-managed organizations: it enables more sophisticated replacement algorithms, it reduces the
penalty for locking data in the cache, and it enables arbitrary partitioning of the data store.

Many of these applications require support from programmers, compilers, or operating systems.
Unfortunately, this software support will not develop until the requisite hardware structures are available.
To bypass this chicken-and-egg situation, this paper focuses on the practicality of such a cache in a trans-
parent environment, i.e., with no application or OS support. The purpose of this section is to argue that the
performance advantage discussed in Section 4 is only one of many benefits to be derived from a software-
managed cache.

Although full associativity and software management are conceptually orthogonal, they have a symbi-
otic relationship. Software management of a low associativity cache is overkill; the complexity of a soft-
ware replacement algorithm is not justified when there are only a few replacement choices available. On
the other hand, the complexity of managing replacement state for a large, fully associative cache is gener-
ally beyond the capability of a hardware implementation, unless a trivial policy such as random is used.

The primary motivation for software-managed caches is the ability to apply sophisticated replacement
algorithms such as those developed for virtual-memory paging [8][20] to reduce the performance impact of
DRAM accesses.1Software-based algorithms can apply more resources and more complex analyses to the
problem, and easily incorporate application hints. Of course, these algorithms will likely require modifica-
tion to work in a secondary-cache environment; exploring this space is a major component of our future
work.

Second, a fully associative cache greatly reduces the penalty for locking (pinning) data into the cache.
In any cache, locking a block reduces the associativity of the containing set by one. In a two-way associa-

1. By extension, a software-managed cache might usefully support many of the less traditional applications of virtual address
translation as well, such as shared virtual memory and garbage collection [1].

3

tive cache, only one block can be locked per set, and doing so reduces the available associativity by half. In
a fully associative cache, the data that can be locked is limited only by the cache capacity, and each locked
block reduces the associativity by a negligible amount. The ability to lock data in the cache can be critical
to providing reasonable worst-case execution time guarantees, as required by real-time systems. As the
performance impact of memory latency increases, avoiding misses in time-critical code will become ever
more important. Our proposed design locks the replacement algorithm’s data structures in the cache to
avoid the complexity of recursive miss handlers (see Section 3).

Third, a fully associative cache can easily be partitioned into arbitrarily sized pieces for use by differ-
ent processes or threads, effectively creating multiple smaller, dedicated L2 caches. Cache partitioning
would directly benefit operating systems that provide quality-of-service guarantees to processes [4]. This
feature may also prove useful for avoiding thrashing in multithreaded processors. The cache could also be
partitioned functionally, for example, into a demand miss section and a set of prefetch buffers.

3. Implementation
This section describes a practical design of a fully associative software-managed cache. Our design

comprises two parts: the hardware structure of the cache, which we call an indirect index cache (IIC), and
a base replacement algorithm, generational replacement.

3.1 The Indirect Index Cache
Typical associative cache designs either access all potential data locations in parallel, or use content-

addressable memory cells to directly access the desired data. The former requires n parallel data array
accesses for an n-way associative cache, increasing power consumption and limiting the approach to small
n. The latter approach does not scale well to very large caches.

The IIC reduces the cost of large fully associative caches by borrowing a basic technique from virtual
address translation: indirection. In a traditional cache, each tag is statically associated with a single data
entry, and simply indicates which block (if any) is stored in that location. An associative cache built in this
fashion must search the tags for all potential data locations. In the IIC design, tag entries are not associated
with particular data blocks; instead, each tag entry contains a pointer to the data block, i.e., an index into
the cache’s data array. Because a tag entry can indicate any data array location, the cache is fully associa-
tive. Figure 1 illustrates the IIC design.

Although indirection eliminates the need to search n tag entries for an n-way associative cache, we are
now faced with the problem of locating the correct tag entry for a given address. The IIC’s tag array uses a
simple hash table organization, similar to a hashed page table [13]. This organization provides reasonably
fast lookups with a storage cost proportional to the number of blocks in the data array. The tag array is split

TAG OFFSET

REPLTAG STATUS INDEX

TE CHAINTE TE TE TE CHAIN

TAG =?

Hit?

=?

Hit?

=?

Hit?

=?

Hit?

DATATAG =?

Hit?

Data

hash

Figure 1. Indirect Index Cache Organization.

4

into two parts, an associative primary hash table and secondary hash storage for chaining, as shown in Fig-
ure 1. A tag is hashed into the primary hash table, with collisions being chained into the secondary hash
storage. This split provides the opportunity for pipelining table lookups, or even allowing accesses that hit
in the primary table to bypass those requiring longer searches.

The following two subsections compare the IIC design’s storage and access time overheads with those
of a more traditional cache organization.

3.1.1 Storage overhead
The tag storage overhead of an IIC relative to conventional caches stems from two factors: the data

array index in each tag entry and need for a larger tag field. The larger tag arises because, unlike a conven-
tional cache, the position of an entry in the IIC’s hash-based tag store is not directly related to the corre-
sponding physical address. As a result, the bits used to index the tag array cannot be eliminated from the
stored tag. We also reserve 32 bits for use by the replacement policy. Table 1 shows that for a 1MB cache
with 256-byte blocks, assuming a 48-bit physical address, the IIC’s tag store has a 164% overhead to that
of a 4-way set associative cache. However, this is an increase of only 27 KB, or just over 2.6% of the total
storage required by the cache. (For 128 and 512 byte blocks the increases are 55 KB (166% overhead,
5.4% of the cache) and 13.25 KB (160% overhead, 1.3% of the cache).)

3.1.2 Access time overhead
The IIC has three primary sources of timing overhead relative to a conventional cache design: addi-

tional hit latency due to accessing the tag and data arrays sequentially, additional hit and miss latency due
to hash-table-based tag lookups, and additional miss latency due to the overhead of software management.

In most associative cache designs, the tag and data arrays are accessed in parallel. The results of the tag
comparison are then used to select one of the n data values read from the data array. The IIC would appear
to be at a significant disadvantage, since the tag and data accesses must be serialized. However, recent on-
chip secondary-cache designs, including the Alpha 21164 [10] and 21364 [9] already serialize their tag and
data accesses to reduce power consumption. Checking the tag array first and then accessing only the cor-
rect data array bank provides tremendous power savings for a large cache (up to 20W in the case of the
21164 [10]).1Given the power constraints of future processors, we expect this approach to be common for
on-chip secondary caches; in this case, the IIC’s sequential tag/data accesses may not incur a significant
access penalty relative to these caches. Note that the IIC design inherently shares the power efficiency of
these other sequential-access cache designs.

A second source of overhead is the potential need for multiple tag array accesses to walk the hash
chain. By using an 4-way associative primary hash table and moving accessed tag entries to the front, our
naïve implementation of the configuration described in section 4 provides average search chain depths of
1.52. Our simple timing model indicates that this overhead is small enough to be offset by potential
improvements in miss rates. Optimizing the hash function may further reduce the hash chain lengths.

The third source of overhead is software management. Software-based replacement decisions will
require a larger and more variable number of cycles than for a hardware-managed cache. We assume the
IIC acts as a transparent, physically addressed cache, so (unlike VM) no additional translation is required
on a miss. Hardware can thus directly initiate a DRAM access once the tag lookup indicates a miss. The
latency of the software handler’s replacement decision then overlaps the main memory access latency [11].

Table 1: IIC Tag Storage Overhead

4-way set associative IIC
Tag size 48–lg(1M/4)=30 bits 48–lg(256)=40 bits

of Tags 4096 4096

Repl. Entry size N/A 32 bits

Index Size N/A lg(1M/256)=12 bits

Tag Entry Size Tag+Status Bits=33 bits Tag+Status Bits+Index+Repl=87 bits

Tag Store Size # of Tags*Tag Entry=16.5 KB # of Tags*Tag Entry=43.5KB

1. This serialization can be avoided by predicting and speculatively accessing the most likely data array element [17, 18]. How-
ever, the ability to predict the correct element, and hence the utility of this technique, decreases with increasing associativity.

5

Although we are interested in the feasibility of executing cache-management software on the primary
CPU, using a dedicated controller tightly coupled to the cache structure will incur less overhead. We can
easily pin the replacement algorithm’s code and data structures in the data array, avoiding the need to han-
dle recursive cache misses within the replacement algorithm itself. We assume that replacement processing
for multiple misses can be pipelined sufficiently (by multithreading the controller or providing additional
hardware support) to avoid causing a bandwidth bottleneck. Finally, the replacement algorithm may main-
tain a small number of unused data blocks as a buffer pool to decouple the timing of the replacement deci-
sion from the arrival of data from the memory system.

Of course, the actual latency of replacement decisions depends strongly on the complexity of the algo-
rithm. The following subsection describes one algorithm, generational replacement, which provides com-
petitive performance without significant run-time complexity.

3.2 Generational Replacement
Although the IIC design is independent of the replacement algorithm used to manage it, its utility

depends on the existence of a practical algorithm that provides competitive performance without unreason-
able overhead. This section presents a novel algorithm we have developed, called generational replace-
ment, which is tailored to the needs of a secondary cache. As will be shown in Section 4, generational
replacement performs as well as or better than true LRU on all our traces, and better than a standard imple-
mentable pseudo-LRU scheme.

In practice, the IIC can use traditional VM paging algorithms such as clock. However we can improve
performance by taking into consideration two significant differences between page replacement and sec-
ondary cache replacement. First, primary cache hits are filtered from the secondary cache’s observed refer-
ence stream. In contrast, because the TLB is usually in front of or in parallel with the primary cache, page
reference bits are set according to the unfiltered reference stream. IIC block reference bits are thus poorer
than page reference bits as indicators of whether the block is being actively accessed. This effect is com-
pounded by the second difference: secondary cache misses are much more frequent than VM page replace-
ments, so a block that is not referenced between two misses is more likely to be in the program’s working
set than a page that is not referenced between two page faults. Generational replacement compensates for
these effects by incorporating a form of frequency-based hysteresis to overcome the inaccuracies of the IIC
reference bits.

3.2.1 Algorithm
As described above, the motivation for generational replacement is to cope with the reduced informa-

tion provided by secondary-cache reference bits. Specifically, under generational replacement a block that
happens not to have its reference bit set during a particular interval is not considered a candidate for
replacement if it has been repeatedly referenced in the recent past. Unfortunately, maintaining even
approximate reference frequency counters based on reference bits is time consuming. Instead, we group
blocks into a small number of prioritized pools. We promote blocks that are referenced regularly into
higher-priority pools, and demote unreferenced blocks into lower-priority pools. On a miss, the block to be
replaced is chosen from the lowest-priority non-empty pool. We call the algorithm “generational” replace-
ment based on the notion that frequently-accessed blocks are promoted into senior generations, somewhat
like long-lived objects are promoted in generational garbage collection [18].

Fresh pool

Pool 0
(lowest priority) Pool 1 Pool 2

Pool 3
(Highest Priority)

Ref=0

Ref=1

Ref=0

Ref=0

Ref=0

Ref=1 Ref=1 Ref=1

Figure 2. Generation Replacement Algorithm Structure

6

Figure 2 illustrates the algorithm in more detail. Each pool is a variable-sized FIFO queue of blocks.
On each miss, the algorithm checks the head of each pool. If the head block’s reference bit is set, it is pro-
moted to the next higher-priority pool; if the reference bit is not set, the block is demoted to the next lower-
priority pool. In either case, the reference bit is cleared. To guarantee that a block has an opportunity to be
accessed before it is considered for promotion/demotion, each FIFO entry is timestamped when it enters
the pool, and the head block is skipped if its residency in the pool is below a fixed threshold. (Time is mea-
sured in secondary cache misses to simplify implementation.) New blocks are initially placed in a special
“fresh” pool that is not searched by the replacement function to protect them from premature eviction.
After meeting the residency time for the fresh pool, they enter the priority chain at the middle.

3.2.2 Implementation
Generational replacement has an inherently small time complexity; the number of operations required

on a miss is proportional to the number of priority pools. However, the need for variable-sized FIFOs with
per-entry timestamps makes a space-efficient implementation more challenging.

The FIFO pools are constructed using doubly linked lists stored in the 32-bits set aside in each IIC tag
entry for replacement data. A bank of registers for each pool point into the head and tail of the list.

The second potential source of storage overhead is the pool residency timestamp in each record. We
minimize the size of these timestamps by keeping in each record a delta from the timestamp of the preced-
ing record. This delta is bounded by the maximum difference between two records, which is the pool resi-
dency time (500 for most of our simulations). Each pool maintains two full timestamps, corresponding to
the head and tail entries. We use the former to determine when the head is eligible for promotion/demotion,
and the latter to generate the delta value when a new block is appended to the FIFO.

Overall, the per-block records, provided in the IIC, dominate the storage required. Each pool only
requires additional storage for the 2 pointers into the IIC and 2 32-bit timestamps.

4. Evaluation
We conducted a preliminary evaluation of our design using two sets of instruction traces. The first set

was generously provided by Chris Wilkerson of Intel Microcomputer Research Labs. These traces were
generated on an Intel Architecture platform running Windows NT 4.0, and include OS and DLL references
[17]. We selected five traces that stressed a 1-MB cache: pcdb (a PC database application), draw (a PC
drawing program), specweb (a web server trace from SPECweb96), and tpcc and tpcc_long (2 transaction
processing server traces). The final trace, oltp1w, was provided by IBM. This trace records level-one cache
misses from an S/390 mainframe running an OLTP workload. Because level-one hits are already filtered
out of the trace, oltp1w stresses the cache significantly more than the Intel traces. Table 2 lists some trace
statistics.

All simulations (other than oltp1w) assume 64KB, 2-way set-associative split primary instruction and
data caches with 32-byte blocks. We did not enforce inclusion between the primary and secondary caches.
We fixed the secondary cache size at 1MB (since the traces would not realistically support larger sizes),
and studied block sizes from 128 to 512 bytes. Although most current secondary cache designs use block
sizes of 64 or 128 bytes, we believe that increasing cache sizes and memory bandwidths will favor larger
blocks in the future, so we bias our study in this direction.

To characterize the effects of increased associativity on these traces, we simulate caches with a range
of associativities from four-way to full. Figure 3 shows the miss rates for these configurations with two

Table 2: Trace Statistics

Trace Instr Refs Data Refs
Data Size

(bytes)
draw 47,104,263 29,086,308 2,628,032

pcdb 36,470,324 22,052,355 2,934,400

specweb 88,208,673 44,122,607 10,751,616

tpcc 184,125,212 84,057,750 8,715,776

tpcc_long 40,924,323 21,328,973 3,877,376

oltp1w 15,797,770 16,091,431 114,948,864

7

replacement policies: LRU and OPT (Belady’s optimal off-line algorithm).1 As can be seen in the figure, a
few cases—oltp1w, draw with 512-byte blocks, and specweb with 256-byte blocks—show a sustained ben-
efit from increasing associativity. Typically, though, for a given block size and replacement algorithm, the
benefits of higher associativity level off beyond 16-way. On the other hand, for a given block size and
associativity, OPT outperforms LRU significantly in almost every case. In fact, for the two tpcc traces,
LRU performance degrades slightly as associativity increases. Thus, even when we do not expect a signif-
icant benefit from full associativity alone, there is room for improvement via better replacement poli-
cies.To compare the IIC with more traditional approaches to reducing conflict misses, we also simulated
the effects of improved page coloring [16] and a 256-entry fully associative victim cache [15]. The NT
traces reflect the page coloring algorithm implemented by the NT kernel. To reflect the potential of
improved page coloring, we reassigned physical page numbers in each trace using a simple off-line profile-
based algorithm described by Sherwood et al [24]. These results are optimistic, as the coloring for each
trace used the same full trace as its profiling input. (We also implemented on-line bin-hopping [16], but the
results were not significantly different.)

Figure 4 compares a subset of the results from Figure 3 with miss counts from alternative cache con-
figurations, including the IIC. The first five bars represent traditional cache designs. The first bar indicates
the miss count for our base case, a four-way associative LRU cache, taken from Figure 3. The following
two bars show our results for adding page coloring and a victim cache to the four-way configuration,
respectively. The fourth and fifth bars are 8-way and 16-way LRU caches (again from Figure 3), pushing
the practical limit of conventional associative caches. The following two bars represent practical IIC-based
fully associative caches, using two replacement algorithms: two-handed clock (a common pseudo-LRU
algorithm used in virtual-memory paging) and generational replacement. The final two bars indicate the
miss counts of fully associative caches using true LRU and OPT replacement, respectively; these are ideal-
ized caches as the former algorithm is impractical and the latter infeasible.

As can be seen from the figure, the IIC with generational replacement has the best overall performance
of any of the implementable cache configurations, with 7% to 85% fewer misses than the traditional 4-way
set-associative LRU cache. Its advantage is smallest for the two tpcc traces; in fact, for the 128-byte block
size, generational replacement increases the number of misses by 2-3% over the 16-way LRU cache on
tpcc and over the 8- and 16-way LRU caches on tpcc_long. On the other hand, generational replacement
reduces the miss count relative to 16-way LRU by up to 78% on draw and up to 74% on oltp1w.

While the improved page coloring did reduce the number of misses in the 4-way LRU cache, it still fell
short of the performance of the IIC with generational replacement on the non-colored trace. Interestingly,
page coloring is useful in conjunction with the IIC to reduce the number of conflicts in the IIC’s hash table,
shortening the hash chains and thus improving average access time. In our experimental configuration,
improved page coloring reduces the number of misses for generational replacement as well, because it
reduces the number of misses in our physically indexed L1 cache; with a more typical virtually indexed L1
cache, the number of misses in the IIC would be unaffected. The large victim cache outperformed the
improved page coloring in most cases, and (like the 8- and 16-way LRU caches) was competitive with gen-
erational replacement on the tpcc traces. However, the victim cache fell short of generational replacement
on the other traces, particularly specweb and oltp1w.

Turning to the fully associative caches, generational replacement always performed within 7% of the
(impractical) true LRU replacement, and performed significantly better for some block sizes on draw,
specweb, and tpcc_long. Results from using random replacement (not shown) indicate that this policy is
significantly worse than either generational replacement or LRU, and for the tpcc traces performs worse
than 4-way LRU. This result indicates that high associativity alone is not useful without a reasonably
effective replacement policy. The pseudo-LRU algorithm, clock, universally performs worse than genera-
tional replacement as well, and did particularly poorly on the specweb and tpcc traces.

The absolute miss counts go down as the block size increases from 128 to 256 bytes for all traces
except oltp1w on the IIC and for all except oltp1w and draw on the 4-way LRU cache. However, going
from 256- to 512-byte blocks causes noticeable jumps in the miss counts for draw and specweb due to
increased contention for the smaller number of unique tags. The combination of full associativity and gen-
erational replacement seems to cope with this pollution much more readily than any of the feasible alterna-

1.Due to the resources required, we were unable to simulate OPT for the oltp1w trace.

8

tives. (Note the change in performance of the fully associative LRU cache for specweb.) Larger block sizes
also reduce the relative tag overhead of the IIC. As cache capacities increase to multiple megabytes, larger
block sizes will become more attractive, increasing the IIC’s benefit.

Still, these results do not indicate a performance advantage for the IIC since they do not incorporate
timing information and do not account for the IIC’s timing overheads. To provide a very rough feel for the
performance tradeoff, we applied a simple timing model to our results. We assume that the 4-way LRU
cache has a 10-cycle hit time and a miss penalty of an additional m cycles. We then gave the IIC a 1-cycle
penalty per hash chaining (primary table counts as one hash access) on hits and misses to account for a
more complex tag array access yielding a (10+<hash chain length>)-cycle hit and (10+ <hash chain
length> +m)-cycle miss for the IIC. We then calculated the break-even value of m where the reduced miss
rate of the IIC would compensate for the increased access time. This value is listed for each benchmark and
block size in the final column of Table 3. For nearly all the benchmarks and block sizes, these values are

Figure 3. Misses vs. associativity, LRU and OPT

PCDB

0

10000

20000

30000

40000

50000

60000

70000

A s s oc ia tiv i ty

lru 128

lru 256

lru 512

op t 128

op t 256

op t 512

DRAW

0

50000

100000

150000

200000

250000

300000

A ss oc ia tiv ity

SPECWEB

0

50000

100000

150000

200000

250000

300000

350000

400000

A s s oc ia tiv i ty

TPCC

0

100000

200000

300000

400000

500000

600000

A s s oc ia tiv i ty

TPCC_LONG

0

20000

40000

60000

80000

100000

120000

140000

160000

A s s oc ia tiv i ty

OLTP1W

0

5000000

10000000

15000000

20000000

25000000

A s s oc i a tiv i ty

4 8 16 32 64 12
8

25
6

fu
ll

M
is

se
s

4 8 16 32 64 12
8

25
6

fu
ll

M
is

se
s

M
is

se
s

4 8 16 32 64 12
8

25
6

fu
ll

M
is

se
s

M
is

se
s

4 8 16 32 64 12
8

25
6

fu
ll 4 8 16 32 64 12
8

25
6

fu
ll

M
is

se
s

4 8 16 32 64 12
8

25
6

fu
ll

9

withinand in some cases well underthe number of cycles seen by current processors on a DRAM
access. Note that if we increase the base hit time of the LRU cache, or if optimizations (such as better hash-
ing) to reduce IIC tag access time are effective, these break-even points will decrease further.

5. Related Work
The growing resemblance of DRAM accesses to virtual-memory page faults has been noted before by

Machanick [19] and Burger [6]. Machanick proposes adopting the virtual-memory model in its entirety,
paging from on-chip SRAM to off-chip DRAM. However, even given current trends in technology, it will
be a while before the cost of a full OS page fault is as negligible a fraction of a DRAM access as it is with
a disk access today. As the IIC demonstrates, we can achieve the benefits of full associativity and software
management without adopting some of the larger overheads of the VM model.

Cheriton et al [7] proposed and built the earliest software-managed caches as part of the VMP project.
They focused on using software implementations of cache coherence protocols rather than replacement
algorithms. Jacob and Mudge [14] proposed a software-managed secondary cache in which the software
handlers perform virtual address translation. Unfortunately, this scheme places the handlers on the critical
path of memory accesses, since the physical address must be determined before the DRAM access can
begin. Our IIC design assumes conventional address translation support so that DRAM accesses can be ini-
tiated without software intervention. Jacob and Mudge also assumed a direct-mapped cache, so their soft-
ware handlers have no role in replacement.

A software-managed cache informs software of all misses, as do Horowitz et al.’s informing memory
operations [12]. A software-managed cache has the additional advantage that the handler can directly
influence the replacement decision made for that miss. Informing memory operations inform the user pro-
cess directly, while software-managed cache handlers more likely execute in a privileged context. How-
ever, most of the applications for informing memory operations presented in [12] could be accomplished
equally well without user-level notification.

The DASC cache [22] and the group-associative cache [21], like the IIC, combine an associative tag
store with a direct-mapped data array. However, the goal of both these designs is to combine the access
time of a direct-mapped cache with the miss rate of a more highly (but not fully) associative cache. Both
speculatively access the data array using the address as an index, and potentially reaccess the array if the
first access fails but the requested data is present in a secondary location. In the DASC cache, a block can
reside in only a limited number of locations. The group-associative cache maintains a small, highly asso-

Table 3: Break-even Analysis

Trace
Block
size

LRU 4-
way misses

IIC/gen.
repl. misses

Improve-
ment in miss

count

Hash
chain
length

Break-even
miss latency

(cycles)

pcdb

128 60858 44423 27.0% 1.39 84.9
256 54378 31137 42.7% 1.45 66.0
512 55825 30886 44.7% 1.5 64.0

draw

128 49054 30569 37.7% 1.71 130.4
256 94627 18453 80.5% 1.53 36.4
512 261315 39378 84.9% 1.45 18.4

specweb

128 332592 169134 49.1% 1.53 45.6
256 329294 117505 64.3% 1.44 36.2
512 374547 176404 52.9% 1.34 35.7

tpcc

128 536806 500103 6.8% 1.71 172.0
256 448300 411298 8.3% 1.59 163.3
512 418985 357678 14.6% 1.46 96.2

tpcc_long

128 141667 131617 7.1% 1.68 277.6
256 129049 104032 19.4% 1.58 112.8
512 128804 90367 29.8% 1.48 73.2

10

TPCC_LONG

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

128 256 512

B loc k S ize

OLTP1W

0

5 0 0 00 0 0

10 0 0 00 0 0

15 0 0 00 0 0

2 0 0 0 00 0 0

2 5 0 0 00 0 0

12 8 2 5 6 5 12

B lo c k S iz e

PCDB

0

10 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

12 8 2 5 6 5 12

B lo c k S iz e

DRAW

0

5 0 0 00

10 0 0 00

15 0 0 00

2 0 0 0 00

2 5 0 0 00

3 0 0 0 00

12 8 2 5 6 5 12

B lo c k S iz e

L RU 4 - wa y

" +p g c o lo r

" +vic tim

L RU 8 - wa y

L RU 16 - wa y

Clo c k FA

G e n FA

L RU FA

O p t FA

SPECWEB

0

5 0 0 0 0

10 0 0 0 0

15 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

3 5 0 0 0 0

4 0 0 0 0 0

12 8 2 5 6 5 12

B lo c k S iz e

TPCC

0

10 0 0 00

2 0 0 0 00

3 0 0 0 00

4 0 0 0 00

5 0 0 0 00

6 0 0 0 00

12 8 2 5 6 5 12

B lo c k S iz e

Figure 4. Number of Misses

11

ciative tag directory for blocks not in their primary location; these tags contain an index into the data array,
so that a block may reside in any location, just as in the IIC. However, the number of tag directory entries
is a fraction of the number of cache lines, so only a limited number of blocks can be located in other than
their primary location. Both of these cache designs, along with other proposals such as the column-associa-
tive cache [1] and victim cache [15], are intended to reduce conflict misses in a direct-mapped array, but
not to provide a flexible data store appropriate for software management.

Operating systems can control data placement in physically indexed caches by choosing physical
addresses carefully [16]. These placements can be driven by heuristic algorithms [16], compiler or profile
analysis [5][24], or hardware conflict detection [3][24]. While these approaches are effective at spreading
accesses more evenly across the cache sets, they do not actually increase the associativity of the cache. Our
results show that, for several of the traces we examined, full associativity is far more effective at reducing
the number of misses.

Page placement can also be used to pin data in the cache and partition the cache among processes, two
of the features described in Section 2. However, a fully associative cache allows cache placement decisions
independent from physical memory allocation. For example, page coloring can be used to lock a page at
the expense of not caching any other physical memory pages with a conflicting color. This shortcoming
could be avoided by adding a cache index field to the TLB [24].

6. Conclusions
This paper outlines a design for a memory structurethe indirect index cache (IIC) that provides

performance competitive with conventional caches while providing the flexibility of software manage-
ment. Selectively borrowing techniques from virtual memory, namely indirection and hashed page tables,
allows us to create a fully associative store with reasonable access time and size overheads. Avoiding other
aspects of virtual memory, particularly the need to invoke a software handler on the critical path of a miss,
keep the IIC’s performance competitive with traditional organizations.

We also present a replacement algorithm, generational replacement, that is specifically designed to
work with a software-controlled secondary cache. Generational replacement incorporates frequency-based
hysteresis to outperform a standard pseudo-LRU algorithm (clock). At the same time, its state-manage-
ment overheads are low so that handler execution can be overlapped with DRAM access times, and its
storage requirements are small enough that all its data can be stored in the tag store of the IIC.

We used system traces to analyze the behavior of an IIC with generational replacement as a drop-in,
transparent substitute for a conventional (4-way associative LRU) 1 MB secondary cache. Generational
replacement performs very well, providing miss rates within a few percent of true fully associative LRU
under all tested configurations, and beating true LRU by 10–40% in a few specific circumstances. This
performance translates into a substantial reduction in miss rates (7–85%) relative to a conventional 4-way
associative LRU cache. Incorporating these miss rates into a rudimentary timing model, taking into
account the access-time overheads of the IIC, indicates that the IIC/generational replacement cache could
be competitive with a conventional cache even at today’s relative DRAM latencies. The IIC’s advantage
will grow with succeeding processor generations as the benefit of avoiding a DRAM access increases. The
combination of competitive or superior performance as a conventional-cache replacement with potential as
an enabling factor for more sophisticated software management indicates that the IIC or a similar structure
should be seriously considered for on-chip secondary caches in the near future.

Acknowledgments
This work is supported by the National Science Foundation under Grant No. CCR-9734026 and by

gifts from Intel, IBM, and Compaq. Many thanks to Wei-fen Lin for her contributions.

12

References
[1] A. Agarwal and S. D. Pudar. Column-Associative Caches: A Technique for Reducing the Miss Rate of Direct-

Mapped Caches. In Proceedings of the 20th Annual International Symposium on Computer Architecture, May
1993, pp. 179-190.

[2] A.W. Appel and K. Li. Virtual Memory Primitives for User Programs. In Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems, April 1991, pp. 96-
107.

[3] B. N. Bershad, D. Lee, T. H. Romer, and J. B. Chen. Avoiding Conflict Misses Dynamically in Large Direct-
Mapped Caches. In Proceedings of the Sixth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Oct. 1994, pp. 158-170.

[4] J. Bruno, E. Gabber, B, Ozden, and A. Silberschatz. The Eclipse Operating System: Providing Quality of Service
via Reservation Domains. USENIX 1998 Annual Technical Conference, June 1998, pp. 235-246.

[5] E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum and M. S. Lam. Compiler-Directed Page Coloring for
Multiprocessors. In Proceedings of the Seventh International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Oct. 1996, pp. 244-255.

[6] D. Burger. Measuring and Reducing the Performance Impact of Memory Traffic. PhD Thesis, University of Wis-
consin-Madison, November 1998.

[7] D. R. Cheriton, A. Gupta, P. D. Boyle, and H. A. Goosen. The VMP Multiprocessor: Initial experience, Refine-
ments and Performance Evaluation. In Proceedings of the 15th Annual International Symposium on Computer
Architecture, June 1988, pp. 410-421.

[8] G. Glass and P. Cao. Adaptive Page Replacement Based on Memory Reference Behavior. In Proceedings of SIG-
METRICS 1997, May 1997, pp. 115-126.

[9] L. Gwennap. Alpha 21364 to Ease Memory Bottleneck. Microprocessor Report, 12(14):12-15, Oct. 26, 1998.
[10] L. Gwennap. Digital leads the pack with 21164. Microprocessor Report, 8(12):1-6, Sept. 12, 1994.
[11] M. Heinrich et al. The Performance Impact of Flexibility in the Stanford FLASH Multiprocessor. In Proceedings

of the Sixth International Conference on Architectural Support for Programming Languages and Operating Sys-
tems, October 1994, pp. 274-285.

[12] M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith. Informing Memory Operations: Providing Memory
Performance Feedback in Modern Processors. In Proceedings of the 24th Annual International Symposium on
Computer Architecture, June 1997, pp. 252-263.

[13] J. Huck and J. Hays. Architectural Support for Translation Table Management in Large Address Space Machines,
In Proceedings of the 20th Annual International Symposium on Computer Architecture, May 1993, pp. 39-50.

[14] B. Jacob and T. Mudge. Software-Managed Address Translation. In Proceedings of the 3rd Annual International
Symposium on High-Performance Computer Architecture (HPCA), February 1997.

[15] N. P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-Associative Cache
and Prefetch Buffers. In Proceedings of the 17th Annual Symposium on Computer Architecture, May 1990, pp.
364-373.

[16] R. Kessler and M. Hill. Page Placement Algorithms for Large Real-indexed Caches. ACM Transactions on Com-
puter Systems, 10(4), Nov. 1992.

[17] S. Kumar and C. Wilkerson. Exploiting Spatial Locality in Data Caches using Spatial Footprints. In Proceedings
of the 25th Annual International Symposium on Computer Architecture, July 1998.

[18] H. Lieberman and C. Hewitt. A Real-Time Garbage Collector Based on the Lifetimes of Objects. CACM 26:6,
June 1983, pp. 419-429.

[19] P. Machanick, P. Salverda, and L. Pompe. Hardware-Software Trade-Offs in a Direct Rambus Implementation of
the RAMpage Memory Hierarchy. In Proceedings of the Eighth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, October 1998, pp. 105-114.

[20] R. H. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed prefetching and caching. In Pro-
ceedings of the Fifteenth ACM Symposium on Operating Systems Principles, December 1995, p. 79-95.

[21] J.-K. Peir, Y, Lee, and W. W. Hsu. Capturing Dynamic Memory Reference Behavior with Adaptive Cache Topol-
ogy. In Proceedings of the Eighth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, October 1998, pp. 240-250.

[22] A. Seznec. DASC Cache. In Proceedings of the 1st Annual International Symposium on High-Performance Com-
puter Architecture (HPCA), Jan. 1995, pp. 134-143.

[23] K. So and R. Rechtschaffen. Cache Operations by MRU Change. IEEE Transactions on Computers, 37:6, June
1988, pp. 700-708.

[24] T. Sherwood, B. Calder, and J. Emer. Reducing Cache Misses Using Hardware and Software Page Placement.
Proceedings of the International Conference on Supercomputing, June 1999.

[25] K. C. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro, 16:2, April 1996, pp. 28-41.

