Out-of-Order Fetch, Decode, and Issue

by

Jared Warner Stark IV

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
2000

Doctoral Committee:
Professor Yale N. Patt, Chair
Professor Richard B. Brown
Professor Edward S. Davidson
Assistant Professor Steven Reinhardt
Michael Shebanow, VP and Chief Technical Officer, HAL Computer Systems

ABSTRACT

Out-of-Order Fetch, Decode, and Issue

by
Jared Warner Stark IV

Chair: Yale N. Patt

To exploit larger amounts of parallelism, processors are being built with ever wider
issue widths. Unfortunately, as issue widths grow, instruction cache misses increasingly
bottleneck performance.

Out-of-order fetch, decode, and issue reduces the bottleneck due to these misses.
The term issue denotes the act of writing instructions into reservation stations, fetch block
denotes the instructions brought into the processor by an instruction cache fetch, and branch
predictor denotes the entire next fetch address generation logic. Upon encountering an
instruction cache miss, a conventional processor waits until the miss has been serviced
before continuing to fetch, decode, and issue any new fetch blocks. A processor with out-
of-order fetch, decode, and issue temporarily ignores the block associated with the miss,
and attempts to fetch, decode, and issue the blocks that follow. The addresses of these
blocks are generated by the branch predictor. Because the predictor does not depend on
the instructions in the current block to generate the address of the next fetch block, it
can continue making predictions even if the current block misses in the cache. Thus, the
processor can skip the block that missed and continue fetching, decoding, and issuing the
following blocks using the addresses generated by the predictor. After servicing the miss,
the processor can fetch, decode, and issue the skipped block.

This dissertation evaluates the potential performances of processors with various
issue widths and window sizes, shows that enough potential performance exists to justify
building a 16-wide processor, examines bottlenecks that would prevent this processor from

achieving its potential performance, and demonstrates that the bottleneck due to instruction

cache misses would be severe. It introduces a remedy for this bottleneck—out-of-order fetch,
decode, and issue—describes its implementation, and demonstrates its usefulness. For a 16-
wide processor with a 16k byte direct-mapped instruction cache, instruction cache misses
reduce its performance on a set of sixteen integer benchmarks by an average of 24%. When
it is equipped with out-of-order fetch, decode, and issue, its performance is only reduced by

an average of 5%.

© Jared Warner Stark IV 2000
All Rights Reserved

To my family.

ii

ACKNOWLEDGEMENTS

This work would not have been possible without the help and support of many people. In

particular, I would like to thank the following;:

e Professor Yale Patt, my advisor, for sparking my interest in computer architecture
many years ago when I was an undergraduate, and for his advice and guidance over

the years since then.

e My committee and Joel Emer for feedback on my dissertation and for suggestions on

how to make it better. Their suggestions greatly improved its quality.
e Eric Hao for the initial brainstorming on out-of-order fetch, decode, and issue.

e Paul Racunas for further brainstorming on out-of-order fetch, decode, and issue; and

for providing feedback and proofreading the initial versions of this dissertation.

e Marius Evers, who also provided feedback and proofread the initial versions of this

dissertation.

e The other members of the HPS research group, both past and present, for the stimu-

lating environment they provide.

e Our industrial partners—in particular Intel Corporation, HAL Computer Systems,

and Advanced Micro Devices—for their financial support.

il

TABLE OF CONTENTS

DEDICATION e e ii

ACKNOWLEDGEMENTS ittt e e e s e iii

LIST OF TABLES it e s vii

LIST OF FIGURES it e e e s viii
CHAPTERS

1 Introduction e 1

1.1 The Problem: The Instruction Cache Bottleneck 2

1.2 The Solution: Out-of-Order Fetch, Decode, and Issue 4

1.3 Thesis Statemento oL oo 7

1.4 Contributionso Lo 7

1.5 Dissertation Organization 9

2 Related Work e 10

2.1 Eliminating Instruction Cache Misses 10

2.1.1 Increasing Cache Associativity 11

2.1.2 Code Re-Ordering 13

2.1.3 Prefetching L. 16

2.2 Tolerating Instruction Cache Misses 21

2.2.1 Multiprocessors and Multiscalar Processors 21

2.2.2 Multithreading L o oL 21

2.2.3 Instruction Stockpiling L. 22

2.24 Out-of-Order Fetch/Decode/Issue 23

3 Simulation Methodology L. 25

3.1 Machine Model Lo 25

3.2 Simulators 30

3.2.1 The Functional Simulator 31

3.2.2 The RDF Simulator 31

3.2.3 The Full Simulator 32

3.3 Benchmarks 33

v

4 Available Instruction Level Parallelism 37

4.1 The RDF Model of Execution 38
4.2 Memory Dependency Handling 39
4.2.1 The Unknown Address Problem 40
4.2.2 Memory Disambiguation Paradigms 41
4.2.3 Unified versus Split Stores 46

4.3 The RDF Model Configuration and Assumptions 48
4.4 Experimental Results 0000 49
4.5 Summary e e e e e e e e e e e e e e e e 59
5 Performance Bottlenecks oo oo 60
5.1 Methodology 61
5.2 Cache Access Time oo 65
5.3 The Bottleneckso oo 67
5.3.1 The Instruction Cache 67
5.3.2 The Branch Predictor 73
5.3.3 The Execution Core 84
5.3.4 The Data Cache. 89

5.4 Summaryo e e e e e e e 98

6 Out-of-Order Fetch, Decode, and Issue: Concept and Preliminary Results . 104

6.1 Concept e e e 105
6.2 CreatingtheHole 108
6.3 Dependency Handling Techniques 110
6.3.1 Non-Speculative Paradigm 110
6.3.2 Speculative Paradigm 0L, 117

6.4 Experimental Results 0 . 119
6.4.1 Varied Dependency Handling Technique 122
6.4.2 Impact of Procedure Reordering 127
6.4.3 Varied Instruction Cache Size 128
6.4.4 Varied Instruction Cache Associativity 132
6.4.5 Varied Instruction Cache Miss Penalty 133

6.5 Summaryo e e e 134
7 Out-of-Order Fetch, Decode, and Issue: Implementation. 135
7.1 Base Microarchitecture oo L. 136
71.1 Fetch Unito L. 138
7.1.2 Execution Core 150
7.1.3 Load/Store System 162
7.14 Main Memoryo 167

7.2 Apparatus for Qut-of-Order Fetch 171
7.3 Apparatus for Out-of-Order Fetch/Decode/Issue 176
7.3.1 Sequence Numbers 176
7.3.2 Modified Fetch Buffer 183
7.3.3 Handling of Register Dependencies 187
7.3.4 Modified Instruction Scheduling Logic 191
7.3.5 Physical Register and Checkpoint Withholding 193
7.3.6 Handling of Serializing Instructions 195

8 Out-of-Order Fetch, Decode, and Issue: Final Results 197

8.1 Comparison of Instruction Cache Bottleneck Solutions 198

8.2 Varying the Instruction Cache Size 205

8.3 Varying the Fetch Buffer Size 207

8.4 Varying the Checkpoint Withholding 212

8.5 Summary L 215

9 Conclusion e 216
APPENDIX e 221
BIBLIOGRAPHY e 272

vi

Table
3.1
3.2
3.3
4.1
5.1
6.1

LIST OF TABLES

The SPECint95 benchmarks and their training and test data sets 33
The Non-SPEC benchmarks and their training and test data sets 34
The number of instructions executed per benchmark 36
Instruction Class Latencies 48
Branch Predictor Sizes, Miss Rates, and Miss Ratios 83
Summary of Actions for a Processor with a Mask Cache 116

vii

Figure
1.1

1.2
1.3
3.1
3.2
4.1
4.2
4.3
4.4
4.5
4.6
4.7
5.1
5.2

5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

5.14

LIST OF FIGURES

Demonstration of the problem (the instruction cache bottleneck) investigated
by this dissertation
Terminologyo
Out-of-Order Fetch, Decode, and Issue Example
RDF Model of Execution
Basic HPS Microarchitecture,
The Unknown Address Problem Example
Non-Speculative Memory Disambiguation Paradigm Example
Speculative Memory Disambiguation Paradigm Example
Instruction Level Parallelism—Harmonic Average
Instruction Level Parallelism—SPEC Benchmarks
Instruction Level Parallelism—Non-SPEC Benchmarks
Memory Disambiguation Techniques—Harmonic Average
Ideal Machine with Varied Instruction Cache Size—Harmonic Average . . .
Real Machine with Varied Instruction Cache Size (Constant Mispredict Pen-
alty)—Harmonic Averageot
Real Machine with Varied Instruction Cache Size (Scaled Mispredict Penal-
ty)—Harmonic Average
Ideal Machine with Varied Mispredict Rate—Harmonic Average
Ideal Machine with Varied Mispredict Rate—SPEC Benchmarks
Ideal Machine with Varied Mispredict Rate—Non-SPEC Benchmarks
Real Machine with Varied Mispredict Rate—Harmonic Average
Ideal Machine with Varied Execution Core Size—Harmonic Average

Real Machine with Varied Execution Core Size—Harmonic Average

Ideal Machine with Varied Data Cache Size (Constant Load Latency)—
Harmonic Average i e
Ideal Machine with Varied Data Cache Size (Scaled Load Latency)—Harmon-
icAverage oL Lo
Real Machine with Varied Data Cache Size (Constant Load Latency)—Har-
MONIC AVETAZE . . « « v v v i e e e e e e e e e e e e e e
Real Machine with Varied Data Cache Size (Scaled Load Latency)—Harmon-
icAverage L Lo e
Performance Bottlenecks Summary—Harmonic Average

viii

S W

26
28
40
42
44
51
53
54
56
68

70

72
74
7
78
79
87
88

91

93

95

97
98

5.15
5.16
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9

6.10

6.11
6.12
7.1
7.2
7.3

7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19

7.20

8.1
8.2
8.3
8.4

Performance Bottlenecks Summary—SPEC Benchmarks 102

Performance Bottlenecks Summary—Non-SPEC Benchmarks 103
Out-of-Order Fetch Example, 106
The Dataflow Graph Hole 109
Classification Example oo o oo 112
Instruction Fetch Mechanism Incorporating a Mask Cache 115
Dependency Handling Techniques—Harmonic Average 124
Dependency Handling Techniques—SPEC Benchmarks 126
Dependency Handling Techniques—Non-SPEC Benchmarks 126
Impact of Out-of-Order Fetch/Decode/Issue and Procedure Reordering—

Harmonic Average L 127
Varied Instruction Cache Size (Constant Mispredict Penalty)—Harmonic Av-

ETAZE « « « v v v e 129
Varied Instruction Cache Size (Scaled Mispredict Penalty)—Harmonic Aver-

e 130
Varied Instruction Cache Associativity—Harmonic Average 132
Varied Instruction Cache Miss Penalty—Harmonic Average 133
Block Diagram of the Base Microarchitecture 136
Block Diagram of the Fetch Unit 138
Figure showing how the bits of the fetch address are used when accessing the

BTB and first level instruction cache oL L. 147
BTB Miss Rates—SPEC Benchmarks 148
BTB Miss Rates—Non-SPEC Benchmarks 149
Block Diagram of the Execution Core 150
Pipeline timing diagram showing the execution of dependent instructions . 154
Block Diagram of the Scheduling Logic 156
Wakeup Logic oL 158
Select Logic o e 160
Block Diagram of the Load/Store System 162
Block Diagram of the Dual Switch First Level Data Cache 165
Block Diagram of the Single Switch First Level Data Cache 166
Main Memory Architectureo oo Lo 168
Fetch Buffer for a Machine that Supports Out-of-Order Fetch 174
Issue Packet Age Registers. o o oo 178
Sequence Number Information Table 181

Fetch Buffer for a Machine that supports Out-of-Order Fetch/Decode/Issue 184
Figure showing how the Sequence Number Information Table is used to de-
termine which checkpoint contains the issue packet that logically precedes a

new issue packet L. 189
Figure showing how the Sequence Number Information Table is used to de-

termine the sequence number of the youngest pre-hole instruction 192
Instruction Cache Bottleneck Solutions—Harmonic Average 200
Instruction Cache Bottleneck Solutions—SPEC Benchmarks 201
Instruction Cache Bottleneck Solutions—Non-SPEC Benchmarks 201
Out-of-Order Fetch/Decode/Issue Variants—Harmonic Average 202

ix

8.5 Out-of-Order Fetch/Decode/Issue Variants—SPEC Benchmarks.
8.6 Out-of-Order Fetch/Decode/Issue Variants—Non-SPEC Benchmarks
8.7 Varied Instruction Cache Size—Harmonic Average
8.8 Varied Fetch Buffer Size—Harmonic Average
8.9 Varied Fetch Buffer Size—SPEC Benchmarks
8.10 Varied Fetch Buffer Size—Non-SPEC Benchmarks
8.11 Varied Checkpoint Withholding—Harmonic Average
9.1 Demonstration of the problem (the instruction cache bottleneck) and the
solution (out-of-order fetch, decode, and issue) investigated by this disserta-
tlon . .. e e e e e
A.1 Memory Disambiguation Techniques—Cmp
A.2 Memory Disambiguation Techniques—Gee
A.3 Memory Disambiguation Techniques—Go
A4 Memory Disambiguation Techniques—Ijpeg
A.5 Memory Disambiguation Techniques—Li
A.6 Memory Disambiguation Techniques—M88k
A.7 Memory Disambiguation Techniques—Perl
A.8 Memory Disambiguation Techniques—Vortex
A.9 Memory Disambiguation Techniques—Chess
A.10 Memory Disambiguation Techniques—Groff
A.11 Memory Disambiguation Techniques—Gs
A.12 Memory Disambiguation Techniques—Pgp
A.13 Memory Disambiguation Techniques—Plot
A.14 Memory Disambiguation Techniques—Python
A.15 Memory Disambiguation Techniques—Ss
A.16 Memory Disambiguation Techniques—Tex
A.17 Ideal Machine with Varied Instruction Cache Size—SPEC Benchmarks . . .
A.18 Ideal Machine with Varied Instruction Cache Size—Non-SPEC Benchmarks
A.19 Real Machine with Varied Instruction Cache Size (Constant Mispredict Pen-
alty)—SPEC Benchmarks
A .20 Real Machine with Varied Instruction Cache Size (Constant Mispredict Pen-
alty)—Non-SPEC Benchmarks
A .21 Real Machine with Varied Instruction Cache Size (Scaled Mispredict Penal-
ty)—SPEC Benchmarks
A.22 Real Machine with Varied Instruction Cache Size (Scaled Mispredict Penal-
ty)—Non-SPEC Benchmarks
A .23 Real Machine with Varied Mispredict Rate—SPEC Benchmarks
A.24 Real Machine with Varied Mispredict Rate—Non-SPEC Benchmarks
A.25 Ideal Machine with Varied Execution Core Size—SPEC Benchmarks
A.26 Ideal Machine with Varied Execution Core Size—Non-SPEC Benchmarks
A .27 Real Machine with Varied Execution Core Size—SPEC Benchmarks
A.28 Real Machine with Varied Execution Core Size—Non-SPEC Benchmarks
A.29 Ideal Machine with Varied Data Cache Size (Constant Load Latency)—SPEC
Benchmarkso

219
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

241

242

243

A.30 Ideal Machine with Varied Data Cache Size (Constant Load Latency)—Non-

SPEC Benchmarks 252
A .31 Ideal Machine with Varied Data Cache Size (Scaled Load Latency)—SPEC
Benchmarks Lo 253
A.32 Ideal Machine with Varied Data Cache Size (Scaled Load Latency)—Non-
SPEC Benchmarks 254
A .33 Real Machine with Varied Data Cache Size (Constant Load Latency)—SPEC
Benchmarkso 255
A.34 Real Machine with Varied Data Cache Size (Constant Load Latency)—Non-
SPEC Benchmarks 256
A .35 Real Machine with Varied Data Cache Size (Scaled Load Latency)—SPEC
Benchmarkso 257
A.36 Real Machine with Varied Data Cache Size (Scaled Load Latency)—Non-
SPEC Benchmarks oo 258
A.37 Impact of Out-of-Order Fetch/Decode/Issue and Procedure Reordering—
SPEC Benchmarks 259
A .38 Impact of Out-of-Order Fetch/Decode/Issue and Procedure Reordering—
Non-SPEC Benchmarks 259
A.39 Varied Instruction Cache Size (Constant Mispredict Penalty)—SPEC Bench-
marks e 260
A .40 Varied Instruction Cache Size (Constant Mispredict Penalty)—Non-SPEC
Benchmarkso 261
A .41 Varied Instruction Cache Size (Scaled Mispredict Penalty)—SPEC Bench-
marks e e 262
A.42 Varied Instruction Cache Size (Scaled Mispredict Penalty)—Non-SPEC
Benchmarkso 263
A .43 Varied Instruction Cache Associativity—SPEC Benchmarks 264
A .44 Varied Instruction Cache Associativity—Non-SPEC Benchmarks 265
A.45 Varied Instruction Cache Miss Penalty—SPEC Benchmarks 266
A .46 Varied Instruction Cache Miss Penalty—Non-SPEC Benchmarks 267
A .47 Varied Instruction Cache Size—SPEC Benchmarks 268
A .48 Varied Instruction Cache Size—Non-SPEC Benchmarks 269
A .49 Varied Checkpoint Withholding—SPEC Benchmarks 270
A.50 Varied Checkpoint Withholding—Non-SPEC Benchmarks 271

xi

CHAPTER 1

Introduction

Significant parallelism exists within a single instruction stream [14, 59]. To achieve
high performance, today’s processors are built to take advantage of some of this instruction
level parallelism. Techniques such as speculative execution, dynamic scheduling, register
renaming, and branch prediction are used to exploit the instruction level parallelism by
removing or reducing performance bottlenecks that result from unpredictable latencies,
false dependencies, and changes of flow in the instruction stream.

To exploit even larger amounts of instruction level parallelism, tomorrow’s proces-
sors will be built with wider issue widths. In the past fifteen years, instruction issue widths
have grown from one (Intel 1486, Motorola 68020, Sun MicroSparc, MIPS R2000), to two
(Intel Pentium, Alpha 21064, HP PA-7200), to four (PowerPC 604, Sun UltraSparc, Alpha
21164, MIPS R10000, HP PA-8000). It has been projected that by the year 2005, it will be
possible to place a billion transistors on a chip. With a billion transistors on chip, a proces-
sor that can issue sixteen or more instructions per cycle is not infeasible. However, for such
a processor, the occurrence of instruction cache misses will impose a severe performance

penalty.

1.1 The Problem: The Instruction Cache Bottleneck

Instruction cache misses interrupt the supply of instructions to the processor. When
an instruction cache miss occurs, the front end of the processor (i. e., the instruction fetch
and decode pipelines) stalls until the instructions have been obtained from the next level
of the memory hierarchy. During the time of this stall, no new instructions are supplied to
the processor core.

A simple back-of-the-envelope calculation can be used to roughly assess the severity
of this bottleneck. The calculation uses the instruction fetch width (i. e., the peak number
of instructions that can be fetched from the instruction cache in a single cycle), the instruc-
tion cache miss rate, and the instruction cache miss penalty to calculate the performance
degradation that results from instruction cache misses. It assumes that the processor does
not stall unless there is an instruction cache miss. The calculation is described best by
using the following example. Assume that the instruction fetch width is 16, the instruction
cache miss rate is one miss per 100 instructions, and the instruction cache miss penalty is
10 cycles. On average, 99 instructions are fetched from the instruction cache before a miss
occurs. These 99 instructions are fetched in about 6 cycles: 99 instructions, fetched at a
rate of 16 per cycle, are fetched in 99/16 cycles. When the 100th instruction is fetched, the
miss occurs. 10 cycles (the instruction cache miss penalty) ensue in which no instructions
are fetched. Thus, for every 16 cycles, 6 cycles are spent fetching, and 10 are spent not
fetching. The final result: over 60% (10/16 - 100%) of the processor’s potential performance
is lost due to instruction cache misses.

To obtain a more accurate assessment of the severity of the instruction cache bot-
tleneck, software models of different processor microarchitectures can be used to simulate
the execution of a program. Figure 1.1 was created using such models. It plots the perfor-
mance, in Instructions Per Cycle (IPC), of the gcc benchmark for two different processors
as the fetch width of these processors varies between 1 and 64. Both processors have perfect
branch prediction, large instruction windows, large pools of functional units !, and perfect

data caches. To illustrate the performance degradation that results from instruction cache

!The difference in performance between a processor with an unbounded number of functional units and
a processor where the number of functional units is twice the fetch width is negligible. At any given fetch
width, the figure plots the performance of two processors that have a number of functional units equal to
twice the fetch width. There is no perceptible difference between this figure and the analogous figure that
plots the performance of processors that have an unbounded number of functional units.

misses, the first processor was given a perfect (100 percent hit rate) instruction cache and
the second processor was given a real instruction cache. The real instruction cache is a
16k byte direct mapped cache with a 64 byte line size and a 10 cycle miss penalty. The
difference between the performance of the processor with the perfect instruction cache and
the performance of the processor with the real instruction cache is the performance that is
lost due to instruction cache misses. Note that as the fetch width increases, the fraction
of the performance lost due to instruction cache misses increases. At a width of 1, only
22% of the performance is lost. At a width of 16, 81% of the performance is lost. And at
a width of 64, 90% of the performance is lost. Thus, as issue widths grow, the instruction

cache bottleneck becomes more severe.

w
a1
|

---»-- Perfect ICache
—=— Rea ICache

N N w
o ul o
| | |

Instructions Per Cycle
&
1

1 2 4 8 16 32 64
Fetch Width

Figure 1.1: Demonstration of the problem (the instruction cache bottle-
neck) investigated by this dissertation

1.2 The Solution: Out-of-Order Fetch, Decode, and Issue

The occurrence of instruction cache misses imposes a severe performance penalty
on wide issue processors. Instruction cache misses prevent the processor from fetching,
decoding, and issuing new useful instructions until the instruction cache miss has been
serviced. Out-of-order fetch, decode, and issue reduce the performance penalty due to
instruction cache misses by enabling the processor to continue fetching, decoding, and
issuing new useful instructions even in the event of an instruction cache miss.

Note: there are no standard definitions for the terms issue and dispatch. Throughout
this dissertation, I will use the term issue to indicate the act of writing the instructions into
the reservation stations, and the term dispatch to indicate the act of sending the instructions
from the reservation stations to the functional units (see Figure 1.2). (There is a caveat
about these definitions: many people interchange these definitions for the terms issue and
dispatch; that is, they use the term issue to indicate the act of sending the instructions
from the reservation stations to the functional units, and the term dispatch to indicate
the act of writing the instructions into the reservation stations.) Many of today’s high
performance processors employ out-of-order execution, in which instructions are dispatched
to the functional units out of the normal program order. However, for all these processors,
instructions are still issued to the reservation stations in program order. This dissertation
addresses out-of-order issue, that is, the process by which instructions are written into the

reservation stations out of normal program order.

Cache/Decode

ISSUE

Reservation Stations

DISPATCH

Functiona Units

Figure 1.2: Terminology

Out-of-order fetch, decode, and issue reduce the performance penalty caused by
instruction cache misses. I will use the term fetch block to refer to the group of instructions
that are brought into the processor by an instruction cache fetch. A fetch block is a sequence
of consecutive instructions that contains a single branch. The sequence starts with an
instruction that is the target (either taken or not-taken [fall-through]) of a branch and ends
with the branch. Upon encountering an instruction cache miss, a conventional processor will
wait until the instruction cache miss is serviced before continuing to fetch, decode, and issue
any new fetch blocks. A processor with out-of-order fetch, decode, and issue temporarily
ignores the fetch block associated with the instruction cache miss, and attempts to fetch,
decode, and issue the fetch blocks that follow the block associated with the miss. The
addresses of these blocks can be generated by the branch predictor. (I will use the term
branch predictor to refer to all the next fetch address generation logic.) Because the branch
predictor does not depend on the instructions in the current block to generate the address
of the next block to be fetched, it can continue to make predictions even when the current
block misses in the instruction cache. Thus, the processor can skip the block that missed in
the instruction cache and continue fetching, decoding, and issuing the following block using
the address generated by the branch predictor. After the instruction cache miss is serviced,

the processor can fetch, decode, and issue the skipped block.

Consider the example in Figure 1.3. It shows a graph consisting of five fetch blocks
A-E. In the first cycle, the processor fetches block A and the predictor generates address B
for the next block. Suppose in the second cycle, the processor’s fetch of block B results in
an instruction cache miss. The predictor can still generate the address for the next block,
block C. The processor will fetch nothing in the second cycle, but can attempt to fetch block
C in the third cycle, followed by block D in the fourth cycle (regardless of whether C hit
in the cache or not). Once the instruction cache miss is serviced, the processor can return
to the point of the miss and fetch, decode, and issue the skipped block(s), starting with
block B. Thus, out-of-order fetch, decode, and issue allows the processor to fetch, decode,
and issue useful work in the presence of instruction cache misses. In the worst case, where
all the following fetches result in instruction cache misses, out-of-order fetch, decode, and

issue still provides the performance benefit of prefetching.

A

N
/

=4

E

Figure 1.3: Out-of-Order Fetch, Decode, and Issue Example

1.3 Thesis Statement

The performance penalty that results from instruction cache misses is nearly elim-
inated if the processor is allowed to fetch, decode, and issue instructions out of program
order. The penalty is defined as the difference in performance, in Instructions Per Cycle,
between a processor with a real instruction cache and a comparable processor with a per-
fect (100 percent hit rate) instruction cache. For the processors with sixteen wide issue and
16k byte direct mapped instruction caches studied in this dissertation, for sixteen integer

benchmarks, on average about three-quarters of this penalty is eliminated.

1.4 Contributions
This dissertation makes four major contributions:

1. This dissertation evaluates the benefit of out-of-order fetch, and describes the imple-
mentation of out-of-order fetch. A processor with out-of-order fetch initiates fetch
requests in program order, but allows these requests to complete out-of-order. As
in conventional processors, the instructions are decoded and issued in program order.
Out-of-order fetch is almost as effective as out-of-order fetch, decode, and issue in elim-
inating the performance penalty that results from instruction cache misses. However,
the implementation of out-of-order fetch is much simpler than the implementation of

out-of-order fetch, decode, and issue.

2. This dissertation evaluates the benefit and describes the implementation of out-of-
order fetch, decode, and issue. It demonstrates that the performance penalty that
results from instruction cache misses is nearly eliminated if the processor is allowed
to fetch, decode, and issue instructions out of program order. Note: hereafter, out-of-
order fetch, decode, and issue will be called out-of-order fetch/decode/issue. Out-of-
order fetch with in-order decode and issue will simply be called out-of-order fetch. [
will use the phrase out-of-order fetch, decode, and issue to refer to both out-of-order

fetch and out-of-order fetch/decode/issue.

3. This dissertation proposes a new technique for creating the index into the Branch
Target Buffer (BTB). The BTB is a cache that the branch predictor uses to determine
the type of a branch (unconditional branch, conditional branch, branch to subroutine,
jump [computed branch], jump to subroutine, or subroutine return) and some of its
possible target addresses. If a BTB access results in a miss, the branch predictor is
typically led astray, which results in one or more cycles of nonproductive fetching.
Thus, a BTB with a low miss rate is desirable. Conventional indexing schemes create
“hot spots” in the BTB. (A “hot spot” is a set of BTB entries that are read and/or
written a disproportionate number of times.) The proposed technique eliminates most

of these “hot spots”.

4. This dissertation evaluates the potential performances of processors with various is-
sue widths, instruction window sizes, and memory dependency handling techniques.
It then examines the bottlenecks that prevent these processors from achieving their
potential performance. The architects of future processors can use this information
to make design decisions. For example, this information can be used to answer the
questions: Does it make sense to build a processor that can issue sixteen instruc-
tions per cycle? How many reservation stations should a sixteen wide issue processor
have? And, will instruction cache misses significantly bottleneck a sixteen wide issue

processor?

1.5 Dissertation Organization

This dissertation is organized into nine chapters. Chapter 2 presents the related
work. Chapter 3 describes the machine model, the simulators, and the benchmarks used
throughout the dissertation. Chapter 4 uses an abstract machine model to calculate the
amount of parallelism available in a single instruction stream. Additionally, the potential
performances of machines with various issue widths, instruction window sizes, and mem-
ory dependency handling techniques are calculated. The data in this chapter shows that
there is enough potential performance to justify building a machine that can issue sixteen
instructions per cycle. Chapter 5 examines some bottlenecks that would prevent such a
machine from achieving its potential performance. Among these bottlenecks are the bot-
tleneck that results from having a real instruction cache, the bottleneck that results from
having a real branch predictor, the bottleneck that results from having a real execution
core, and the bottleneck that results from having a real data cache. Chapter 6, using an
abstract machine model, demonstrates that the instruction cache bottleneck for a sixteen
wide issue machine can be nearly eliminated by allowing the machine to fetch, decode,
and issue instructions out of program order. Chapter 7 describes the implementation of
out-of-order fetch, decode, and issue. Chapter 8 uses a realistic machine model to evaluate
the actual performance benefit of out-of-order fetch, decode, and issue. It also examines
various implementation tradeoffs that could not be evaluated with the abstract machine

model. Chapter 9 provides some concluding remarks.

CHAPTER 2

Related Work

Researchers have proposed many solutions for dealing with instruction cache misses.
Many of these solutions can be used in combination with each other to provide better overall
performance than if only a single solution were used alone. For example, the compiler can
eliminate some of the instruction cache misses by re-ordering the instructions in a program.
To tolerate the remaining misses, the machine can fetch, decode, and issue instructions
out-of-order.

Research on the handling of instruction cache misses can be divided into two areas.
The first area contains all research that looks at eliminating (some of the) instruction cache
misses. Most research has been done in this first area. The second area contains all the
research that looks at tolerating instruction cache misses. Out-of-order fetch, decode, and

issue falls into the second area.

2.1 Eliminating Instruction Cache Misses

Many techniques exist for reducing the number of cache misses. Many of these
techniques are applicable to instruction caches. Examples include improved hashing func-
tions [2, 109, 123], better cache management policies [56, 70, 79, 107], cache conscious virtual
page mapping [9,66], and victim caches [58]. In this section, I will describe some of the
most promising techniques aimed at reducing the number of instruction cache misses. These
techniques can be placed in one of the following three categories: increasing the cache as-

sociativity, re-ordering the code, and prefetching.

10

2.1.1 Increasing Cache Associativity

One way to reduce the number of instruction cache misses is to build a set-associative
cache instead of a direct-mapped cache. However, set-associative caches have longer access
times than direct-mapped caches. In a direct-mapped cache, cache line data can be (spec-
ulatively) used by the next stage of processing before the tag comparison for the line has
completed. If the tag comparison fails, the next stage of processing simply discards the
data. On a cache access for a set-associative cache, all the lines in a set are read out, and
their tags are compared to the address of the requested data to determine which line con-
tains the sought after data. Once the tag comparisons have completed, the matching line
(if there is one) is identified, and its data is passed on to the next stage of processing. Thus,
for a set-associative cache, the tag comparisons introduce an extra delay between the time
when the cache data becomes available and the time when the data can be (speculatively)
used by the next stage of processing.

What is needed is an instruction cache with the organization and access time of a
direct-mapped cache, and the hit rate of a set-associative cache. There are two approaches
to achieving this goal. The first approach is to build a direct-mapped cache that uses several
different hash functions. The second approach is to build a set-associative cache with a way
predictor.

The hash-rehash cache [3] uses the first approach. It uses two different hash functions
to access the cache. Initially, the first hash function is applied to the address, and the result
is used to index into the cache. If the resulting cache line contains the sought after data, a
first-time hit occurs. If it misses, the second hash function provides an index into the cache.
If a second-time hit occurs, the data is retrieved. The data in the two cache lines is then
swapped so that the next access will likely result in a first-time hit. However, if the second
access also misses, then the data is retrieved from main memory, placed in the cache line
indexed by the second hash function, and then swapped with the data indexed by the first
hash function.

The column-associative cache [1] improves the performance of the hash-rehash cache
by adding a rehash bit to each line in the cache. The rehash bit is reset if the data stored
in that cache line is associated with the first hash function, and set if the data stored in

that cache line is associated with the second hash function. When a first-time miss occurs,

11

if the rehash bit is reset, the processor tries to find the data by accessing the cache via the
second hash function. If the rehash bit is set, the cache is not accessed again, and the data
is retrieved from main memory. When a cache line must be replaced, a line whose rehash
bit is set is preferred as the victim.

The second approach is to build a set-associative cache with a way predictor. The
RAM in these caches is organized just like the RAM in direct-mapped caches: each index
into the RAM specifies the location of one, and only one, cache line. The way predictor
guesses which cache line within a set contains the sought after data. The way prediction
and the set index are combined to form an index into the cache’s RAM. If the indexed
line contains the data, the data is retrieved. Otherwise, the remaining lines in the set are
probed. If the data is found in one of the other lines, it is retrieved. If it is not found in
any of the lines, it must be retrieved from main memory.

For the MRU cache [18,67,118], the way predictor records the line that was used
most recently for each cache set. When the cache is accessed, the most recently used line
is predicted to contain the sought after data. Note that for caches that implement a least
recently used (LRU) replacement policy, the LRU information for each set indicates which
line was used most recently. Thus, there is little additional overhead in implementing an
MRU cache if the underlying cache uses an LRU replacement policy.

For the Direct-mapped Access Set-associative Check (DASC) cache [110], the ad-
dress used to access the cache provides the way prediction. When the cache is accessed, the
lower order bits of the tag portion of the address are used to select the line within the set.
(That is, the data array is accessed as if the cache was direct-mapped.) If the prediction
is incorrect, and a hit in detected in one of the other lines in the set, the two lines (the
predicted line and the line registering a hit) are swapped. In the case of a miss, the line is
written according to the replacement algorithm, and then swapped with the predicted line.

Johnson [55] proposed a technique that eliminates the need for a Branch Target
Buffer (BTB) by embedding a set and way predictor in the instruction cache. (The way
predictor is not needed if the cache is direct-mapped.) This technique was used for the
UltraSPARC’s two-way set associative instruction cache [137]. In the UltraSPARC, each
instruction cache line contains eight instructions, two set predictions (one for the first four
instructions and one for the second four instructions), and two way predictions (again, one

for the first four instructions and one for the second four instructions). The UltraSPARC

12

fetches at most four instructions from the cache each cycle. When the instructions are
fetched, the associated set prediction and way prediction are also fetched. These predictions
are then used in the following cycle to fetch the next cache line.

Calder and Grunwald [17] integrated the functions performed by a Branch Target
Buffer (BTB) and a way predictor into a common structure, which they call the next cache
line and set (NLS) predictor.! After a taken branch is fetched, the processor consults the
NLS predictor to determine which cache line to fetch next. Unlike a BTB, which specifies
the target address of the branch, the NLS predictor specifies the set and way of the cache
line that contains the target.

Finally, Juan, Lang, and Navarro introduced the difference-bit cache [63], which
is a two-way set associative cache that has an access time close or equal to that of a
direct-mapped cache. In conventional two-way set associative caches, both tags in a set are
compared to the address. After the comparisons are complete, the matching tag is then used
to select the line within the set. Juan, Lang, and Navarro noticed that the two tags within a
cache set must differ by at least one bit. When an address is presented to the difference-bit
cache, it is also presented to a small memory. For the cache set that corresponds to that
address, the memory identifies the position of the least significant bit in which the two tags
differ. This bit is then extracted from the address, and used to select the line within the set.
Thus the line can be selected without performing any tag comparisons, which, hopefully,
reduces the critical path for the cache access. Of course, the selected line will not contain
the requested data if that data is not in the cache. A tag comparison is still required to

determine if the selected line actually contains the requested data.

2.1.2 Code Re-Ordering

The compiler can reduce the number of instruction cache misses by re-ordering the
instructions in a program.

McFarling [78] described a program re-ordering algorithm for direct-mapped in-
struction caches. The program is profiled to determine basic block execution counts. The

algorithm constructs a Directed Acyclic Graph (DAG) of the program consisting of loop,

!The term set usually refers to a group of cache lines associated with a common index. Calder and
Grunwald use the term set to refer to a particular cache line within one of these groups. This nonstandard
nomenclature was undoubtably borrowed from Digital Equipment Corporation, with whom Calder and
Grunwald collaborated.

13

procedure, and basic block nodes. Each loop node is labeled with the average number of
times the loop was executed during the profile run. Edges are labeled with a fraction that
indicates how often the child was executed when the parent was executed. The algorithm
then partitions the graph, paying special attention to the loop nodes, with the goal of fitting
each subgraph into the cache without any conflicts. The partitioning is done based on the
labels assigned to the loop nodes and the edges. McFarling also showed that higher hit
rates are possible if the algorithm can force the cache to exclude certain instructions.

Hwu and Chang [50] described a five step re-ordering algorithm. In step one, the
program is profiled to determine the number of times each basic block is executed, and the
number of times each path between a pair of basic blocks is traversed. In step two, frequently
executed procedures are integrated (or inlined) into their callers. Although inlining may
increase code size, and hence the number of compulsory instruction cache misses, it also
improves spatial locality, since almost all control transfers are within procedures rather
than between procedures. Additionally, inlining reduces potential cache mapping conflicts
between procedures, thus reducing the number of potential conflict misses. In step three,
basic blocks that tend to execute in sequence are grouped into traces. The basic blocks in
a trace are placed in contiguous memory to improve sequential and spatial locality. In step
four, the traces that comprise each procedure are placed. To further improve sequential and
spatial locality, traces that tend to execute in sequence are placed in contiguous memory. To
minimize a procedure’s cache footprint, the traces are also loosely arranged in the order of
most frequently executed to least frequently executed. Finally, in step five, global analysis
arranges the program’s procedures to reduce inter-function cache conflicts.

Pettis and Hansen [103] described the following techniques for improving code lay-
out: basic block reordering, procedure reordering, and procedure splitting. These techniques
are not mutually exclusive. All techniques rely on profile information. Their basic block
reordering technique is similar to Hwu and Chang’s: it groups together the basic blocks
that tend to execute in a sequence, and then places the basic blocks within a group in con-
tiguous memory. This improves sequential and spatial locality. Their procedure reordering
technique tries to place a caller and its most frequent callees close to one another in the final
code image. Doing this decreases the chances that the caller and its callees will contend
for the same cache lines. Their procedure splitting technique partitions the basic blocks of

each procedure into two groups: primary blocks and fluff blocks. Primary blocks are the

14

blocks that were executed during the profile run. Fluff blocks are the blocks that were not
executed. When the linker lays out the final code image, it places all the primary blocks
(for all the procedures) at the beginning of the image, and all the fluffs blocks at the end.
This minimizes the size of the program’s cache footprint.

Gupta and Chi [41] looked at repositioning code so that either all instructions
belonging to an instruction cache line were executed or none of them were executed. In
some cases, repositioning code reduces the number of cache misses. For example, sometimes
the number of cache lines occupied by a loop is reduced by one if the loop is repositioned to
start at a cache line boundary. Reducing the size of the loop’s cache footprint will reduce
the number of misses the loop experiences. Unlike the techniques that were described above,
this code repositioning technique does not require profiling.

If not done with care, procedure inlining can dramatically increase the size of a
program’s executable image. As a result, the number of instruction cache misses may soar,
and machine performance may actually decrease. McFarling [80] proposed a procedure
inlining algorithm that accounts for instruction cache behavior when deciding whether or
not to inline a procedure. For each procedure, the benefit and cost of inlining the procedure
is estimated. The benefit is the number of instructions that can be eliminated by inlining
the procedure, multiplied by the number of times the procedure is executed. (The program
is profiled to determine how often each procedure is executed.) The cost is the (estimated)
number of extra cache misses that will occur if the procedure is inlined, multiplied by the
cache miss penalty (or cost of each miss). If the benefit outweighs the cost, the procedure
is inlined.

Mendlson, Pinter, and Shtokhamer [86] described a program re-ordering algorithm
similar to McFarling’s [78]. Unlike McFarling’s, this algorithm does not require profile
information and it can be applied to set-associative caches. The algorithm constructs a
Nested Flow Graph (NFG), which is a control flow graph augmented with information
about the nesting structures of loops and procedures. The algorithm then partitions the
graph, based on the information about the nesting structures, with the goal of fitting each
subgraph into the cache without any conflicts. In some cases, the algorithm must replicate
code in order to avoid conflicts.

Torrellas, Xia, and Daigle [124, 131] proposed an algorithm for repositioning oper-

ating system code. Their algorithm was similar to Hwu and Chang’s: it groups together the

15

basic blocks that tend to execute in a sequence, and then places the basic blocks within a
group in contiguous memory. The algorithm then arranges the groups in the order of most
frequently executed to least frequently executed. However, unlike Hwu and Chang’s algo-
rithm, their algorithm can group together basic blocks that cross procedure boundaries. In
addition, their algorithm is conscious of the instruction cache. Frequently executed groups
of basic blocks are assigned to a special “conflict-free” area of the cache. The remaining
groups are assigned such that they use this special area as little as possible.

Hashemi, Kaeli, and Calder [48,49] introduced a procedure reordering algorithm
called color mapping. The algorithm uses a call graph. Each node corresponds to a pro-
cedure. An edge identifies each caller/callee pair. The edge is weighted by the number of
times the caller calls the callee. Edge weights can be determined by either profiling [48] or
compile-time heuristics [49]. The algorithm processes edges in the order of heaviest weighted
to lightest weighted. When processing an edge, the procedures associated with the edge are
mapped into the address space, and each procedure is assigned the cache lines (colors) that
it will use. As the other procedures are mapped into the address space, cache conflicts are
avoided by using these colors to guide procedure placement.

The color mapping algorithm for procedure reordering only eliminates first genera-
tion cache conflicts; that is, conflicts between a procedure and any of its immediate callers
or callees. Kalamatianos and Kaeli [64] introduced an enhanced color mapping algorithm
that also eliminates higher order generation conflicts. This algorithm uses a Conflict Miss
Graph (CMG) instead of a call graph. Each node in the CMG corresponds to a procedure.
If two procedures can conflict with each other, an edge is placed between their correspond-
ing nodes. The edge is weighted by an approximation of the worst-case number of misses
the two competing procedures can inflict on each other. The algorithm uses profile infor-
mation to determine where edges should be placed, and what their weights should be. The
remainder of the algorithm is identical to the original color mapping algorithm, except that

the CMG is processed instead of the call graph.

2.1.3 Prefetching

With prefetching, the hardware and/or compiler anticipates that data is about to
be accessed that is not in the cache. The hardware attempts to fetch this data before the

aCCess occurs.

16

Smith [115] examined three hardware prefetch algorithms: always prefetch, prefetch
on misses, and tagged prefetch. For all three algorithms, when a line is fetched, the pro-
cessor prefetches (or may prefetch) the line located sequentially after the fetched line. For
always prefetch, the processor prefetches after every fetch. The major disadvantage of this
algorithm is that it generates a large amount of prefetch traffic. For prefetch on misses, the
processor prefetches only if the fetched line misses. This can cut the number of misses for a
purely sequential reference stream in half. For tagged prefetch, each line in the cache has a
single bit called a tag. When a new line is inserted in the cache, its tag is set to zero. When
a line in the cache is accessed, its tag is set to one. If a tag changes from a zero to a one,
the processor prefetches the next sequential line. For a purely sequential reference stream,
this algorithm can reduce the number of misses to zero.

Smith and Hsu [117] described several hardware prefetch algorithms for instruction
caches. For fall-through prefetch (also referred to as “one block lookahead” [115]), when a
line is fetched, the processor prefetches the next sequential line if the requested instruction
falls within some specified distance (called the fetchahead distance) from the end of the cache
line. If the fetchahead distance is short, the processor is more likely to use the prefetched
line, but less likely to receive the instructions soon enough to avoid any miss penalty.
For target-line prefetching, a target prediction table is accessed whenever an instruction is
fetched from the cache. The table entry indicates the address of the line that most recently
followed the current instruction line. Smith and Hsu also describe a target prediction table
that allows each cache line to specify multiple successor lines—one successor line for each
branch instruction in the current line. The address identified by the table entry is prefetched
the next cycle. The key advantage that target-line prefetching has over fall-through prefetch
is that is more accurately predicts which cache lines will be needed, and thus it generates
better prefetches. A third prefetch algorithm combines fall-through prefetch and target-line
prefetching in a hybrid. Each cycle the processor generates two prefetches: one prefetch for
the next sequential line and one prefetch for a (non-sequential) line specified by the target
prediction table. For conditional branches, the result of this algorithm is that both the
not-taken and taken paths of the branch are prefetched. Smith and Hsu found that this
hybrid algorithm performed significantly better than either component algorithm alone.

Wrong-path instruction prefetching [104], proposed by Pierce and Mudge, is similar
to Smith and Hsu’s hybrid algorithm, except it spares the expense of the target prediction

17

table. This algorithm combines fall-through prefetch with the prefetching of all conditional
branch targets regardless of the predicted directions of the branches. When an instruc-
tion cache line is fetched, the processor also prefetches the next sequential line. Addition-
ally, whenever a conditional branch is decoded, the line containing its taken target is also
prefetched. Thus, both targets of a conditional branch are always prefetched: the not-taken
target with fall-through prefetching, and the taken target with the target prefetching. Note
that if a conditional branch is taken, prefetching the line that contains its taken target after
it has been decoded is not very useful, since the processor generates a normal fetch request
for that line anyway. The prefetch of that line can only be useful if the branch is not-taken.
Hopefully, the next time the branch is fetched and predicted to be taken, the line containing
the taken target will reside in the cache because of the prefetch.

The prefetch algorithms described above were designed for machines that fetch a
small number of instructions from the cache each cycle. For these machines, a single cache
line is accessed many times before the machine moves on to the next line. All prefetches
are initiated the first time the cache line is accessed. By the time the next cache line is
accessed, the prefetches have (hopefully) completed. For machines that fetch a large number
of instructions from the cache each cycle, a single cache line is accessed only once before the
machine moves on to the next line. Any prefetches initiated by accessing that line will not
complete before the next line is accessed. To improve the performance of these algorithms
for wide fetch machines, each prefetch is modified to request N sequential lines rather than
just a single line.? A large value of N tends to increase the prefetching distance, but also
increases the likelihood of polluting the cache with useless prefetches.

To reduce cache pollution, sequentially prefetched lines can be inserted in a stream
buffer [58] instead of the instruction cache. A stream buffer is a FIFO prefetch buffer used
to eliminate some capacity and compulsory misses. Each entry in the FIFO contains a
cache line. When a cache miss occurs, the entry at the head of the FIFO is probed for the
data. If the entry contains the data, the cache line associated with the entry is copied to
the cache. The entry is then removed from the stream buffer by advancing the FIFO. If the
entry at the head of the FIFO does not contain the requested data, all entries in the FIFO
are invalidated, and the data is fetched from the next level of the memory and written into

the cache. In addition, the stream buffer begins prefetching sequential cache lines, starting

2The original next N-line prefetch algorithm is described by Smith [114, 115].

18

with the cache line just after the cache line that caused the miss. The prefetched lines are
inserted in the FIFO instead of the cache. Enhancements to the stream buffer have been
proposed by Palacharla and Kessler [95], and by Farkas et al. [32, 33]

Xia and Torrellas [131] proposed a prefetch algorithm that uses the compiler to
guide a hardware prefetch engine. The compiler first uses an algorithm similar to Hwu and
Chang’s [50] to arrange a program’s basic blocks to reduce the number of instruction cache
misses. Next, the compiler marks the beginning and end of each segment of straight-line
code. Xia and Torrellas classify instruction cache misses as either being sequential misses
or transition misses. A sequential miss is a miss that occurs when the machine is fetching
a segment of straight-line code. A transition miss is a miss that occurs when the machine
fetches the target of a (taken) branch. To eliminate sequential misses, when the prefetch
engine encounters a segment of straight-line code (which is delineated by the markers that
were inserted by the compiler), it prefetches all cache lines in that segment. To eliminate
transition misses, the compiler inserts, as early as possible in the code, a software prefetch
instruction that identifies the target of the next branch the compiler predicts will be taken.
When the prefetch engine encounters a prefetch instruction, it prefetches all cache lines in
the segment of straight-line code identified by the target of the prefetch instruction.

Joseph and Grunwald [57] introduced Markov prefetching. A Markov prefetcher
builds a Markov model of the miss address stream by examining the sequence of addresses
that miss in the cache, and then uses this model to predict the sequence of misses. Each
time a miss occurs, the miss address is used to interrogate the Markov model. The Markov
model spits out the addresses of misses that follow the current miss. Each of these addresses
is assigned a prefetch priority according its probability of following the current miss. For
example, assume that miss4 follows the current miss 75% of the time, and that missp
follows the current miss 25% of the time. When the Markov model is interrogated, it will
spit out the addresses of miss4 and missp. The address of missa will be assigned a higher
prefetch priority than the address of missp. The prefetch engine then prefetches these
addresses, starting with the highest priority prefetch. The Joseph and Grunwald study
focused on data cache misses. However, this type of prefetching could also be used for
instruction caches.

Chen, Lee, and Mudge [21] describe a prefetch engine that uses a branch predictor

to run ahead of the instruction fetch unit and to prefetch potentially useful instructions.

19

Their prefetch engine races through the program’s predicted dynamic instruction stream
at a rate close to one fetch block per cycle. Their instruction fetch unit and execution
core, on the other hand, handle at most four instructions per cycle. Since typical fetch
blocks are larger than four instructions, the prefetch engine runs ahead of the processor.
Unfortunately, future processors will fetch and execute one or more fetch blocks per cycle.
For these processors, the prefetch engine will not run ahead of the instruction fetch unit,
and, as a result, it will not be able to generate useful prefetch requests. An additional
drawback of this approach is that it requires an additional branch predictor. (The authors
claim that the processor shares its table of 2-bit counters with the prefetch engine. However,
adding an additional port to this large table is not without expense. An additional claim
is that the prefetch engine does not need a branch target buffer: it can fetch a cache line,
identify the next branch, and then use a dedicated adder to calculate the target of the
branch—all in one cycle. This claim is clearly absurd.)

Finally, Luk and Mowry [72] introduced a prefetch filtering mechanism that enables
more aggressive sequential prefetching without polluting the cache with useless prefetches.
A two-bit saturating counter is stored in each second level cache tag. The counter records
the number of consecutive times the line was prefetched into the first level cache but was not
used before it was replaced. When a prefetch request from the first level cache arrives at the
second level cache, it is dropped if the counter associated with the requested line exceeds
some threshold. In addition, Luk and Mowry inserted software prefetch instructions—
described by Xia and Torrellas [131]—to eliminate the (transition) instruction cache misses
that occur when the machine fetches the target of a (taken) branch. For the software
prefetch instructions to be effective, the compiler schedules the prefetch instructions so
that they execute X instructions before the branches execute, where X is the prefetch-
scheduling distance. For example, if the cache miss latency is 12 cycles, and the expected
performance is 1.6 Instructions Per Cycle (IPC), the prefetch-scheduling distance is about
20 (12 x 1.6). The size of the code increases as the prefetch-scheduling distance increases,
since more prefetches must be inserted to cover the larger number of unique paths. Luk
and Mowry found that for a prefetch-scheduling distance of 12, code size increased by an
average of 8%, and that for a prefetch-scheduling distance of 28, code size increased by
an average of 11%. Future machines will require larger prefetch-scheduling distances. For

larger prefetch-scheduling distances, the increase in code size may offset any gains due to

20

prefetching.

2.2 Tolerating Instruction Cache Misses

Increasing the cache associativity, re-ordering the code, and prefetching can all be
used to eliminate instruction cache misses. The remaining related work covers microarchi-
tectures or microarchitectural techniques that tolerate instruction cache misses once they
occur. This work includes multiprocessors and multiscalar processors, multithreading, in-

struction stockpiling, and out-of-order fetch/decode/issue.

2.2.1 Multiprocessors and Multiscalar Processors

Programs for multiprocessors and Multiscalar processors [36] are broken up into a
series of tasks. The tasks are distributed to processing elements. Each processing element
has its own instruction cache. When one of the processing elements suffers an instruction
cache miss, execution of the task on that processing element stalls. However, the execution

of the other tasks in the program continues on the other processing elements.3

2.2.2 Multithreading

Multithreaded processors [125,129, 132] tolerate instruction cache misses by ex-
ploiting thread level parallelism. Each cycle, the processor selects which thread it will fetch
instructions from. If an instruction cache miss occurs while fetching instructions from the
selected thread, the thread won’t be selected again until its instruction cache miss has been
serviced.

Multithreading improves overall performance by simultaneously processing multiple
threads. However, multithreading does nothing to improve the performance of each individ-
ual thread. When the workload does not provide multiple concurrent threads, this becomes
a significant limitation.

To overcome this limitation, we proposed Simultaneous Subordinate Microthreading
(SSMT) [20]. An SSMT machine spawns subordinate threads that perform optimizations

on behalf of the single primary thread. These threads, written in microcode, are issued

3To further enhance a multiprocessor’s or Multiscalar processor’s ability to tolerate instruction cache
misses, its processing elements could be equipped to fetch, decode, and issue instructions out-of-order.

21

and executed concurrently with the primary thread. They directly manipulate the microar-
chitecture to improve the primary thread’s branch prediction accuracy, cache hit rate, and
prefetch effectiveness. All contribute to the performance of the primary thread.

The SSMT microcode routines for the subordinate threads are stored in a micro-
RAM. Since they aren’t stored in the instruction cache, they never suffer cache misses. This
means that microthread instructions are available for issue even when primary thread in-
structions aren’t, due to a cache miss. When the primary thread experiences an instruction
cache miss, instructions from the subordinate threads are issued during the servicing of the

miss.

2.2.3 Instruction Stockpiling

Another way to tolerate instruction cache misses is to add a FIFO buffer after the
instruction fetch pipeline stage so that a “stockpile” of instructions can be built up. This
buffer is typically inserted between the fetch and decode pipeline stages [40,116]. Instruc-
tions are fetched from the cache and then written into the buffer in program order (or
perhaps, in the predicted program order). During a cache miss, fetch stalls. As a result,
no new instructions are written into the buffer while the miss is serviced. However, the
execution of the stockpiled instructions may cover all or part of the miss penalty.

Drach and Seznec [30] described a pipeline organization in which two buffers are
inserted between the decode and ezxecute pipeline stages of a scalar processor. The organi-
zation was designed to reduce the penalties that result from both branches and instruction
cache misses. The processor’s instruction fetch bandwidth is twice its execution bandwidth.
Each cycle, a pair of instructions stored at consecutive addresses is fetched, decoded, and
then inserted into one of the two buffers. Each cycle, one of these buffers is selected to feed
the processor’s sole execution unit. When a branch is encountered, the processor’s copious
fetch bandwidth allows it to fill one buffer with instructions from the not-taken path, and
the other with instructions from the taken path. When the branch is executed, its outcome
(not-taken or taken) selects the buffer containing the instruction that will be executed in
the next cycle. Thus, with this organization, a branch does not stall execution. When an
instruction cache miss is encountered, the buffers can continue supplying the execution unit
with new instructions. Since the fetch bandwidth is greater than the execution bandwidth,

the buffers tend to fill up. Instruction cache misses give the execution unit a chance to

22

catch up with instruction fetch and decode. In a conventional pipeline organization, the
execution unit would stall during the instruction cache miss. With this organization, the
execution unit does not stall.

The machines modeled in this dissertation use two buffers: one buffer (called the
fetch buffer) between the fetch and decode pipeline stages, and one “buffer” between the
decode and execute stages. The “buffer” between the decode and execute stages is simply
the machine’s set of reservation stations. All machines have a lockup-free [69] instruction
cache; that is, an instruction cache that continues to service requests during a miss.*

For all machines modeled, instructions are removed (or retired) from the reservation
stations in program order. When modeling a conventional machine (i. e., a machine that
fetches, decodes, and issues instructions in program order), instructions are inserted into
and removed from each of the buffers in program order. When modeling a machine that
supports out-of-order fetch, instructions may be inserted into the fetch buffer out-of-order.
However, instructions are still removed from the fetch buffer in order, and inserted into
the reservation stations in order. When modeling a machine that supports out-of-order

fetch/decode/issue, instructions may be inserted into and removed from the fetch buffer

out-of-order, and inserted into the reservation stations out-of-order.

2.2.4 Out-of-Order Fetch/Decode/Issue

Vajapeyam and Mitra [127] described a microarchitecture that uses out-of-order
fetch/decode/issue to eliminate the performance penalty that results from trace cache [98,
108] misses. To hasten instruction decode, the microarchitecture caches decoded trace cache
lines. The trace cache contains the raw trace cache lines. Each line in the rename cache
contains the decode information for a trace cache line. This information indicates which
architectural registers are sourced by the trace cache line, and which architectural registers
are written by the trace cache line. The lines contained in the rename cache are a superset
of the lines contained in the trace cache.

During fetch, the trace cache and the rename cache are accessed in parallel. If

* All machines modeled in this dissertation speculatively fetch instructions from the wrong path whenever
a branch is mispredicted. Instruction cache misses can occur while fetching from this wrong path. If the
mispredicted branch resolves before these cache misses have been serviced, the machines immediately begin
fetching instructions from the correct path—even though there are outstanding cache misses. The fetch
requests that generated the wrong-path cache misses are converted into (wrong-path) prefetch requests.
Prefetch requests that significantly contend for resources (e. g., the system bus) needed by fetch requests
are dropped.

23

there are hits in both caches, everything proceeds as normal. If there are misses in both
caches, fetch stalls while the requested instructions are obtained from the next level of the
memory hierarchy. If there is a miss in the trace cache, but a hit in the rename cache, the
information from the rename cache is used to rename the registers for the missing trace
cache line. The processor saves the identifiers of the physical registers sourced by the trace
cache line, and the identifiers of the physical registers written by the trace cache line. Fetch
then continues on while the requested instructions are obtained from the next level of the
memory hierarchy. Once the requested instructions have been obtained, they are decoded
(using the physical register identifiers that were saved by the processor) and issued into the
trace window.

Concurrently, we developed the concept of out-of-order fetch/decode/issue [120].
Our initial study proposed the concept and described three techniques for handling the
register dependency problems that result from decoding instructions out of program or-
der. One of these techniques is conceptually the same as the rename cache technique
proposed by Vajapeyam and Mitra: it uses a separate cache (which we call a mask cache)
to record the dependency information needed to rename registers. The other two techniques
avoid the expense of caching dependency information, and, as a result, provide better per-
formance for a given cache budget. Both our study and Vajapeyam and Mitra’s found
that processor performance improved significantly when the processor allowed out-of-order

fetch/decode/issue.

24

CHAPTER 3

Simulation Methodology

3.1 Machine Model

The machine model used in this dissertation is the High Performance Substrate
(HPS) [100, 101]. HPS allows multiple instructions to be completed per cycle by exploiting
instruction level parallelism and by performing aggressive speculative execution. Hallmarks
of HPS are aggressive branch prediction, wide instruction issue, multiple functional units,
deep non-blocking pipelines, dynamic register renaming, out-of-order execution, and dy-
namic scheduling. Many elements of HPS are embodied in today’s high end microproces-
sors, for example, the Intel Pentium IT [27,44], the AMD K7 [88], and the Compaq Alpha
21264 [39, 43, 65].

The soul of HPS is the Restricted Data Flow (RDF) model of execution [14, 100, 101].
With a classical data flow machine, the entire data flow graph for a program is resident
in the machine, and the machine processes this data flow graph all at once [6,25,42]. An
RDF machine, on the other hand, processes only a subset of a program’s data flow graph
at any one time. The term active window is used to refer to the set of instructions whose
corresponding data flow nodes are resident in the RDF machine. As the active window slides

through the dynamic instruction stream, the RDF machine executes the entire program.

25

Figure 3.1 illustrates the RDF model of execution. Instructions are removed from the
program’s dynamic instruction stream and converted into data flow nodes. Each instruction
is converted into zero or more nodes. For the Alpha AXP instruction set architecture [112],
most instructions are converted into a single node. The instructions are then inserted, or
issued, into the active window. The issue rate specifies the maximum number of instructions
that can be removed from the dynamic instruction stream, converted into data flow nodes,
and then inserted into the active window in a single cycle. The window size specifies the
maximum number of instructions that can be in the active window at any instant in time.
Instructions are issued as long as the number of instructions in the active window is less
than the window size. The data flow nodes are scheduled for execution when their flow
dependencies have been resolved. An instruction exits the active window, or retires, after
all its nodes have executed. Instructions are issued and retired in the order they appear in

the dynamic instruction stream.

Un-Issued
Dynamic Instruction Stream

Active]
Window /69

Retire Retired
Dynamic Instruction Stream

>

.

Figure 3.1: RDF Model of Execution

26

HPS is a realizable implementation of the RDF model of execution; i. e., it is an
instance of the abstract RDF paradigm [14]. Figure 3.2 shows the basic microarchitecture.
The branch predictor predicts the sequence of fetch blocks that comprise the dynamic
instruction stream. The branch predictor does not predict the entire sequence all at once:
it predicts only a piece of the sequence each cycle. The sequence is predicted in program
order. State variables are used to keep track of the current point in the sequence. Each time
a piece of the sequence is predicted, these state variables are updated. In certain situations,
the branch predictor is forced to restart at an earlier point in the sequence. An example
of such a situation is when a branch is mispredicted [60,62,113]. To restart the branch
predictor, the state variables are simply set to the values they had at that earlier point.

The branch predictor predicts the sequence of fetch blocks that comprise the dy-
namic instruction stream without having the data for the instructions in those blocks. That
is, the branch predictor can do its job without having any instruction data. Because of this,
the branch predictor can operate independently of the instruction cache: it can sequence
through the fetch blocks of the dynamic instruction stream even if those fetch blocks do not
reside in the instruction cache.

Each cycle, the branch predictor predicts the next few fetch blocks in the dynamic
instruction stream. Subsequently, the machine attempts to fetch each of these blocks from
the instruction cache. On a cache hit, the instructions in the block are written into the
fetch buffer. On a cache miss, the block is fetched from the next level of the memory
hierarchy. During this fetch, the branch predictor and instruction cache stall. Additionally,
all blocks logically following the block being fetched are flushed from the machine. After
the fetch completes, the instructions in the block are written into the instruction cache and
fetch buffer, the branch predictor is forced to predict the blocks that follow the block that

missed, and the branch predictor and instruction cache are restarted.

27

Register
Alias
Table

Branch Predictor

!

Instruction Cache

!

A

Fetch Buffer
!
> Decode/Issue
!
Node Tables
Vo i
FU, FU, | === | FU,

i

Load/Store System

Figure 3.2: Basic HPS Microarchitecture

28

The fetch buffer supplies the dynamic instruction stream required for RDF exe-
cution. Each cycle, instructions are removed from the fetch buffer and decoded into data
flow nodes. Using the information in the Register Alias Table, a generalized version of
Tomasulo’s algorithm [122] renames the registers. The instructions are then issued into the
Node Tables; that is, their associated nodes are installed in the Node Tables. The Node
Tables, which are more commonly known as reservation stations, house the active window.
Associated with each node in the Node Tables are the source operands for that node (or
identifiers for obtaining the operands), and destination information. When all of a node’s
source operands become available, the node becomes eligible for firing. Each cycle, a subset
of the firable nodes are scheduled for execution on one of the functional units. After execu-
tion, the node results are distributed to the Register Alias Table and to the other nodes in
the Node Tables awaiting those results.

Loads and stores require special consideration. The physical addresses of load and
store memory accesses are not known when the loads and stores are issued into the Node
Tables. Thus, unlike register dependencies, which are dealt with before the instructions
are issued into the Node Tables via register renaming, the dependencies between loads and
stores must be dealt with after the instructions have been issued.

In Figure 3.2, the functional units compute the logical addresses of load and store
memory accesses and then deliver these addresses to the load/store system. The addresses
are not necessarily computed and delivered to the load/store system in program order. The
delivery of store data to the load/store system is (or can be) decoupled from the delivery of
the addresses. That is, a store is (or can be) split into two data flow nodes. The first node
computes the logical address of the memory access. The second node delivers the store
data.

The load/store system is responsible for obtaining the correct data for loads and for
updating the architectural state whenever stores retire. It contains a translation lookaside
buffer (TLB), a memory disambiguator, and a data cache. The TLB converts the logical
addresses of the load and store memory accesses into physical addresses. The disambiguator
uses these physical addresses to determine which loads are dependent on stores. Dependent
loads have their data forwarded from the proper store. The other loads receive their data
from the data cache. Note that the disambiguator may not receive the physical addresses of

load and store memory accesses in program order. This complicates dependency analysis in

29

that, at any given point in time, the disambiguator may not have all the addresses required
to correctly identify the dependencies between loads and stores. That is, for a particular
load, the disambiguator may not know the addresses of all potentially aliasing stores. The
data cache is never updated speculatively. It is only updated when stores retire. The store
data delivered to the load/store system is buffered until the stores retire, at which point

the data is written into the cache.

3.2 Simulators

I built three different simulators for studying computer architecture. FEach sim-
ulates the execution of programs written for the Alpha AXP instruction set architecture
(ISA) [112]. All of them are stand-alone execution driven simulators. That is, each simulator
reads in the simulated program’s executable image and any associated input data, initializes
the processor model (if there is one), and then, instruction by instruction, calculates all of
the program’s results.

To hasten development time, I first built a basic foundation that can be used to
build many different simulators. The three simulators were then built using this foundation.
This foundation includes the simulation of process images, the simulation of Alpha ISA
instructions, and the emulation of DEC OSF/1 system calls. The DEC OSF/1 system calls
are emulated via proxy system calls on the host machine. (The host machine is the machine
the simulation runs on.) The simulators do not actually simulate the code of the system
call. Special function calls, called hooks, are used to interface the simulators to this basic
foundation.

The three different simulators are the functional simulator, the RDF simulator,
and the full simulator. The functional simulator does not model a processor. The RDF
and full simulators do. The full simulator models the processor more accurately than
the RDF simulator. However, it does so at the expense of simulation cost (run time as
well as development time). The RDF and full simulators determine the execution time
of a program by simulating its execution on the processor model. They can model many
different processor configurations. The processor configuration is specified via command

line options.

30

3.2.1 The Functional Simulator

The functional simulator is the simplest and fastest simulator. This simulator simply
executes the instructions. No timing information is recorded. The functional simulator is
used for creating instruction traces, for performing trace sampling, and for recovering the
state associated with a killed simulation. (In the event that a naive or malicious user
kills off a simulation running using the full simulator on the Computer Aided Engineering
Network, the functional simulator is used to quickly recover the state of the simulation to
the point just before the simulation was killed. Upon reaching this point, the full simulator

is activated and the simulation continues on as if it had never been killed.)

3.2.2 The RDF Simulator

Originally, the RDF simulator simulated instructions using the abstract RDF model
of execution discussed in Section 3.1. Three parameters characterize this model: window
size, issue rate, and the latencies required for executing each type of data flow node. Later,
the simulator was modified so that it could model a more realistic processor. The simulator
was modified so that a dispatch rate and retire rate could be specified. (The dispatch rate is
the maximum number of data flow nodes that can be scheduled for execution on functional
units in a single cycle. The retire rate is the maximum number of instructions that can be
retired in a single cycle.) Additionally, the simulator was modified to include a real data
cache, a real instruction cache, and a real branch predictor.

The RDF simulator behaves like a trace driven simulator. It processes each in-
struction in the dynamic instruction stream one by one. It does not begin processing a
new instruction until it is done with the old one. It only sees the instructions executed
along the correctly predicted path. Because of this, it cannot correctly model the effects of
fetching, issuing, and executing instructions along a mispredicted path. It does, however,
correctly model the penalty due to a mispredicted branch. As branches are encountered in
the dynamic instruction stream, a prediction is made. This prediction is compared to the
real outcome of the branch. If a prediction fails, issue is stalled until the branch is resolved
and instructions from the correct path are available for issuing. Note that during the time
of this stall, a real machine would actually issue instructions from the mispredicted path.

The RDF simulator mimics the effect of not issuing useful work by performing this stall.

31

Compared to the full simulator, the RDF simulator is simpler, easier to modify,
and runs quicker. However, it does not model as much as the full simulator does, so it
is not as accurate. This simulator is typically used as a proving ground for new microar-
chitectural ideas. Ideas that pass muster are then implemented in and tested on the full
simulator. Unfortunately, some ideas cannot be implemented in the RDF simulator and

must be implemented in the full simulator.

3.2.3 The Full Simulator

The full simulator performs a cycle by cycle simulation of the executable using the
HPS microarchitecture presented in Section 3.1. This simulator is much more complex,
harder to modify, and slower than the RDF simulator. It also simulates the processor
with a much greater level of detail than is possible with the RDF simulator, so it is more
accurate. This simulator models a split transaction bus, two levels of instruction cache,
two levels of data cache, banking of the first level data cache, a memory disambiguator,
a branch predictor, a fetch buffer, a Register Alias Table, reservation stations, functional
units, and precise exceptions via checkpointing [53]. Most of the processor pipeline lengths
are programmable. For example, the length of the instruction decode pipe can be specified
with a command line option.

Unlike the RDF simulator, when the full simulator mispredicts a branch, it will
proceed with fetching, issuing, and executing instructions along the mispredicted path.
When the processor discovers that the prediction is incorrect (as indicated by the execution
of the corresponding branch instruction), the simulator flushes the speculative instructions

and then proceeds along the correct path.

32

3.3 Benchmarks

The results presented in this dissertation are for the eight SPECint95 bench-
marks [119] and for eight other common UNIX programs, which I will refer to as the
Non-SPEC benchmarks. Table 3.1 lists the SPEC benchmarks along with their training
and test data sets. Table 3.2 does likewise for the Non-SPEC benchmarks. All benchmarks
are written in C, except for groff, which is written in C4++. The training sets are used to
generate the benchmark profiles for the experiments that require profiling. The test sets
are used to generate all of the performance numbers presented in this dissertation. For the
SPEC benchmarks, the training and test sets are either the data sets provided by SPEC
or modified versions of those data sets. A modified data set is used whenever the running

time of the unmodified version is too long.

Benchmark || Description Training Set | Test Set

cmp data compression program 35KB.in* 30KB.in*

gee GNU C compiler dbxout.i jump.i

go Go-playing program olaf.in* 2stone9.in*
ijpeg image compression program vigo.ppm* specmun.ppm*
li XLISP interpreter queens.lsp* train.lsp

m88k 88100 microprocessor simulator dhry.test.lit | dcrand.train.lit
perl Perl programming language interpreter | primes.pl* scrabbl.plt
vortex object-oriented database 35M.1it* 230M.lit*

*The data set is a modified version of one of the SPECint95 data sets.
tThis data set is from the SPECint95 training data set for perl.

Table 3.1: The SPECint95 benchmarks and their training and test data sets

33

Benchmark || Description Training Set | Test Set

chess GNU Chess train.in sim.in

groff GNU groff document formatting system troff.1 gee.1

gs Aladdin Ghostscript interpreter graph.ps sigmetrics94.ps
pEp Pretty Good Privacy encryption system tasukil.jpg 1JPP97.ps

plot gnuplot plotting program singulr.dem surface2.dem
python Python programming language interpreter morse.py yarn.tests.py
ss SimpleScalar superscalar processor simulator | random fmath-little
tex TEX document formatting system slide-root.tex | PACT96.tex

Table 3.2: The Non-SPEC benchmarks and their training and test data sets

I downloaded the source code for the Non-SPEC benchmarks over the Internet and
then modified the source code so that the programs could be used as benchmarks. Here is
one example of such a modification. The pgp program uses the current system time to seed
its random number generator. The encryption algorithm in pgp uses numbers generated by
this random number generator to encrypt a file. If file X is encrypted at times A and B,
the output of the encryption at time A will be different from the output of the encryption
at time B. Each time pgp is run, its behavior is guaranteed to be different from the last
time it was run. This variability makes it impossible to perform fair comparisons between
the results generated from two different simulations that use pgp as a benchmark. To make
fair comparisons possible, I eliminated the variability. That is, I modified the source code
so that the random number generator was seeded with a fixed time instead of the current
system time.

For each of the sixteen benchmarks, I created two versions of the benchmark exe-
cutable. The first version was created without the aid of profile information. The second
version was created with the aid of profile information.

The first version was created by simply compiling the benchmark. All the bench-
marks were compiled for the Alpha AXP instruction set architecture [112]. The groff bench-
mark was compiled with version 2.7.2 of the GNU C++ compiler using the following opti-
mization flag: -03. The remaining fifteen benchmarks were compiled with version 3.11 of
the DEC OSF/1 AXP Compiler using the following optimization flags: -02 -01imit 3000.

All benchmarks were statically linked.

34

The second version was created by rearranging the procedures in the first version
of the executable. The procedures were rearranged so that the program would use the
instruction cache more efficiently. To create the second version of each executable, the

following steps were taken:

1. Profiling code was added to the first version of the executable using pixie [28]. pixie
reads an executable, partitions it into basic blocks, and then writes an equivalent

executable containing additional code that counts the execution of each basic block.

2. The executable created by pixie was run using the training data set. This produced

a file containing the number of times each basic block in the program was executed.

3. The file produced by step 2 was analyzed using prof [28]. prof estimates the amount
of time spent executing each procedure in the program. (For each basic block, prof
estimates the time required to execute that block once and multiplies that time by
the number of times the block was executed. This yields, for each basic block, the
[estimated] total amount of time spent executing that block. The time per procedure
is obtained by summing the total amount of time per block over all the basic blocks

in the procedure.)

4. Using cord [28] and the time estimates produced by step 3, the second version of the
executable was created by rearranging the procedures in the first version. cord reads
an executable, and, using the time estimates, writes an equivalent executable with
the procedures arranged in order of procedure density. The procedure density is the
total amount of time spent in a procedure divided by the number of instructions in

that procedure.

There are a total of 32 benchmark executables: sixteen that are first versions, and
sixteen that are second versions. Throughout this dissertation, I will refer to the sixteen
executables that are first versions as the (benchmark) executables without profiling. I will
refer to the sixteen executables that are second versions as the (benchmark) executables

with profiling.

35

For all experiments, the benchmarks were run to completion. For each benchmark,
Table 3.3 shows the number of instructions required to run the benchmark to completion
for both the training and test data sets. These numbers do not depend on the version (i. e.,

with or without profiling) of the benchmark executable.

Benchmark || Training Set | Test Set
cmp 173 M 150 M
gce 194 M 182 M
go 142 M 137 M
ijpeg 220 M 334 M
li 276 M 248 M
m88k 543 M 145 M
perl 217 M 46 M
vortex 41 M 252 M
chess 180 M 250 M
groff 162 M 238 M
gs 98 M 228 M
PSP 100 M 187 M
plot 225 M 270 M
python 93 M 276 M
SS 183 M 128 M
tex 138 M 242 M

Table 3.3: The number of instructions executed per benchmark

36

CHAPTER 4

Available Instruction Level Parallelism

In this chapter, I measure the amount of parallelism available in a single instruction
stream, and the upper bound on the amount of parallelism that can be exploited by practical
processor implementations. The information provided in this chapter can be used by the
architects of future processors to make design decisions. For example, this information can
be used to answer the questions: Is there enough available instruction level parallelism to
justify building a processor that can issue sixteen instructions per cycle? And, how many
reservation stations should a sixteen wide issue processor have? The information will show
that building a processor that can issue sixteen instructions per cycle and that has 1024
reservation stations is a worthwhile endeavor. This processor will be used exclusively in the
following chapters of the dissertation.

To calculate the upper bound on the amount of parallelism that can be exploited
by practical processor implementations, I will use the Restricted Data Flow (RDF) model
of execution [14,100,101]. In this execution model, the exploitation of instruction level
parallelism is only limited by the flow dependencies in a program, the amount of buffering
(e. g., the number of reservation stations or the number of reorder buffer entries) the machine
supports, and the machine’s instruction fetch (and instruction decode) bandwidth. I will
also use a variant of the RDF model, the Unrestricted Data Flow (UDF) model [14], to
measure the total amount of parallelism available in a single instruction stream. The UDF
model is simply an RDF model that supports an infinite amount of buffering and that
has infinite instruction fetch bandwidth. I will determine the performance, in Instructions
Per Cycle (IPC), of the RDF model for many different machine configurations, where each

configuration specifies the amount of instruction buffering the machine supports and the

37

machine’s instruction fetch bandwidth.

This chapter is organized into five sections. Section 4.1 formally describes the RDF
model of execution. Section 4.2 describes the problem caused by dependencies communi-
cated via memory, and some possible solutions. Section 4.3 describes the assumptions and
configuration parameters that are common to all RDF machines modeled in this disserta-
tion. Section 4.4 evaluates the performance of the RDF model for many different machine

configurations. Section 4.5 summarizes the chapter.

4.1 The RDF Model of Execution

To measure the available parallelism, I will use an abstract model of execution that
does not unnecessarily restrict the exploitation of instruction level parallelism. This model
is called the Restricted Data Flow (RDF) model of execution [14, 100, 101]. The RDF model
of execution is characterized by three parameters: window size, issue rate, and instruction
class latencies.

Processing consists of issuing instructions from a program’s dynamic instruction
stream, converting those instructions into a dynamic data flow graph, scheduling instruc-
tions for execution when their flow dependencies have been resolved, and retiring those
instructions after execution has completed. The dynamic instruction stream originates
from a perfect (100 percent hit rate) instruction cache and is created by an omniscient
branch predictor that always knows the direction a branch will take. Instructions are issued
and retired in the order they appear in the dynamic instruction stream.

The term active window will be used to refer to the set of instructions whose
corresponding data flow nodes are resident in the RDF machine. The window size specifies
the maximum number of instructions that can be in the active window at any instant in time.
Instructions can be issued as long as the number of instructions in the active window is less
than the window size. The issue rate is the maximum number of instructions that can be
removed from the dynamic instruction stream and entered into the active window in a single
cycle. The instruction class latencies specify the set of operations and the latency associated
with each operation. In the RDF model, there is never contention among instructions for
functional units, each functional unit can perform every desired operation, and the latency

associated with each operation is specified.

38

Although this execution model is abstract, it accounts for many practical constraints
on CPU design. The restriction on window size accounts for the constraint on the amount
of buffering. To be more concrete, in current processors, the window size accounts for the
maximum number of instructions that the reservation stations (or the equivalent microar-
chitectural analogue) can hold. The restriction on issue rate accounts for the constraint on
the amount of instruction fetch (and instruction decode) bandwidth.

To measure the total amount of parallelism available in a single instruction stream,
I will use a variant of the RDF model called the Unrestricted Data Flow (UDF) model. The

UDF model is an RDF model with an infinite window size and an infinite issue rate.

4.2 Memory Dependency Handling

The RDF model of execution relies on dynamically reordering code in order to har-
vest the available instruction level parallelism (ILP). Its goal is to execute as many instruc-
tions in parallel as possible, while, at the same time, preserving the sequential semantics of
the instruction stream. To accomplish this goal, all anti and output dependencies must be
eliminated, and true (flow) dependencies must be enforced. Additionally, for flow depen-
dencies, the passing of values from producers to consumers must be timely. Dependencies
are communicated between instructions either through registers or through memory.

The anti and output dependencies communicated between instructions via registers
are eliminated using register renaming. The registers are renamed before they are issued
into the active window. Once an instruction is inside the active window, the only remaining
dependencies (communicated via registers) are true (flow) dependencies. For these flow
dependencies, Tomasulo’s algorithm [122] is used to guarantee the timely passing of values
from producers to consumers.

Ideally, the RDF machine would handle the dependencies communicated via memory
as effectively as it handles the dependencies communicated via registers. Unfortunately, the
unknown address problem [101]—also known as the memory disambiguation problem [94]—
prevents this. The physical addresses of load and store memory accesses are unknown when
the loads and stores are issued into the active window. These addresses are needed to deter-
mine the dependencies between loads and stores. Thus, unlike register dependencies, which

are dealt with before the instructions are issued into the active window via register renam-

39

ing, the dependencies between loads and stores must be dealt with after the instructions

have been issued.

4.2.1 The Unknown Address Problem

Consider the example in Figure 4.1. The instructions inside the box represent the
instructions inside the active window that are either waiting for their dependencies to be
resolved, or are waiting to be sent to functional units. A letter, for example the ‘a’ associated
with instruction I3, represents a known address; that is, an address that the RDF machine
has already computed a value for. The instruction at the top of the box, I1, is the oldest
instruction in the active window. The oldest instruction is the instruction that would have
executed first on a processor that executes instructions in program order. The instruction

at the bottom of the box, I3, represents the youngest instruction.

I1: idiv r6,rl,r2
12: store rl,(r6)
I13: load r2,a

Figure 4.1: The Unknown Address Problem Example

An RDF machine tries to execute as many instructions in parallel as possible.
Suppose all three instructions are issued into the RDF machine during the same cycle. The
integer divide (I1)—divide rl by r2 and put the result into r6—has all its operands available
and it begins executing immediately. The divide will not finish executing until many cycles
later. The store (I2)—store rl into the memory address specified by r6—uses the result of
the divide to perform an indirect store. Thus, the address to which the store is performed is
unknown until the divide finishes. The load (I3)—load the value stored in memory address
‘a’ and put the result into r2—also has all its register operands available when it is issued
into the RDF machine. It could begin executing immediately. Should the RDF machine

allow this load to begin executing immediately?

40

The RDF machine does not know whether this load is dependent on the store
because the address of the store is unknown. If the RDF machine allows the load to begin
executing immediately, the sequential semantics of the instruction stream are only preserved
if the address of the store is an address other than ‘a’. If the address of the store happens
to be the address ‘a’, a flow dependency is violated. The RDF machine could force the
load to wait until the address of the store is known. Once the address of the store has been
computed, the RDF machine can know for certain whether or not the load is dependent on
the store, and can make the proper decision as to when to execute the load. Unfortunately,

if the address of the store is not ‘a’, the load will have been unnecessarily delayed.

4.2.2 Memory Disambiguation Paradigms

Memory disambiguation is used to solve the unknown address problem. There are
many different ways of solving the unknown address problem. As a result, there are many
different memory disambiguation techniques. Memory disambiguation techniques follow one
of two basic paradigms: either the non-speculative paradigm or the speculative paradigm.
Techniques in the non-speculative paradigm do not speculate on the dependencies between

loads and stores. The techniques in the speculative paradigm do.

Non-Speculative Paradigm

Techniques in the non-speculative paradigm never distribute the result of a load
until they know for certain whether or not the load is dependent on a store in the active
window. Loads are forced to wait until the addresses of older stores have been computed.
Once the dependencies are known for certain, the load is allowed to distribute its result. The
advantage of using techniques in this paradigm is that, when a load distributes its result,
that result is guaranteed to contain the correct data. The disadvantage: some loads are
forced to wait for stores they are not dependent on, which needlessly delays the distribution

of their results.

41

Consider the example from Figure 4.1 again. A copy of this figure is also provided
in Figure 4.2. Assume that the machine implements a memory disambiguation technique
that follows the non-speculative paradigm. The load can begin executing at the same time
as the divide. Its address can be calculated and its data can be (speculatively) fetched from
the data cache. The result of the load, however, cannot be distributed until it is known for
certain whether or not the load is dependent on the store. As a result, the load will not
be able to distribute its data until after the divide finishes. Once the divide finishes, the
machine will know for certain whether or not the load is dependent on the store. If the load
is not dependent, it will distribute the data that was fetched from the data cache. If it is

dependent, it will distribute data forwarded from the store.

I1: idiv r6,rl,r2
12: store rl,(r6)
13: load 12,3

Figure 4.2: Non-Speculative Memory Disambiguation Paradigm Example

Several memory disambiguation techniques follow this paradigm. The simplest
technique forces all loads and stores to be executed in strict program order. That is, a load
or store is not allowed to be sent to a functional unit until all older loads and stores have
been sent to functional units. Instructions that are not loads or stores are still allowed to
execute out-of-order. A slightly more aggressive technique lets some of the loads execute
out-of-order. Stores are forced to execute in strict program order. Loads are executed
in-order with respect to stores, but out-of-order with respect to other loads. The most
aggressive technique that fits this paradigm is described algorithmically by Patt et al. [101].

Patt et al. [101] also describe another technique that fits this paradigm, which I will
call dependency matriz.! 1 will use this memory disambiguation technique for some of the
experiments in this dissertation. With this technique, the order in which loads and stores
begin execution is completely unconstrained. Regardless of whether or not the addresses
of all potentially aliasing stores are known, when the operands needed to calculate the
address of a load are available, the load is sent to a functional unit, its address is calculated,
and its data is obtained from the data cache. The only constraint is that a load may not

distribute its result (i. e., finish execution) until the addresses of all previous stores have

1The technique is called dependency matrix because a dependency matrix is used to keep track of which
stores have unknown addresses, and which loads are allowed to distribute their results.

42

been computed.

Speculative Paradigm

When it is uncertain whether or not a load is dependent on a store in the active
window, techniques in the speculative paradigm will predict whether or not the load is
dependent. The prediction might only provide a simple yes or no answer to the question:
Is the load dependent on any stores in the active window? If a more complex predictor
is used, the prediction might also provide the answer to the question: Which store in the
active window is the load dependent on?

If a load is predicted to be independent of any stores, it may distribute its result
before its dependencies have been fully resolved. If a load is predicted to be dependent,
the aliasing store must be identified. For the simple prediction, the load’s address and the
addresses of older stores—all of which must first be computed by functional units—are used
to identify the aliasing store. For the complex prediction, the prediction itself identifies the
aliasing store. Once the aliasing store has been identified, the store data (when available)
is forwarded to the load. The load then distributes its result. Note that for the complex
prediction, the aliasing store is identified without the aid of the store’s address or the load’s
address. As a result, the store data can be forwarded and the load result distributed even
if one or both of these addresses are unknown.

The prediction is verified when all of the load’s dependencies have been resolved.
If the prediction was correct, no further action is required. If the prediction was incorrect,
there are two cases to consider. First, the load has not yet distributed its result. Since all
the load’s dependencies are known at this point, the machine can determine exactly where
the load’s data is (or will be) stored. The machine simply locates this data and distributes
it. The only real harm done in this case is that the load’s result distribution was (possibly)
delayed longer than it needed to be. For the second case, the load has already distributed
its result. Since the prediction was incorrect, the load probably distributed incorrect data.
Instructions that are dependent on the load may have executed using this incorrect data,
producing and distributing still more incorrect data. Recovering from this mispredict may
be trickier. The machine must re-execute the load and any instructions that executed using

incorrect data.

43

The advantage of using techniques in this paradigm is that, assuming the predictions
are mostly correct, loads are rarely forced to wait for stores they are not dependent on. As a
result, the distribution of load results is almost never needlessly delayed. The disadvantage,
of course, is that the predictions are sometimes wrong. And when a prediction is wrong, a
load may distribute incorrect data.

Consider the example from Figure 4.1 again. A copy of this figure is also provided
in Figure 4.3. Assume that the machine implements a memory disambiguation technique
that follows the speculative paradigm. Also assume that the machine predicts that the
load is not dependent on the store. The load begins executing at the same time as the
divide. Its address is calculated, its data is fetched from the data cache, and its result is
distributed—all before the divide finishes executing. Later, when the divide finishes, its
result is compared to the address ‘a’. If the result is not ‘a’, no dependencies were violated,
so no further action is required. If the result is ‘a’, then the load is dependent on the store,
and a flow dependency was violated. To recover, the load must distribute the correct value
for its result. In addition, any instructions either directly dependent or indirectly dependent

on the load that executed using incorrect data must be re-executed using the correct data.

I1: idiv r6,rl,r2
12: store rl,(r6)
I3: load r2,a

Figure 4.3: Speculative Memory Disambiguation Paradigm Example

Several memory disambiguation techniques follow this paradigm. Techniques that
use the simple yes/no prediction include blind, or naive, speculation and Store Sets [22].
Techniques that use the more complex type of prediction (i. e., not only yes/no but also
which store) have been proposed by Moshovos et al. [91, 92] and by Tyson and Austin [126].
Blind speculation is the simplest of all of these techniques. When it is uncertain whether
or not a load is dependent on a store in the active window, this technique always predicts
that the load is independent. A mechanism for implementing blind speculation, called the

Address Resolution Buffer, has been proposed by Franklin and Sohi [37].

44

For experiments in this chapter and the next two, I will use two memory disam-
biguation techniques that follow the speculative paradigm: simple oracle and ComplexOr-
acle. simple oracle uses the simple yes/no predictions and ComplexQOracle uses the more
complex predictions. Both techniques obtain their predictions from oracles that always pro-
vide correct predictions. These oracles can’t be built, so neither technique can actually be
implemented in hardware. I use these two techniques because they provide upper bounds
on performance: simple oracle provides the upper bound for techniques that use the simple
predictions, and complex oracle provides the upper bound for techniques that use the more
complex predictions.

For both techniques, the order in which loads and stores begin execution is com-
pletely unconstrained. Regardless of whether or not the addresses of all potentially aliasing
stores are known, when the operands needed to calculate the address of a load are available,
the load is sent to a functional unit and its address is calculated. If the oracle predicts that
the load is independent of any stores, the load result is obtained from the data cache and
immediately distributed to dependent instructions. If the oracle predicts that the load is
dependent on a store, the store’s data is forwarded to the load. For simple oracle, the
forward does not occur until the load’s address, the store’s address, and, of course, the
store’s data are known.? For ComplexOracle, the load’s address and the store’s address are
not needed to perform the forward. For ComplexOracle, only the store’s data needs to be

known in order to perform the forward.

2For simple oracle, a load distributes its result before all its dependencies have been resolved. Each load
keeps track of who it thinks is the aliasing store. As the store addresses are calculated, they are compared
to the load’s address. Each time the load detects a new aliasing store, the store data is forwarded to the
load, and the load distributes this new data. Because of this, a load may distribute its data multiple times.
The initial distributions will all contain bogus data. The final distribution will occur just after the actual
flow dependency is detected. This distribution will provide the correct data.

45

4.2.3 Unified versus Split Stores

In the RDF model of execution, instructions are removed from the program’s dy-
namic instruction stream, converted into data flow nodes, and then issued into the active
window. Each instruction is converted into zero or more nodes. For the Alpha AXP instruc-
tion set architecture (ISA) [112], most instructions are converted into a single node. Store
instructions, however, may be converted into either one or two nodes. If the RDF machine
converts stores into single nodes, the machine implements unified stores. If the machine
converts every store into two nodes, the machine implements split stores. The machine will
implement either unified stores or split stores, but not both. There are advantages and
disadvantages for implementing unified stores, and for implementing split stores.

If unified stores are implemented, each store is converted into a single data flow
node. This node is then issued into the active window. Note that a store has one set of
source operands that are used to compute the address of the store memory access, and
another set for specifying the data to be stored at that address. The node waits in the
active window until all of the store’s source operands become available, at which point it
is sent to a functional unit. The functional unit computes the address of the store memory
access. After computing the address, the functional unit passes the address and the store
data to the load/store system. The load/store system uses the address to determine which
loads, if any, are dependent on the store. Dependent loads are forwarded the store data.

If split stores are implemented, each store is converted into two data flow nodes.
Both nodes are then issued into the active window. The first node, the address calculation
node, computes the address of the store memory access. The address calculation node is sent
to a functional unit as soon as the set of operands required for computing the address are
available. The functional unit computes the address and passes it to the load/store system.
The second node, the data delivery node, simply delivers the store data to the load/store
system. It waits for the operand(s) that contain the store data to become ready, and then
passes these operand(s) to the load/store system. The execution of an address calculation
node is completely decoupled from the execution of the corresponding data delivery node:

either node can be executed first, or, both nodes can be executed at the same time.

46

One advantage of unified stores over split stores is that they are easier to implement.
In particular, for unified stores, upkeep of the store instruction’s state is accomplished by
monitoring the actions of the store’s single data flow node. (Store instruction state keeps
track of such things as: Is the store a candidate for retirement?) For split stores, upkeep
of the store instruction’s state requires monitoring the actions of both the store’s data flow
nodes.

Another advantage of unified stores over split stores is that the forwarding of store
data to dependent loads is simpler. The load/store system uses the addresses of load and
store memory accesses to determine which loads are dependent on stores. If a load is found
to be dependent on a store, the store data is forwarded as soon as that data becomes
available. For unified stores, the address of the memory access and the store data are
always delivered to the load/store system at the same time. Thus, the store data is always
available when a dependency is detected, and the forward can always occur at the time the
dependency is detected. For split stores, the address may be delivered to the load/store
system before the store data. If the address is delivered before the data, the store data will
not be available when a dependency is detected, so the forward will need to be delayed. To
delay the forward, the RDF machine must have a mechanism to remember this dependency,
and to recall it when the store data arrives.

The disadvantage of unified stores is that the address of a store’s memory access
cannot be computed until the operand(s) that contain the store data are ready. As a result,
store address computations are delayed longer than they would be for split stores, and store
addresses remain unknown for longer period of time. The performance of loads suffers if
store addresses remain unknown for longer periods of time. For memory disambiguation
techniques that follow the non-speculative paradigm, loads do not distribute their results
until their dependencies are known. The store addresses are needed to determine these de-
pendencies. Delaying the store address calculations will therefore delay the distribution of
load results. For techniques in the speculative paradigm, loads can distribute their results
before their dependencies are fully known. Delaying the calculation of store addresses will
only increase the number of dependence predictions that are required, and delay the verifica-
tion of those predictions. If, however, the predictions are always (or almost always) correct,

delaying the store address calculations will have no (or little) impact on load performance.

47

For all the experiments in this dissertation, the machine will implement split stores.
However, in Section 4.4, 1 will explore the interaction between memory disambiguation
technique and store type (i. e., unified or split). I will look at three different disambigua-
tion techniques: dependency matrix, simple oracle, and complex oracle. Only dependency
matrix, which follows the non-speculative paradigm, is affected by store type. The other
two techniques follow the speculative paradigm. For these techniques, the dependence pre-

dictions are always correct, so their performance is not affected by store type.

4.3 The RDF Model Configuration and Assumptions

Three parameters characterize the RDF model of execution: window size, issue rate,
and instruction class latencies. The window size and issue rate will vary depending on the
experiment. All experiments will use the instruction class latencies provided in Table 4.1.
Loads require one cycle for address calculation, and, if a data cache access is necessary, one

or more cycles for the cache access.?

Instructions | Execution Latency (cycles)

FP div 16

other FP 4

INT mul 8

load 1 + cache latency

all others 1

Table 4.1: Instruction Class Latencies

The RDF model also assumes the following;:

e Register and memory renaming are performed. Renaming eliminates anti and output

dependencies.

3It’s possible to perform both the address calculation and the data cache access in a single cycle. Lynch,
Lauterbach, and Chamdani [73] described how to perform a true addition using the decoder of the cache’s
RAM array. This allows the cache access to occur before the address calculation, resulting in a single cycle
load.

48

e For machines that use the dependency matrix memory disambiguation technique,
a load must wait until the addresses of all previous stores have been computed. I
optimistically assume one cycle between when all these addresses have been computed
and when the load may distribute its result. This cycle accounts for the time the

machine requires to fully resolve the load’s dependencies.

e A store forwards its data to a dependent load if and only if the store and the load
are both resident in the active window. I assume the machine requires one cycle to
bypass the store data to the dependent load. That is, for machines that use either
the dependency matrix or the simple oracle memory disambiguation technique, there
is one cycle between when the load’s address, the store’s address, and the store’s data
are known; and when the load may distribute its result. For machines that use the
complex oracle technique, there is one cycle between when the store’s data is known

and when the load may distribute its result.

e When a serializing instruction is encountered, the simulated machine must stop issue,
wait for all instructions currently in the active window to complete, and then execute
the serializing instruction. Issue resumes once the serializing instruction completes.
(A serializing instruction is an instruction that must be executed in order with respect
to the other instructions in the program’s dynamic instruction stream. A trap is an

example of a serializing instruction.)

4.4 Experimental Results

This section evaluates the performance of the RDF model for many different ma-
chine configurations, where each configuration specifies the window size, issue rate, and
memory disambiguation technique. All configurations modeled in this section have a per-
fect (100 percent hit rate) instruction cache, a perfect (omniscient) branch predictor, a
perfect execution core (i. e., an execution core with an unbounded numbers of functional
units, each of which can perform every desired operation), and a perfect single cycle data

cache.

49

Each benchmark was simulated using a variety of machine configurations. The re-
sults for all the machines that used the most aggressive memory disambiguation technique,
complex oracle, are provided in Figures 4.4-4.6. In each graph, the performance, in In-
structions Per Cycle (IPC), is listed on the vertical axis. The window size, in instructions,
is listed on the horizontal axis. A window of infinite size is indicated by an infinity (co).
There is a single line for each issue rate. The line corresponding to an infinite issue rate is
indicated by an infinity (co) in the legend. An issue rate of X indicates that the machine can
issue X instructions per cycle, regardless of their instruction class, so long as the window is
not full and no serializing instructions are encountered.

In some cases, the performance of the machines with infinite issue rates exceeded
64 IPC. For these cases, the performance (rounded to the nearest integer) is listed at the
top of the graph. For example, for the go benchmark (see Figure 4.5), the performances of
the machines with infinite issue rates exceeded 64 IPC at window sizes of 8192, 16384, and
infinity. The performances of the machines at these three window sizes are 64 IPC, 70 IPC,
and 90 IPC, respectively.

Only machines with finite window sizes can be built. For a machine with a finite
window size and an infinite issue rate, issue stalls when the window is full. This limits the
maximum number of instructions that can be issued each cycle to the size of the window.
Thus, these machines can be built if it becomes possible to issue a window’s worth of
instructions in one cycle. I simulated these machines because (a) I believe that one day they
can be built, and (b) I wanted to provide upper bounds on the performances of machines
that exploit all the ILP within fixed sized windows. The machines with infinite window
sizes and finite issue rates were simulated to provide upper bounds on the performances of
machines that exploit ILP at fixed issue rates. The machine with an infinite window size
and an infinite issue rate is a UDF machine. The performance of this machine indicates the

total amount of instruction level parallelism in the benchmark.

50

Figure 4.4 shows the performance averaged over all the benchmarks, both SPEC
and Non-SPEC. At finite window sizes, the line corresponding to the infinite issue rate hugs
the line corresponding to the issue rate of 64. Even at an infinite window size, these two
lines are fairly close: only 3 IPC separates them. This indicates that an issue rate of 64 is
sufficient to exploit all the ILP. Note that if the issue rate is high enough, the machine’s
performance is strongly dependent on the size of its window. Also note that at a given
issue rate, the difference in performance between a machine with a window size of 16384
and a machine with an infinite window size is small. This indicates that machines with
small windows (relative to the number of instructions in a program’s dynamic instruction

stream) can exploit almost all the available ILP.

64
- [ssue Rate = 00
56 —=— |ssue Rate = 64
o 48] —+—Issue Rate = 32
g ---4-- [ssue Rate = 16
O 40 -x- Issue Rate = 8
o
o
%]
c
S
3]
>
1%}
£
O T T T T T T T H
128 256 512 1024 2048 4096 8192 16384 00
Window Size

Figure 4.4: Instruction Level Parallelism—Harmonic Average

Overall, these results indicate that there is a significant amount of ILP. This finding
is consistent with that of previous studies [7, 14, 128]. At an issue rate of 8, the performance
approaches 8 IPC as the window size is increased. For this issue rate, when the window
size is greater than or equal to 256 instructions, the IPC is greater than 7. It is likely that
machines that can issue 8 instructions per cycle will be built in the near future. At issue
rates of 16 and 32, the performance approaches 14 and 24 IPC, respectively. This is probably
enough parallelism to justify building a machine that can issue 16 or 32 instructions per

cycle. Of course, certain architectural and implementation problems must first be solved

51

in order to fully justify the building of such machines. For example, a solution to the
instruction cache bottleneck will be needed. At an issue rate of 64, the performance never
exceeds 30 TPC. Future programmers and compilers may produce code that exposes more
parallelism, raising this upper bound. Additionally, future workloads may contain more
applications with large amounts of parallelism. However, unless either or these occurs,
there is probably not enough parallelism to justify building a (general purpose) processor
that can issue 64 instructions per cycle. Finally, the performance of the UDF model is 33
IPC. This is the average total amount of ILP for the benchmarks tested.

Figure 4.5 shows the results for the SPEC benchmarks and Figure 4.6 shows the
results for the Non-SPEC benchmarks. The pgp and plot benchmarks contain very little
ILP. The chess, go, ijpeg, m88k, and perl benchmarks, on the other hand, all contain large
amounts of ILP. For the go, ijpeg, and perl benchmarks, the machines with small window
sizes (i. e., window sizes no bigger than 16384 instructions) can exploit significant amounts of
this ILP, perhaps even enough to justify building a machine that can issue 64 instructions
per cycle. For the chess and m88k benchmarks, the machines with small window sizes
cannot exploit significant amounts of this ILP. These benchmarks have large amounts of
medium-grain (procedure level or subprogram level) parallelism that cannot be exploited
unless the machine has a large window.

Serializing instructions can significantly limit the amount of ILP. When a serializing
instruction is encountered, the machine must stop issue, wait for all instructions currently in
the active window to complete, and then execute the serializing instruction. Issue resumes
once the serializing instruction completes. As the window size and issue rate increases,
the number of cycles that the machine stalls issue due to serializing instructions becomes
a larger fraction of the total execution time of the program. For the plot benchmark, at
an issue rate of 64 and a window size of 16384, instructions are not issued in 78% of the
cycles due to serializing instructions. This severely limits the performance of machines when
executing the plot benchmark. The remaining benchmarks are not significantly affected by
issue stalls due to serializing instructions. For the gs benchmark, at an issue rate of 64 and
a window size of 16384, instructions are not issued in 18% of the cycles due to serializing
instructions. For the vortex benchmark, the fraction is only 13%. For all the remaining

benchmarks, the fraction is less than 10%.

52

Instructions Per Cycle

Instructions Per

cmp I

Cycle
58 8 %

64 64
-+ [ssue Rate = 00 -+ [ssue Rate = 00
56 —=— |ssue Rate = 64 56 —=— |ssue Rate = 64
—+-Issue Rate = 32 —+-Issue Rate = 32
48 - IsUe Rate = 16 3% - IsUe Rate = 16
| -x--Issue Rate = 8 O 40 -x--Issue Rate = 8
o
a
324 @ 32
9o
24- E
17}
16 <
8,
0 T T T T T T T 113 0 T T T T T T T 113
128 256 512 1024 2048 4096 8192 16384 o] 128 256 512 1024 2048 4096 8192 16384 o]
Window Size Window Size
gec o4 m88k 68
-+ Issue Rate = 00 - [ssue Rate = 00 '
—=— |ssue Rate = 64 56 —=— |ssue Rate = 64
—+—|ssue Rate = 32 © 48 —+-|ssue Rate = 32 i
--a-- [ssue Rate = 16 =4 1 - Issue Rate = 16
-=--Issue Rate = 8 (@) -x--Issue Rate = 8 !
o 40 !
a
32 2
=]
24 g
7]
16 <
[A PR IR S PR e m e m PR e mmmmm e
0 T r ; ; ; 7 T s 0 ; ; ; ; ; ; i 13
128 256 512 1024 2048 4096 8192 16384 &Y 128 256 512 1024 2048 4096 8192 16384 oY
Window Size Window Size
61 go 64 70 % o per| 201

cle

-+ |ssue Rate = 00

—=— |ssue Rate = 64 S

—+-TIssue Rate = 32

-+ |ssue Rate = 00
56 —=— |ssue Rate = 64
—+-|ssue Rate = 32

Instructions Per Cy:

Instructions Per Cycle

* - IssueRate = 16 %;‘8’ -+ IssueRate = 16
404 -x--|ssue Rate = 8 g 404 -x--Issue Rate =8
o
27 _ el]
- o
24 ? 24
B
£

< — P PR e Xemm oo oo PR Kmmmmmme o
0 T T T T T T T 113 0 T T T T v T T i
128 256 512 1024 2048 4096 8192 16384 o] 128 256 512 1024 2048 4096 8192 16384 (o]
Window Size Window Size
64 11peg 7 104 64 vortex
-« |ssue Rate = 00 P —+|ssue Rate = 00
56+ —=—Issue Rate = 64 7 56+ —=— |ssue Rate = 64
—+—Issue Rate = 32 —+~Issue Rate = 32
481 -+ IssUe Rate = 16 ! 3% - Issle Rate = 16
- Issue Rate = 8 O 40l -x--Issue Rate = 8
40 o 40
o
& 4 2
e - S
24 g
z
164 T ae T PR P c
8rT e VR R P DI PR PR
0 T T T T T T T 43 0 T T T T T T T 143
128 256 512 1024 2048 4096 8192 16384 o] 128 256 512 1024 2048 4096 8192 16384 &9

Window Size Window Size

Figure 4.5: Instruction Level Parallelism—SPEC Benchmarks

53

o chess ' 241
-+ |ssue Rate = 00 ,'
56 —=— |ssue Rate = 64 !
o 48 —+-Issue Rate = 32 i
=3 - Issue Rate = 16 {
O 404 -=--Issue Rate = 8 i
o}
a
(%]
=
=
3]
E
7]
=
0 ; ; ; \ , . ; i
128 256 512 1024 2048 4096 8192 16384 &9
Window Size
o ar of f
-+ |ssue Rate = 00
56 —=— |ssue Rate = 64
48] —+-Issue Rate = 32
=3 - |ssue Rate = 16
O 404 -=--Issue Rate = 8
o}
a
£ 32
S
S 241
B
£ 16
8,
0 T r ; ; ; 7 T s
128 256 512 1024 2048 4096 8192 16384 00
Window Size
64 as
-+ [ssue Rate = 00
56 —=— |ssue Rate = 64
—+—Issue Rate = 32
3% - IsUe Rate = 16
O 4o/ -x--|ssue Rate = 8
o)
a
2 32
9
S 24
17}
£ 16
8,
0 ; ; ; ; T T T 18
128 256 512 1024 2048 4096 8192 16384
Window Size
-+ |ssue Rate = 00
56 —=— [ssue Rate = 64
—+—|ssue Rate = 32
3% - IssUe Rate = 16
O 4o/ -x--|ssue Rate = 8
o)
a
2 32
9o
S 24
17}
£ 16
0 ; ; ; ; T T ; 18
128 256 512 1024 2048 4096 8192 16384

Window Size

0]

plot

64
-+ |ssue Rate = 00
56 —=—[ssue Rate = 64
—+—|ssue Rate = 32
3% - IsUe Rate = 16
O 4o -x--Issue Rate = 8
o
o
%]
c
9o
©
E
17}
E
0 ; ; ; ; ; . ; U
128 256 512 1024 2048 4096 8192 16384 Q
Window Size
o python
-+ |ssue Rate = 00
56 —=— |ssue Rate = 64
48] —+-Issue Rate = 32
=3 - |ssue Rate = 16
O 404 -=--Issue Rate = 8
o}
o
@ 324
S
S 241
B
£ 16
8,
"
128 256 512 1024 2048 4096 8192 16384 = ©0
Window Size
64 S
-+ [ssue Rate = 00
561 —=—|ssue Rate = 64
—+—Issue Rate = 32
3% - IsUe Rate = 16
O 4o/ -x--|ssue Rate = 8
o
o
2 32
9
S 24
17}
£ 16
8,
0 ; ; ; ; ; . ; U
128 256 512 1024 2048 4096 8192 16384
Window Size
& tex
-+ |ssue Rate = 00
561 —=—[ssue Rate = 64
—+—|ssue Rate = 32
3% - IssUe Rate = 16
O 4o/ -x--|ssue Rate = 8
o
o
@ 324
9o
S 24
17}
£ 16
8,
0 1%

1024 2048 4096 8192 16384
Window Size

256 512

Figure 4.6: Instruction Level Parallelism—Non-SPEC Benchmarks

54

Figure 4.7 shows the results for all memory disambiguation techniques. This figure
is for the average. Results for the individual benchmarks are provided in Figures A.1-
A.16 of Appendix A. Each figure contains five graphs, with one graph for each issue rate.
In each graph the performance is listed on the vertical axis. The window size is listed
on the horizontal axis. There is one line for the complex oracle memory disambiguation
technique, one line for the simple oracle memory disambiguation technique, and two lines for
the dependency matrix memory disambiguation technique. The complex oracle and simple
oracle memory disambiguation techniques are not affected by store type (i. e., unified or
split). All machines that use these techniques implement split stores. The dependency
matrix memory disambiguation technique is affected by store type. Consequently, there
are two lines for this technique. The line labeled “Matrix (Split Stores)” is for machines
that use dependency matrix and implement split stores. The line labeled “Matrix (Unified
Stores)” is for machines that use dependency matrix and implement unified stores.

In some cases, the performances of the machines with infinite issue rates that used
complex oracle and simple oracle exceeded 64 TPC. Whenever this occurred, the perfor-
mances (rounded to the nearest integer) of the machine using complex oracle and the
machine using simple oracle are listed at the top of the graph. The performance of the
machine using complex oracle is always listed above the performance of the machine using
simple oracle. For example, for the go benchmark (see Figure A.3), the performances of
the machines with infinite issue rates exceeded 64 IPC at window sizes of 8192, 16384, and
infinity. The performances of the machines that used complex oracle at these three window
sizes are 64 IPC, 70 IPC, and 90 IPC, respectively. The performances of the machines that
used simple oracle are 53 IPC, 60 IPC, and 81 IPC.

Figure 4.7 shows the performance averaged over all the benchmarks. Machines that
used the memory disambiguation techniques in the speculative paradigm (i. e., complex
oracle and simple oracle) performed significantly better than the machines that used the
memory disambiguation technique in the non-speculative paradigm (i. e., dependency ma-
trix) for issue rates of 16 and above. These machines perform better because loads are never
forced to wait for the addresses of older stores to be computed. For the UDF machine that
uses dependency matrix and implements split stores, 37% of the loads delay their result
distributions because there are unknown store addresses. The performance of this machine

is only 11 TPC. Note that this is the upper bound on the performance of any machine that

55

|ssue Rate = 32

~+-Complex Oracle

—=— Simple Oracle

-+ Matrix (Split Stores)
---Matrix (Unified Stores)

1024 2048 4096 8192 16384
Window Size

512

Issue Rate = 64

0

- Complex Oracle

—=— Simple Oracle

- Matrix (Split Stores)
-+--Matrix (Unified Stores)

o Issue Rate=8 o
~+-Complex Oracle
564 —=— SimpleOracle 564
-+ Matrix (Split Stores)
2 484 -+--Matrix (Unified Stores) ¢ 48+
>
O 40 O 40
o} 40 o} 40
o o
2 32 @ 324
S S
S 241 S 241
B B
£ 16 £ 16
8-
"
128 256 512 1024 2048 4096 8192 16384 = ©0 128
Window Size
o Issue Rate = 16 o
- Complex Oracle
564 —= SimpleOracle 564
- Matrix (Split Stores)
© 48- -+ Matrix (Unified Stores) © 48
9 9
5 407 5 407
o o
@ 324 @ 324
9 9
17} 17}
= =
; ; ; ; ; . ; u
128 256 512 1024 2048 4096 8192 16384 o] 128
Window Size

Issue Rate = 00

1024 2048 4096 8192 16384
Window Size

-+ Complex Oracle

—=— Simple Oracle

- Matrix (Split Stores)
-+--Matrix (Unified Stores)

Figure 4.7: Memory Disambiguation Techniques—Harmonic Average

512
Window Size

56

1024 2048 4096 8192 16384 co

uses dependency matrix and that implements split stores. For the UDF machine that uses
dependency matrix and implements unified stores, 62% of the loads delay their result dis-
tributions. The performance of this machine is only 3.7 IPC. This is the upper bound on
the performance of any machine that uses dependency matrix and that implements unified
stores.

Machines that used dependency matrix and that implemented split stores performed
significantly better than the machines that used dependency matrix and that implemented
unified stores. For an issue rate of 8 at any given window size, the performances of all
machines—except for the machine that used dependency matrix and that implemented uni-
fied stores—were almost identical. Machines that implement unified stores perform poorly
because the address of a store’s memory access cannot be computed until the operand(s)
that contain the store data are ready. As a result, store addresses remain unknown for
longer period of times, and, for memory disambiguation techniques such as dependency
matrix that follow the non-speculative paradigm, load result distributions are delayed more
frequently. For example, for the UDF machines that use dependency matrix, 62% of loads
delay their result distributions if unified stores are implemented, whereas only 37% delay
their distributions if split stores are implemented.

For both complex oracle and simple oracle, a load that is independent of any stores
in the active window obtains its result from the data cache and then immediately distributes
this result to its dependent instructions. A load that is dependent on a store will have its
data forwarded from the store. After the data has been bypassed to the load, the load
immediately distributes its result. What distinguishes these two techniques from each other
is when the store forwards its data to the dependent load. For complex oracle, the store
forwards its data to the load as soon as the data is known. For simple oracle, the store
forwards its data to the load only after the load’s address, the store’s address, and the
store’s data are known. If the load’s address and the store’s address are known before (or
at the same time as) the store’s data, both techniques forward the store data to the load at

the same time, so there is no advantage to using complex oracle over simple oracle.

o7

In Figure 4.7, machines that used simple oracle performed almost as well as the
machines that used complex oracle. For the machine that used simple oracle and had an
issue rate of 64 and a window size of 16384, only 26% of the (dynamic) load instructions
would have distributed their results earlier if the machine had used complex oracle instead
of simple oracle. That is, only 26% of loads were dependent on stores in the active window
and had their bypasses delayed because the addresses of the load and/or store involved in
the bypass were unknown. For the perl (Figure A.7) and groff (Figure A.10) benchmarks,
machines that used simple oracle performed worse than the machines that used complex
oracle. For the perl benchmark, for the machine that used simple oracle and had an issue
rate of 64 and a window size of 16384, 34% of loads would have distributed their results
earlier if the machine had used complex oracle instead of simple oracle. For the groff
benchmark, for the machine with the same configuration, this fraction is 33%.

This fraction does not necessarily correlate to the speedup that complex oracle
provides over simple oracle. Even if the fraction is small, the few loads that are delayed by a
machine using simple oracle may be on the critical paths of dependency chains. Eliminating
these stalls can increase the total amount of ILP (see the perl benchmark in Figure A.7
and the chess benchmark in Figure A.9), and the amount of ILP that can be exploited by
a machine with a fixed sized window. For the go (Figure A.3) and python (Figure A.14)
benchmarks, machines that used simple oracle performed worse than the machines that
used complex oracle. For the go benchmark, for the machine that used simple oracle and
had an issue rate of 64 and a window size of 16384, this fraction was only 21%, yet the
speedup of the machine that used complex oracle over the machine that used simple oracle
was 17%. For the python benchmark, for the machine that used simple oracle and had an
issue rate of 64 and a window size of 4096, this fraction was 24% (a little below average),

yet the speedup was 18% (well above average).

58

4.5 Summary

This chapter has shown that, if memory dependencies are handled aggressively,
there is a significant amount of parallelism available in a single instruction stream. If
memory dependencies are handled aggressively, via memory disambiguation techniques in
the speculative paradigm, there is enough parallelism to sustain an execution rate of 33
IPC on a UDF machine. If memory dependencies are handled less aggressively, via memory
disambiguation techniques in the non-speculative paradigm, there is only enough parallelism
to sustain an execution rate of 11 IPC on a UDF machine. This chapter also measured the
amount of parallelism that can be exploited by RDF machines with various configurations.
For a machine with an issue rate of 16 and the simple oracle memory disambiguation
technique, the average performance approaches 14.4 IPC as the window size approaches
infinity. At a window size of 1024, the average performance is 12.4 TPC.

It may be possible to improve the performance of both the UDF and the RDF ma-
chines. Serializing instructions can significantly limit the amount of ILP. It might be possible
to execute serializing instructions speculatively, but to make it “appear” as though they are
executed non-speculatively. This might reduce the impact of serializing instructions. Fu-
ture compilers may also transform programs to increase ILP. In addition, techniques such
as memoization [10,106] and value prediction [71] may be used to eliminate some of the

dependencies in a program that limit the amount of ILP.

59

CHAPTER 5

Performance Bottlenecks

The previous chapter showed that the potential performance of an RDF machine
with an issue rate of 16, a window size of 1024, and the simple oracle memory disambiguation
technique is 12.4 IPC. This performance is far greater than that of any existing processors.
Unfortunately, this ideal machine can’t be built, because it has a perfect (100 percent hit
rate) instruction cache, a perfect (omniscient) branch predictor, a perfect execution core
(i. e., an execution core with an unbounded numbers of functional units, each of which can
perform every desired operation), and a perfect single cycle data cache.

Chapter 6 will present my preliminary investigation of out-of-order fetch/decode/is-
sue. My preliminary investigation uses the RDF machine described in the preceding para-
graph. However, to make this machine more realistic, I gave it a real instruction cache,
a real branch predictor, a real execution core, and a real data cache. The non-ideality of
each of these four components bottlenecks the performance of this real machine, reducing
its performance from 12.4 TPC to 3.0 IPC.

This chapter examines the performance bottlenecks that are created by having
these non-ideal components. It looks at four bottlenecks: one bottleneck for each of the
four non-ideal components in the RDF machine used for our preliminary investigation of
out-of-order fetch/decode/issue. It shows how severe each of the four bottlenecks is, and
how these bottlenecks prevent the processor from achieving its potential performance.

There are two reasons why it is important to look at performance bottlenecks.
First, by examining bottlenecks, researchers can determine which bottlenecks are severe
enough to warrant doing something about them. For example, in this chapter, I will show

that instruction cache misses create one of the severe bottlenecks for a sixteen wide issue

60

processor, and therefore this bottleneck must be dealt with. Second, given that all processor
design teams have limited manpower, prudent investment of that manpower is essential for
the processor to meet its performance goals and to ship on time. Processor architects and
implementors can examine the processor’s bottlenecks to pinpoint the low-hanging fruit;
that is, areas of investment where large performance gains are likely with only a minimum
expenditure of manpower.

This chapter is organized into four sections. Section 5.1 describes my methodology
for studying performance bottlenecks. Section 5.2 describes my assumptions about data
cache and instruction cache access times. Section 5.3 looks at each of the four bottlenecks.

Section 5.4 provides a summary of the chapter.

5.1 Methodology

To study performance bottlenecks, I will use two machines: an ideal machine and
a real machine. Both machines are RDF machines that have an issue rate of 16, a window
size of 1024, the instruction class latencies specified in Table 4.1, and the simple oracle
memory disambiguation technique. The ideal machine has a perfect instruction cache, a
perfect branch predictor, a perfect execution core, and a perfect data cache. For the real
machine, all four components (i. e., instruction cache, branch predictor, execution core, and
data cache) are real.

Whenever a real component is used instead of a perfect component, a performance
bottleneck is created. I will look at four bottlenecks—one bottleneck for each of the four
components. The first bottleneck, created when a real instruction cache is used, is due to
instruction cache misses. The second bottleneck, created when a real branch predictor is
used, is due to branch mispredicts. The third bottleneck, created when a real execution
core is used, is due to a lack of execution bandwidth. The fourth bottleneck, created when
a real data cache is used, is due to data cache misses. For each of these four bottlenecks, I
will assess its severity using two different approaches.

In the first approach, the severity of a bottleneck is assessed by adding that bot-
tleneck to the ideal machine. When the bottleneck is added, the performance of the ideal
machine drops according to the bottleneck’s severity. If the bottleneck is the bottleneck that

results from having a real ‘X’; where ‘X’ is either an instruction cache, branch predictor,

61

execution core, or data cache; the bottleneck is added by trading the perfect ‘X’ used by
the ideal machine for a real ‘X’. By comparing the performance of the resulting machine,
which has a real ‘X’, to the performance of the ideal machine, which has a perfect ‘X’, I
can assess the severity of the bottleneck that results from having a real ‘X’.

This first approach is optimistic: it assumes that when the machine is built, there
will be viable solutions for all bottlenecks except for the bottleneck in question. When
determining a bottleneck’s severity, this approach does not account for the interactions
between that bottleneck and other bottlenecks. For example, the bottleneck due to a lack of
execution bandwidth interacts with the bottleneck due to branch mispredicts. In machines
with real execution cores, the execution of some instructions is delayed due to contention
among instructions for a limited number of functional units. If a delayed instruction feeds
a dependency chain that resolves a branch, the resolution of a mispredicted branch may be
delayed, worsening the bottleneck due to branch mispredicts. This first approach fails to
account for the interaction between the bottleneck due to a lack of execution bandwidth
and the bottleneck due to branch mispredicts.

In the second approach, the severity of a bottleneck is assessed by removing that
bottleneck from the real machine. When the bottleneck is removed, the performance of
the real machine increases according to the bottleneck’s severity. If the bottleneck is the
bottleneck that results from having a real ‘X’; where ‘X’ is either an instruction cache,
branch predictor, execution core, or data cache; the bottleneck is removed by trading the
real ‘X’ used by the real machine for a perfect ‘X’. By comparing the performance of the
resulting machine, which has a perfect ‘X’, to the performance of the real machine, which
has a real ‘X, I can assess the severity of the bottleneck that results from having a real ‘X’.

This second approach is pessimistic: it assumes that when the machine is built, there
will not be viable solutions for bottlenecks other than the bottleneck in question. In this
approach, the severity of a bottleneck is determined by assuming that the machine will have
all of the other bottlenecks. Thus, unlike the first approach, this approach does account for
the interactions between the bottleneck in question and other bottlenecks. Unfortunately,
the performance advantage that results from removing a bottleneck is sometimes masked by
interactions between that bottleneck and the other bottlenecks. For example, the bottleneck
due to instruction cache misses interacts with the bottleneck due to a lack of execution

bandwidth. In machines with real instruction caches, instruction cache misses reduce the

62

rate at which instructions are supplied to the execution core; that is, they reduce the issue
bandwidth. Execution bandwidth only becomes a bottleneck if it is less than the issue
bandwidth. A machine that suffers from a large number of instruction cache misses has
low issue bandwidth, and thus requires little execution bandwidth. Put another way, if
the bottleneck due to instruction cache misses is the dominant bottleneck, removing the
bottleneck due to a lack of execution bandwidth will provide little (or no) performance
advantage.

The first approach assumes that constant progress is being made on reducing all
bottlenecks. It identifies the bottleneck that will be the most severe in future CPU designs if
significant progress is not made on reducing that bottleneck. The second approach is useful
for pinpointing the low-hanging fruit. It can be used to assess the severity of the bottlenecks
of an existing CPU design. ! The component associated with the most severe bottleneck is
the single component, that, if improved, will yield the largest increase in performance. The
first approach is not as useful for pinpointing the low-hanging fruit, because an existing
CPU design will have many bottlenecks that interact with each other, yet the approach
does not account for these interactions. Hence, eliminating the bottleneck that the first
approach identifies as the most severe may provide little (or no) performance advantage for
an existing CPU design.

The four components used by the real machine are identical to those of the RDF
machine that will be used in the next chapter for my preliminary investigation of out-of-
order fetch/decode/issue. For the second approach, where the severity of a bottleneck is
assessed by removing that bottleneck from the real machine, the bottleneck is removed by
trading the real component for a perfect component. In the experiments in this chapter, I
will also show what happens if the bottleneck is reduced rather than removed. Additionally,
I show what happens if the bottleneck is made more severe. The bottleneck will be reduced
(or made more severe) by trading the real component for another real component that is
better (or worse). For example, to reduce the bottleneck due to branch mispredicts, I will
trade the real branch predictor for another real branch predictor that has a lower mispredict
rate. Each of the four default components (i. e., the components that are identical to those

of the RDF machine used in the next chapter) is described in the paragraphs below.

!Either of the two approaches can be used to assess the severity of bottlenecks other than the four
presented in this chapter. For example, they both can be used to assess the severity of the bottleneck due
to instruction cache translation lookaside buffer (TLB) misses.

63

The default instruction cache is non-blocking, direct mapped, 16k bytes, with a
64 byte line size. The cache access requires one cycle. In the event of a cache miss, an
additional 10 cycles are required to access the next level of cache and/or memory. In the
experiments, I will vary the size, access time, and miss penalty of this default instruction
cache.

The default branch predictor actually contains three separate predictors: one pre-
dictor for conditional branches, one predictor for indirect (or computed) branches, and one
predictor for subroutine returns. The conditional branch predictor is a gshare [81] scheme
which exclusive-ORs a 16-bit global history with the fetch address to select the appropriate
pattern history table entry. Indirect (or computed) branch targets are predicted using the
“tagless” variety of the pattern based predictor proposed by Chang, Hao, and Patt [19]. A
9-bit global history is used to select an entry in a table of indirect branch target addresses.
To improve prediction accuracy, I added a single “hysteresis” bit to each entry in the table.
The bit controls the replacement of the branch target address stored in that entry. 2 Sub-
routine returns are predicted using a 64 entry Return Address Stack (RAS). To model the
real branch predictor, as the branches are encountered in the dynamic instruction stream,
a prediction is made. This prediction is compared to the real outcome of the branch. If a
prediction is incorrect, issue is stalled until the branch is resolved and instructions from the
correct path are available for issuing. I assume six cycles between when a branch is resolved
and when instructions from the correct path are available. Since one cycle is required to
execute the branch, the minimum branch mispredict penalty is seven cycles. This mispre-
dict penalty is identical to that of the Compaq Alpha 21264 [43]. In the experiments, I will
vary the type of conditional branch predictor and the type of indirect branch predictor. I
will also vary the sizes of the conditional branch predictor, indirect branch predictor, and
RAS (subroutine return predictor); and the minimum branch mispredict penalty. I did not
investigate the problem of Branch Target Buffer (BTB) misses or any possible solutions. I
modeled a perfect (100 percent hit rate) BTB under the assumption that there will be a
suitable solution.

The default execution core consists of sixteen fully pipelined functional units, where

Whenever an entry provides the correct prediction for a branch, its hysteresis bit is set to 1. Whenever
it provides an incorrect prediction, its hysteresis bit is set to 0. The branch target address stored in an entry
can only be replaced if the entry provides an incorrect prediction and the hysteresis bit was 0 at the time
the prediction was made.

64

each functional unit is capable of performing every desired operation. Each cycle, the oldest
sixteen ready instructions are scheduled for execution. (This execution core is modeled
by setting the dispatch rate to sixteen. The dispatch rate is the maximum number of
instructions that can be scheduled for execution on functional units in a single cycle.) In
the experiments, I will vary the number of functional units in the core. The number of
instructions that can be scheduled for execution each cycle was always set equal to the
number of functional units in the core.

The default data cache is non-blocking, direct mapped, 16k bytes, with a 64 byte
line size. Loads require one cycle for address calculation and one cycle for cache access. In
the event of a cache miss, loads require an additional 10 cycles for accessing the next level
of cache and/or memory. (The load latency on a cache hit is 2 cycles. The load latency on
a cache miss is 12 cycles.) In the experiments, I will vary the size, access time, and miss
penalty of this default data cache. The load latency will be scaled according to the access

time and miss penalty of the data cache.

5.2 Cache Access Time

One obvious way to reduce the severity of bottlenecks that result from cache misses
(either instruction or data) is to build bigger caches. Bigger caches typically experience
fewer misses. Unfortunately, bigger caches also take up more chip area, use more power,
and have longer access times. To meet a CPU’s power and cycle time requirements, it
may be necessary to pipeline the access of a large cache over several cycles. There are
some negative consequences to pipelining the instruction and data caches—consequences
which may eliminate the benefit of a higher cache hit rate. Pipelining the instruction cache
increases the depth of the front-end of the processor pipeline (i. e., the number of pipeline
stages required for instruction fetch, decode, and issue), which increases the number of cycles
that are required to recover from a mispredicted branch, and hence worsens the bottleneck
due to branch mispredicts. Pipelining the data cache increases the latency of loads, which
delays the execution of instructions that are dependent on loads. Loads feed dependency
chains that resolve branches. Pipelining the data cache increases the time required to resolve
a mispredicted branch, which worsens the bottleneck due to branch mispredicts.

The access time of a cache cannot be determined without knowledge of the pro-

65

cess technology that it will be implemented in, and the circuit techniques that it will be
implemented with. Both the process technology and the circuit techniques are continually
evolving. The number of pipeline stages required to access the cache cannot be determined
unless the cycle time of the machine is known. The choice of cycle time is based, in part,
on the access time of the cache. (Cache size and cycle time should be selected together in
order to maximize processor performance.) I expect that a machine with an issue rate of
16 and a window size of 1024 can be built within the next 5 to 10 years [99]. Note that
this machine has the same issue rate and window size as my ideal machine and my real
machine. Over the past 10 years, the maximum size of a cache that can be accessed in a
single cycle has not significantly changed. Rather than trying to forecast what will happen
to process technology, circuit techniques, and cycle time, I will assume that the maximum
size of a cache that can be accessed in a single cycle will not change between now and when
this machine is built. I will assume that a single cycle direct-mapped cache is limited to
16k bytes. (My default instruction and data caches are single cycle direct-mapped 16k byte
caches.)

McFarland [77] and others [11,76,105] have pointed out an ominous trend: with
each successive generation of process technology, gate delay shrinks a lot, but wire delay
shrinks only a little. That is, gate delay is scaling quicker than wire delay. This trend has
an important implication: the portion of a cache’s access time that is due to wire delay
increases with each new generation of process technology, because a significant portion of a
cache’s access time is due to wire delay, which does not scale as quickly as gate delay. Note
that a cache’s memory cells are arranged in a two-dimensional array. One wire of length vk
runs through each row of the array, and one wire of length v/k runs through each column.
The number of cells in the array is proportional to & (i. e., VE x \/E) A cell is accessed via
the wire that runs through its row and the wire that runs through its column. In the limit,
where all of a cache’s access time is due to wire delay, the access time of this cache with &

memory cells is proportional to v/k.

66

Throughout this dissertation, I will make two different assumptions about cache
access times: an optimistic assumption and a pessimistic assumption. When appropriate,
I will present experimental results using both assumptions. The optimistic assumption is
that the access time of a cache does not increase as its size increases. The access time of all
caches will be assumed to be 1 cycle. The pessimistic assumption is that all of the cache
access time is due to wire delay, and, as a result, the access time is proportional to the
square root of the size of the cache. I will assume that the access time of a 16k byte cache
is 1 cycle, a 64k byte cache is 2 cycles, a 256k byte cache is 4 cycles, and a 1M byte cache

is 8 cycles.

5.3 The Bottlenecks

This section looks at each of the four bottlenecks. Subsection 5.3.1 provides the mea-
surement and analysis of the bottleneck due to instruction cache misses. Subsection 5.3.2
provides the measurement and analysis of the bottleneck due to branch mispredicts. Subsec-
tion 5.3.3 provides the measurement and analysis of the bottleneck due to a lack of execution
bandwidth. Subsection 5.3.4 provides the measurement and analysis of the bottleneck due

to data cache misses.

5.3.1 The Instruction Cache

In the RDF model of execution, instructions from the program’s dynamic instruction
stream are issued into the active window. The dynamic instruction stream originates from
a perfect (100 percent hit rate) instruction cache. This perfect instruction cache can’t be
built, so real CPU designs must settle for instruction caches that are less than perfect. That
is, they must settle for (real) instruction caches that occasionally experience misses.

Instruction cache misses reduce the supply of issue bandwidth. During an in-
struction cache miss, the front-end of the processor pipeline stalls while it waits for the
instructions to be supplied by the next level of the cache/memory hierarchy. This results

in cycles in which no instructions are issued into the active window.

67

To determine the severity of this bottleneck, I simulated several different machines.
Figure 5.1 shows their performances averaged over all the benchmarks. There are five
lines. One line shows the performance of the ideal machine with a perfect (100 percent
hit rate) instruction cache. This machine provides an upper bound on the performances of
machines with real instruction caches. The remaining lines plot the performances of ideal
machines that have been augmented with real instruction caches. Each line represents a set
of machines that all have the same penalty for an instruction cache miss. The miss penalty
is a function of the cycle time and cache/memory hierarchy. It varies from implementation
to implementation, so I have varied it from 6 to 32 cycles. Each point in a line plots the
performance of an ideal machine with an instruction cache of the size listed on the horizontal
axis. The instruction cache size was varied from 16k bytes to 1M byte. The instruction
cache access required one cycle regardless of its size. That is, its access time was not scaled

with its size.

6J| _

--- Perfect Cache

Instructions Per Cycle
(o]

4 e --a-- 6 Cycle Miss Penalty
1 T —+-10 Cycle Miss Penalty
257 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K M
Cache Size (bytes)

Figure 5.1: Ideal Machine
with Varied Instruction Cache Size—Harmonic Average

68

The machines with larger instruction caches experience fewer instruction cache
misses, and therefore have better performance. For the machines with 6 cycle miss penalties,
performance increased from 6.15 IPC to 12.37 IPC as the instruction cache size was increased
from 16k bytes to 1M byte. For the machines with 32 cycle miss penalties, performance
increased from 1.78 IPC to 12.22 IPC. Also, the machines with low miss penalties have
better performance than the machines with high miss penalties. For the machines with
16k byte instruction caches, performance increased from 1.78 IPC to 6.15 IPC as the miss
penalty was decreased from 32 cycles to 6 cycles. Note that if the miss penalty is reduced
all the way to O cycles, the latency on a cache miss is identical to the latency on a cache
hit. As a consequence, the performance of a machine with a 0 cycle miss penalty, and
an instruction cache of any size, would be identical to that of the machine with a perfect
instruction cache.

The results indicate that for machines with either 16k byte or 64k byte instruction
caches, instruction cache misses significantly bottleneck performance. The performance of
the ideal machine with the perfect instruction cache is 12.39 IPC. The performances of the
machines with 16k byte instruction caches are between 6.15 IPC (6 cycle miss penalty)
and 1.78 IPC (32 cycle miss penalty). These machines lose between 50% and 86% of their
potential performance due to instruction cache misses. The performances of the machines
with 64k byte instruction caches are between 9.36 IPC and 4.21 IPC. They lose between
25% and 66% of their potential performance due to instruction cache misses.

For machines with either 256k byte or 1M byte instruction caches, instruction cache
misses don’t significantly bottleneck performance. These caches are probably large enough
to hold the (average) program’s working set. The worst case was for the machine with a
256k byte instruction cache and a 32 cycle miss penalty. The performance of this machine
was only 12% worse than the performance of the machine with a perfect instruction cache.
Results for the individual benchmarks are provided in Figure A.17 (SPEC) and Figure A.18
(Non-SPEC) of Appendix A.

The machines used to generate Figure 5.1 and Figures A.17-A.18 all had single
cycle (i. e., non-pipelined) instruction caches and perfect branch predictors. Pipelining
the instruction cache increases the depth of the front-end of the processor pipeline, which
increases the number of cycles required to recover from a mispredicted branch. The only

impact that pipelining the instruction cache has on performance is that it worsens the

69

bottleneck due to branch mispredicts. 3 Since the machines used to generate Figure 5.1 and
Figures A.17-A.18 had perfect branch predictors, pipelining their instruction caches has no
impact on their performances. For this reason, I do not present results for machines with
pipelined instruction caches (i. e., caches whose access times have been scaled with their
sizes) and perfect branch predictors.

Figure 5.2 shows the performance averaged over all the benchmarks for several
machines. One line shows the performance of the real machine that was given a perfect
instruction cache. This machine provides an upper bound on the performances of machines
with real instruction caches. The remaining lines plot the performances of real machines
with real instruction caches. For these experiments, the instruction cache access required
one cycle regardless of its size. That is, its access time was not scaled with its size. Because
of this, the depth of the front-end of the processor pipeline did not depend on the instruction
cache size, and, as a result, the minimum branch mispredict penalty was a constant 7 cycles

for all machines.
16

--- Perfect Cache

14 --=-- 6 Cycle Miss Penalty

—+-10 Cycle Miss Penalty

—— 16 Cycle Miss Penalty

-x- 32 Cycle Miss Penalty

=
the

=
2

Instructions Per Cycle
(o]

16K 64K 256K 1M
Cache Size (bytes)

Figure 5.2: Real Machine with Varied Instruction Cache Size
(Constant Mispredict Penalty)—Harmonic Average

3The number of issue cycles lost due to an instruction cache miss may increase if the cache is pipelined,
worsening the bottleneck due to instruction cache misses. However, for all the machines used in this chapter
and the next, the number of issue cycles lost is equal to the instruction cache miss penalty; i. e., the number
of cycles lost does not depend on the cache access time.

70

The instruction cache for a real machine need not be as aggressive as the instruc-
tion cache for an ideal machine. The ideal machine with a 16k byte instruction cache loses
between 50% (6 cycle miss penalty) and 86% (32 cycle miss penalty) of its potential per-
formance due to instruction cache misses. For the same size instruction cache, the real
machine loses between 27% (6 cycle miss penalty) and 70% (32 cycle miss penalty) of its
potential performance. Additionally, the real machine is less sensitive to increasing miss
penalty. When the miss penalty is increased from 6 cycles to 32 cycles, the performance
of the ideal machine with a 16k byte instruction cache falls by 71%. For the same size
instruction cache, the performance of the real machine only falls by 59%. The reason for
this is that the real machine is hampered by bottlenecks other than the bottleneck due
to instruction cache misses. As a result, instruction cache misses have less of an overall
impact on the real machine than they do on the ideal machine, which is only hampered
by the instruction cache bottleneck. Results for the individual benchmarks are provided in

Figure A.19 (SPEC benchmarks) and Figure A.20 (Non-SPEC benchmarks) of Appendix A.

71

Figure 5.3 shows the performance averaged over all the benchmarks for the same
machines that were used to generate Figure 5.2, except that for these machines, the access
time of the instruction cache was scaled with its size. The access time was 1 cycle at 16k
bytes, 2 cycles at 64k bytes, 4 cycles at 256k bytes, and 8 cycles at 1M byte. Because
the access time was scaled, the depth of the front-end of the processor pipeline depends on
the instruction cache size, and, as a result, the minimum branch mispredict penalty must
be scaled according to the instruction cache size. The minimum mispredict penalty was 7
cycles at a cache size of 16k bytes, 8 cycles at 64k bytes, 10 cycles at 256k bytes, and 14
cycles at 1M byte. The machine with the perfect instruction cache is supposed to represent
the ideal solution to the instruction cache bottleneck. The ideal solution is an instruction
cache that has a 100 percent hit rate and a single cycle access time. (A single cycle access
time is ideal because it results in the smallest possible minimum mispredict penalty.) For
this reason, the machine with the perfect instruction cache could always access its cache in

a single cycle, and its minimum mispredict penalty was always 7 cycles.

=
@

--- Perfect Cache

--=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
—— 16 Cycle Miss Penalty
-x- 32 Cycle Miss Penalty

=
T

=
the

=
2

Instructions Per Cycle
(o]

16K 64K 256K 1M
Cache Size (bytes)

Figure 5.3: Real Machine with Varied Instruction Cache Size
(Scaled Mispredict Penalty)—Harmonic Average

72

As the instruction cache size increases, fewer instruction cache misses occur, which
reduces the severity of the instruction cache bottleneck. The minimum branch mispredict
penalty also increases as the instruction cache size increases, which increases the severity of
the bottleneck due to branch mispredicts. Beyond a certain point, increasing the size of the
instruction cache will result in lower performance, because it will increase the severity of the
bottleneck due to branch mispredicts more than it reduces the severity of the instruction
cache bottleneck. For all machines, increasing the size of the instruction cache beyond 256k
bytes results in lower performance. Results for the individual benchmarks are provided in

Figure A.21 (SPEC) and Figure A.22 (Non-SPEC) of Appendix A.

5.3.2 The Branch Predictor

In the RDF model of execution, instructions from the program’s dynamic instruction
stream are issued into the active window. The dynamic instruction stream is created by
an omniscient branch predictor that always knows the direction a branch will take. This
omniscient branch predictor can’t be built, so real CPU designs must settle for a branch
predictor that is less than perfect. Fortunately, branch predictors are getting better and
better as each day passes. Continuous research on branch prediction has led to the discovery
of prediction algorithms with successively higher prediction accuracies. Additionally, this
research has found ways of achieving a given prediction accuracy at successively lower
implementation costs.

Branch mispredictions throttle the supply of useful issue bandwidth. To determine
the severity of this bottleneck, I simulated several different branch predictors. All of the
simulated predictors used real (i. e., not synthetic or artificial) prediction algorithms. Some
of these predictors have implementation costs that are low enough that they could be
implemented in today’s processors. Some do not. However, as time marches on, transistor
budgets increase. Predictors that are too expensive to implement for today’s processors will
not be expensive for tomorrow’s processors. In addition, branch prediction research may
discover a prediction algorithm that achieves the same prediction accuracy as one of these

expensive predictors only at a much lower implementation cost.

73

Figure 5.4 shows the performance averaged over all the benchmarks for several
different machines. There are five lines. Each line corresponds to a set of machines that all
have the same minimum branch mispredict penalty. The minimum mispredict penalty is
the minimum number of cycles between when a mispredicted branch is fetched and when
that branch is executed (or resolved). It is equal to the minimum number of pipe stages
required to fetch, decode, issue, and execute a branch. The number of pipe stages required
to do this varies from implementation to implementation, so I have varied the minimum
mispredict penalty from 4 to 14 cycles. The actual mispredict penalty for a particular
branch is equal to the minimum mispredict penalty, plus the number of cycles the branch
waits in the active window for its flow dependencies to be resolved. Each point in a line
plots the performance of an ideal machine with the mispredict rate, in mispredicts per
1000 instructions, listed on the horizontal axis. Note that the reciprocal of this rate is
the average number of instructions that are executed between mispredicted branches. The
machines with non-zero mispredict rates are ideal machines that have been augmented with
real branch predictors. The mispredict rates correspond to the mispredict rates of the real
predictors. I will describe these real predictors later. The machine with a zero mispredict
rate is the ideal machine with the omniscient branch predictor. It provides an upper bound
on the performances of the machines with real branch predictors.

16+

B R
Al

=
?

6- K g T T T T
-+- 4 Cycle Mispredict Penaltyw“" —
44 -7 Cycle Mispredict Penalty
—+- 8 Cycle Mispredict Penalty
21— 10 Cycle Mispredict Penalty
-»- 14 Cycle Mispredict Penalty

0 T T T T
0.0 1.7 34 51 6.8 85
Mispredicts Per 1000 I nstructions

Figure 5.4: Ideal Machine withVaried Mispredict Rate—Harmonic Average

Instructions Per Cycle
oo

74

Branch mispredictions significantly bottleneck performance. The performance of
the ideal machine with the omniscient branch predictor is 12.39 IPC. The performances of
the machines with the best predictor, which has a miss rate of 3.3 mispredicts per 1000
instructions (or, alternatively, one mispredict for every 307 instructions), are between 7.98
IPC (4 cycle minimum mispredict penalty) and 6.35 IPC (14 cycle minimum mispredict
penalty). These machines lose between 36% and 49% of their potential performance due to
branch mispredictions. The machines with the worst predictor, which has a miss rate of 8.3
mispredicts per 1000 instructions (one mispredict for every 121 instructions), fared much
worse. The performances of these machines are between 5.82 IPC and 3.94 IPC. They lose
between 53% and 68% of their potential performance due to branch mispredictions.

As pipeline depths increase, the minimum mispredict penalty increases, and the
amount of speculative work that must be thrown away in the event of a branch mispredict
increases. Not surprisingly, as the minimum mispredict penalty increases, the performance
decreases. When the minimum mispredict penalty is increased from 4 cycles to 14 cycles,
the performance of the machine with a miss rate of 8.3 mispredicts per 1000 instructions
falls from 5.82 IPC to 3.94 IPC, which corresponds to a drop in performance of 32%. The
performance of the machine with a miss rate of 3.3 mispredicts per 1000 instructions falls

from 7.98 TPC to 6.35 IPC, which corresponds to a drop in performance of only 20%.

75

Better branch predictors, which have lower mispredict rates, can be used to counter
the performance degradation that results from the growing minimum mispredict penalty
that is caused by increasing pipeline depths. For example, the performance drop of the
machine with a miss rate of 8.3 mispredicts per 1000 instructions that results from increasing
the minimum mispredict penalty from 4 cycles to 14 cycles can be completely erased by
equipping the machine with any of the branch predictors that have mispredict rates lower
than 4.0 mispredicts per 1000 instructions. In the limit, when the mispredict rate of the
branch predictor is zero, the minimum mispredict penalty becomes irrelevant, because the
predictor never mispredicts. Unfortunately, a branch predictor with a mispredict rate of
zero will never be built. Also, as branch predictors get better, the useful issue bandwidth
increases. As the issue bandwidth increases, the actual mispredict penalty increases, because
branches wait longer in the active window for their dependencies to be resolved [15]. Hence,
better predictors reduce the total number of branch mispredicts, but they also increase the
penalty, or cost, associated with each mispredict. The best solution, of course, is to build
a predictor with the lowest mispredict rate, and to minimize the mispredict penalty by
pipelining the machine such that there are a minimum number of pipe stages between when
a branch is fetched and when it is executed.

Results for the individual benchmarks are provided in Figure 5.5 (SPEC bench-
marks) and Figure 5.6 (Non-SPEC benchmarks). Between benchmarks, there are wide
variances in the mispredict rates of the branch predictors. For each benchmark, the scale
on the horizontal axis, which lists mispredict rates, has been customized for the mispredict
rates of the branch predictors for that benchmark.

Note that performance is not entirely dependent on the mispredict rate. The per-
formance also depends on which branches are mispredicted. The cost associated with mis-
predicting a branch differs depending on the branch. Different branch predictors mispredict
different branches. If one branch predictor has a mispredict rate that is greater than or
equal to that of a second predictor, the performance of a machine using the first predic-
tor may still exceed the performance of a machine using the second predictor if the first
predictor generates fewer costly mispredicts than the second predictor. This effect can be
seen in the chess, go, li, perl, python, tex, and vortex benchmarks, where the performance

sometimes increases when the mispredict rate increases.

76

Instructions Per Cycle
i

cmp

-+--4 Cycle Mispredict Penalty
--=-- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
—— 10 Cycle Mispredict Penalty
-=--14 Cycle Mispredict Penalty

16+

14

124

104

Instructions Per Cycle
®

12 24 36 438 6.0
Mispredicts Per 1000 I nstructions

gec

-+--4 Cycle Mispredict Penalty
--a-- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
—— 10 Cycle Mispredict Penalty
----14 Cycle Mispredict Penalty

Instructions Per Cycle
®

356 72 10.8 14.4 180
Mispredicts Per 1000 I nstructions

go

-+--4 Cycle Mispredict Penalty

--a-- 7 Cycle Mispredict Penalty

\ —+- 8 Cycle Mispredict Penalty
N —— 10 Cycle Mispredict Penalty
RN -~ 14 Cycle Mispredict Penalty

Instructions Per Cycle

i

5.9 118 17.7 236 295
Mispredicts Per 1000 I nstructions

ijpeg

-+--4 Cycle Mispredict Penalty
--=-- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
—— 10 Cycle Mispredict Penalty
-=-14 Cycle Mispredict Penalty

0
0.0

11 22 33 44 55
Mispredicts Per 1000 I nstructions

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

-+~ 4 Cycle Mispredict Penalty e T
4+ --=- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
24 —+—10 Cycle Mispredict Penalty
o -=--14 Cycle Mispredict Penalty
0.0 16 32 48 6.4 8.0
Mispredicts Per 1000 I nstructions
16- m88k
14
-+--4 Cycle Mispredict Penalty
4+ --=-- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
2 —+—10 Cycle Mispredict Penalty
o -=-14 Cycle Mispredict Penalty
0.0 07 14 21 238 35

Mispredicts Per 1000 I nstructions

7.0

-+--4 Cycle Mispredict Penalty —x
44 =7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
24 —+—10 Cycle Mispredict Penalty
o -=--14 Cycle Mispredict Penalty
0.0 14 238 42 5.6 ‘
Mispredicts Per 1000 I nstructions
16- vortex

-+--4 Cycle Mispredict Penalty
4+ --=-- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
2 —+—10 Cycle Mispredict Penalty
o -=-14 Cycle Mispredict Penalty
0.0 07 14 21 238 ‘

Mispredicts Per 1000 I nstructions

35

Figure 5.5: Ideal Machine withVaried Mispredict Rate—SPEC Benchmarks

7

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

4+ .= 7 Cycle Mispredict Penalty

0 T
0.0 0.8 16
Mispredicts Per 1000 I nstructions

chess

-+--4 Cycle Mispredict Penalty

4+ --=- 7 Cycle Mispredict Penalty

—+-8 Cycle Mispredict Penalty

24 —+—10 Cycle Mispredict Penalty

-=--14 Cycle Mispredict Penalty

0.0 0.9 18 27
Mispredicts Per 1000 I nstructions

grof f

3.6 45

-+--4 Cycle Mispredict Penalty >

—+-8 Cycle Mispredict Penalty

2 —+—10 Cycle Mispredict Penalty

-=-14 Cycle Mispredict Penalty

0.0 16 32 438 6.4
Mispredicts Per 1000 I nstructions

gs
-+--4 Cycle Mispredict Penalty
--a-- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
—— 10 Cycle Mispredict Penalty
-x-14 Cycle Mispredict Penalty

0 T T T T d

0.0 19 3.8 5.7 7.6
Mispredicts Per 1000 I nstructions

pgp
-+--4 Cycle Mispredict Penalty
--=-- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
—— 10 Cycle Mispredict Penalty
-=-14 Cycle Mispredict Penalty

24 32 4.0

Figure 5.6: Ideal Machine with

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

164 plot
14
12+
-+--4 Cycle Mispredict Penalty
4+ =7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
24 —+—10 Cycle Mispredict Penalty
o -=--14 Cycle Mispredict Penalty
0.0 07 14 21 28 35
Mispredicts Per 1000 I nstructions
16- python
-+--4 Cycle Mispredict Penalty
14 --a-- 7 Cycle Mispredict Penalty
—+- 8 Cycle Mispredict Penalty
124 —— 10 Cycle Mispredict Penalty
- 14 Cycle Mispredict Penalty
104
8,
6,
4,
2,
0 T T T T]
0.0 21 4.2 6.3 8.4 10.5
Mispredicts Per 1000 I nstructions
16+ s

-+--4 Cycle Mispredict Penalty T
44 =7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
24 —+—10 Cycle Mispredict Penalty
o -=--14 Cycle Mispredict Penalty
0.0 15 30 45 6.0 75
Mispredicts Per 1000 I nstructions
16- tex

4+ --=-- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
2 —+—10 Cycle Mispredict Penalty
o -=-14 Cycle Mispredict Penalty
0.0 14 238 42 5.6 ‘

Mispredicts Per 1000 I nstructions

Varied Mispredict Rate—Non-SPEC Benchmarks

78

Figure 5.7 shows the performance averaged over all the benchmarks for several
different machines. Each point plots the performance of the real machine (i. e., the machine
with the real instruction cache, branch predictor, execution core, and data cache) with
the mispredict rate listed on the horizontal axis. The machines with non-zero mispredict
rates are real machines with real branch predictors. The mispredict rates correspond to the
mispredict rates of the real predictors. The machine with a zero mispredict rate is the real
machine that has been given the omniscient branch predictor. It provides an upper bound
on the performances of the machines with real branch predictors.

16

-+- 4 Cycle Mispredict Penalty
14- --a-- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
—— 10 Cycle Mispredict Penalty
-x- 14 Cycle Mispredict Penalty

-
the

=
?

Instructions Per Cycle
(0]

O T T T T
0.0 1.7 34 51 6.8 8.5
Mispredicts Per 1000 I nstructions

Figure 5.7: Real Machine withVaried Mispredict Rate—Harmonic Average

The branch predictor for the real machine need not be as aggressive as the branch
predictor for the ideal machine. The ideal machine with a predictor that has a miss rate
of 3.3 mispredicts per 1000 instructions loses between 36% (4 cycle minimum mispredict
penalty) and 49% (14 cycle minimum mispredict penalty) of its potential performance due
to branch mispredicts (see Figure 5.4). At the same mispredict rate, the real machine only
loses between 20% and 28% of its potential performance. Additionally, the real machine
is less sensitive to increasing minimum mispredict penalty. When the minimum mispredict
penalty is increased from 4 cycles to 14 cycles, the performance of the ideal machine with a
miss rate of 3.3 mispredicts per 1000 instructions falls by 20%. At the same miss rate, the

performance of the real machine only falls by 10%.

79

The real machine is hampered by bottlenecks other than branch mispredicts. As a
result, branch mispredicts have less of an overall impact on the real machine than they do
on the ideal machine, which is only hampered by a single bottleneck: the bottleneck that
results from branch mispredicts. The bottleneck that results from branch mispredicts is still
severe for the real machine—severe enough to justify further research on branch prediction,
aggressive branch predictor implementations, and pipelines that minimize the minimum
mispredict penalty. However, this bottleneck is not as severe as it is for the ideal machine.
Results for individual benchmarks are provided in Figure A.23 (SPEC benchmarks) and
Figure A.24 (Non-SPEC benchmarks) of Appendix A.

Ten different branch predictors were used to generate the results for Figures 5.4-5.7
and Figures A.23-A.24. Each branch predictor actually contains three separate predictors:
one predictor for conditional branches, one predictor for indirect (or computed) branches,
and one predictor for subroutine returns. All predictors used a perfect (100 percent hit

rate) Branch Target Buffer (BTB). The ten predictors were as follows:

1. The conditional branch predictor is a gshare [81] scheme which exclusive-ORs a 14-bit
global history with the fetch address to select the appropriate 2-bit pattern history
table (PHT) entry. Indirect branch targets are predicted using the “tagless” variety
of the pattern based predictor proposed by Chang, Hao, and Patt [19]. A 7-bit global
history is used to select an entry in a table of indirect branch target addresses. To
improve prediction accuracy, I added a single “hysteresis” bit to each entry in the
table. The bit controls the replacement of the branch target address stored in that

entry. Subroutine returns are predicted using a 16 entry Return Address Stack (RAS).

2. This predictor is the default branch predictor used throughout this dissertation. It is
identical to predictor number 1, except that the conditional branch predictor uses a
16-bit global history, the indirect branch predictor uses a 9-bit global history, and the

RAS contains 64 entries.

3. This predictor is identical to predictor number 1, except that the conditional branch
predictor uses an 18-bit global history, the indirect branch predictor uses an 11-bit

global history, and the RAS contains 256 entries.

80

4. This predictor is identical to predictor number 1, except that the conditional branch
predictor uses a 20-bit global history, the indirect branch predictor uses a 13-bit global
history, and the RAS contains 1024 entries.

5. The conditional branch predictor is our Variable Length Path (VLP) predictor for
conditional branches [121]. It forms a 16-bit index by hashing together selected target
addresses from the 32 most recently encountered branches. The index selects the
appropriate 2-bit PHT entry. Indirect branch targets are predicted using our VLP
predictor for indirect branches. This predictor forms a 9-bit index by hashing together
selected target addresses from the 32 the most recently encountered branches. The
index is used to select an entry in a table of indirect branch target addresses. Like the
indirect branch predictor used for predictor number 1, a “hysteresis” bit associated
with each table entry is used to control the replacement of the branch target address

stored in associated entry. Subroutine returns are predicted using a 64 entry RAS.

6. This predictor is identical to predictor number 5, except that the conditional VLP
branch predictor generates an 18-bit index, the indirect VLP branch predictor gener-

ates an 11-bit index, and the RAS contains 256 entries.

7. This predictor is identical to predictor number 5, except that the conditional VLP
branch predictor generates a 20-bit index, the indirect VLP branch predictor generates

a 13-bit index, and the RAS contains 1024 entries.

8. The conditional branch predictor is a hybrid [81] consisting of a global predictor and a
local (or per branch address) predictor. The global predictor is a VLP predictor. The
local predictor is an SAg Two-Level Adaptive Branch Predictor [136]. For an SAg
predictor, the first level of history is stored in a table of branch history registers, called
the Branch History Table (BHT). To make a prediction, the lower bits of a branch’s
address are used to select an entry from the BHT. The history register stored in that
entry is then used to select the appropriate PHT entry. To predict a branch in a single
cycle 4, a single-bit lookahead prediction [134] is stored alongside each history register
in the BHT. All the SAg predictors used in my experiments have a large number of

branch history registers in their BHTS, so they are essentially “tagless” versions of

“The SAg predictor requires two sequential table accesses to make a prediction. Squeezing two accesses
into a single cycle is difficult.

81

10.

PAg predictors. The selection mechanism for the hybrid is an array of counters. Each
branch is mapped to a counter via its address. The counter keeps track of which
predictor (either the global [VLP] or the local [SAg]) is currently more accurate for
the branch. When the branch is fetched, its counter is used to select the predictor

that will (hopefully) provide the most accurate prediction.

For this particular conditional branch predictor, the VLP predictor component of the
hybrid is the conditional VLP branch predictor used by predictor number 5. This VLP
predictor uses a 16-bit index to access the PHT. The SAg predictor component of the
hybrid uses a BHT with 4096 (2'2) 12-bit branch history registers, and a PHT that
contains 3-bit saturating up-down counters. The selection mechanism for the hybrid
is an array of 16384 (2'*) 2-bit up-down counters. The indirect branch targets for
this predictor (i. e., predictor number 8) are predicted using the indirect VLP branch
predictor used by predictor number 5. This VLP predictor uses a 9-bit index to access
the table of indirect branch target addresses. Subroutine returns are predicted using

a 64 entry RAS.

. This predictor is identical to predictor number 8, except that the sizes of the con-

ditional branch predictor, the indirect branch predictor, and the RAS have been in-
creased. The VLP predictor component of the hybrid conditional branch predictor
uses an 18-bit index to access its PHT. The SAg predictor component uses a BHT
with 8192 (2!3) 13-bit branch history registers. The selection mechanism is an array
of 131072 (2'7) counters. Indirect branch targets are predicted using an indirect VLP
branch predictor that uses an 11-bit index to access the table of indirect branch target

addresses. Subroutine returns are predicted using a 256 entry RAS.

This predictor is identical to predictor number 8, except that the sizes of the con-
ditional branch predictor, the indirect branch predictor, and the RAS have been in-
creased. The VLP predictor component of the hybrid conditional branch predictor
uses a 20-bit index to access its PHT. The SAg predictor component uses a BHT with
32768 (2'%) 15-bit branch history registers. The selection mechanism is an array of
524288 (2'?) counters. Indirect branch targets are predicted using an indirect VLP
branch predictor that uses a 13-bit index to access the table of indirect branch target

addresses. Subroutine returns are predicted using a 1024 entry RAS.

82

Table 5.1 lists the sizes and miss rates for the ten predictors. The predictor number
is given in the far left column. The column labeled “Composite Predictor” provides the
size and miss rate of the (composite) predictor for the associated row. The miss rate is
an average taken over all benchmarks. It is given in two different metrics. The first is
the percent of all branches (including, for example, unconditional PC-relative branches,
which don’t require a prediction) that are mispredicted. The second is the number branch

mispredicts per 1000 instructions, or, mispredicts per kilo instruction (pki).

Cond. Predictor Indirect Predictor Return Predictor Composite Predictor
miss miss miss

size rate miss size rate miss size rate miss size miss rate

|| kbyte % ratio | kbyte % ratio | kbyte % ratio || kbyte | % pki
1 4 624 .835 1/2 3096 .119 | 1/16 2.86 .047 51 5.54 830
2 16 5.02 .855 2 26.58 .125 1/4 092 .020 18 | 4.34 6.39
3 64 4.27 .866 8§ 2314 122 1 042 012 73 | 3.64 5.27
4 256 3.89 .879 32 2084 116 4 017 .005 292 | 3.26 4.64
5 16 3.76 .888 2 13.56 .084 1/4 092 .028 18 | 3.13 4.48
6 64 3.48 916 8§ 11.36 .069 1 042 .015 73| 280 3.95
7 256 3.31 .929 32 10.77 .064 4 0.17 .006 292 | 2.62 3.68
8 28 3.46 .880 2 13.56 .090 1/4 092 .030 30 | 292 4.18
9 113 3.15 .908 8§ 1136 .075 1 042 .017 122 | 2.57 3.64
10 460 2.87 .920 32 10.77 .073 4 017 .007 496 | 2.31 3.26

Table 5.1: Branch Predictor Sizes, Miss Rates, and Miss Ratios

Table 5.1 also lists the sizes, miss rates, and miss ratios of the three predictors
(conditional, indirect, and subroutine return) that make up each of the ten composite pre-
dictors. The miss rate is the percentage of the predictor’s predictions that are incorrect. For
example, for predictor number 1, the conditional branch predictor mispredicts 6.24% of the
conditional branches. The miss ratio is the ratio of the number of branches mispredicted by
the predictor to the total number of mispredicts. For example, the conditional branch pre-
dictor is responsible for 835 out of every 1000 mispredicts generated by predictor number 1.
If branch mispredicts bottleneck a machine’s performance, the miss ratios indicate which
portion of the mispredicts each predictor is responsible for. Predictors that are responsible

for large numbers of mispredicts should be targeted for further optimization.

83

The sizes given in Table 5.1 do not include the memory associated with the recovery
mechanisms for branch prediction storage structures. (Fetching branches along a mispre-
dicted path pollutes the branch prediction storage structures, and, if recovery mechanisms
aren’t provided to undo this pollution, increases the mispredict rate [62].) For the con-
ditional branch predictors that are hybrids, each entry in the BHT for the SAg predictor
component contains a branch history register and a single-bit lookahead prediction [134].
For the indirect branch predictors, the size of each entry in the table that contains the
branch target addresses was assumed to be 32 bits. Although branch target addresses are
64 bits in the Alpha AXP architecture, only the lower 32 bits are stored in the predictor
table. The upper 32 bits are taken from the current fetch address. In addition, the lower 2
bits of every branch target address are guaranteed to be 0, since memory is byte address-
able, and instructions are aligned at 4-byte boundaries. One of these 2 bits is used to store
the hysteresis bit. For the RAS (subroutine return predictor), the size of each entry was
also assumed to be 32 bits. Only the lower 32 bits of an address were stored in the RAS.

The upper 32 were taken from the fetch address.

5.3.3 The Execution Core

In the RDF model of execution, the execution core is perfect. That is, it consists
of an unbounded number of functional units. Since there are an unbounded number of
functional units, each instruction in the active window may be assigned to its own functional
unit. As soon as an instruction’s flow dependencies have been resolved, it is scheduled for
execution on its assigned functional unit. It is guaranteed that the assigned functional unit
will be available (i. e., not busy), since no other instructions use it. As a result, execution
of the instruction commences without delay.

Practical CPU designs have more realistic execution cores. Each of their execution
cores consists of a bounded number of functional units. Bounding the number of functional
units limits the amount of execution bandwidth the core can provide, and limiting the
amount of execution bandwidth bottlenecks performance.

To determine the severity of this bottleneck, I simulated execution cores of various
sizes. The size of an execution core specifies the number of functional units it contains. An

execution core of size N consists of N fully pipelined functional units, where each functional

84

unit is capable of performing every desired operation. ® Each cycle, the oldest N ready
instructions are scheduled for execution. (This execution core was modeled by setting the
dispatch rate to N. The dispatch rate is the maximum number of instructions that can be
scheduled for execution on functional units in a single cycle.)

This oldest first scheduling heuristic gives higher priority to the instructions that
appear earlier in the dynamic instruction stream; that is, it gives higher priority to those
instructions that will be retired first. It attempts to hasten instruction retirement by greed-
ily selecting the oldest N ready instructions. Hastening retirement causes the window to
empty quicker.

However, the greedy decision made by the oldest first scheduling heuristic —i. e.,
select the oldest N ready instructions—is not always the best decision. A ready instruction
that is not one of the oldest N ready instructions may have a large number of instructions
that are dependent on it. It may also belong to a dependency chain that resolves a branch,
or to a critical dependency chain in the program. Because this instruction is not (initially)
selected by the oldest first scheduling heuristic, the resolution of its dependent instructions’
flow dependencies will be delayed. As a result, in future cycles, there may be fewer ready
instructions. If the instruction belongs to a dependency chain that resolves a branch, the
resolution of a mispredicted branch may be delayed. If it belongs to a critical dependency
chain in the program, the execution of that chain will be delayed. In all these cases,
performance may suffer because the decision made by the oldest first scheduling heuristic
was not the best possible decision.

The optimal scheduling algorithm always makes the best possible decision when
deciding which N of the ready instructions should be scheduled for execution on functional
units. The best possible decision is the one which minimizes the overall execution time.
This decision can only be made by knowing the entire dataflow graph for the program being
executed. A program’s dataflow graph can only be constructed when all the instructions
that comprise the program’s dynamic instruction stream are known, and when all the

dependencies between those instructions are known. The instructions that comprise the

5T assume that a machine with a properly selected, cost-effective functional unit configuration performs
almost as well as a machine with the ideal configuration; i. e., the configuration where all functional units
are fully pipelined and capable of performing every desired operation. Jourdan, Sainrat, and Litaize [61]
found that for an issue rate of eight instructions per cycle, the performance of a machine with a cost-effective
configuration, one where only half the functional units could execute loads and stores, was only 9% lower
than that of a machine with the ideal configuration.

85

program’s dynamic instruction stream can only be known after all the branches in the
program have executed. All the dependencies between those instructions can only be known
after the addresses of all loads and stores have been computed. This information is almost
never known when the hardware is making scheduling decisions. Since the hardware needs
this information to construct the program’s dataflow graph, and the hardware needs the
dataflow graph to implement the optimal scheduling algorithm, it is impossible to implement
the optimal scheduling algorithm in hardware. In addition, the optimal scheduling algorithm
is NP-hard 6, so implementing it in software (or a simulator) is not feasible.

Due to Amdahl’s law [5], the performance of a machine with an execution core
consisting of N functional units can be significantly less than N IPC, even if the optimal
scheduling algorithm is used, and if the performance of a machine with a perfect execution
core is greater than N IPC. Consider a program that consists of 40 dynamic instructions.
The execution latency of each of the 40 instructions is one cycle. The first 8 instructions
are serially dependent; i. e., instruction Ig is dependent on instruction I7, instruction I
is dependent on instruction I, ..., and instruction Iy is dependent on instruction I;.
Regardless of the number of functional units, these instructions require 8 cycles to execute.
The last 32 instructions (Ig—I4g) are only dependent on instruction Is. On a machine with
an execution core consisting of 2 functional units, 16 cycles are required to execute the last
32 instructions. For this machine, 24 cycles are required to execute the entire program, so
the performance is 1.67 IPC (40 instructions + 24 cycles). On a machine with a perfect
execution core, the last 32 instructions are all executed in the same cycle. The performance
of this machine is 4.44 IPC (40 instructions + 9 cycles). Hence, the performance of the
machine with an execution core consisting of 2 functional units was less than 2 IPC, even
though the optimal scheduling algorithm was used and the machine with a perfect execution

core could exploit enough parallelism to obtain a performance of 4.44 TPC.

5The problem of finding the optimal schedule is at least as hard as the PRECEDENCE CONSTRAINED
SCHEDULING problem [38], which is NP-complete. For a set of tasks, a partial order on the tasks, a
fixed number of processors, and an overall deadline, the PRECEDENCE CONSTRAINED SCHEDULING
problem determines whether there is a schedule for running the tasks on the processors that meets the
deadline and obeys all the ordering (or precedence) constraints. For the problem of finding the optimal
schedule, the instructions (or nodes) in the dataflow graph are the tasks, the dependencies between those
instructions specify the ordering constraints, and each functional unit corresponds to a processor.

86

Figure 5.8 shows the performance averaged over all the benchmarks for several
different machines. Each point on the line labeled “Real Execution Core” plots the perfor-
mance of an ideal machine that has been augmented with a real execution core of a given
size. The sizes of the execution cores, which are listed on the horizontal axis, were varied
from 1 to 32. The line labeled “Perfect Execution Core” is for the ideal machine with a
perfect execution core. It provides an upper bound on the performances of the machines

with real execution cores.

16

14-

H
e
"
[

[

[

[

[

[

[

[

[E
2
n

Instructions Per Cycle
> @

4+ - —— Perfect Execution Core
5 --a-- Real Execution Core
- o
0 T T T T T T T T T T T T T T T 1
12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of Functional Units

Figure 5.8: Ideal Machine with
Varied Execution Core Size—Harmonic Average

As a consequence of using the oldest first scheduling heuristic rather than the
optimal scheduling algorithm, and as a consequence of Amdahl’s law, the performance of a
machine with an execution core of size N is always less than N IPC. The performance of the
machine with an execution core of size 1 is 1.00 IPC (this number has been rounded to three
significant digits). Since this machine has only one functional unit, its peak performance
is 1 IPC. Thus, its actual performance is (nearly) equal to its peak performance. The
performance of the machine with an execution core of size 16 is 12.21 TPC, which is only
a 1.5% drop in performance from the machine using the perfect execution core. Thus, for
a 16 wide issue machine, an execution core consisting of 16 functional units can eliminate

the performance bottleneck that results from a lack of execution bandwidth. Finally, the

87

performance of the machine with an execution core of size 32 is 12.39 IPC. This performance
is the same as that of the machine with a perfect execution core. Results for the individual
benchmarks are provided in Figure A.25 (SPEC benchmarks) and Figure A.26 (Non-SPEC
benchmarks) of Appendix A.

Figure 5.9 shows the performance averaged over all the benchmarks for several
machines. Each point on the line labeled “Real Execution Core” plots the performance
of the real machine (i. e., the machine with the real instruction cache, branch predictor,
execution core, and data cache) with an execution core of the size listed on the horizontal
axis. The line labeled “Perfect Execution Core” is for the real machine that was given a
perfect execution core. It provides an upper bound on the performances of the machines

with real execution cores.

14- —— Perfect Execution Core
--=-- Real Execution Core

Instructions Per Cycle
[0}

0 T T T T T T T T T T T T T T T 1
12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of Functional Units

Figure 5.9: Real Machine with
Varied Execution Core Size—Harmonic Average

88

The execution core for a real machine need not be as aggressive as the core for an
ideal machine. The ideal machine requires a core of size 14 or greater to achieve 90% of the
performance of the (ideal) machine with a perfect core (see Figure 5.8). The real machine
only requires a core of size 8 to achieve 90% of the performance of the real machine with
a perfect core. Results for the individual benchmarks are provided in Figure A.27 (SPEC
benchmarks) and Figure A.28 (Non-SPEC benchmarks) of Appendix A.

5.3.4 The Data Cache

Data caches are an effective way of reducing the amount of time required to execute
a load instruction. When a load instruction finds its data in the cache, the latency of the
load is equal to the time required to perform the address calculation plus the time required
to perform the cache access. This latency is typically only 2 or 3 cycles. When a load
instruction does not find its data in the cache, the data must be retrieved from the next
level of the cache/memory hierarchy. This adds many extra cycles to the latency of the
load in addition to the cycles required to perform the address calculation and probe the
data cache. In the worst case, the data may have to be retrieved from main memory. With
CPU clock rates quickly approaching 1 GHz, and DRAM access times between 30 and 120
nanoseconds [24], a minimum of 30-120 cycles are required just to access the DRAM. When
other factors are considered, such as bus arbitration time and the time to transmit the data

across the bus, the total memory access time can be much worse.

89

Data cache misses bottleneck machine performance because a data cache miss re-
tards the retirement of the load that generated the miss, and because the instructions that
are dependent on a load that misses must wait until the miss has been serviced before they
can start executing [12]. A load cannot retire until it has completed execution. On a data
cache miss, the load cannot retire until its data has been returned from the next level of the
cache/memory hierarchy. Because instructions must be retired in order, when a load that
has missed in the data cache becomes the oldest instruction in the active window, it blocks
the retirement of all instructions until the miss has been serviced. If it takes a long time
to service the miss, the window fills up, which prevents new instructions from being issued
into the window, which degrades performance. Instructions that are dependent on a load
that misses must wait until the miss has been serviced before they can start executing. If a
dependent instructions belongs to a dependency chain that resolves a branch, the resolution
of that branch will be delayed. This is particularly harmful if the branch has been mispre-
dicted. A dependent instruction may belong to one of the program’s critical dependency
chains. Hence, a data cache miss may reduce the amount of exploitable parallelism in the
program.

Out-of-order execution and non-blocking data caches—which are used for all of
the experiments in this dissertation—can be used to reduce the performance penalty that
results from data cache misses. On a processor that executes instructions in order, the
instructions following a load that misses in the data cache cannot execute until the miss
has been serviced. On a processor with out-of-order execution, the instructions following
the load are free to execute as long as they are not dependent on the result of the load.
Thus, out-of-order execution allows the processor to hide some of the penalty associated
with the cache miss by allowing it to execute instructions that are independent of the load.
Blocking data caches lockup on a cache miss. That is, they don’t accept any new requests
until the miss has been serviced and the request that caused the miss has been satisfied.
Non-blocking data caches [69] don’t lockup on a cache miss. They continue to accept new
requests while the miss is being serviced. If the new requests hit in the data cache, their
data is returned to their associated loads. If the new requests miss, their misses can be
serviced in parallel with the original miss. Hence, a non-blocking data cache reduces the
cost of a miss by allowing new requests to be processed concurrently with the servicing of

the miss.

90

To determine the severity of the bottleneck that results from data cache misses, 1
simulated several different machines. Figure 5.10 shows their performances averaged over
all the benchmarks. There are five lines. One line shows the performance of the ideal
machine with a perfect (100 percent hit rate) data cache. This machine provides an upper
bound on the performances of machines with real data caches. The remaining lines plot
the performances of ideal machines that have been augmented with real data caches. Each
line represents a set of machines that all have the same penalty for a data cache miss. The
miss penalty is a function of the cycle time and cache/memory hierarchy. It varies from
implementation to implementation, so I have varied it from 6 to 32 cycles. Each point in a
line plots the performance of an ideal machine with a data cache of the size listed on the
horizontal axis. The data cache size was varied from 16k bytes to 1M byte. The data cache
access required one cycle regardless of its size. That is, its access time was not scaled with
its size. Because of this, the load latency on a cache hit was a constant 2 cycles (one cycle
was required for the address calculation, and one cycle was required for the cache access)

for all machines.

16

14-

=
N
|

=
e

Instructions Per Cycle
(o]

6_
--- Perfect Cache
4 --=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
24 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K M
Cache Size (bytes)

Figure 5.10: Ideal Machine with Varied Data Cache Size
(Constant Load Latency)—Harmonic Average

91

Not surprisingly, the machines with larger data caches experience fewer data cache
misses, and therefore have better performance. For the machines with 6 cycle miss penalties,
performance increased from 11.88 IPC to 12.37 IPC as the data cache size was increased
from 16k bytes to 1M byte. For the machines with 32 cycle miss penalties, performance
increased from 8.23 IPC to 12.16 IPC. Also, the machines with low miss penalties have
better performance than the machines with high miss penalties. For the machines with 16k
byte data caches, performance increased from 8.23 IPC to 11.88 IPC as the miss penalty
was decreased from 32 cycles to 6 cycles. Note that if the miss penalty is reduced all the
way to 0 cycles, the load latency on a cache miss is identical to the load latency on a cache
hit. As a consequence, the performance of a machine with a 0 cycle miss penalty, and a
data cache of any size, would be identical to that of the machine with a perfect data cache.
These results indicate that, for miss penalties of 16 cycles or less, and for the benchmarks
I studied, the bottleneck that results from data cache misses is not very severe. The worst
case was for the machine with a 16k byte data cache with a 16 cycle miss penalty. The
performance of this machine was only 15% worse than the performance of the machine with
a perfect data cache. For a miss penalty of 32 cycles, the bottleneck was severe for the
machine with a 16k byte data cache, but not for the machines with data caches larger than
16k bytes. The machine with a 16k byte data cache lost 34% of its potential performance
due to data cache misses. The machines with data caches larger than 16k bytes lost at most
16% of their potential performance. Results for the individual benchmarks are provided in

Figure A.29 (SPEC) and Figure A.30 (Non-SPEC) of Appendix A.

92

Figure 5.11 shows the performance averaged over all the benchmarks for the same
machines that were used to generate Figure 5.10, except that for these machines, the access
time of the data cache was scaled with its size. The access time was 1 cycle at 16k bytes,
2 cycles at 64k bytes, 4 cycles at 256k bytes, and 8 cycles at 1M byte. Because the access
time was scaled, the load latency on a cache hit was also scaled. The load latency on a
cache hit was equal to one cycle, which was required to perform the address calculation, plus
the number of cycles required to access the data cache. The load latency on a cache miss
was equal to one cycle (for the address calculation), plus the number of cycles required to
probe (i. e., access) the data cache, plus the data cache miss penalty. The machine with the
perfect data cache is supposed to represent the ideal solution to the data cache bottleneck.
The ideal solution is a data cache that has a 100 percent hit rate and the smallest possible
access time. I assumed one cycle was the smallest possible access time. For this reason, the
machine with the perfect data cache could alway access its cache in a single cycle, so its
load latency was always 2 cycles.

16

14-

=
N
|

=
e

Instructions Per Cycle
(o]

6_
--- Perfect Cache
4 --=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
24 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K 1M
Cache Size (bytes)

Figure 5.11: Ideal Machine with Varied Data Cache Size
(Scaled Load Latency)—Harmonic Average

93

As the data cache size increases, fewer data cache misses occur, which reduces the
severity of the data cache bottleneck. Unfortunately, the load latency on cache hits (and
on cache misses) also increases as the data cache size increases. Increasing the load latency
bottlenecks performance in the same way that data cache misses bottleneck performance: it
retards the retirement of loads, and it delays the execution of instructions that are dependent
on loads. Beyond a certain point, increasing the size of the data cache will result in lower
performance, because the cost of the increased load latency will outweigh the benefit of the
reduced number of cache misses. For the machines with 32 cycle miss penalties, increasing
the size of the data cache beyond 256k bytes results in lower performance. For the machines
with 6 cycle miss penalties, the data cache bottleneck is much less severe, so the point at
which the performance is harmed if the cache size is increased occurs at a smaller data
cache size. For these machines, increasing the size of the data cache beyond even 16k bytes
results in lower performance. Results for individual benchmarks are provided in Figure A.31

(SPEC) and Figure A.32 (Non-SPEC) of Appendix A.

94

Figure 5.12 shows the performance averaged over all the benchmarks for several
machines. One line shows the performance of the real machine (i. e., the machine with the
real instruction cache, branch predictor, execution core, and data cache) that was given a
perfect data cache. This machine provides an upper bound on the performances of machines
with real data caches. The remaining lines plot the performances of real machines with real
data caches. For these experiments, the load latency on a cache hit was a constant 2 cycles.
That is, the data cache access time (and hence the load latency) was not scaled with the

data cache size.

16+
--- Perfect Cache

--=-- 6 Cycle Miss Penalty

—+-10 Cycle Miss Penalty
—— 16 Cycle Miss Penalty
-x- 32 Cycle Miss Penalty

e S~
¢ _»

Instructions Per Cycle
(o]

6_
4_
e a =
217
0 T T 1
16K 64K 256K M
Cache Size (bytes)

Figure 5.12: Real Machine with Varied Data Cache Size
(Constant Load Latency)—Harmonic Average

The data cache for a real machine need not be as aggressive as for an ideal machine.
The ideal machine with a 16k byte data cache loses between 4% (6 cycle miss penalty) and
34% (32 cycle miss penalty) of its potential performance due to data cache misses. For the
same size data cache, the real machine loses between 4% (6 cycle miss penalty) and 22%
(32 cycle miss penalty) of its potential performance. Additionally, the real machine is less
sensitive to increasing miss penalty. When the miss penalty is increased from 6 cycles to 32
cycles, the performance of the ideal machine with a 16k byte data cache falls by 31%. For

the same size data cache, the performance of the real machine only falls by 18%.

95

The real machine is hampered by bottlenecks other than the bottleneck that results
from data cache misses. As a result, data cache misses have less of an overall impact on
the real machine than they do on the ideal machine, which is only hampered by the data
cache bottleneck. The bottleneck that results from data cache misses is more severe than
the bottleneck that results from a lack of execution bandwidth (assuming that a processor
that can issue 16 instructions per cycle has between 8 and 16 functional units), but less
severe than the bottlenecks that result from branch mispredictions and instruction cache
misses. Branch mispredictions and instruction cache misses are catastrophic events: they
prevent the instructions that follow the mispredicted branch, or the instructions that follow
the instruction that missed in the instruction cache, from being issued and executed until
the mispredict has been resolved or the cache miss has been serviced. Data cache misses,
on the other hand, do not prevent the instructions that logically follow the load that missed
from being issued and executed. Note that data cache misses worsen the bottleneck that
results from branch mispredictions. Loads feed dependency chains that resolve branches.
When a load misses in the data cache, it may delay the resolution of a mispredicted branch.
Hence, eliminating data cache misses can be very important, since branch mispredictions
are a major performance limiter. Results for the individual benchmarks are provided in

Figure A.33 (SPEC benchmarks) and Figure A.34 (Non-SPEC benchmarks) of Appendix A.

96

Finally, Figure 5.13 shows the performance averaged over all the benchmarks for the
same machines that were used to generate Figure 5.12, except that for these machines, the
access time of the data cache was scaled with its size. For the machines with 6 cycle miss
penalties, the highest performing machine had a 16k byte data cache. For the machines
with miss penalties greater than 6 cycles, the highest performing machines were those with
64k byte data caches. Results for the individual benchmarks are provided in Figure A.35
(SPEC) and Figure A.36 (Non-SPEC) of Appendix A.

=
@

--- Perfect Cache

--a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
—— 16 Cycle Miss Penalty
-x- 32 Cycle Miss Penalty

L~
e

=
2

Instructions Per Cycle
(o]

6_
4-

e e
2 _
0 T T 1
16K 64K 256K M

Cache Size (bytes)

Figure 5.13: Real Machine with Varied Data Cache Size
(Scaled Load Latency)—Harmonic Average

97

5.4 Summary

Figure 5.14 provides a summary of the four performance bottlenecks. It plots the
performance averaged over all the benchmarks for 10 different machines. The solid line
shows the performance of the ideal machine; i. e., the machine with a perfect instruction
cache, a perfect branch predictor, a perfect execution core, and a perfect data cache. The
dotted line shows the performance of the real machine; i. e., the machine with the real in-
struction cache, the real branch predictor, the real execution core, and the real data cache.
The performance of the ideal machine, which has none of the four performance bottle-
necks, is 12.4 TPC. The performance of the real machine, which has all four performance

bottlenecks, is 3.0 IPC. Thus, 76% of the potential performance is lost due to the four

bottlenecks.
16-
144
Ideal Machine
1 = + Redl |Cache
% mmmms + Read BP
<] + Real Core
3 10. == + Real DCache
o}
[a
g < 7 | Real Machine
9 mmm + Perfect | Cache
g e + Perfect BP
S 6 + Perfect Core
‘?:5 =+ Perfect DCache
= 4]
2
0-

Figure 5.14: Performance Bottlenecks Summary—Harmonic Average

The ideal machine provides an upper bound on the performances of the other 9
machines. Underneath the solid line that plots the performance of this machine are four
bars. Each of these bars plots the performance of the ideal machine when one of the
bottlenecks is added. The bottleneck is added by trading the perfect ‘X’ used by the
ideal machine for the real ‘X’ used by the real machine, where ‘X’ is either an instruction
cache, branch predictor, execution core, or data cache. When a bottleneck is added, the
performance drops according to the severity of the bottleneck. I will call this method
of determining a bottleneck’s severity (i. e., the method where a bottleneck’s severity is

determined by adding that bottleneck to the ideal machine) the ideal machine method. The

98

bottlenecks, in decreasing order of severity, are the bottleneck due to instruction cache
misses, the bottleneck due to branch mispredicts, the bottleneck due to data cache misses,
and the bottleneck due to a lack of execution bandwidth. The performance degradations
that result from these bottlenecks are 64%, 54%, 8%, and 1%, respectively.

The real machine provides a lower bound on the performances of the other 9 ma-
chines. The dotted line that plots the performance of this machine passes through four bars.
Each of these bars plots the performance of the real machine when one of the bottlenecks
is removed. The bottleneck is removed by trading the real ‘X’ used by the real machine
for a perfect ‘X’, where ‘X’ is either a instruction cache, branch predictor, execution core,
or data cache. When a bottleneck is removed, the performance increases according to the
severity of the bottleneck. I will call this method of determining a bottleneck’s severity
(i. e., the method where a bottleneck’s severity is determined by removing that bottleneck
from the real machine) the real machine method. The bottlenecks, in decreasing order of
severity, are the bottleneck due to instruction cache misses, the bottleneck due to branch
mispredicts, the bottleneck due to data cache misses, and the bottleneck due to a lack of ex-
ecution bandwidth. The performance increases that result from removing these bottlenecks
are 65%, 49%, 7%, and 0%, respectively.

The ideal machine method for determining a bottleneck’s severity does not ac-
count for the interactions between that bottleneck and other bottlenecks. The real machine
method does. The ideal machine method is optimistic: it assumes that when the machine is
built, there will be viable solutions for all bottlenecks except for the bottleneck in question.
The severity of a bottleneck is determined by assuming that the machine will have no other
bottlenecks. Because the severity is determined in this way, this method does not account
for the interactions between bottlenecks. (An example of an interaction between bottlenecks
is that data cache misses worsen the bottleneck that results from branch mispredictions.
This example was discussed in Section 5.3.4). The real machine method, on the other hand,
is pessimistic: it assumes that when the machine is built, there will not be viable solu-
tions for bottlenecks other than the bottleneck in question. The severity of a bottleneck is
determined by assuming that the machine will have all of the other bottlenecks. Because
the severity is determined in this way, this method accounts for the interactions between

bottlenecks.

99

In Figure 5.14, the most severe bottleneck was the bottleneck due to instruction
cache misses. This was true regardless of the method used to determine the severity of
the bottlenecks. In addition, the order of the bottlenecks, in terms of severity, was the
same regardless of the method used to rank them. This is not always the case. For the li
benchmark (shown in Figure 5.15 along with the rest of the SPEC benchmarks) and the
chess benchmark (shown in Figure 5.16 along with the rest of the Non-SPEC benchmarks),
the order of the bottlenecks depends on the method used to rank them.

The bottleneck due to branch mispredicts is extremely severe for both these bench-
marks. Branch mispredicts are more costly for the real machines than they are for the ideal
machines, because the real machines have real data caches, and data cache misses increase
the resolution time of mispredicted branches. Because of this, the real machine method
may assign a higher level of “severity” to the bottleneck due to branch mispredicts than
the ideal machine method does. This phenomenon can be seen in the chess benchmark: the
ideal machine method ranks the bottleneck due to branch mispredicts as less severe than the
bottleneck due to instruction cache misses, but the real machine method ranks the bottle-
neck due to branch mispredicts as more severe than the bottleneck due to instruction cache
misses. Also note that adding a perfect data cache to the real machine not only eliminates
the bottleneck due to data cache misses, it also reduces the resolution time of mispredicted
branches, which reduces the severity of the bottleneck due to branch mispredicts. Because
of this, the real machine method may assign a higher level of “severity” to the bottleneck
due to data cache misses. This phenomenon can be seen in the li benchmark: the ideal
machine method ranks the bottleneck due to data cache misses as less severe than the bot-
tleneck due to instruction cache misses, but the real machine method ranks bottleneck due

to data cache misses more severe than the bottleneck due to instruction cache misses.

100

For the cmp benchmark (see Figure 5.15), performance only falls by 2% when the
real data cache is added to the ideal machine, which seems to indicate that data cache
misses do not significantly bottleneck performance. Yet, when a perfect data cache is added
to the real machine, performance increases by 21%, which indicates that data cache misses
are a significant bottleneck. This discrepancy is again caused by the interaction between
two bottlenecks: data cache misses increase the resolution time of mispredicted branches,
which worsens the bottleneck due to branch mispredicts. The real machine with the perfect
data cache has a real branch predictor. Adding the perfect data cache to the real machine
reduces the resolution time of mispredicted branches, which reduces the severity of the
bottleneck due to branch mispredicts. The ideal machine with the real data cache has a
perfect branch predictor, so data cache misses don’t worsen the bottleneck due to branch
mispredicts, since there are no branch mispredicts. Note that the bottleneck due to branch
mispredicts is severe for the cmp benchmark, so reducing the resolution time of mispredicted
branches yields a large performance gain.

The results in this chapter show that the bottleneck due to instruction cache misses
and the bottleneck due to branch mispredicts are significant, whereas the bottleneck due
to a lack of execution bandwidth and the bottleneck due to data cache misses are not. The
bottleneck due to instruction cache misses is more severe than the bottleneck due to branch
mispredicts. The performance of the ideal machine drops by 64% when the bottleneck due
to instruction cache misses is added, and the performance of the real machine increases by
65% when that bottleneck is removed. For the bottleneck due to branch mispredicts, these
percentages are 54% and 49%, respectively. In the remaining chapters of this dissertation, T
will show how out-of-order fetch, decode, and issue reduces the bottleneck due to instruction

cache misses.

101

Instructions Per Cycle

Instructions Per Cycle

=
i

14
— |deal Machine
12- = + Red |Cache
= + Red BP
+ Real Core
10 =+ Real DCache
EE B B D Y I S DR [Real Machine
--J==--fi-- w=m + Perfect|Cache
6 m + Perfect BP
7 + Perfect Core
= + Perfect DCache
4
2 - -
0- =
gcc go 1jpeg
Benchmark
16 —_
14
—— Ideal Machine
12- =+ Real |Cache
= + Red BP
+ Real Core
10- = + Rea DCache
s« o B B B BFEEREERE - Real Machine
=+ Perfect ICache
=+ Perfect BP
6 + Perfect Core
m + Perfect DCache
4
. I
0-
m88k perl vortex

Benchmark

Figure 5.15: Performance Bottlenecks Summary—SPEC Benchmarks

102

Instructions Per Cycle

Instructions Per Cycle

=
i

14-
— |deal Machine
12 = + Red |Cache
= + Red BP
+ Real Core

=
?

= + Rea DCache

------ Real Machine
m + Perfect ICache
=+ Perfect BP
+ Perfect Core
= + Perfect DCache

chess groff gs pgp
Benchmark

16
14+
—— Ideal Machine
12- =+ Real |Cache
= + Red BP
+ Real Core
10- = + Rea DCache

------ Real Machine
=+ Perfect ICache
=+ Perfect BP

+ Perfect Core
m + Perfect DCache

python ss tex

Benchmark

Figure 5.16: Performance Bottlenecks Summary—Non-SPEC Benchmarks

103

CHAPTER 6

Out-of-Order Fetch, Decode, and Issue:

Concept and Preliminary Results

Chapter 5 showed that instruction cache misses significantly bottleneck performance.
This chapter shows a way to reduce this bottleneck: out-of-order fetch, decode, and issue.

The chapter first reintroduces the concept of out-of-order fetch and the concept of
out-of-order fetch/decode/issue (both concepts are variants of the concept of out-of-order
fetch, decode, and issue), then describes the problem of unknown register dependencies that
results from out-of-order fetch/decode/issue, and then describes some possible solutions to
this problem. It also presents some preliminary results that show that the instruction cache
bottleneck for a sixteen wide issue machine can be nearly eliminated with out-of-order
fetch/decode/issue.

These preliminary results were generated using the RDF simulator. The RDF
simulator models an abstract machine: an RDF machine that has been augmented with a
real instruction cache, a real branch predictor, a real execution core, and a real data cache.
One major drawback of this simulator is that it cannot distinguish between fetch and issue.
As a result, only out-of-order fetch/decode/issue can be modeled with this simulator. Out-
of-order fetch cannot be modeled. The RDF simulator is used to calculate the performance
potential of out-of-order fetch/decode/issue. It is also used to determine which solutions to
the unknown register dependency problem are worthwhile. Only the worthwhile solutions
are implemented in the full simulator. The actual performance benefits of both out-of-order
fetch and out-of-order fetch/decode/issue are calculated using the full simulator, which

models a more realistic machine. These results are presented in Chapter 8.

104

6.1 Concept

Out-of-order fetch reduces the performance penalty caused by instruction cache
misses. I will use the term fetch block to refer to the group of instructions that are brought
into the processor by an instruction cache fetch. Upon encountering an instruction cache
miss, a conventional processor will wait until the instruction cache miss is serviced before
continuing to fetch, decode, and issue any new fetch blocks. A processor with out-of-order
fetch temporarily ignores the block associated with the instruction cache miss, and attempts
to fetch the blocks that follow that block. The addresses of these blocks are generated by
the branch predictor. (I will use the term branch predictor to refer to all the next fetch
address generation logic.) Because the branch predictor does not depend on the instructions
in the current block to generate the address of the next block to be fetched, it can continue
to make predictions even when the current block misses in the instruction cache. Thus, the
processor can skip the block that missed in the instruction cache and continue fetching the
following block using the address generated by the branch predictor. After the instruction

cache miss is serviced, the processor can fetch, decode, and issue the skipped block.

105

Consider the example in Figure 6.1. It shows a graph consisting of five fetch blocks
A—E. Assume that every cycle the processor is able to fetch a new block. In the first cycle,
the processor fetches block A and the predictor generates address B for the next block.
Suppose in the second cycle, the processor’s fetch of block B results in an instruction cache
miss. The predictor can still generate the address for the next block, block C. The processor
will fetch nothing in the second cycle, but can attempt to fetch block C in the third cycle,
followed by block D in the fourth cycle (regardless of whether C hit in the cache or not).
Once the instruction cache miss is serviced, the processor can return to the point of the
miss and fetch, decode, and issue the skipped block(s), starting with block B. Thus, out-
of-order fetch allows the processor to fetch useful work in the presence of instruction cache
misses. In the worst case, where all the following fetches result in instruction cache misses,

out-of-order fetch still provides the performance benefit of prefetching.

A

N\

<.
v
<

Figure 6.1: Out-of-Order Fetch Example

Out-of-order fetch/decode/issue also reduces the performance penalty caused by
instruction cache misses by allowing the processor to fetch useful work in the presence of in-
struction cache misses. For conventional processors, processors with out-of-order fetch, and
processors with out-of-order fetch/decode/issue, the branch predictor predicts the sequence

of fetch blocks that comprise the dynamic instruction stream. In conventional processors,

106

fetch requests for these blocks are initiated and completed in program order. As the fetch
requests complete, they write their data into the processor’s fetch buffer. For conventional
processors, blocks are always inserted into the fetch buffer in the predicted program or-
der. In processors with either out-of-order fetch or out-of-order fetch/decode/issue, fetch
requests are initiated in program order, but may complete out of program order if there
are instruction cache misses. As a result, fetch blocks may be inserted into the fetch buffer
out of order. What distinguishes out-of-order fetch from out-of-order fetch/decode/issue
is the order in which fetch blocks may be removed from the fetch buffer. For out-of-order
fetch, blocks are always removed from the fetch buffer in program order. For out-of-order
fetch/decode/issue, blocks may be removed from the fetch buffer out-of-order. Blocks are
decoded and issued into the reservation stations in the order that they are removed from
the fetch buffer. Hence, for out-of-order fetch, instructions are always decoded and issued
in program order. For out-of-order fetch/decode/issue, instructions may be decoded and
issue out of program order.

The example in Figure 6.1 assumed that the processor could only fetch one block
per cycle. Restricting fetch to one block per cycle severely limits the performance of
wide issue processors. Recent research has discovered several techniques for allowing a
processor to fetch multiple blocks per cycle. These techniques include VLIW tree instruc-
tions [90], branch alignment [16], trace scheduling [34], superblocks [51], hyperblocks [74, 75],
block-structured ISAs [46,47, 82-84], trace caches [35, 84, 85, 98,102, 108] !, branch address
caches [133], collapsing buffers [23], subgraph predictors [31], multiple-block ahead pre-
dictor [111], and path address caches [87]. Many of these techniques (for example, block-
structured ISAs and trace caches) store multiple copies of the same fetch block in the cache.
This exacerbates the instruction cache bottleneck. Other techniques (for example, subgraph
predictors and path address caches) require branch predictors specialized for multiple block
fetch. Throughout this dissertation, I use an idealized technique for multiple block fetch
that does not require multiple copies of fetch blocks to be stored in the cache or require a

specialized branch predictor.

!Throughout this dissertation, I assume that instructions are fetched from an instruction cache, and
that out-of-order fetch and out-of-order fetch/decode/issue are used to lessen the performance penalty that
results from instruction cache misses. However, if instructions are (primarily) fetched from a trace cache,
out-of-order fetch and out-of-order fetch/decode/issue are used to lessen the impact of trace cache misses
rather than instruction cache misses.

107

6.2 Creating the Hole

Conventional processors—and processors with out-of-order fetch—decode and issue
instructions in program order. As the instructions are decoded, the dependencies communi-
cated between instructions via registers are computed. Because the instructions are decoded
in order, these dependencies can be computed exactly. Once the dependencies have been
computed, register renaming is used to eliminate the anti and output dependencies.

Processors that implement out-of-order fetch/decode/issue have to deal with a prob-
lem that is similar to the unknown address problem, which was described in Section 4.2.
Unlike the unknown address problem, which deals with the dependencies communicated
between instructions via memory, this problem deals with the dependencies communicated
via registers. Because the instructions are not always decoded in order, an instruction can
be decoded and issued into the active window before the instructions it is dependent on.
When this occurs, the instruction’s register dependencies will be computed incorrectly. The
instruction must then wait until the instructions it is dependent on have been decoded and
issued before its register dependencies can be correctly computed and repaired.

When out-of-order fetch/decode/issue results in an instruction being issued that
is dependent on an instruction that has not yet been issued into the active window, the
machine’s representation of the dataflow graph is said to have a “hole” in it. The hole is
a piece of the dataflow graph about which the machine has no knowledge of the register
dependencies. The dataflow graph may have multiple holes in it. Each hole in the dataflow
graph corresponds to a sequence of fetch blocks that are older than the youngest fetch block
in the active window and that are not in the active window because those blocks missed in
the instruction cache. (Fetch block X is older than fetch block Y'if, in the sequence of fetch
blocks that comprise the dynamic instruction stream, block X occurs before block Y.)

For example, assume that the sequence of fetch blocks B;—Bg comprises a segment
of the dynamic instruction stream. Block Bx is older than block By if X is less than Y.
Assume blocks By, Bs, Bg, B7, and By missed in the instruction cache, and their instructions
have not been issued into the active window. Assume the instructions from the remaining
blocks (B, By, Bs, and Bg) have been issued into the active window. There are two holes
in the dataflow graph: one for the sequence of blocks Bo—Bs, and one for the sequence of

blocks Bs—B7. Block By is not older than the youngest fetch block in the active window

108

(i- e., block Bg), so there is no hole corresponding to this block.

For now, consider the case where there is a single hole in the dataflow graph.
The hole is comprised of all instructions from fetch blocks skipped over as a result of
instruction cache misses. The instructions issued before the skipped blocks are called pre-
hole instructions, the instructions from the skipped blocks are called hole instructions, and
the instructions issued after the skipped blocks are called post-hole instructions. The hole is
created as the fetch blocks are being skipped over. The hole is filled in as the cache misses
are serviced and the missing instructions become available for decode and issue. The hole
disappears after all the instructions from the skipped blocks have been decoded and issued
into the active window. Note that each hole instruction uses two issue cycles: one for the
creation of the hole, and one to fill the hole in.

Consider the example in Figure 6.2. Assume that blocks A, C, D, and E have been
issued into the active window, and that block B, which suffered an instruction cache miss,
has not yet been issued into the active window. The instructions from block A are the pre-
hole instructions, the yet-to-be-issued instructions from block B are the hole instructions,

and instructions from blocks C, D, and E are the post-hole instructions.

A Pre-Hole

Hole

Post-Hole

E

Figure 6.2: The Dataflow Graph Hole

109

When there are multiple holes in the dataflow graph, the terms pre-hole, hole, and
post-hole are all used in reference to the oldest hole in the dataflow graph. (Hole X is
older than hole Y if hole X corresponds to a sequence of fetch blocks that are older than
the sequence of fetch blocks that correspond to hole Y.) The instructions issued before the
skipped blocks that comprise the oldest hole are the pre-hole instructions, the instructions
from the skipped blocks are the hole instructions, and the instructions issued after the
skipped blocks are the post-hole instructions. When the oldest hole disappears, the next
oldest hole (if there is one) becomes the new oldest hole, and new sets of instructions
become the pre-hole, hole, and post-hole instructions. In Figure 6.2, if block D also suffered
an instruction cache miss, and as a result has not yet been issued into the active window,
the instructions from block A are still the pre-hole instructions, the instructions from block
B are still the hole instructions, and the instructions from blocks C, D, and E are still the

post-hole instructions.

6.3 Dependency Handling Techniques

I invented several techniques for solving the data dependency problems that result
from having holes in the dataflow graph. Like the memory disambiguation techniques, which
were described in Section 4.2, these techniques follow one of two basic paradigms: either the
non-speculative paradigm or the speculative paradigm. Techniques in the non-speculative
paradigm do not speculate on the dependencies of post-hole instructions. The techniques

in the speculative paradigm do.

6.3.1 Non-Speculative Paradigm

Techniques in the non-speculative paradigm never execute a post-hole instruction
until they know for certain which instructions the post-hole instruction is dependent on.
A post-hole instruction that might be dependent on hole instructions is forced to wait
until those hole instructions have been decoded and issued into the active window. Once
its dependencies are known for certain, the post-hole instruction is allowed to execute.
The advantage of using techniques in this paradigm is that, when a post-hole instruction
executes, its source operands are guaranteed to contain the correct data. Because of this,

when a post-hole instruction distributes its result, that result is guaranteed to contain the

110

correct data. The disadvantage of using techniques in this paradigm is that some post-
hole instructions are forced to wait for hole instructions they are not dependent on, which
needlessly delays their execution and result distribution.

I invented three techniques that follow the non-speculative paradigm. I call these

three techniques assume dependence, classification, and mask cache.

Assume Dependence

The assume dependence technique pessimistically predicts (or assumes) that all
post-hole instructions are dependent on hole instructions. Post-hole instructions are not
allowed to execute until the hole disappears. This unnecessarily delays the execution of
all post-hole instructions that are not dependent on results generated by hole instructions.
While this technique allows the fetch unit to perform prefetching during an instruction
cache miss, and allows early insertion of the post-hole instructions into the reservation
stations, the processor will not take advantage of any parallelism exposed by out-of-order
fetch/decode/issue.

This technique deals with register dependencies in a way that is analogous to the
way that the dependency matrix memory disambiguation technique deals with memory
dependencies. For dependency matrix, a load is not allowed to distribute its result until
the addresses of all previous memory writes are known. For assume dependence, a post-
hole instruction is not allowed to execute and distribute its result until the addresses (i. e.,

register numbers) of all previous register writes are known.

Classification

With the classification technique, post-hole instructions are classified as either be-
ing independent of any hole instructions, or possibly dependent on hole instructions. An
instruction is classified as independent if (1) it has no register source operands (e. g., all its
source operands are literal constants specified by the instruction), or (2) the values for all
of its register source operands are generated by other independent instructions. Otherwise,

an instruction is classified as possibly dependent.

111

Consider the example in Figure 6.3. It shows a section of a dataflow graph with
a hole in it. The arrows entering the blob labeled “HOLE INSTRUCTIONS” represent
the register values produced by the pre-hole instructions. The blob represents the hole,
and contains the hole instructions. The arrows that emanate from the blob represent the
register values produced by either the pre-hole instructions or the hole instructions. Since
there is a hole in the dataflow graph, it is impossible for the machine to determine which
of these values are produced by the pre-hole instructions, and which are produced by the

hole instructions. The instructions below the blob are the post-hole instructions.

HOLE INSTRUCTIONS

Figure 6.3: Classification Example

The SUB instruction has no register source operands. Both its source operands
are literal constants. It is classified as independent. The NEG instruction has a single
register source operand whose value is produced by the SUB instruction. Therefore, the
NEG instruction is also classified as independent. The ADD instruction has two register
source operands whose values are produced by either pre-hole or hole instructions. The
ADD instruction is therefore classified as being possibly dependent. The NOT instruction
consumes the value produced by the ADD instruction. Thus, the NOT instruction is also
possibly dependent. Finally, the MUL instruction consumes the values produced by the
NOT and NEG instructions. Since the NOT instruction is possibly dependent, the MUL

instruction is also possibly dependent.

112

By definition, possibly dependent instructions might be dependent on hole instruc-
tions. These instructions are not allowed to execute until the hole disappears. This unnec-
essarily delays the execution of all possibly dependent instructions that are not dependent
on results generated by hole instructions. Independent instructions, on the other hand, are
guaranteed to be independent of any hole instructions. These instructions are allowed to
execute as soon as they become ready. The advantage of this technique over the assume de-
pendence technique is that some of the post-hole instructions (i. e., the instructions classified
as independent) are allowed to execute before the hole disappears. This allows the processor
to exploit some of the extra parallelism exposed by out-of-order fetch/decode/issue.

This technique deals with register dependencies in a way that is analogous to the way
that the most aggressive memory disambiguation technique that follows the non-speculative
memory disambiguation paradigm deals with memory dependencies. The memory disam-
biguation technique was described algorithmically by Patt et al. [101]. For this technique,
a load that is dependent on a store is not allowed to distribute its result until the address
of the memory write of the store, and the addresses of all memory writes younger than
the store but older than the load are known. For the classification technique, a post-hole
instruction that is dependent on instruction X is not allowed to execute and distribute its
result until the address (i. e., register number) of the register write of instruction X, and
the addresses of all register writes younger than instruction X but older than the post-hole

instruction are known.

113

Mask Cache

For the mask cache technique, hardware keeps track of which registers are written
by the hole instructions. The hardware uses this information to determine which post-
hole instructions are dependent on hole instructions. The hardware prevents post-hole
instructions that are dependent on hole instructions from being scheduled for execution.
Post-hole instructions that are not dependent on hole instructions can be scheduled for
execution once their flow dependencies have been satisfied. When the instructions that
comprise the hole become available for decode and issue, the hardware fills in the hole and
correctly establishes all the flow dependencies. Post-hole instructions that were dependent
on hole instructions are scheduled for execution when the hole instructions they depend on
have been decoded and issued, and all the post-hole instructions’ flow dependencies have
been satisfied.

To accomplish this, destination register identifiers are recorded in a separate struc-
ture, so that the flow dependencies can be identified. For handling an instruction cache miss,
only the flow dependencies crossing the skipped fetch block must be represented. This is
done by storing the dependency information for each of the instructions of the block in a
separate cache, called the mask cache. If an instruction writes a register, the mask cache
stores the architectural register number of this register. For the Alpha AXP ISA, which has
64 architectural registers, with two registers hard-wired to 0, 6 bits are needed to specify
the dependency information for each instruction. To store an Alpha AXP instruction in
the instruction cache requires 32 bits, which is approximately 5 times the number of bits
required to store the dependency information of an Alpha AXP instruction in the mask
cache.

When creating the hole, the dependency information read from the mask cache is
used to rename the destination registers of the hole instructions. That is, even though
the hole instructions are not available for decode and issue, their destination registers are
renamed using the mask cache information. Later, when the hole instructions are available
for decode and issue, and the hardware is filling the hole, the hardware will need to know
how the architectural destination registers were mapped to physical registers when the hole
was created in order to properly set up the rename tags of the instructions being inserted

into the hole. Depending on the register renaming scheme, the hardware may need to save

114

the rename tags in some structure when creating the hole in order to accomplish this.
Figure 6.4 shows the organization of an instruction fetch mechanism incorporating a
mask cache for a scalar processor. For superscalar processors, the fetch mechanism must be
able to provide multiple instructions per cycle. For the processors modeled in the remaining
experiments in this dissertation, the fetch mechanism can provide up to 16 instructions per
cycle. However, to make things easier to understand, the illustrated fetch mechanism can

only fetch up to one instruction per cycle.

12k Byte Mask Cache | Fetch Address 4k Byte |Cache

<15:2> <11:2>

6 32

Dependency Info Instruction

Figure 6.4: Instruction Fetch Mechanism Incorporating a Mask Cache

The illustrated instruction cache is 4k bytes and direct mapped. Each instruction is
32 bits, or 4 bytes, so the cache can hold 1k instructions. The dependency information for
each instruction is stored in the mask cache. The dependency information indicates which
architectural register, if any, is updated by the instruction. For the Alpha AXP ISA, which
has 64 architectural registers, 6 bits are needed to record this dependency information. The
mask cache illustrated is 12k bytes and direct mapped. Since the dependency information
for one instruction requires only 6 bits of storage, the mask cache can hold the dependency

information for 16k instructions.

115

The mask cache is accessed in parallel with the instruction cache. On an instruc-
tion cache hit, everything proceeds as in a conventional processor. If there is a miss in the
instruction cache, but a hit in the mask cache, the dependency information from the mask
cache is used to enable out-of-order fetch/decode/issue of the instructions that missed in
the instruction cache. If there is a miss in both caches, the dependency information re-
quired for out-of-order fetch/decode/issue is not available. At this point, fetch, decode,
and issue can stall, or one of the other dependency handling techniques (in either the non-
speculative or the speculative paradigms), which don’t require a mask cache for out-of-order
fetch/decode/issue, can be used to enable out-of-order fetch/decode/issue. Table 6.1 sum-
marizes the actions taken by the processor for all three cases. In the table, FDI stands for

Fetch/Decode/Issue.

ICache | Mask Cache || Action

Hit In-Order FDI
Miss Hit Out-of-Order FDI
Miss Miss Stall FDI or Out-of-Order FDI

Table 6.1: Summary of Actions for a Processor with a Mask Cache

The advantage of this technique over the assume dependence and classification tech-
niques is that, as long as the dependency information for each of the hole instructions is
resident in the mask cache, the execution of post-hole instructions is never unnecessarily de-
layed. This allows the processor to exploit all the extra parallelism exposed by out-of-order
fetch/decode/issue. The primary disadvantage of this technique is that some of the proces-
sor’s transistor budget must be allocated to the mask cache. This may reduce the number
of transistors that can be budgeted for the instruction cache, which results in a smaller
instruction cache with a higher miss rate. Hence, when out-of-order fetch/decode/issue is
implemented using the mask cache technique, the number of instruction cache misses may
increase. However, out-of-order fetch/decode/issue allows the processor to better tolerate

instruction cache misses, which counteracts the impact of the extra instruction cache misses.

116

6.3.2 Speculative Paradigm

When it is uncertain whether or not a post-hole instruction is dependent on a hole
instruction, techniques in the speculative paradigm will predict whether or not the post-
hole instruction is dependent. If a post-hole instruction is predicted to be independent
of any hole instructions, it is allowed to execute as soon as it becomes ready. If a post-
hole instruction is predicted to be dependent, it is not allowed to schedule for execution
until the hole instructions it depends on have been decoded and issued, and all of its flow
dependencies have been satisfied. The machine can wait for the hole to disappear in order
to determine which instructions the post-hole instruction is dependent on. Once the hole
disappears, all the post-hole instruction’s (register) dependencies can be fully resolved.

The prediction is verified when all of the post-hole instruction’s dependencies have
been resolved. If the prediction was correct, no further action is required. If the prediction
was incorrect, there are two cases to consider. First, the post-hole instruction has not
yet executed. Since all the post-hole instruction’s dependencies are known at this point,
the instructions that produce the values consumed by the post-hole instruction can be
identified. The dependency information (e. g., rename tags) of the post-hole instruction
is simply updated so that it identifies the correct producers. The only real harm done in
this case is that the execution of the post-hole instruction was (possibly) delayed longer
than it needed to be. For the second case, the post-hole instruction has already executed.
Since the prediction was incorrect, the post-hole instruction probably executed using source
operands that contained incorrect data. Because of this, the post-hole instruction may have
distributed a result containing incorrect data. Instructions that are dependent on the post-
hole instruction may have executed using this incorrect data, producing and distributing
still more incorrect data. Recovering from this mispredict may be trickier. The machine
must re-execute the post-hole instruction and any instructions that executed using incorrect
data.

The advantage of using techniques in this paradigm is that, assuming the predictions
are mostly correct, post-hole instructions are rarely forced to wait for hole instructions
they are not dependent on. As a result, the distribution of post-hole instruction results is
almost never needlessly delayed. The disadvantage, of course, is that the predictions are

sometimes wrong. And when a prediction is wrong, a post-hole instruction may execute

117

using source operands that contain incorrect data, and, as a result, the post-hole instruction
may distribute incorrect data.
I invented two techniques that follow the speculative paradigm. I call these two

techniques assume independence and oracle.

Assume Independence

The assume independence technique optimistically predicts (or assumes) that all
post-hole instructions are independent of the hole instructions. This allows some of the
post-hole instructions to be executed before the hole disappears. With this technique,
post-hole instructions that are dependent on hole instructions may initially execute using
source operands that contain incorrect data. However, an instruction re-execution scheme
is used to ensure that these instructions will eventually be executed using the correct source
operand data. The disadvantage of this technique is that some post-hole instructions may
temporarily generate incorrect results, potentially causing branches to resolve incorrectly,
or memory requests that would not otherwise occur. Also, instructions producing incorrect
results may contend for resources needed by instructions executing correctly. The advantage
of this technique is that post-hole instructions that are not dependent on hole instructions
can execute during the processing of the instruction cache miss.

This technique uses an instruction re-execution scheme to ensure that a post-hole
instruction that initially executed using incorrect source operand data is eventually executed
using the correct source operand data. When a post-hole instruction’s dependencies are
resolved, any flow dependencies that were incorrectly established are corrected. This is
accomplished by fixing all of the instruction’s incorrect rename tags. Any instruction whose
rename tags are fixed is forced to re-execute. When the data associated with the rename
tags for all source operands becomes available, the instruction can be immediately sent to
a functional unit and executed. When an instruction from a hole executes and distributes
its result, any post-hole instructions that initially executed using incorrect values will be
re-executed correctly. All instructions executed incorrectly will eventually be re-executed
as the correct values propagate down the dependence graph.

This technique deals with register dependencies in a way that is analogous to the
way that the blind (or naive) speculation memory disambiguation technique deals with

memory dependencies. For blind speculation, when it is uncertain whether or not a load

118

is dependent on a store in the active window, the technique always predicts that the load
is independent. For assume independence, when it is uncertain whether or not a post-
hole instruction is dependent on a hole instruction, the technique always predicts that the

post-hole instruction is independent.

Oracle

For the oracle technique, the hardware uses an oracle to predict whether or not a
post-hole instruction is dependent on a hole instruction. The oracle always provides correct
predictions. The oracle is equivalent to a perfect (100 percent hit rate) mask cache. A post-
hole instruction that is predicted to be independent of hole instructions can be scheduled
for execution once its flow dependencies have been satisfied. A post-hole instruction that is
predicted to be dependent is scheduled for execution when the hole instructions it depends
on have been decoded and issued, and its flow dependencies have been satisfied. The
oracle can’t be built, so this technique cannot actually be implemented in hardware. I use
this technique because it ideally handles the data dependency problems that result from
having holes in the dataflow graph. That is, the oracle technique is the optimal dependency
handling technique. This technique provides an upper bound on the performance of any

machine that implements out-of-order fetch/decode/issue.

6.4 Experimental Results

This section presents some preliminary results that show that the instruction cache
bottleneck for a sixteen wide issue machine can be nearly eliminated with out-of-order
fetch/decode/issue. These preliminary results were generated using an RDF model that
was augmented with a real instruction cache, a real branch predictor, a real execution core,

and a real data cache.

119

All RDF machines modeled in this chapter have a window size of 1024 instructions,
an issue rate of sixteen instructions per cycle, and the instruction class latencies specified
in Table 4.1. They all use the simple oracle memory disambiguation technique. For con-
ventional machines (i. e., machines that fetch, decode, and issue instructions in program
order), instructions are issued and retired in the order they appear in the dynamic instruc-
tion stream. For machines that implement out-of-order fetch/decode/issue, instructions
may be issued out-of-order, but they are always retired in order.

The default instruction cache is non-blocking, direct mapped, 16k bytes, with a
64 byte line size. The cache access requires one cycle. In the event of a cache miss, an
additional 10 cycles are required to access the next level of cache and/or memory. In
the experiments in this chapter, I will vary the size, access time, set associativity, and
miss penalty of this default instruction cache. The performance benefit of out-of-order
fetch/decode/issue strongly depends on the cache miss rate and the cache miss penalty.
The miss rate is a function of the cache size and the benchmark being simulated. The
size of my default instruction cache may be rather small for tomorrow’s machines. Then
again, the size of my benchmarks may be rather small for tomorrow’s machines. The miss
penalty is a function of the cycle time and cache/memory hierarchy. The miss penalty of my
default instruction cache may be too small, too large, or just right depending on the cycle
times and cache/memory hierarchies of tomorrow’s machines. Note that allowing a machine
to perform out-of-order fetch/decode/issue opens up new possibilities in the design of the
cache/memory hierarchy. For example, without out-of-order fetch/decode/issue, a machine
may need both an on-chip second level cache and an off-chip third level cache to meet its
performance goals. With out-of-order fetch/decode/issue, the machine may no longer need
the on-chip second level cache to meet its performance goals.

The conditional branch predictor is a gshare [81] scheme which exclusive-ORs a
16-bit global history with the fetch address to select the appropriate pattern history table
entry. Indirect (or computed) branch targets are predicted using the “tagless” variety of the
pattern based predictor proposed by Chang, Hao, and Patt [19]. A 9-bit global history is
used to select an entry in a table of indirect branch target addresses. To improve prediction

accuracy, | added a single “hysteresis” bit to each entry in the table. The bit controls the

120

replacement of the branch target address stored in that entry. > Subroutine returns are
predicted using a 64 entry Return Address Stack. To model the real branch predictor, as
the branches are encountered in the dynamic instruction stream, a prediction is made. This
prediction is compared to the real outcome of the branch. If a prediction is incorrect, issue
is stalled until the branch is resolved and instructions from the correct path are available
for issuing. I assume six cycles between when a branch is resolved and when instructions
from the correct path are available. Since one cycle is required to execute the branch, the
minimum branch mispredict penalty is seven cycles. This mispredict penalty is identical to
that of the Compaq Alpha 21264 [43]. I did not investigate the problem of BTB misses or
any possible solutions. I modeled a perfect (100 percent hit rate) BTB under the assumption
that there will be a suitable solution.

The execution core consists of sixteen fully pipelined functional units, where each
functional unit is capable of performing every desired operation. Each cycle, the oldest
sixteen ready instructions are scheduled for execution. (This execution core is modeled
by setting the dispatch rate to sixteen. The dispatch rate is the maximum number of
instructions that can be scheduled for execution on functional units in a single cycle.) In
addition, the maximum number of instructions that can be retired in a single cycle is sixteen.

The data cache is non-blocking, direct mapped, 16k bytes, with a 64 byte line size.
All loads require one cycle for address calculation, and one cycle for cache access. In the
event of a cache miss, loads require an additional 10 cycles for accessing the next level of
cache and/or memory. (The load latency on a cache hit is 2 cycles. The load latency on a
cache miss is 12 cycles.)

There are two major drawbacks of the RDF simulator, which is used to gener-
ate the results in this chapter. The first was described at the beginning of this chapter:
the RDF simulator cannot distinguish between fetch and issue. As a result, only out-
of-order fetch/decode/issue can be modeled with this simulator. Out-of-order fetch can-
not be modeled. However, the performance of a machine that implements out-of-order
fetch/decode/issue is an upper bound on the performance of a machine that implements

out-of-order fetch. Hence, the results presented in this chapter for machines that implement

Whenever an entry provides the correct prediction for a branch, its hysteresis bit is set to 1. Whenever
it provides an incorrect prediction, its hysteresis bit is set to 0. The branch target address stored in an entry
can only be replaced if the entry provides an incorrect prediction and the hysteresis bit was 0 at the time
the prediction was made.

121

out-of-order fetch/decode/issue should be treated as the upper bounds on performance for
machines that implement out-of-order fetch. The second major drawback of the RDF sim-
ulator is that the assume independence dependency handling technique cannot be modeled
on it. Fortunately, the oracle dependency handling technique can be modeled on the RDF
simulator, and this technique provides an upper bound on the performance of a machine that
implements out-of-order fetch/decode/issue using assume independence. Experiments for
machines that implement out-of-order fetch and experiments for machines that implement

out-of-order fetch/decode/issue using assume independence will be presented in Chapter 8.

6.4.1 Varied Dependency Handling Technique

To demonstrate the performance potential of out-of-order fetch/decode/issue, and to
determine which dependency handling techniques are worthwhile, I simulated six machines.

The first machine has the default instruction cache and does not support out-of-
order fetch/decode/issue. It is a conventional machine and serves as the baseline.

The second machine implements out-of-order fetch/decode/issue using the mask
cache dependency handling technique. I assumed that this machine had a fixed cache budget
from which an instruction cache and mask cache could be allocated. The cache budget was
set to 16k bytes—the size of the default instruction cache. This allows the performance
of the second machine to be fairly compared to the performance of any machine that uses
the default instruction cache and doesn’t require a mask cache. Half of the cache budget
was allocated to build an 8k byte instruction cache and the other half was allocated to
build an 8k byte mask cache. For the mask cache technique, when there is a mask cache
miss, either fetch, decode, and issue can stall, or one of the other dependency handling
techniques (i. e., assume dependence, classification, or assume independence) can be used
to enable out-of-order fetch/decode/issue. To obtain an upper bound on the performance of
machines that implement out-of-order fetch/decode/issue by allocating half of their cache
budget for a mask cache, this machine uses the oracle technique to enable out-of-order
fetch/decode/issue on a mask cache miss. The oracle required for the oracle technique
can’t be built, so this machine cannot actually be implemented in hardware. However,
the results will show that this machine does not perform as well as a machine that can be
implemented: a machine that implements out-of-order fetch/decode/issue using only the

assume dependence technique.

122

The second machine is identical to a machine that implements out-of-order fetch/de-
code/issue using a perfect mask cache. The oracle that is used to enable out-of-order
fetch/decode/issue on a mask cache miss is equivalent to a perfect (100 percent hit rate)
mask cache. On a mask cache hit, the mask cache provides the dependency information
required for out-of-order fetch/decode/issue. On a mask cache miss, the oracle provides the
dependency information that would have come from the mask cache had there been a mask
cache hit. Thus, regardless of whether or not there is a hit in the mask cache, the machine
obtains the dependency information required for out-of-order fetch/decode/issue. In the
figures and in the remaining text, the second machine will be referred to as the machine
that implements out-of-order fetch/decode/issue using a perfect mask cache.

The third and fourth machines implement out-of-order fetch/decode/issue using
realistic (i. e., implementable) dependency handling techniques. The third machine uses
the assume dependence technique and the fourth machine uses the classification technique.
Both of these machines use the default instruction cache.

The fifth machine also uses the default instruction cache. It implements out-of-order
fetch/decode/issue using the oracle technique. The oracle required for this technique can’t
be built, so this machine cannot actually be implemented in hardware. The primary reason
for simulating this machine is that it provides the upper bound on the performance of a
machine that implements out-of-order fetch/decode/issue using the assume independence
technique. (The assume independence technique cannot be modeled on the RDF simula-
tor.) This machine also provides the upper bound on the performance of all machines that
implement out-of-order fetch/decode/issue.

The last machine has a perfect instruction cache. Hence, it cannot be implemented.
This machine provides an upper bound on the performance of any technique (code re-

ordering, prefetching, ...) that tries to deal with the problem of instruction cache misses.

123

Figure 6.5 shows the performance, in Instructions Per Cycle (IPC), averaged over
all the benchmarks (both SPEC and Non-SPEC) for each of the six machines. Results
for the individual benchmarks are provided at the end of this section in Figure 6.6 (SPEC
benchmarks) and Figure 6.7 (Non-SPEC benchmarks). In the figures, OOO FDI stands
for Out-Of-Order Fetch/Decode/Issue. The machines with out-of-order fetch/decode/issue
achieve average speedups of 48% (for perfect mask cache), 49% (for assume dependence and
classification), and 52% (for oracle) over the baseline machine. The performance of these
machines also comes within 9%-11% of 4.88 IPC, which is the performance of the machine

with the perfect instruction cache.

107 s 16k Byte |Cache Only
s 8k Byte |Cache w/ OO0 FDI (Perfect Mask Cache)

9 16k Byte |Cache w/ OOO FDI (Assume Dependence)
s 16k Byte | Cache w/ OOO FDI (Classification)

8 16k Byte |Cache w/ OO0 FDI (Oracle)

7 e Perfect | Cache

Instructions Per Cycle

Figure 6.5: Dependency Handling Techniques—Harmonic Average

The performances of the four machines with out-of-order fetch/decode/issue are
nearly identical. The machine that uses the perfect mask cache has the poorest performance.
This machine sacrifices half of its cache budget to build the perfect mask cache, and, as
a result, its instruction cache can only be half as big as the instruction caches of the
other three machines. Consequently, it suffers from more instruction cache misses than
the other machines. These extra instruction cache misses put machines with mask caches
at a disadvantage when compared to machines that don’t require mask caches. For this
reason, in the remaining experiments in this dissertation, I won’t simulate any machines
that implement out-of-order fetch/decode/issue using the mask cache dependency handling

technique.

124

The machine that uses the classification dependency handling technique does not
perform noticeably better than the machine that uses the assume dependence technique.
The advantage of the classification technique over the assume dependence technique is that
the post-hole instructions that are classified as independent are allowed to execute before
the hole disappears. However, very few post-hole instructions are actually classified as being
independent. On average (over all the benchmarks), only 10% of all post-hole instructions
are classified as independent. As a result, the classification technique provides little benefit
over the assume dependence technique.

The implementation of the classification technique is more difficult than the imple-
mentation of assume dependence. For the post-hole instructions that are classified as being
possibly dependent, the classification technique requires the same hardware as that used to
implement the assume dependence technique. In addition to this hardware, the classification
technique also needs hardware that classifies the post-hole instructions, and hardware that
prevents the possibly dependent post-hole instructions from being scheduled for execution
before the hole disappears, but allows the independent post-hole instructions to be sched-
uled for execution. Since the classification technique provides no noticeable performance
advantage over the assume dependence technique, in the remaining experiments in this dis-
sertation, I won’t simulate any machines that implement out-of-order fetch/decode/issue
using the classification technique.

The machine that uses the oracle dependency handling technique did not perform
significantly better than the machine that uses the assume dependence technique. The per-
formance, averaged over all the benchmarks, of the machine that uses the oracle technique
was only 2% better than that of the machine that uses assume dependence. The assume de-
pendence technique allows the fetch unit to perform prefetching during an instruction cache
miss, and allows early insertion of the post-hole instructions into the reservation stations,
but it does not allow the processor to take advantage of any parallelism exposed by out-of-
order fetch/decode/issue. The oracle technique, on the other hand, allows the processor to
take advantage of this parallelism. Out-of-order fetch/decode/issue does expose additional
parallelism. When the oracle technique is used, a significant number of post-hole instruc-
tions become schedulable before the hole disappears. On average, 35% of the instructions
issued while there are holes in the dataflow graph become schedulable before those holes

disappear. Taking advantage of this additional parallelism, however, does not significantly

125

improve the performance. One possible reason for this may be that the post-hole instruc-
tions that become schedulable before the hole disappears rarely belong to the program’s

critical dependency chains.

= 16k Byte |Cache Only

10+ = 8k Byte ICache w/ OO0 FDI (Perfect Mask Cache)
9- 16k Byte | Cache w/ OOO FDI (Assume Dependence)
m 16k Byte |Cache w/ OOO FDI (Classification)

o 8- 16k Byte | Cache w/ OOO FDI (Oracle)
© m Perfect | Cache
> 74
O
T 6-
o
2 5
A=l
B 47
S
B 37
c
— 2]

1-

0- :

go ijpeg li m88k perl vortex
Benchmark

Figure 6.6: Dependency Handling Techniques—SPEC Benchmarks

= 16k Byte |Cache Only

10+ = 8k Byte |Cache w/ OOO FDI (Perfect Mask Cache)
9- 16k Byte | Cache w/ OOO FDI (Assume Dependence)
= 16k Byte |Cache w/ OOO FDI (Classification)
8- 16k Byte |Cache w/ OOO FDI (Oracle)
= Perfect |Cache

Instructions Per Cycle
al

ol

chess groff gs pgp plot python ss
Benchmark

Figure 6.7: Dependency Handling Techniques—Non-SPEC Benchmarks

126

6.4.2 Impact of Procedure Reordering

Code re-ordering techniques can be used in combination with out-of-order fetch/de-
code/issue in order to further reduce the performance penalty that results from instruction
cache misses. Code re-ordering is used to eliminate some of the instruction cache misses
by re-ordering the instructions in a program. Out-of-order fetch/decode/issue is used to
tolerate the remaining misses.

Figure 6.8 shows the performance averaged over all the benchmarks for three ma-
chines: the conventional (baseline) machine, the machine that implements out-of-order
fetch/decode/issue using the assume dependence technique, and the machine with a perfect
instruction cache. There are two bars for each machine, except for the machine with the
perfect instruction cache. One bar plots the performance of the machine running the ver-
sions of the benchmark executables that were created without profiling. This bar is labeled
“Not Reordered” since the procedures in the executables were not reordered to allow the
programs to use the instruction cache more efficiently. The other bar plots the performance
of the machine running the versions of the benchmark executables that were created with
profiling. Tt is labeled “Reordered”. The performance of the machine with the perfect in-
struction cache does not depend on the version of the benchmark executables the machine

is running. Consequently, there is only one bar for this machine.

104 16k Byte | Cache Only; Not Reordered
s 16k Byte |Cache Only; Reordered

9 16k Byte | Cache w/ OOO FDI (Assume Dependence); Not Reordered
s 16k Byte | Cache w/ OOO FDI (Assume Dependence); Reordered
8- Perfect |Cache

Instructions Per Cycle
T

Figure 6.8: Impact of Out-of-Order Fetch/Decode/Issue
and Procedure Reordering—Harmonic Average

127

Procedure reordering improves the performance of the baseline machine by 10%,
and the performance of the out-of-order fetch/decode/issue machine by 1%. Out-of-order
fetch/decode/issue improves the performance of a machine running the benchmark exe-
cutables created without profiling by 49%, and the performance of a machine running the
benchmark executables created with profiling by 37%. If both procedure reordering and
out-of-order fetch/decode/issue are used, the performance is improved by 51%. The re-
sults for the individual benchmarks are provided in Figure A.37 (SPEC benchmarks) and
Figure A.38 (Non-SPEC benchmarks) of Appendix A.

6.4.3 Varied Instruction Cache Size

For the rest of the experiments in this chapter, I will only consider the performance
of four different types of machines. The first type are machines that have perfect instruction
caches. The second type are machines that implement out-of-order fetch/decode/issue using
the oracle dependency handling technique. The third type are machines that implement
out-of-order fetch/decode/issue using the assume dependence technique. The fourth type
are conventional machines that have a real instruction cache and that do not support out-
of-order fetch/decode/issue.

Figure 6.9 shows the performance averaged over all the benchmarks for each of the
four types of machines. The instruction cache size for each type of machine was varied
from 4k bytes to 64k bytes. The instruction cache access required one cycle regardless of
its size. That is, its access time was not scaled with its size. Because of this, the depth
of the front-end of the processor pipeline (i. e., the number of pipeline stages required for
instruction fetch, decode, and issue) did not depend on the instruction cache size, and,
as a result, the minimum branch mispredict penalty was a constant 7 cycles for all ma-
chines. At all instruction cache sizes, the performance of the machine that uses the oracle
technique is virtually identical to the performance of the machine that uses assume depen-
dence. As the instruction cache size increases, fewer instruction cache misses occur and
thus there are fewer opportunities for out-of-order fetch/decode/issue. Because of this, the
performance benefit of out-of-order fetch/decode/issue decreases as the instruction cache
size increases. At an instruction cache size of 4k bytes, the machine that implements out-
of-order fetch/decode/issue using the assume dependence technique achieves a 109% gain

in performance over the baseline machine. This gain falls to 15% when the instruction

128

cache size is increased to 64k bytes. (I would like to note that most of my benchmarks fit
within the 64k byte instruction cache. Many real applications do not fit within a 64k byte
instruction cache. For these applications, out-of-order fetch/decode/issue could still provide
a substantial benefit when the instruction cache size is 64k bytes.) The performance of the
baseline machine drops by 51% as the instruction cache size is reduced from 64k bytes to
4k bytes. The performance of the machine that implements out-of-order fetch/decode/issue
using the assume dependence technique drops by only 11% as the instruction cache size
is reduced from 64k bytes to 4k bytes. Results for individual benchmarks are provided in
Figure A.39 (SPEC) and Figure A.40 (Non-SPEC) of Appendix A.

109 - perfect ICache

94 ——Real ICachew/ OOO FDI (Cracle)

-+-- Real 1Cache w/ OOO FDI (Assume Dependence)
81 —+-Rea ICache Only

Instructions Per Cycle

4K 8K 16K 32K 64K
Cache Size (bytes)

Figure 6.9: Varied Instruction Cache Size
(Constant Mispredict Penalty)—Harmonic Average

129

Figure 6.10 shows the performance averaged over all the benchmarks for each of the
four types of machines as the size of the instruction cache was varied from 16k bytes to 1M
byte. The access time of the instruction cache was scaled with its size. The access time was
1 cycle at 16k bytes, 2 cycles at 64k bytes, 4 cycles at 256k bytes, and 8 cycles at 1M byte.
Because the access time was scaled, the depth of the front-end of the processor pipeline
depends on the instruction cache size, and, as a result, the minimum branch mispredict
penalty must be scaled according to the instruction cache size. The minimum mispredict
penalty was 7 cycles at a cache size of 16k bytes, 8 cycles at 64k bytes, 10 cycles at 256k
bytes, and 14 cycles at 1M byte. The machine with the perfect instruction cache is supposed
to represent the ideal solution to the instruction cache bottleneck. The ideal solution is an
instruction cache that has a 100 percent hit rate and a single cycle access time. (A single
cycle access time is ideal because it results in the smallest possible minimum mispredict
penalty.) For this reason, the machine with the perfect instruction cache could alway access

its cache in a single cycle, and its minimum mispredict penalty was always 7 cycles.

107 -~ perfect ICache

94 —=— Real |Cache w/ OOO FDI (Oracle)

--+-- Real 1Cache w/ OO0 FDI (Assume Dependence)
8- —+— Real 1Cache Only

—_—
_—

Instructions Per Cycle
(&)

0 T T
16K 64K 256K M
Cache Size (bytes)

Figure 6.10: Varied Instruction Cache Size
(Scaled Mispredict Penalty)—Harmonic Average

130

As the instruction cache size increases, fewer instruction cache misses occur, which
reduces the severity of the instruction cache bottleneck. The minimum branch mispredict
penalty also increases as the instruction cache size increases, which increases the severity of
the bottleneck that results from mispredicted branches. Beyond a certain point, increasing
the size of the instruction cache will result in lower performance, because it will increase
the severity of the bottleneck that results from mispredicted branches more than it reduces
the severity of the instruction cache bottleneck. For the baseline machine, increasing the
size of the instruction cache beyond 256k bytes results in lower performance. For the
machines that implement out-of-order fetch/decode/issue, the instruction cache bottleneck
is much less severe, so the point at which the performance is harmed if the cache size is
increased occurs at a smaller instruction cache size. For these machines, increasing the
size of the instruction cache beyond 64k bytes results in lower performance. Results for
individual benchmarks are provided in Figure A.41 (SPEC) and Figure A.42 (Non-SPEC)

of Appendix A.

131

6.4.4 Varied Instruction Cache Associativity

Figure 6.11 shows the performance averaged over all the benchmarks for each of
the four machines. The instruction cache associativity for each machine was varied from
1 (i. e., direct-mapped) to 8. Even for 8-way set associative caches, machines with out-of-
order fetch/decode/issue achieved speedups of 21% (for assume dependence) and 23% (for
oracle) over the baseline machine. Results for the individual benchmarks are provided in

Figure A.43 (SPEC benchmarks) and Figure A.44 (Non-SPEC benchmarks) of Appendix A.

104 --- Perfect ICache
94 —=— 16k Byte |Cache w/ OOO FDI (Oracle)
--=+-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)

o 84 —+- 16k Byte |Cache Only
© 74
>
O
o 6
o
2 51 [— :
S e SRR Y *
B 44 N
E T A————
—

2_

1_

O T T T 1

1 2 4 8
Associativity

Figure 6.11: Varied Instruction Cache Associativity—Harmonic Average

For highly associative instruction caches, compulsory and capacity misses account
for the lion’s share of the misses. Conflict misses are eliminated by increasing the asso-
ciativity of the cache. If the associativity is high enough, most of the conflict misses are
eliminated, and, of the remaining misses, most are either compulsory or capacity misses.
Compulsory misses occur when an instruction is referenced for the first time. For these
misses, the only benefit that out-of-order fetch/decode/issue provides is that of prefetching.
Capacity misses can occur during the processing of a seldom used subroutine. Qut-of-order
fetch/decode/issue hides the latency associated with these misses by fetching, decoding, is-
suing, and, for some dependency handling techniques, executing, the instructions following

the subroutine’s return while the misses are being serviced.

132

6.4.5 Varied Instruction Cache Miss Penalty

The performance benefit of out-of-order fetch/decode/issue depends on the penalty
incurred on instruction cache misses. For each of the four machines, Figure 6.12 shows the
performance averaged over all the benchmarks. For each machine, the instruction cache
miss penalty was varied from 6 to 32 cycles. For the machine that implements out-of-
order fetch/decode/issue using the oracle dependency handling technique, the performance
gain over the baseline machine ranges from 29% for an instruction cache with a 6 cycle miss
penalty, to 154% for an instruction cache with a 32 cycle miss penalty. For the machine that
implements out-of-order fetch/decode/issue using assume dependence, the gain ranges from
28% (6 cycle miss penalty) to 142% (32 cycle miss penalty). In fact, the performances of
both machines that implement out-of-order fetch/decode/issue and that have 32 cycle miss
penalties exceed the performance of the baseline machine that has a 6 cycle miss penalty.
Results for the individual benchmarks are provided in Figure A.45 (SPEC benchmarks) and
Figure A.46 (Non-SPEC benchmarks) of Appendix A.

109 -~ Perfect ICache

94 —=— 16k Byte ICache w/ OOO FDI (Oracle)

--=-- 16k Byte ICache w/ OOO FDI (Assume Dependence)
8- —+— 16k Byte ICache Only

Instructions Per Cycle
(&)

6 10 16 32
Miss Penalty (Cycles)

Figure 6.12: Varied Instruction Cache Miss Penalty—Harmonic Average

133

6.5 Summary

Of the four realistic dependency handling techniques—assume dependence, classifi-
cation, mask cache, and assume independence—only two, assume dependence and assume
independence, may be worthwhile. The classification technique does not perform notice-
ably better than the assume dependence technique, and its implementation is more difficult
than the implementation of assume dependence. The mask cache technique always per-
forms worse than the assume dependence technique, even if a perfect (100 percent hit rate)
mask cache is implemented. For the remainder of this dissertation, the only realistic depen-
dency handling techniques that I will investigate are the assume dependence and assume
independence techniques.

Instruction cache misses significantly impact processor performance. When a perfect
instruction cache is used, the average performance of the default sixteen wide issue processor
is 4.88 Instructions Per Cycle (IPC). However, when a real instruction cache is used, the
performance drops by 39% to 2.96 TPC.

Out-of-order fetch/decode/issue can be used to reduce this performance degrada-
tion. A processor that uses a real instruction cache and that implements out-of-order
fetch/decode/issue using assume dependence has an average performance of 4.41 IPC, which
is only a 9.6% drop in performance from a processor using a perfect instruction cache. To
put it another way, its performance is 49% higher than a machine with a real instruction
cache that doesn’t implement out-of-order fetch/decode/issue. The performance of this
processor is close to that of a processor that implements out-of-order fetch/decode/issue
using an ideal dependency handling technique (i. e., oracle). The performance of this latter
processor is 4.49 TPC, which is only an 7.9% drop in performance from a processor using a

perfect instruction cache.

134

CHAPTER 7

Out-of-Order Fetch, Decode, and Issue:

Implementation

This chapter describes one possible implementation of out-of-order fetch and one
possible implementation of out-of-order fetch/decode/issue. The chapter is organized into
three sections. Section 7.1 presents the base microarchitecture that will be used to demon-
strate the implementations of out-of-order fetch and out-of-order fetch/decode/issue. This
is by no means the only microarchitecture upon which out-of-order fetch and out-of-order
fetch/decode/issue can be implemented. Section 7.2 presents the apparatus required for im-
plementing out-of-order fetch. Out-of-order fetch/decode/issue requires out-of-order fetch.
Ergo, the apparatus required for out-of-order fetch is also required for out-of-order fetch/de-
code/issue. Section 7.3 presents the remaining apparatus required for implementing out-of-

order fetch/decode/issue.

135

7.1 Base Microarchitecture

The base microarchitecture is an HPS microarchitecture. (The HPS microarchitec-
ture was described in Section 3.1.) Figure 7.1 shows a block diagram of the base microar-
chitecture. The base microarchitecture is a more aggressive version of the microarchitecture
presented by Butler [15]: it can fetch up to 3 fetch blocks per cycle, whereas Butler’s mi-
croarchitecture can fetch at most 1 fetch block per cycle. The base microarchitecture, which
is modeled with the full simulator, is more realistic than the simple microarchitecture used
for the experiments in the previous chapters. However, it is still only a model, and not the
real thing. Not everything that would be a part of a real microarchitecture is modeled, and

not everything that is modeled is modeled with complete accuracy.

Fetch Unit

Branch Predictor

\ 4

Instruction Cache
Hierarchy

\ 4
Fetch Buffer

Execution Core

P == = e e e e e e e e e e e e e e] - - o

Register | |
Alias | Decode/Issue
Table l

A

> Node Tables

\ 4 \ 4 \ 4

FU, |FU, === FU

L e e e e e e e e e e e e e - - -

|y """y --"=-"=-=-=-=-"= \ A

Load/Store System

Figure 7.1: Block Diagram of the Base Microarchitecture

136

The pipeline of the base microarchitecture consists of 5 stages: fetch, decode, issue,
execute, and retire. Each stage takes at least one cycle. The paragraph below summarizes
each of these stages. More details will be presented in Sections 7.1.1-7.1.4.

In the fetch stage, the fetch unit accesses the instruction cache with a set of fetch
addresses that are generated by the branch predictor. The instructions returned by the
instruction cache are then written into the fetch buffer. Every cycle, the branch predictor
generates the set of fetch addresses that will be needed to access the instruction cache in
the next cycle. It generates these addresses using the set of fetch addresses that are being
used in the current cycle to access the instruction cache. In the decode stage, instructions
are removed from the fetch buffer and decoded into data flow nodes suitable for issue. In
the issue stage, the decoded instructions are written into the Node Tables. If the source
operands for a particular instruction are available, and if the instruction has priority over
all other firable instructions awaiting dispatch to the needed functional unit, the instruc-
tion is immediately dispatched. Otherwise, the instruction must wait in its Node Table
until all of its source operands become available and it becomes the highest priority firable
instruction. Once an instruction has been dispatched, it enters the execute stage. In the
execute stage, the functional unit executes the instruction and then distributes the instruc-
tion’s result to the Register Alias Table and to the other instructions in the Node Tables
awaiting that result. And finally, in the retire stage, instructions are retired from the active
window. Instructions are always retired in program order. As the instructions are retired,
their results are committed to the architectural (non-speculative) state, and any processor
resources (e. g., physical registers and Node Table entries) that are still allocated to them
are deallocated.

The base microarchitecture is a 16 wide machine. It was designed to fetch, on
average, 16 instructions per cycle. It can decode, issue, dispatch, execute, and retire a
maximum of 16 instructions per cycle. In principle, the microarchitecture can fetch up to
48 instructions per cycle. However, due to the small size of the average fetch block (4-6
instructions), and a fetch limit of 3 blocks per cycle, this peak fetch rate is rarely achieved.

The base microarchitecture is described in more detail in Sections 7.1.1-7.1.4. Sec-
tion 7.1.1 describes the fetch unit (see Figure 7.1). Section 7.1.2 describes the execution
core. Section 7.1.3 describes the load/store system. And Section 7.1.4 describes the main

memory architecture.

137

7.1.1 Fetch Unit

Figure 7.2 is a block diagram of the fetch unit. The branch predictor predicts the
sequence of fetch blocks that comprises the dynamic instruction stream. For each fetch block
in the predicted sequence, the predictor produces one or more cache read requests in order
to obtain the instructions that belong to that fetch block. Each request reads a single cache
line from the first level instruction cache. The request also specifies which instructions from
that cache line are contained in the fetch block. Fetch blocks that are contained entirely
within a single cache line only generate a single request. Fetch blocks that span multiple
cache lines generate one request for each cache line that contains a piece of the fetch block.
Any given request only returns instructions belonging to a particular fetch block. That is,
a request never returns instructions belonging to two (or more) fetch blocks. If there are
two fetch blocks in a particular cache line, and they form a piece of the sequence of fetch
blocks that comprises the dynamic instruction stream, the branch predictor will generate
two requests for these fetch blocks: one for the first fetch block in the cache line, and one
for the second fetch block in the cache line. Essentially, the branch predictor predicts the
sequence of first level instruction cache lines, that contain the sequence of fetch blocks, that

comprises the dynamic instruction stream.

Branch Predictor

16 KByte, Direct Mapped, 256 K Byte, 8-Way Set-Associative,
First Level Instruction Cache Second Level Instruction Cache
a
A& 1024
Fetch BUff Instruction Cache
etch Buffer Pending Miss Queue
1024
y 3
v
To Decode/l ssue Logic From Next Level of Memory Hierarchy

Figure 7.2: Block Diagram of the Fetch Unit

The branch predictor predicts only a piece of the sequence of first level instruction
cache lines each cycle. The sequence is predicted in program order. That is, the sequence of

fetch blocks that comprises the dynamic instruction stream is predicted in program order,

138

and, for each fetch block, read requests for first level instruction cache lines that contain
the pieces of that fetch block are produced in program order. State variables are used
to keep track of the current point in the sequence. Each time a piece of the sequence
is predicted, these state variables are updated. In certain situations—for example, when
there is a branch mispredict [60, 62, 113] or an instruction cache miss—the branch predictor
is forced to restart at an earlier point in the sequence. To restart the branch predictor, the
state variables are simply set to the values they had at that earlier point.

Each cycle, the branch predictor can predict up to 3 cache lines in the sequence of
first level instruction cache lines. For each of these cache lines, a read request is issued to the
first level instruction cache. On a cache hit, the instructions in the cache line that belong to
the fetch block are written into the fetch buffer. On a cache miss, the cache line is fetched
from the lower levels of the memory hierarchy. During this fetch, the branch predictor
and the first level instruction cache stall. In addition, all read requests for cache lines
logically following the cache line that missed are flushed from the machine. After the fetch
completes, the cache line is installed in the first level instruction cache and the instructions
in the cache line that belong to the fetch block are written into the fetch buffer. Also, since
the read requests for cache lines logically following the cache line that missed were flushed,
the branch predictor is forced to re-predict those line; i. e., the branch predictor is forced
to restart at an earlier point in the sequence. After all of this has been accomplished, both
the branch predictor and the first level instruction cache are restarted.

For the base microarchitecture and those derived from it, the first level instruction
cache is a non-blocking, direct mapped, 16k byte cache, with a 64 byte line size and a single
cycle latency. The cache is triple ported and can service up to 3 requests per cycle. A
request may either by a cache read or a cache fill. At most 1 cache fill can be serviced per
cycle. (A cache fill—which occurs in response to a cache miss—writes a new line, including
both tag and data, into the cache.) The cache is modeled as being truly triple ported.
Thus, unlike multi-banked (or interleaved) caches, there are no bank conflicts.

The fetch buffer has 8 entries. The branch predictor predicts, in program order, the
sequence of first level instruction cache lines that comprises the dynamic instruction stream.
The read requests for these cache lines are also generated in program order. As each read
request is generated, it is allocated an entry in the fetch buffer. When a read completes,

the data is written into the entry that was allocated to the read request. Consequently,

139

each entry must be large enough to store a single first level instruction cache line.

For the base microarchitecture, the entries of the fetch buffer form a FIFO. Reads
complete in the order that their requests were generated; i. e., in program order. As they
complete, they write their data (or insert their data) into the fetch buffer entries that were
allocated to their requests. The decode/issue logic removes the instructions stored in the
fetch buffer in program order. When all the instructions stored in a fetch buffer entry have
been removed by the decode/issue logic, the fetch buffer entry is deallocated. Hence, the
data obtained via read requests is inserted into and removed from the fetch buffer in the
order that those read requests were generated. For the microarchitecture that supports out-
of-order fetch, and for the microarchitecture that supports out-of-order fetch/decode/issue,
the fetch buffer does not function as a FIFO. Details on how the fetch buffer works for these
microarchitectures will be provided later in this chapter.

Although each fetch buffer entry is large enough to store a single first level instruc-
tion cache line, this doesn’t need to be the case. Each fetch buffer entry was made large
enough to store a single first level instruction cache line in order to simplify the allocation
of fetch buffer storage to the read requests generated via the branch predictor. A single
read request can request all the instructions in a first level instruction cache line; i. e., 16
instructions. However, the typical read request is only for 4-6 instructions. Hence, a fetch
buffer entry that can store an entire first level instruction cache line is overkill.

If the amount of chip area occupied by the fetch buffer is a concern, the number of
instructions that can be stored in a fetch buffer entry can be reduced. This will reduce the
amount of chip area occupied by each fetch buffer entry, and reduce the amount of storage
wasted by each fetch buffer entry. (Storage is wasted because a fetch buffer entry can store
up to 16 instructions, but typically stores only 4-6 instructions.) To partially compensate
for the resulting loss in fetch buffer storage, the number of fetch buffer entries may be
increased. Note that even though the overall amount of fetch buffer storage is reduced,
the remaining storage is better utilized, so the amount of effective (or useful) fetch buffer
storage may remain constant, or, in the case where the number of fetch buffer entries is
increased, the effective fetch buffer storage may actually increase. Also note that a read
request will need to be allocated multiple fetch buffer entries if the number of requested
instructions is greater than the number of instructions that can be stored in a single fetch

buffer entry. This will complicate the fetch buffer design.

140

The second level instruction cache is a fully pipelined, non-blocking, 8-way set-
associative, 256k byte cache, with a 128 byte line size and an 8 cycle latency. Its single
port is used to service the cache read requests that originate from the first level instruction
cache and the cache fill requests that originate from the Instruction Cache Pending Miss
Queue. At most one request, either a cache read or a cache fill, can be serviced per cycle.

Cache read requests that miss in the second level instruction cache are placed in
the Instruction Cache Pending Miss Queue (Instruction Cache PMQ). The PMQ can store
up to 16 miss requests. For each miss request, the PMQ obtains the sought after data from
the lower levels of the memory hierarchy and inserts the data into the fetch buffer. The
PMQ also coordinates the cache fills that are brought about by these cache misses.

In addition to being non-blocking, the first and second level instruction caches have
non-stalling pipelines. That is, once a request has been passed to the first or second level
instruction cache, the request advances through the cache’s pipeline at a rate of one pipe
stage per cycle. To prevent the pipelines from stalling, the read requests generated via
the branch predictor are not issued to the first level instruction cache unless (1) they are
guaranteed a fetch buffer entry in which to write their data, and (2) they are guaranteed
an entry in the Instruction Cache PMQ. Before each read request is issued to the first
level instruction cache, it is pre-allocated a fetch buffer entry and a PMQ entry. All read
requests require a fetch buffer entry, but not all read requests require a PMQ entry. Only
read requests that miss in both the first and second level instruction caches require a PMQ
entry. As soon as a read request experiences a hit in one of the caches, its PMQ entry is
deallocated.

The first level instruction cache can accept up to 3 read requests per cycle. Read
requests that miss in the first level instruction cache are passed on to the second level
instruction cache. Thus, up to 3 read requests per cycle can be passed on to the second
level instruction cache. Unfortunately, the second level instruction cache can only accept at
most one read request per cycle. To solve this problem, a small buffer can be placed between
the first and second level instruction caches. Any read requests that cannot be immediately
passed to the second level instruction cache are queued in the buffer. To prevent buffer
overflow, and to prevent the pipelines of the first level instruction cache from stalling, the
read requests generated via the branch predictor are not issued to the first level instruction

cache when the number of unused (or free) buffer entries runs low.

141

Branch Predictor

The base microarchitecture can predict up to 3 branches per cycle. The technique
used to predict multiple branches per cycle is somewhat ideal: a conventional branch pre-
dictor, which, in a real microarchitecture, would be accessed once per cycle and would
produce one prediction per access, is accessed multiple times per cycle—with one access
per branch—in order to provide a prediction for each branch. Realistic techniques for pre-
dicting multiple branches per cycle have been proposed [31, 54, 87,111, 133]. One promising
technique is to dynamically convert, or promote, each multi-way branch (i. e., conditional
or indirect [or computed] branch) that is strongly biased towards a particular target into
a one-way branch (i. e., unconditional branch) to the dominant target [96]. A promoted
branch is, in essence, statically predicted, and doesn’t require a prediction from the branch
predictor. According to Patel [97], about 60% of all dynamic branches can be promoted.
Hence, the bandwidth, in branch predictions per cycle, that is required of the branch pre-
dictor for a particular machine implementation can potentially be reduced by 60% by using
branch promotion.

The branch predictor used by the base microarchitecture is the default branch
predictor that was used in Chapter 5 to study performance bottlenecks. It was also used in
Chapter 6 to generate the preliminary results for out-of-order fetch/decode/issue. It uses
a gshare [81] predictor to predict the directions (i. e., taken or not taken) of conditional
branches; the pattern based predictor proposed by Chang, Hao, and Patt [19] to predict
the targets of indirect (or computed) branches; and our Checkpointed Return Address
Stack (RAS) [60,62] to predict the targets of subroutine returns. See Section 5.1 for a
more detailed description of this predictor, and Table 5.1 and the accompanying text for
statistics (e. g., miss rate). (In Table 5.1 and the accompanying text, predictor number 2
is the predictor used by the base microarchitecture.)

Unlike the branch predictors used in Chapters 5 and 6, the branch predictor used by
the base microarchitecture uses a real (rather than perfect) Branch Target Buffer (BTB).
The BTB is a cache that is used by the branch predictor to identify branches prior to decode.
Each entry in this cache contains the information pertaining to a single branch. Note that
if branches cannot be identified prior to decode, the branch predictor cannot respond to

changes in the control flow until after the branch that caused the control flow redirection

142

is decoded. As a result, pipeline bubbles are introduced at every control flow change.

For processors that only fetch a single instruction from the instruction cache each
cycle, a branch is identified (i. e., tagged) by its instruction address. During fetch, the BTB
is accessed with the same address that is being used to access the instruction cache. In
parallel with this BTB access, the branch predictor computes 3 predictions: the direction
of a conditional branch, the target of an indirect branch, and the target of a subroutine
return. A hit in the BTB indicates that the instruction that was fetched from the instruction
cache is a branch. On a BTB hit, the branch predictor uses the information returned by the
BTB to calculate the target address of this branch. This target address is used for the next
fetch address; i. e., the address that will be used next to access the instruction cache. For
example, if the BTB information indicates that the fetched branch is a subroutine return,
the return target—which was computed by the branch predictor during the BTB access—is
selected as the next fetch address. A miss in the BTB, in most cases, indicates that the
instruction that was fetched from the instruction cache is not a branch. On a BTB miss, the
branch predictor always assumes that the fetched instruction is not a branch. The address
of the instruction that follows the fetched instruction is used for the next fetch address.

On a BTB hit, the BTB returns the type of the branch (unconditional branch,
conditional branch, branch to subroutine, jump [computed branch], jump to subroutine, or
subroutine return) and one of its possible target addresses. The branch predictor uses the
branch type to select the next fetch address and to control the RAS. For an unconditional
branch or a branch to subroutine, there is only one possible target address. This address,
which is specified via the PC-relative addressing mode, is stored in the BTB. Ergo, for
unconditional branches and branches to subroutines, the target address returned by the
BTB is selected as the next fetch address. For a conditional branch, there are two possible
target addresses: a taken address and a not-taken (fall-through) address. The taken address,
which is specified via the PC-relative addressing mode, is stored in the BTB. The not-taken
address is computed from the address used to access the BTB; i. e., it is computed from the
address of the branch instruction. The conditional branch predictor provides the prediction
for the direction (i. e., either taken or not-taken) of the conditional branch. Based on this
predicted direction, either the taken address or the not-taken address is selected as the next
fetch address. For a jump or a jump to subroutine, the target addresses are computed at

run-time. The indirect branch predictor records and predicts these addresses. The address

143

returned by the indirect branch predictor is selected as the next fetch address whenever a
jump or a jump to subroutine is encountered. For a subroutine return, the address on the
top of the RAS is selected as the next fetch address. For every subroutine call (i. e., either a
branch to subroutine or a jump to subroutine), the return address is pushed onto the RAS.
(The return address, like the not-taken address for a conditional branch, is computed from
the address used to access the BTB.) And finally, for every subroutine return, an address
is popped off the RAS.

Since a BTB is a cache, in some cases, a miss is simply the result of standard cache
behavior. Like other caches, a BTB suffers from conflict, compulsory, and capacity misses.
Hence, the information regarding a particular branch may not be resident in the BTB when
that instruction is fetched from the instruction cache. This latter type of miss is highly
undesirable: when the branch predictor cannot identify which instructions fetched from the
instruction cache are branches, it cannot accurately predict the sequence of fetch blocks
that comprises the dynamic instruction stream. When the latter type of miss occurs, the
branch predictor is typically led astray, which results in one or more cycles of nonproductive
fetching. The branch predictor is righted only after the branch whose information was
absent from the BTB has been decoded. To reduce the number of occurrences of this latter
type of miss, the size and/or associativity of the BTB can be increased. Unfortunately, this
increases the access time of the BTB, and, as a result, may increase the processor cycle time.
To reduce the number of occurrences of these misses without increasing the processor cycle
time, it may be necessary to use a multi-level BTB hierarchy instead of a single BTB [105].

For processors that can fetch up to one fetch block from the instruction cache
each cycle, selecting the address to access the BTB is not straightforward, since any of the
instructions that are fetched simultaneously from the instruction cache may be branches.
The base microarchitecture accesses the BTB using a variation of Yeh and Patt’s fetch
address based indexing [135]. (The base microarchitecture fetches up to 3 fetch blocks from
the instruction cache each cycle. However, as mentioned earlier, it uses a conventional
fetch mechanism, which, in a real microarchitecture, would be accessed once per cycle and
would produce one fetch block per access. To fetch multiple fetch blocks in a cycle, the
base microarchitecture accesses its conventional fetch mechanism multiple times per cycle,
obtaining one fetch block per access.) Their scheme uses the address of an instruction that

dominates [4] a branch to identify the branch. When an instruction fetch occurs for the

144

sequence of instructions that starts with the dominating instruction, the BTB identifies
which one of the instructions in the sequence is the branch. In cases where the branch is in
a fetch block that can be entirely contained within a single first level instruction cache line,
the address of the first instruction in the fetch block is used to identify the branch. In cases
where the branch is in a fetch block that cannot be entirely contained within a single first
level instruction cache line, the branch is identified by its first level instruction cache line
address. The first level instruction cache line address is calculated by taking the address of
the branch and setting all of the bits of this address that specify the location (or offset) of
the branch within its first level instruction cache line to zero.

During fetch, the BTB and the first level instruction cache are accessed with the fetch
address. In parallel with the BTB access, the branch predictor computes the 3 predictions:
the direction of a conditional branch, the target of an indirect branch, and the target of a
subroutine return. The cache returns the instruction at that fetch address and all subsequent
instructions stored in the same cache line as the instruction at that fetch address. A hit in
the BTB indicates that one of the instructions returned by the cache is a branch. The branch
predictor uses the information returned by the BTB to identify which of these instructions
is the branch. Only the instructions up to and including the branch are written into the
fetch buffer entry allocated to the fetch; i. e., they are written into the fetch buffer entry
that is allocated to the cache read request that generated the fetch. The instructions after
the branch belong to a different fetch block than the branch and the instructions before it,
and are discarded. If the instructions after the branch are needed, they are obtained via a
separate cache read request. The branch predictor also uses the information returned by the
BTB to calculate the target address of this branch. This target address is selected as the
next fetch address. For example, if the BTB information indicates that the fetched branch
is a subroutine return, the return target—which was computed by the branch predictor
during the BTB access—is selected as the next fetch address. A miss in the BTB (at least
in most cases, when the miss is not the result of standard cache behavior) indicates that
none of the instructions returned by the cache are branches. All of the instructions returned
by the cache belong to the same fetch block, and are written into the fetch buffer entry
allocated to the fetch. On a BTB miss, the address of the first level instruction cache line

that follows the fetched cache line is selected as the next fetch address. !

'A cache read request reads a single cache line from the first level instruction cache. The request also

145

On a BTB hit, the BTB returns the type of the branch and one of its possible target
addresses, as it did for processors that only fetch a single instruction each cycle. In addition,
it returns a few bits that indicate the location of the branch within the set of instructions
that were fetched from the cache. That is, it returns an offset into the cache line that
was fetched from the first level instruction cache. The offset specifies the location of the
branch. This offset is used to calculate the not-taken (fall-through) addresses for conditional
branches, and the return addresses for subroutine calls. The information returned by the
BTB (i. e., the branch’s type, offset, and one of its possible target addresses) is used by
the branch predictor to select the next fetch address and to control the RAS. Except for
using the branch’s offset to calculate its not-taken address (for a conditional branch) and
its return address (for a subroutine call), the next fetch address selection and the RAS
control are identical to that of processors that can only fetch a single instruction from the
instruction cache each cycle.

The major drawback of Yeh and Patt’s fetch address based indexing scheme is that
it creates “hot spots” in the BTB [135]. (A “hot spot” is a set of BTB entries that are
read and/or written a disproportionate number of times.) Every branch that is in a fetch
block that cannot be entirely contained within a single first level instruction cache line is
identified by its first level instruction cache line address. As a result, the low-order bits of
many of the identifying addresses are zero. These low-order bits are used as part of the set
index into the BTB. Consequently, some of the BTB sets (i. e., those sets with an index

whose low-order bits are zero) are used more heavily than others.

specifies which instructions from that cache line are needed. The fetch address together with the BTB
information fully specify which instructions have been requested. The fetch address identifies the first level
instruction cache line that needs to be read, as well as the first instruction from that cache line that is
needed. On a BTB hit, the BTB identifies the last instruction that is needed. On a BTB miss, the last
instruction that is needed is the last instruction in the cache line.

146

Figure 7.3 shows how the bits of the fetch address are used when accessing the BTB
and first level instruction cache. The lower two bits of every fetch address are guaranteed to
be 0, since memory is byte addressable and instructions are aligned at 4-byte boundaries.
These two bits are ignored when accessing the BTB and the instruction cache. For the
BTB, the set index is specified by bits 2-10 of the fetch address and the tag is specified by
bits 11-63. For the instruction cache, the line offset is specified by bits 2-5, the set index is
specified by bits 613, and the tag is specified by bits 14-63. A first level instruction cache
line address is an address whose offset bits are all zero. Any branch that is identified by
its first level instruction cache line address will use a BTB entry that resides in a set with
an index whose low-order 4 bits are all zero. Hot spots are created at every 16th set; i. e.,

every set with an index whose low-order 4 bits are all zero.

63\ I I I I = 10\ I I [I 2 L I g
BTB: | Tag | Index | 0 0|
63 14 13 6 5 2 1 0
I I I I I I I I I [I I
Cache: | Tag Index offt. |0 o0

Figure 7.3: Figure showing how the bits of the fetch address are used when
accessing the BTB and first level instruction cache

To eliminate some of these hot spots, the base microarchitecture uses a variation of
Yeh and Patt’s fetch address based indexing. In this variation, the bits of the fetch address
that specify the BTB set index and the first level instruction cache line offset are XORed
with the lowest bits of the fetch address that specify the BTB tag. The result, together
with the BTB set index bits that do not specify the first level instruction cache line offset,
is used as the BTB set index. For example, in Figure 7.3, bits 2-5 are used as BTB set
index bits as well as first level instruction cache line offset bits. These bits are XORed with
bits 11-14, which are the lowest 4 bits of the BTB tag. The 4 bit result, together with
bits 6-10, which are BTB set index bits but not first level instruction cache line offset bits,
form the 9-bit BTB set index. This variation eliminates some of the BTB hot spots because
the XOR forces the low-order 4 bits of the BTB set index to take on values that are more

uniformly distributed.

147

Figure 7.4 and Figure 7.5 plot the BTB miss rates for the SPEC and Non-SPEC
benchmarks, respectively. The BTB miss rate is the percentage of branches in the dynamic
instruction stream that experienced a BTB miss when they were fetched. 2 A BTB with a
low miss rate is desirable, since pipeline bubbles are introduced whenever a branch is fetched
and the information regarding that branch is not resident in the BTB. There are two bars
for each benchmark. Each bar plots the miss rate of a 2048 entry, 4-way set-associative
BTB. The bar labeled “Without XOR” plots the miss rate of a BTB that uses Yeh and
Patt’s fetch address based indexing scheme. Henceforth, their scheme will be referred to
as fetch address based indexing without XOR. The bar labeled “With XOR” plots the
miss rate of a BTB that uses my variation of Yeh and Patt’s fetch address based indexing
scheme. Henceforth, my scheme will be referred to as fetch address based indexing with
XOR. In some cases, the BTB miss rate was very close to zero, so the bar may not be visible
on the graph. The results show that the fetch address based indexing with XOR scheme
performs much better than the fetch address based indexing without XOR scheme. For the
fetch address based indexing without XOR scheme, the BTB miss rate averaged over all the
benchmarks is 3.78%. For the fetch address based indexing with XOR scheme, the number
of BTB misses (due to standard cache behavior) is reduced by 72%, and the average BTB
miss rate falls to 1.04%.

10+ = Without XOR
=== With XOR

Miss Rate (%)
i

cmp gec go ijpeg li m88k perl vortex
Benchmark

Figure 7.4: BTB Miss Rates—SPEC Benchmarks

2The BTB miss rate is equal to the number of BTB misses that occurred due to standard cache behavior
(i. e., the number of undesirable BTB misses) divided by the number of executed branches. This metric
ignores the BTB misses that do not impact performance; i. e., the BTB misses that are not the result of
standard cache behavior.

148

10+ === Without XOR
94 = With XOR

Miss Rate (%)
T

0‘ T L
chess groff gs pgp plot python ss tex
Benchmark

Figure 7.5: BTB Miss Rates—Non-SPEC Benchmarks

For the base microarchitecture and those derived from it, the BTB has 2048 entries
and is 4-way set-associative. It uses the fetch address based indexing with XOR scheme.
(Figure 7.3 and the accompanying text specify how the bits of the fetch address are used
when accessing this BTB. The bars labeled “With XOR” in Figure 7.4 and Figure 7.5 plot
the BTB miss rate for this BTB for each of the benchmarks.) Each BTB entry requires
61 bits of storage. Consequently, the entire BTB requires a little more than 15k bytes of
storage.

Each BTB entry contains a valid bit, a 21 bit partial address tag, a 3 bit branch type
field, a 30 bit partial target address, a 4 bit offset field, and a 2 bit field for implementing
the BTB’s least recently used (LRU) replacement policy. Although, instruction addresses
are 64 bits in the Alpha AXP architecture, programs never address more than 4G bytes
(i. e., 232 bytes) of instruction data. The upper 32 bits of every instruction address are the
same. Additionally, the lower 2 bits of every instruction address are guaranteed to be 0,
since memory is byte addressable, and instructions are aligned at 4-byte boundaries. To
reduce the size of each BTB entry, the upper 32 bits and the lower 2 bits of instruction
addresses are not stored in the BTB entry. That is, only a partial address tag and a partial
target address are stored. This reduces the size of the address tag from 53 bits to 21 bits,
and the size of the target address from 62 bits to 30 bits. The offset field requires only 4

bits, since a first level instruction cache line contains 16 instructions.

149

7.1.2 Execution Core

Figure 7.6 is a block diagram of the execution core. The core contains 16 functional
units. The functional units are not homogeneous. For example, only 8 of the 16 functional
units can execute loads and stores. Each functional unit has its own Node Table (set of
reservation stations), tag bus, and result bus. During decode, each instruction is assigned
to a functional unit capable of executing that instruction. As the instructions are written
(issued) into the Node Tables, each instruction is routed via the switch to the Node Table
that belongs to its assigned functional unit. The Register Alias Table (RAT) is used by

the decode/issue logic to rename registers. It also captures speculative register values, and

keeps track of the architectural (non-speculative) register state.

Register
Decode/l ssue < Alias
l Table
. A 4
Switch
Checkpoint 1:
Checkpoint 2:
[J M
° NT 1 NT » NT 16 | r——
[]
Checkpoint 63:
o O
FU 1 FU > FU 16
4 A4 A4 A4 Tag BU%
< v v v Result Buses

Figure 7.6: Block Diagram of the Execution Core

150

The state of the RAT and the Node Tables are protected via checkpointing [52, 53].
Checkpointing is used to quickly restore the machine to a known previous state in the
event of a branch mispredict or exception. A checkpoint records the machine state at a
particular point in the execution of the dynamic instruction stream. The machine supports
64 checkpoints. One of these checkpoints is used to store the machine’s architectural (non-
speculative) state. The remaining 63 checkpoints are used to store speculative state.

Instructions are decoded, issued, and retired in units of issue packets. An issue
packet is a sequence of logically consecutive instructions that are decoded, issued, and
retired together. An issue packet may contain any number of branches. Each issue packet
is allocated a single checkpoint and a set of physical registers. One physical register is
allocated for each instruction in the packet. The checkpoint records the machine state
at a point just after the last instruction in the packet has executed. The set of physical
registers—which are actually associated with the checkpoint rather than the issue packet—
record the speculative register state associated with the checkpoint. At most one packet
is issued each cycle, at most one packet is decoded each cycle, and at most one packet is
retired each cycle. A packet can only be retired if all the instructions in the packet have
completed without generating exceptions, and if the predicted targets of all the branches in
the packet have been verified. Retiring a packet frees its checkpoint and associated physical
registers.

The decode/issue logic performs four tasks: issue packet creation, functional unit
assignment, dependency analysis, and operand fetch. These tasks are interrelated. However,

much of their work occurs in parallel. Each of these four tasks is described in detail below.

151

The decode/issue logic examines the instructions in the fetch buffer and attempts to
create a single issue packet each cycle. During functional unit assignment, each instruction
in a packet will be assigned its own unique functional unit. To guarantee that this can
occur, restrictions are placed on the size and composition of packets during packet creation.
For the base microarchitecture and the microarchitectures derived from it, each packet
could contain at most 16 instructions. At most 4 of those 16 instructions could be integer
multiplies and floating point instructions, at most 8 could be loads and stores, and at most 4
could be branches and conditional moves. To handle serializing instructions, each serializing
instruction was placed in its own packet with no other instructions. A packet containing a
serializing instruction was not allowed to issue until all older instructions had retired. Once
the packet containing the serializing instruction was issued, new packets were not allowed to
issue until the serializing instruction had retired. The instructions that comprise a packet
are removed from the fetch buffer when the issue packet is created.

Functional unit assignment is the task of assigning each instruction in an issue packet
to a functional unit. Each instruction in the packet is assigned to a different functional unit.
During the last stage of decode/issue, each instruction is routed via the switch to the Node
Table that belongs to its assigned functional unit. Since each instruction is assigned to a
different functional unit, at most one instruction needs to be written into each Node Table
per cycle.

The decode/issue logic performs dependency analysis to determine which instruc-
tions consume values that are produced by instructions within the same packet. Source
operands that are produced by instructions within the same packet must be tagged with
the destination operand tag of the producing instruction. These tags override any source
operand tags fetched from the RAT. (Dependency analysis occurs in parallel with operand
fetch from the RAT.)

152

Operand fetch occurs as soon as the source and destination register identifiers
for the instructions in the packet have been decoded. Essentially, the RAT behaves like
a checkpointed register file. It contains a set of physical registers, and a checkpointed
map that maps the architectural registers onto the physical registers. Each source register
accesses the RAT to obtain its tag, and, if available, its data. The tag is just the address
of the physical register that contains (or will contain) the data for the requested source
register. Each destination register accesses the RAT to allocate a new physical register, to
obtain the tag associated with that physical register, and to update the checkpointed map.

The execution core has 16 Node Tables. Each Node Table has 63 slots for instruc-
tions. Hence, the window size is 1008 (16 x 63) instructions. Each of the 63 slots within
a Node Table belongs to one of the 63 checkpoints that are used to store speculative state.
After the instructions have been decoded, each instruction in the issue packet is routed
to the Node Table that belongs to its assigned functional unit. Each instruction is then
written to the slot associated with the checkpoint allocated to the packet.

The tag of a value generated by a functional unit is broadcast on the functional
unit’s tag bus at least one cycle before the value is broadcast on the functional unit’s result
bus [130]. Each instruction stored in a Node Table monitors the tag buses to determine
when its source operand values are generated. When a source operand value is generated,
the value is read from the appropriate result bus and latched into the instruction’s Node
Table entry. When all of an instruction’s source operands become available, the instruction
wakes up; i. e., it becomes eligible for firing. Every cycle, each of the 16 Node Tables selects
the oldest firable instruction within that Node Table and dispatches it to the functional unit
associated with the Node Table. When an instruction begins execution, the functional unit
immediately broadcasts the tag for the value that will be produced. While the instruction
executes, dependent instructions examine the tag, potentially wakeup, and, if they wakeup,
may be selected for dispatch. When the instruction finishes execution, its value is distributed
over the functional unit’s result bus to the RAT; to dependent instructions that woke up,
were selected, and will need to use the result in the next cycle; and to other instructions in

the Node Tables that await the result.

153

Figure 7.7 shows a pipeline timing diagram for the execution of two dependent
instructions. The add instruction (R20 <+~ R1 + R2) executes during cycle number 1. At
the beginning of the cycle, it broadcasts the tag for the value that it will produce (i. e.,
the value for register R20) on the tag bus. The subtract instruction (R1 + R20 - 10),
which is dependent on this value, notices that the tag for the value has been broadcast
and wakes up. The scheduling logic selects the subtract instruction and dispatches it to
its functional unit. In the middle of cycle number 1, the add instruction completes and
bypasses its value over the result bus to all the functional units. At the beginning of cycle
number 2, the subtract instruction receives the bypassed value and begins executing. Note
that during cycle number 2, the add instruction continues to broadcast its value over the
result bus until all the dependent instructions in the Node Tables have latched the value.
(If the result bus is not pipelined, the add instruction must relinquish the result bus in the
middle of cycle number 2 in order to allow any instruction that completed in that cycle to
bypass its value over the bus.) Details of the instruction scheduling logic (i. e., instruction

wakeup and select) are provided later in this section.

R1<-R20- 10:

Figure 7.7: Pipeline timing diagram showing the execution of dependent
instructions

154

The execution core contains 16 functional units. All functional units can execute
simple integer instructions. The first 4 functional units can also execute integer multiplies
and floating point instructions. The middle 8 functional units can execute loads and stores.
The last 4 functional units can execute branches and conditional moves. The instruction
class latencies are the same as those used in the previous chapters. They are provided in
Table 4.1. All instructions are fully pipelined, except for floating point divide. A functional
unit can only execute one floating point divide at a time; i. e., one floating point divide
every 16 cycles. However, it can execute other instructions that aren’t floating point divides
while it is working on the floating point divide. A value produced by any functional unit is
available to all 16 functional units in the same cycle that the value is produced. That is,

there is no penalty for bypassing values between functional units.

155

Instruction Scheduling Logic

Each of the 16 Node Tables has logic for selecting the highest priority firable in-
struction within the Node Table and dispatching it to the associated functional unit. This
logic—called the instruction scheduling logic—is identical for all 16 Node Tables. Figure 7.8

shows a block diagram of the instruction scheduling logic for one of the Node Tables.

Checkpoint 1: | Node State Priority Payload
R1 Res
63
[N]
A 4
[5 >
|Wakeup[| o | Select [Gy
| Logic e | Logic
[
[
o
Checkpoint 63: | Node State Priority Payload
63
A 4
[4 >
| Wakeup J ¢ | Select | Ces
| Logic | o | Logic
*—>
\4
To
Functional
Unit

Figure 7.8: Block Diagram of the Scheduling Logic

The Node Table has 63 slots for instructions: one slot for each of the 63 checkpoints
that are used to store speculative state. Each checkpoint owns a particular slot number.
Specifically, checkpoint number X (X € {1, 2, ..., 63}) owns slot number X.

Each slot stores the instruction’s (node’s) state, priority information, and payload.
The node state contains the tags for the source operands, keeps track of which source

operands are available, and keeps track of whether or not the instruction has been dis-

156

patched. The priority information identifies which slots contain instructions with a higher
scheduling priority than the slot in question. This information is used to implement the
dynamic scheduling heuristic [13], which, for the base microarchitecture and the microar-
chitectures derived from it, is the oldest first scheduling heuristic. The payload is the data
(e. g., the decoded instruction opcode, the source operand values, and destination operand
tag) that is delivered to the functional unit when the instruction is dispatched.

Each slot also contains wakeup and select logic. The wakeup logic uses the node
state to determine when the instruction stored in the slot is firable. When the instruction
is firable, the wakeup logic asserts the slot’s request line. (The request lines are labeled R;—
Rgs.) For example, when the instruction in slot number 1—which belongs to checkpoint
number 1—is firable, the wakeup logic asserts R;. The select logic examines the request
line of the slot associated with the select logic, and the request lines of all other slots. Using
the priority information, it determines whether a request from the associated slot can be
granted. If it can, the select logic asserts the slot’s grant line. (The grant lines are labeled
G1—-Gg3.) For example, if R; is asserted, and the scheduling priority of slot number 1 is
higher than that of all other slots whose request lines are asserted, then the select logic
associated with slot number 1 will assert G;. The select logic is designed such that at most
one of the 63 grant lines will be asserted in any given cycle. A slot whose request is granted
gates its payload onto the bus connected to the functional unit associated with the Node
Table. That is, a slot whose request is granted is dispatched.

Figure 7.9 shows the wakeup logic for one of the slots. The node state from Figure 7.8
is shown in more detail in this figure. Each instruction has two source operands: « and
B. The node state contains three fields for each operand. The one bit ready field is set
if the source operand is available, and reset if it is not. The CAM (Content Addressable
Memory) field contains the tag for the source operand value. When the tag for the value
is broadcast over one of the 16 tag buses (Tag;—Tagis), the CAM asserts its match line.
Asserting the match line causes the ready bit to be set in the following cycle. The whence
field specifies which of the 16 tag buses will be used to broadcast the tag for the source
operand value. Each of the 16 functional units owns (and broadcasts tags over) a particular
tag bus. Specifically, functional unit number X (X € {1, 2, ..., 16}) owns tag bus number
X. During instruction decode, the RAT records not only the destination operand tag for

each instruction, but also the number of the functional unit assigned to that instruction.

157

Tag; ’ Y

Tag 16
(From Select Logic)
G
Node State: | Ready | CAM 4 |Whenceq | | ReadyB | CAMB |WhenceB | | Dispatchedl
J A r N J N
v l
Ready Matchy ReadyB MatchB Dispatched

_\ /- o

VDD

Clock —d

Ready, — Match 5 —

ReadyB —] Match B —

Dispatched —] Match , —{[Match B —]

Clock ﬁ[l

Figure 7.9: Wakeup Logic

158

When source operands are fetched from the RAT during decode, the tag is returned along
with the number of the functional unit that will produce the value associated with that tag.
This number is used to fill the whence field.

For the base microarchitecture and those derived from it, an instruction may initially
execute using incorrect source operand values. This instruction will receive “updates” of its
source operand values. Whenever it receives an update, it wakes up and generates a request
for dispatch. Eventually, the instruction receives all the correct source operand values, is
dispatched, and then re-executed correctly. The node state contains a one bit field, called
the dispatched field, which prevents an instruction from being dispatched more than once
with the same set of source operand values. When the instruction is initially written into
the slot, this bit is reset. Whenever the instruction receives a new source operand value,
one of the match lines is asserted, and, in the following cycle, the dispatched bit is reset.
When the slot’s grant line (i. e., G) is asserted, the instruction is dispatched, and, in the
following cycle, the dispatched bit is set. If an instruction receives a new source operand
value and is immediately dispatched (i. e., if one of the match lines and the grant line are
asserted in the same cycle), the dispatched bit is set rather than reset in the following cycle.

The bottom of the figure shows the logic for generating the request signal. The
slot generates a request if both source operands (« and () are or will be available in the
next cycle, and if the instruction has not yet been dispatched with the current set of source
operand values. An operand is currently available if its ready bit is set. An operand will be
available in the next cycle if its match line is asserted; that is, if its tag is being broadcast in
the current cycle. (Recall that the tag for a value is distributed one cycle before the value
is distributed.) An instruction has not yet been dispatched with the current set of source
operand values if either the dispatched bit is reset, or if a tag for a source operand value is
being broadcast in the current cycle. (Recall that the dispatched bit is not reset until the

cycle after a tag match occurs.)

159

Figure 7.10 shows the select logic for slot number 1. The select logic for other slots
is similar. The slot’s request line is labeled R; and its grant line is labeled G1. Request
lines from the other 62 slots are labeled Ry-Res. Pys1 (X € {2, 3, ..., 63}) is the z'® bit
of the priority information field associated with slot number 1. It is set if the instruction
in slot number = has a higher scheduling priority than the instruction in slot number 1.
It is reset otherwise. The slot’s grant line is precharged high during the first clock phase.
During the second clock phase, the line is discharged if the slot does not generate a request,
or if any slot that has a higher scheduling priority than slot number 1 generates a request.

VDD

Clock —d [

I Ry—[Rs—[Res —I[

E%E , eo o
1 Poxg %E Pas1 HE Pe3>1 %E

Clock —

Figure 7.10: Select Logic for Slot Number 1

The priority information is actually maintained on a per slot basis rather than
on a per Node Table entry basis. That is, the machine has 1008 Node Table entries (16
Node Tables x 63 slots per Node Table), but only 63 logical (as opposed to physically
implemented) priority information registers. Each of the priority information registers is
shared by the 16 Node Table entries (one Node Table entry for each of the 16 Node Tables)

that are assigned to the same slot number.

160

As was mentioned earlier, the priority information is used to implement the oldest
first scheduling heuristic. The age of an issue packet is the age of the first instruction
in the packet. Issue packets are given priority based on their age. A given packet will
have a higher priority than all other packets that are younger than it. Each packet is
allocated a checkpoint, and each checkpoint owns a particular slot number. The priority
of an instruction stored in a slot is the priority of that instruction’s packet. Oldest first
scheduling is performed by selecting the slot with the highest priority firable instruction.

For conventional machines and machines that support out-of-order fetch, instruc-
tions, and hence issue packets, are issued in strict program order. When a packet is issued,
all packets stored in the Node Tables are older than it. As the packet is issued, the priority
information register associated with the packet’s slot number is written with a value that
indicates that all packets stored in the Node Tables are older than it. Once a packet is
installed in the Node Tables, any new packet issued will be younger than it. Consequently,
the packet’s priority information register doesn’t need to be updated when a new packet is
issued. On the other hand, when a packet is retired, the retiring packet is older than the
installed packet. When the retiring packet is removed from the Node Tables, the installed
packet’s priority information register is updated to indicate that the retiring packet’s slot
no longer contains older instructions.

For machines that support out-of-order fetch/decode/issue, packets may be issued
out-of-order. Special consideration is required to accommodate for this. Every packet that
is created by the machine knows its age. When a new packet is issued, it may be older
than some of the packets already stored in the Node Tables. As the new packet is issued,
every packet in the Node Tables compares its age to that of the new packet. The results of
these comparisons are used to create the value that is written into the new packet’s priority
information register. The value written indicates which of the packets in the Node Tables
are older than the new packet. Once a packet is installed in the Node Tables, packets
subsequently issued may be older than it. The packet’s priority information register is
updated when a new packet is issued based on the result of the comparison between its age
and the age of the new packet. If the new packet is older than it, its priority information

register is updated to reflect that fact.

161

7.1.3 Load/Store System

Figure 7.11 is a block diagram of the load/store system. Only 8 of the 16 functional
units execute loads and stores. The functional units calculate the addresses of load and
store memory accesses and then pass them on to the first level data cache and memory
disambiguator. The machine’s architectural (non-speculative) memory state is contained in
the cache/memory hierarchy, and its speculative memory state is contained in the memory
disambiguator. For a load, the load data is obtained from either the cache/memory hierar-
chy or the memory disambiguator, and then returned to the functional unit that calculated
the load’s address. The functional unit broadcasts the tag and data value for the load on
its tag bus and result bus, respectively. For a store, the memory disambiguator obtains the
store data from the execution core, and then buffers the data until the store retires. When
the store retires, the store data is committed to the architectural memory state; i. e., it is

written to the cache/memory hierarchy.

FU 4 e & o FUg

64 KByte, Direct Mapped,
First Level Data Cache
and
Memory Disambiguator

256 K Byte, 8-Way Set-Associative,
Second Level Data Cache
%1024
Data Cache
Pending Miss Queue
1024
[!

To/From Next Level of Memory Hierarchy

Figure 7.11: Block Diagram of the Load/Store System

162

The first level data cache is a fully pipelined, non-blocking, direct mapped, 64k
byte cache, with an 8 byte line size and a two cycle latency. The cache implements a write-
through store policy, as do the first level data caches of the Compaq Alpha 21164 [29] and
the Cyrix M3 [26]. Write-through caches generate more write traffic to the next level cache
than write-back caches. However, they are easier to implement. The cache can service up
to 8 requests per cycle. A request may either be a cache read, a cache write, or a cache
fill. (A cache fill-—which occurs in response to a cache miss—writes a new line, including
both tag and data, into the cache.) To provide the necessary bandwidth, the cache is 8-way
interleaved. The cache lines are divided into 8 independent banks. The low order 3 bits
of the cache index specify the bank number. Each bank can service at most one request
per cycle; i. e., each bank is single ported. Hence, although the peak number of requests
serviced per cycle is 8, the actual number of requests serviced per cycle may be lower due
to bank conflicts.

The memory disambiguator implements naive memory dependence speculation [22].
An address calculation for a load or a store begins once the source register operands required
for the address calculation are available. After an address has been calculated, it is inserted
and stored in the disambiguator. As each load address is inserted into the disambiguator,
the disambiguator checks whether it contains the address of an aliasing store. If it does,
the disambiguator identifies the aliasing store, and, when the store data becomes available,
forwards the store data to the load. The load then distributes its result. If it does not,
the load obtains its data from the cache/memory hierarchy and immediately distributes its
result. As each store address is inserted into the disambiguator, the disambiguator checks
whether it contains the addresses of any dependent loads. The disambiguator identifies the
dependent loads, and, when the store data becomes available, forwards the store data to

them. These loads then distribute their results.

163

With this memory disambiguator, a load may distribute its result before its depen-
dencies have been correctly identified. As a result, the load may initially distribute incorrect
data. Instructions that are dependent on the load may execute using this incorrect data,
producing and distributing still more incorrect data. Eventually, however, the load’s de-
pendencies are correctly identified, and the load’s correct data is located and distributed.
Dependent instructions that initially executed using incorrect data eventually receive their
correct data, re-execute, and then distribute their correct results. All instructions that ini-
tially executed incorrectly are eventually re-executed as the correct values propagate down
the dependence graph.

The second level data cache is a fully pipelined, non-blocking, 8-way set-associative,
256k byte, write-back cache, with a 128 byte line size and an 8 cycle latency. It has 3 ports
which are used to service the cache read and cache write requests that originate from the
first level data cache. Up to 3 such requests can be serviced per cycle. It has a single port
dedicated for the cache fill and cache copyback requests that originate from the Data Cache
Pending Miss Queue. (A cache copyback occurs whenever a dirty cache line is replaced.
The copyback reads the dirty cache line, both tag and data, from the cache and then places
the cache line in a read-only state. The cache line read by the copyback is eventually copied
back to the next level of the memory hierarchy.) At most one cache fill or cache copyback
can be serviced per cycle.

Cache read and cache write requests that miss in the second level data cache are
placed in the Data Cache Pending Miss Queue (Data Cache PMQ). The PMQ can store
up to 16 miss requests. For cache read requests that missed in the second level data cache,
the PMQ obtains the sought after data from the lower levels of the memory hierarchy. The
PMQ also marshals the cache fills and cache copybacks that are brought about by these
cache misses. For cache write requests that missed in the second level data cache, the PMQ

buffers the write until it is sent to the next level of the memory hierarchy.

164

Figure 7.12 is a block diagram of the first level data cache. Each of the 8 functional
units that can execute loads and stores can submit one request per cycle. For each of the
8 banks, arbitration logic determines which request may access that bank. Requests that
win arbitration are forwarded to their respective banks via the upper switch. Requests that
lose arbitration re-try in the next cycle. Each bank contains a piece of the cache; i. e., an
8th of the lines in the cache. For each load, the data is obtained. The tag and data are
then routed, via the lower switch, to the tag bus and result bus of the functional unit that

calculated the load’s address. The tag and data are then broadcast over these buses.

FU, e o o FUg
Switch
Data Cache o o o Data Cache
(Bank 1) (Bank 8)
Switch
\—0 ®e o o \—ﬁ
v v
Tag; & Result Tag g & Result g

Figure 7.12: Block Diagram of the Dual Switch First Level Data Cache

The lower switch is needed for the following reason. Each load (and indeed, each
instruction) is assigned a functional unit during instruction decode. The number of the
functional unit assigned to the load is recorded in the RAT alongside the load’s destination
operand tag. When an instruction that is dependent on the load fetches the dependent
source operand from the RAT, the tag for the load’s destination operand is returned along
with the number of the functional unit that the load was assigned to. This number is used
to fill the source operand’s whence field (see the wakeup logic in Figure 7.9). Recall that
the whence field identifies which functional unit’s tag bus and result bus will be used to

broadcast the tag and data value for the source operand.

165

Figure 7.13 shows one possible way of eliminating the lower switch. Each bank is
hardwired to a particular tag bus and result bus. A load forwarded to bank number X (X €
{1, 2, ..., 8}) will always broadcast its tag and data value over the tag bus and result bus
that belong to functional unit number X. For the wakeup logic to work properly, whence
fields are re-written as load requests are forwarded to their banks. When a functional unit
forwards a load request to a bank, it broadcasts the tag for the load on its tag bus and asserts
its change whence field line (AWhence). It also broadcasts the number of the functional unit
whose tag bus and result bus will be used to distribute the load’s tag and data value on the
new whence bus (NewWhence). This number is equal to (or can easily be obtained from)
the load’s destination bank number. The instruction scheduling logic ignores tags broadcast
over tag buses whose associated change whence field lines are asserted. Broadcasting the
tag when the change whence field line is asserted causes all instructions that are dependent
on the load to re-write the whence fields of their dependent source operands. The value

written into the whence field is the value broadcast over the new whence bus.

FU, ¢ o0 FUg
\—> AWhence, \—> AWhenceg
— NewWhence; —— ——— NewWhence g
| Switch
Data Cache o o o Data Cache
(Bank 1) (Bank 8)

—9

v v
Tag; & Result Tag g & Result g

Figure 7.13: Block Diagram of the Single Switch First Level Data Cache

166

7.1.4 Main Memory

Processor issue widths are increasing and processor cycle times are decreasing. As a
result, memory bandwidth requirements are growing. In addition, processor cycle times are
decreasing faster than off-chip memory access times. Consequently, the memory latency, in
terms of processor cycles, is also growing.

Currently, a different solution is used for each of these two problems. The solution to
the problem of the growing memory bandwidth requirements has been the adoption of high
bandwidth DRAMs such as Synchronous DRAMs and Rambus DRAMs. Unfortunately,
these devices don’t provide low latency. The solution to the problem of the growing memory
latency has been to increase the size of the processor’s on-chip—as well as off-chip—SRAM
caches. For example, the Hewlett-Packard PA-8500, which is built in a 0.25 um process
technology, has 1.5M bytes of on-chip cache [8]. The Compaq Alpha 21364, which will be
built in a 0.18 pm process technology, will also have 1.5M bytes of on-chip cache [45]. With
each new generation of process technology, the amount of cache that can be implemented
on-chip will increase. Within 5 to 10 years—the time frame when I expect that the base
microarchitecture can be built—it will be possible to implement 16M bytes to 64M bytes of
on-chip cache. 3 For programs with good spatial or temporal locality, large caches solve the
problem of growing memory latency by shielding the processor from the memory latency.
Unfortunately, not all programs have good locality.

In the future, the solution to both these problems may be to implement on-chip
DRAM. Figure 7.14 shows the proposed solution. Main memory caches pages of the virtual

address space(s). Essentially, main memory is a *

‘page” cache: each line of the page cache
(i. e., each page frame) contains a virtual page of a running process. Since DRAM density
(bits/cm?) is about 5 times higher than that of SRAM, within 5 to 10 years, it will be
possible to implement a 64M-256M byte on-chip DRAM primary page cache; that is, a
64M-256M byte on-chip DRAM primary main memory. Placing main memory on the same
chip as the processor allows the width of the memory bus to be increased. The width of

the on-chip memory bus can be scaled to provide the required memory bandwidth. This

solves one of the two problems. On-chip DRAM can be optimized to provide low latency.

3The Compaq Alpha 21364, which has 1.5M bytes of on-chip cache, is expected to ship in the fourth
quarter of 2000 [45]. Assuming that the transistor budget—and hence the amount of on-chip cache—doubles
every 18 months, the amount of on-chip cache will be about 16M bytes in the fourth quarter of 2005, and
about 64M bytes in the fourth quarter of 2008.

167

3 GHz

CPU Pr ocessor

Core

3 GHz Bus Y} 1024

12ns
64 M Byte
DRAM
Page Primary
Prefetch Page Cache
Logic (Main Memory)
! Pt
Bus I nterface Unit
Memory Controller /O Port
Commodity
DRAM
Victim
Page Cache
(Main Memory) _
ToDisk Array

Figure 7.14: Main Memory Architecture

168

This solves the other problem. An example of an on-chip DRAM is the 8M byte DRAM
macro for ASICs that was recently developed by NEC Corporation [68]. This DRAM has a
6.8ns random access time and a 9.1ns complete random access cycle. It can be configured
to read or write up to 1024 bits of data. Naritake et al. [93] used this DRAM to create a
12ns, 8M byte, on-chip, DRAM secondary cache for a MIPS R10000 microprocessor [89].
In the figure, T assumed that the size of the on-chip DRAM primary page cache will be 64M
bytes, that its random access time will be 12 nanoseconds, and that the width of its bus to
the processor core will be 1024 bits.

In addition to the on-chip DRAM primary page cache, I expect that there will be
a large off-chip, high latency, victim page cache built out of commodity DRAMs. When
a program references a page that does not reside in either the primary page cache or the
victim page cache, a page fault occurs. The missing page is retrieved from disk and written
into the primary page cache. Before the new page can be written into its cache line (i. e.,
page frame), however, the processor and the operating system must deal with any (old)
page that currently resides in the cache line. If the old page is unlikely to be used again, it
is either discarded (if the page is clean) or written back to disk (if the page is dirty). If the
old page is likely to be used again, it is transferred to the victim page cache. The old page
may replace a page stored in the victim page cache, in which case the page to be replaced
is either discarded or written back to disk.

Prefetching will be used to insure that the pages required by the processor core
are resident in the on-chip, low latency, primary page cache. Prefetch logic will monitor
the transactions on the bus between the processor core and the primary page cache. It
will use this information to anticipate which pages are about to be accessed that are not
in the primary page cache. It will then try to fetch these pages from either the off-chip,
high latency, victim page cache or the disk array, and place them in the primary page
cache—all before the accesses occur. Prefetching a page from the victim page cache usually
entails swapping the contents of two cache lines: the page stored in the victim page cache
is swapped with the page stored in its destination cache line in the primary page cache. To
allow pages to be swapped without operating system intervention, it may be necessary to
add an extra level of indirection to the main memory access. The virtual page number of
a memory access is translated into a physical frame number using the standard translation

process. The physical frame number is then translated into a cache identifier (either primary

169

or victim) and a cache line number using a table that is maintained by the processor.

As in multiprocessors that use the cache-only memory architecture (COMA) model, the
physical address space is dynamically mapped onto the caches. The processor can swap two
pages without altering the physical address space by (1) swapping the contents of the two
cache lines that contain those pages, and (2) swapping the contents of the two table entries
associated (via physical frame number) with those pages. Note that the cache that contains
a requested page is known after the table access has completed. Hence, for each requested
page, either the primary page cache is accessed, or the victim page cache is accessed, but
it is never the case that both caches are accessed.

The microarchitecture used for the remaining experiments in this dissertation uses
the main memory architecture shown in Figure 7.14. All benchmarks use less than 64M
bytes of memory, so I only model the processor core, the primary page cache, and the bus
between them. Hereafter, the primary page cache will just be called main memory. Main
memory is connected to the processor via a 1024 bit split-transaction bus. Note that the
line sizes for both the second level instruction cache and the second level data cache are
also 1024 bits. Ergo, an entire cache line can be transferred over the bus in a single bus
cycle. The bus is assumed to operate at the frequency of the processor; i. e., 3 GHz. Main
memory is fully pipelined: it can accept a new request (either read or write) every cycle.
Requests originate from the Pending Miss Queue (PMQ) for the second level instruction
cache, and the PMQ for the second level data cache. Once a read request gains access to
the bus, 37 cycles (12.33 ns) are required to access the on-chip DRAM and return the data
to the appropriate PMQ. The bus is only used in the last of these 37 cycles to transfer the
data to the processor. Once a write request gains access to the bus, it occupies the bus for

a single cycle while it transfers its data to main memory.

4To avoid two sequential translations, each TLB entry contains the cache identifier and the cache line
number for its associated virtual page number in addition to the physical frame number.

170

7.2 Apparatus for Out-of-Order Fetch

A processor with out-of-order fetch initiates fetch requests in program order, but
allows these requests to complete out-of-order. The branch predictor produces, in program
order, a sequence of fetch requests for the instructions that comprise the dynamic instruction
stream. Each of these requests initiates an instruction cache fetch. The branch predictor is
completely decoupled from the instruction cache. That is, the branch predictor continues
producing fetch requests regardless of whether or not the requests hit in the instruction
cache. Due to the occurrence of instruction cache misses, the fetch requests may complete
(i. e., obtain their data) out-of-order. As they complete, they write their data into the fetch
buffer entries that were allocated to them. Processors with out-of-order fetch still decode
and issue instructions in program order. Consequently, the instructions, even though they
may be inserted into the fetch buffer out-of-order, are always removed from the fetch buffer
in program order.

There is one advantage—other than performance—for implementing out-of-order
fetch. For a processor without out-of-order fetch, the branch predictor and the instruction
cache stall while the cache line associated with the miss is fetched from the lower levels of
the memory hierarchy. Fetch requests logically following the request for the cache line that
missed are flushed from the machine. When the fetch completes, the cache line is installed
in the instruction cache and the requested instructions are written into the fetch buffer.
Also, since the fetch requests logically following the request for the cache line that missed
were flushed, the branch predictor is forced to re-generate those requests; i. e., the branch
predictor is reset so that when it is restarted, it will restart an earlier point in the sequence
of fetch requests. After this has been accomplished, both the branch predictor and the
instruction cache are restarted. By stalling, flushing, and then restarting, the instructions
are guaranteed to be written into the fetch buffer in program order. For a processor with
out-of-order fetch, instructions do not have to be written into the fetch buffer in program
order, so the processor does not stall, flush, and restart on a miss. On a miss, the branch
predictor does not need to be restarted at an earlier point in the sequence of fetch requests.

This somewhat simplifies the design and implementation of the branch predictor.

171

The base microarchitecture requires two changes in order to support out-of-order
fetch. The first change is to the fetch buffer and the second is to the decode/issue logic.

For the base microarchitecture, the entries of the fetch buffer form a FIFO. The
FIFO is implemented using a circular array. The fetch buffer contains an array of entries,
a head pointer, and a tail pointer. The head pointer points to the first entry of the FIFO.
The tail pointer points to the last entry of the FIFO. Fetch requests complete in the order
that they were initiated; i. e., in program order. When a fetch request completes, its data
is inserted into the FIFO. This is accomplished by advancing the tail pointer, and then
writing the data into the entry specified by the tail pointer. The decode/issue logic removes
the instructions stored in the fetch buffer in program order. If the fetch buffer contains any
instructions, the entry specified by the head pointer contains the instructions that need to
be removed next. When all the instructions stored in that entry have been removed, the
entry is removed from the FIFO. This is accomplished by advancing the head pointer.

For the microarchitecture that supports out-of-order fetch, the fetch buffer does not
function as a FIFO. However, the fetch buffer has a structure similar to that of a FIFO.
It contains an array of entries, a head pointer, and a tail pointer. These three items are
used to implement a circular array. Entries are deallocated in the same order that they
are allocated. The head pointer points to the entry that will be deallocated next. The tail
pointer points to the entry that was allocated last. Unlike the fetch buffer for the base
microarchitecture, the entries from the entry specified by the head pointer to the entry
specified by the tail pointer are not guaranteed to contain ready instruction data. Each
entry contains an additional bit, called the ready bit, that indicates whether or not that
entry has been written; i. e., the bit is set if the entry contains ready instruction data, and

reset if it does not.

172

Fetch requests are initiated in program order. To initiate a request, the request
is allocated a fetch buffer entry. This is accomplished by advancing the tail pointer, and
then tagging the request with the value of the tail pointer. The ready bit of the entry
specified by the tail pointer is also reset to indicate that the entry does not contain ready
instruction data. Note that if the above technique is used for allocating fetch buffer en-
tries, when a request completes, it is guaranteed an entry in which to write its data. If the
microarchitecture implements non-stalling instruction cache pipelines, as the base microar-
chitecture and those derived from it do, such a guarantee is required anyway. Unlike the
base microarchitecture, requests do not necessarily complete in the same order that they
were initiated. When a request completes, it writes its data into the entry indicated by its
tag. The ready bit of that entry is set to indicate that the entry contains ready instruction
data. The decode/issue logic removes the instructions stored in the fetch buffer in program
order. If the fetch buffer contains any instructions, the entry specified by the head pointer
contains the instructions that need to be removed next. However, the instructions can only
be removed if the entry contains ready instruction data; i. e., if the entry’s ready bit is set.
If the entry does not contain ready instruction data, the decode/issue logic stalls until the
data is ready. When all the instructions stored in the entry specified by the head pointer
have been removed, that entry is deallocated. This is accomplished by advancing the head

pointer.

173

Figure 7.15 is a picture of the fetch buffer. The fetch buffer has 8 entries. Each
entry has a ready bit and storage for the instruction data. The head pointer points to the
entry that will be deallocated next; i. e., entry 1. The tail pointer points to the entry that
was allocated last; i. e., entry 6. Entries 1-6 have been allocated. Entries 0 and 7 have not
been allocated. Entry 1 was allocated first. The request that was allocated this entry hit
in the first level instruction cache and then wrote its data into the entry. Hence, the entry
contains ready instruction data, so its ready bit is set. Entry 2 was allocated next. The
request that was allocated this entry also hit in the first level instruction cache, wrote its
data in the entry, and then set the ready bit of the entry. The request that was allocated
entry 3 missed in the first level instruction cache, and has not yet written its data into the
entry. Thus, entry 3 does not contain ready instruction data, so its ready bit is reset. When
the request that was allocated entry 3 completes, it will write its data into the entry and
then set the entry’s ready bit to indicate that the entry contains ready instruction data.
The request that was allocated entry 4 hit in the first level instruction cache, wrote its data
in the entry, and then set the ready bit of the entry. Entries 5 and 6 are the most recently
allocated entries. The requests that were allocated these entries have not yet accessed the
first level instruction cache. Consequently, the ready bits of these entries are still reset.
In this picture, the decode/issue logic can only remove instructions from entries 1 and 2.
When the head pointer advances to entry 3, the decode/issue logic will stall until that
entry’s instruction data becomes ready. After the data becomes ready, the decode/issue
logic will remove the instructions from entry 3, and then proceed on with entry 4, entry 5,

and finally, entry 6.

Ready Instruction Data

Entry 7:

Tai| == Entry 6:
Entry 5:

Entry 4.

Entry 3:

Entry 2:

Head ==—p Entry 1:
Entry O:

PP O|FPL | O|O

Figure 7.15: Fetch Buffer for a Machine that Supports Out-of-Order Fetch

174

The fetch buffer supplies the dynamic instruction stream to the decode/issue logic.
The entry specified by the head pointer contains (or, if the instruction data has not yet
been written into the entry, will contain) the instructions that appear earliest in the dy-
namic instruction stream; that is, it contains the instructions that would execute first on
a processor that executes instructions in program order. The entry after that one contains
the instructions that appear next earliest in the dynamic instruction stream. The farther
an entry is from the entry specified by the head pointer, the later the instructions contained
in that entry appear in the dynamic instruction stream. The entry specified by the tail
pointer contains the instructions that appear latest in the dynamic instruction stream.

The decode/issue logic decodes and issues the instructions of the program in order.
To accomplish this, it examines the instructions in the fetch buffer and attempts to create a
single issue packet each cycle. An issue packet is a piece of the dynamic instruction stream;
i. e., a sequence of logically consecutive instructions. An issue packet can only be created
if the next instruction in the dynamic instruction stream that has not been decoded and
issued is contained in the fetch buffer. Of all the instructions contained in the fetch buffer,
this instruction appears earliest in the dynamic instruction stream. If an issue packet is
created, its first instruction will be this instruction. That is, its first instruction will be the
first instruction that is contained in the fetch buffer entry specified by the head pointer.
Once an issue packet has been created, the instructions that comprise that issue packet are
removed from the fetch buffer. The issue packet is then decoded and issued.

For the base microarchitecture, every fetch buffer entry from the entry specified by
the head pointer to the entry specified by the tail pointer is guaranteed to contain ready
instruction data. Therefore, the instructions from all entries between the entry specified by
the head pointer and the entry specified by the tail pointer, inclusive, can be used to create
an issue packet.

For the microarchitecture that supports out-of-order fetch, the entries from the entry
specified by the head pointer to the entry specified by the tail pointer are not guaranteed
to contain ready instruction data. Consequently, the decode/issue logic must be modified
to prevent it from creating issue packets that contain instructions from fetch buffer entries
that do not contain ready instruction data. The decode/issue logic scans the fetch buffer
entries, starting with the entry specified by the head pointer and proceeding towards the

entry specified by the tail pointer, to determine which entry is the last entry that contains

175

ready instruction data. That is, it scans the entries to determine which entry is the last
entry with a ready bit that is set. The instructions from all entries between the entry
specified by the head pointer and this last entry, inclusive, can be used to create an issue
packet. As an example, in Figure 7.15, only the instructions from fetch buffer entries 1 and

2 can be used to create an issue packet.

7.3 Apparatus for Out-of-Order Fetch/Decode/Issue

The apparatus for out-of-order fetch/decode/issue builds upon the apparatus for
out-of-order fetch. This section describes the remaining apparatus that a processor needs to
implement out-of-order fetch/decode/issue. Subsection 7.3.1 describes sequence numbers,
which the processor uses to keep track of the logical order of the instructions that are resident
in the machine. Subsection 7.3.2 describes modifications to the fetch buffer. Subsection 7.3.3
describes how the processor handles register dependencies. Register dependencies require
special consideration for a processor with out-of-order fetch/decode/issue. Memory depen-
dencies do not. Subsection 7.3.4 describes the modifications to the instruction scheduling
logic required by a processor that implements out-of-order fetch/decode/issue using the
assume dependence dependency handling technique. Subsection 7.3.5 describes physical
register withholding and checkpoint withholding, which are needed to prevent deadlock.

Finally, subsection 7.3.6 describes how the processor handles serializing instructions.

7.3.1 Sequence Numbers

A processor with out-of-order fetch/decode/issue assigns a sequence number to every
instruction it fetches. The sequence number specifies the instruction’s position within the
dynamic instruction stream; that is, it specifies the instruction’s age. The first instruction in
the dynamic instruction stream, which is the oldest instruction in the dynamic instruction
stream, is assigned the first sequence number: sequence number 1. The second instruction
in the dynamic instruction stream, which is the second oldest instruction in the dynamic
instruction stream, is assigned the second sequence number: sequence number 2. And so
on. The processor uses these sequence numbers to keep track of the logical order of the

instructions that are resident in the machine.

176

The processor actually supports only a finite number of sequence numbers, rather
than an infinite number of sequence numbers. The sequence numbers are recycled in order
to make it appear as though there are an infinite number of them, just as the ticket numbers
of the take-a-number systems used by butcher shops are recycled in order to make it appear
as though there are an infinite number of ticket numbers. To guarantee that a butcher shop
does not run out of ticket numbers, the number of ticket numbers should be greater than or
equal to the maximum number of customers that can potentially be waiting for service. To
guarantee that the processor cannot run out of sequence numbers, the number of supported
sequence numbers should be greater than or equal to the maximum number of instructions
that can be resident in the machine at one time.

Two counters, the head and the tail, define the set of sequence numbers that are
assigned to the instructions that are resident in the machine. The head specifies the sequence
number of the oldest instruction that is resident in the machine. Whenever an instruction
is retired, the head is incremented. The tail specifies the sequence number of the youngest
instruction that is resident in the machine. Whenever an instruction is fetched, the tail is
incremented. The resulting value of the tail counter is the sequence number that is assigned
to the fetched instruction. When either counter is incremented past its maximum value,
which is N for a processor that supports N sequence numbers, the value of the counter
wraps around to 1.

The sequence numbers are used to implement the oldest first scheduling heuristic,
to flush instructions from the microengine, and to keep track of the information required

for out-of-order fetch/decode/issue.

177

To implement the oldest first scheduling heuristic, the sequence number that is
assigned to the first instruction in an issue packet specifies the age of that packet. The
age of a packet (i. e., the sequence number assigned to the first instruction in the packet)
is stored in an Issue Packet Age Register (IPAR), as shown in Figure 7.16. There is one
IPAR for each of the 63 checkpoints that are used to store speculative state. When a packet
is issued, its age is written into the IPAR associated with the checkpoint allocated to the
packet. As it is written, it is compared to the ages—which are stored in the other IPARs—
of all other packets stored in the Node Tables. The results of these comparisons classify
packets into two groups: those older than the newly issued packet, and those younger than
the newly issued packet. As described at the very end of Section 7.1.2, these results are
used to initialize the newly issued packet’s priority information register, and to update the
priority information registers of the other packets already stored in the Node Tables. The

priority information registers are used to implement the oldest first scheduling heuristic.

Age of New | ssue Packet

To
Instruction
Scheduling

Logic

Checkpoint 63: | Issue Packet Age Register

Checkpoint 2: | I ssue Packet Age Register

Checkpoint 1. | I ssue Packet Age Register

Figure 7.16: Issue Packet Age Registers

178

Whenever a mispredicted branch is resolved, instructions may need to be flushed
from the machine. Instructions are always flushed from the back-end of the machine (i. e.,
the execution core and the load/store system) in units of issue packets. If a mispredicted
branch is the last (i. e., youngest) instruction in its packet, only the packets that are
younger than the packet containing the branch must be flushed. If a mispredicted branch is
not the last instruction, the packet that contains the branch must also be flushed. To flush
these packets, the age of the branch (i. e., the sequence number assigned to the branch)
is compared to the ages—which are stored in the IPARs—of all the packets stored in the
Node Tables. All checkpoints allocated to packets that are younger than the branch, as well
as the physical registers associated with those checkpoints, are deallocated. If the branch is
not the last instruction in its packet, the checkpoint allocated to the packet containing the
branch and the checkpoint’s associated physical registers are also deallocated. The machine
must also reclaim all sequence numbers assigned to the flushed instructions. To accomplish
this, the tail counter is simply rolled back. If the mispredicted branch is the last instruction
in its packet, the tail counter is set to the sequence number assigned to the branch. If the
mispredicted branch is not the last instruction in its packet, the tail counter is set to one
less than the sequence number assigned to the first instruction in the packet that contains
the branch.

When a mispredicted branch resolves, all instructions that are younger than the
branch must be flushed from the front-end of the machine (i. e., the fetch unit).

For the base microarchitecture and the microarchitecture that supports out-of-
order fetch, instructions are always issued in program order. When a mispredicted branch
resolves, all instructions that are older than the branch have been issued, and are no longer
in the front-end of the machine. Any instructions in the front-end are younger than the
branch, and must be flushed. These microarchitectures simply flush all instructions from

the front-end whenever a mispredicted branch resolves.

179

For a microarchitecture that implements out-of-order fetch/decode/issue using the
assume dependence dependency handling technique, a post-hole branch instruction is not
allowed to execute until the hole disappears. When a mispredicted branch resolves, it can
never be a post-hole instruction. All instructions that are older than the branch have been
issued, and are no longer in the front-end of the machine. Any instructions in the front-
end are younger than the branch, and must be flushed. Hence, this microarchitecture also
flushes all instructions from the front-end whenever a mispredicted branch resolves.

For a microarchitecture that implements out-of-order fetch/decode/issue using the
assume independence dependency handling technique, if a mispredicted branch resolves,
and that branch is a post-hole instruction, the front-end contains instructions that are
older than the branch. The fetch unit must only flush the instructions that are younger
than the branch from the front-end of the machine. The instructions that are older than the
branch must not be flushed. Designing a front-end that can perform such selective flushing
is nontrivial.

To simplify the design of such a microarchitecture, the following policy may be
used: branch instructions use the assume dependence dependency handling technique, and
all other instructions use the assume independence dependency handling technique. Since
branch instructions assume dependence, when a mispredicted branch is resolved, it can
never be a post-hole instruction. All instructions that are older than the branch will have
been issued, and will no longer be in the front-end of the machine. Any instructions in
the front-end will be younger than the branch, and need to be flushed. With this policy,
the microarchitecture does not need a front-end that can be selectively flushed, so it is
simpler to design. In Chapter 8, I will show that a microarchitecture that uses this policy

outperforms the like microarchitecture that does not.

180

Finally, the processor uses the sequence numbers to keep track of information re-
quired for out-of-order fetch/decode/issue. This information is stored in the Sequence
Number Information Table (SNIT), as shown in Figure 7.17. There is one entry in the
table for each sequence number. Each entry contains a decode bit and a 6 bit checkpoint
field. The decode bit is set if the instruction that was assigned the given sequence number
has been removed from the fetch buffer; i. e., if the instruction has already passed through
the first stage of the instruction decode pipeline. When the decode bit is set, the check-
point field specifies the checkpoint that was allocated for the issue packet that contains
that instruction. Note that the base microarchitecture and the microarchitectures derived
from it support 64 checkpoints, so a 6 (i. e., [log, 64]) bit field is required to specify the
checkpoint number. The decode bit is reset if the instruction that was assigned the given
sequence number has not yet been inserted into the fetch buffer, or if the instruction has
been inserted into the fetch buffer but it has not yet been removed from the fetch buffer.

When the decode bit is reset, the checkpoint field is not used.

Decode Checkpoint

Sequence Number N:

Tai| =—) Sequence Number 5:
Sequence Number 4:
Sequence Number 3:
Head == Sequence Number 2:
Sequence Number 1.

Figure 7.17: Sequence Number Information Table

181

When an instruction is fetched, the tail is incremented. The resulting value of
the tail counter is the sequence number assigned to the fetched instruction. The sequence
number is used as an index to access the SNIT. The decode bit of the selected SNIT entry
is reset to indicate that the instruction assigned that sequence number has not yet passed
through the first stage of the instruction decode pipeline.

Later, when the instruction is removed from the fetch buffer and has passed through
the first stage of the instruction decode pipeline, the sequence number assigned to the
instruction is used again as an index to access the SNIT. The decode bit of the selected
SNIT entry is set to indicate that the instruction has passed through the first stage of the
instruction decode pipeline. Also, the number of the checkpoint that was allocated for the
issue packet containing the instruction is written into the checkpoint field of the selected
SNIT entry.

The head counter specifies the sequence number of the oldest instruction that is
resident in the machine. Since instructions are always retired in program order, the oldest
instruction is the next instruction to be retired. The instruction retirement logic uses the
sequence number specified by the head counter to access the SNIT. The selected SNIT
entry contains the information regarding the oldest instruction. If the decode bit of that
entry is set, the instruction has passed through the first stage of the instruction decode
pipeline, and the checkpoint field of the entry specifies the number of the checkpoint that
was allocated for the issue packet containing the instruction. The retirement logic examines
that checkpoint, and, if all the instructions in the packet assigned to the checkpoint have
completed without generating exceptions, and if the predicted targets of all the branches
in the packet have been verified, the packet is retired. For each instruction that is retired,
the retirement logic increments the head counter by one. If the decode bit of the selected
SNIT entry is reset, either the oldest instruction has not yet been inserted into the fetch
buffer, or, if the oldest instruction has been inserted into the fetch buffer, it has not yet
been removed from the fetch buffer. The retirement logic waits until the instruction has
passed through the first stage of the instruction decode pipeline (i. e., it waits until the

decode bit is set) before trying to retire the instruction.

182

7.3.2 Modified Fetch Buffer

Like a processor with out-of-order fetch, a processor with out-of-order fetch/de-
code/issue initiates fetch requests in program order but allows them to complete out-of-
order. The branch predictor produces, in program order, a sequence of requests for the
instructions that comprise the dynamic instruction stream. Each request is allocated a
fetch buffer entry, and then issued to the instruction cache, where it initiates an instruction
cache fetch. As a result of cache misses, the requests may complete (i. e., obtain their data)
out-of-order. As they complete, they write their data into the fetch buffer entries allocated
to them.

Unlike a processor with out-of-order fetch, a processor with out-of-order fetch/de-
code/issue can decode and issue instructions out of program order. To enable out-of-order
fetch/decode/issue, the processor allows issue packets to be created out of program order.
Each cycle, the decode/issue logic examines the instructions in the fetch buffer and attempts
to create a single packet. A packet is created so long as there are instructions in fetch buffer
entries whose associated fetch requests have completed. Any packet created will contain the
oldest such instruction in the fetch buffer. A packet is a sequence of logically consecutive
instructions. The sequence numbers assigned to the instructions in the fetch buffer are used
to determine which of those instructions are in sequence and can therefore be placed in
the same packet. Once a packet is created, the instructions that comprise the packet are
removed from the fetch buffer. When all the instructions in a fetch buffer entry have been
removed, that entry is deallocated. Since packets may be created out-of-order, instructions
may be removed from the fetch buffer out-of-order. Consequently, fetch buffer entries, which
are allocated to fetch requests in the order that those requests are produced, may not be

deallocated in that same order.

183

Figure 7.18 is a picture of the fetch buffer for the microarchitecture that supports
out-of-order fetch/decode/issue. The fetch buffer contains two structures: a list and a
storage array. An entry in the fetch buffer consists of an entry in the list and an entry in
the storage array. A pointer links each list entry with the storage array entry that belongs
to the same fetch buffer entry as the list entry. The list specifies the order of the fetch buffer
entries. The first entry in the list belongs to the fetch buffer entry allocated for the oldest
set of instructions that are stored (or will be stored) in the fetch buffer. The second entry
in the list belongs to the fetch buffer entry allocated for the second oldest set of instructions
in the fetch buffer. And so on. The storage array is used to store the instruction data

associated with each fetch buffer entry.

| List | | Storage Array |
Ready Index Free Instruction Data
Entry 7: 0
Entry 6: 0
Tail m— 0 o Entry 5: 1
1 4 / Entry 4: 0
1 f/v Entry 3: 0
F';;zty — 1 o Entry 2: 1
0 ® » Entry 1 0
Head =———pp 0 L > Entry0: 0

Figure 7.18: Fetch Buffer for a Machine
that supports Out-of-Order Fetch/Decode/Issue

Each list entry contains a ready bit and a 3 bit index field. The index field specifies
a pointer to a storage array entry. The storage array entry contains the instruction data for
the fetch buffer entry associated with the given list entry. The ready bit indicates whether
or not the associated fetch buffer entry has been written. The bit is set if the fetch buffer
entry contains ready instruction data. To be more specific, the bit is set if the storage array
entry that belongs to the fetch buffer entry contains ready instruction data. The bit is reset

if it does not contain ready instruction data.

184

Each storage array entry contains a free bit in addition to the field(s) required to
store the instruction data. This bit is set if the storage array entry belongs to a free fetch
buffer entry; i. e., a fetch buffer entry that is not allocated to a fetch request. It is reset if
the storage array entry belongs to a fetch buffer entry that is allocated to a fetch request.

The list is implemented with an array. The first entry in the array, which is obtained
by accessing the array with index 0, is the first item in the list. The second entry in the
array, which is obtained by accessing the array with index 1, is the second item in the list.
And so on. A tail pointer provides the index of the array entry that contains the last item in
the list. Although the figure shows a head pointer, the head pointer is not actually needed,
since the index of the array entry that contains the first item in the list is always 0. To add
an item to the list, the tail pointer is incremented by 1. The data for the new item is then
written into the entry pointed to by the tail pointer. To remove the item from the list that
is stored at an array entry whose index is N, each item stored at an array entry whose index
is M, where M is greater than N, is shifted (copied) into the entry whose index is M-1. The
tail pointer is then decremented by 1.

To initiate a fetch request, the request is allocated a fetch buffer entry. This is
accomplished by scanning the storage array to find a storage array entry that is free; i. e.,
to find a storage array entry whose free bit is set. The free bit of this entry is reset to
indicate that the entry has been allocated. An entry for the fetch buffer entry is then added
to the list. The ready bit of the list entry is reset to indicate that the fetch buffer entry
does not contain ready instruction data. The index field of the list entry is set equal to
the index of the storage array entry. The fetch request is then tagged with the index of
the storage array entry. When a request completes, it writes its data into the storage array
entry indicated by its tag. The list is scanned (via CAMs) to find the list entry whose index
field matches the tag. The ready bit of that list entry is set to indicate that the associated
fetch buffer entry contains ready instruction data.

The first ready pointer points to the first entry in the list whose ready bit is set. The
fetch buffer entry associated with this list entry contains the oldest set of instructions in the
fetch buffer whose associated fetch request has completed. The decode/issue logic examines
the instructions in the fetch buffer; starting with the fetch buffer entry indicated by the first
ready pointer, proceeding towards the fetch buffer entry indicated by the tail pointer, and

ending with the first fetch buffer entry that does not contain ready instruction data; and

185

attempts to create a single issue packet each cycle. A packet is created if there is at least
one fetch buffer entry that contains ready instruction data. Any packet created will contain
the oldest instruction from the fetch buffer entry indicated by the first ready pointer. The
sequence numbers assigned to the examined instructions are used to determine which of
them are in sequence and can therefore be placed in the same packet. Once a packet is
created, the instructions that comprise the packet are removed from the fetch buffer. When
all the instructions in a fetch buffer entry have been removed, that entry is deallocated. To
deallocate a fetch buffer entry, its associated list entry is removed from the list, and the free
bit of its associated storage array entry is set to indicate that the entry is available.

The decode/issue logic uses the value of the first ready pointer to determine whether
or not it creates an issue packet that consists of post-hole instructions. If the value of the
pointer is 0, it points to the first entry in the list. The fetch buffer entry associated with
this list entry contains the oldest set of instructions in the fetch buffer that have not been
decoded and issued. Any packet created will contain the oldest of these instructions, which
is not a post-hole instruction. Hence, when the value of the pointer is 0, any packet created
will not consist of post-hole instructions. On the other hand, if the value of the pointer is
not 0, it does not point to the first entry in the list. The oldest instruction in the fetch
buffer that has not been decoded and issued will not be included in the issue packet if one
is created. Thus, when the value of the pointer is not 0, any packet created will consist of
post-hole instructions.

If the decode/issue logic creates an issue packet that consists of post-hole instruc-
tions, it can use the value of the first ready pointer to estimate the total number of hole
instructions. The value of the first ready pointer is equal to the number of fetch buffer
entries that contain the hole instructions. To get an estimate of the total number of hole
instructions, the decode/issue logic can multiply the value of the first ready pointer by an
estimate of the average number of instructions that are stored in a fetch buffer entry. The
decode/issue logic can also obtain an exact count of the total number of hole instructions.
Starting with the fetch buffer entry associated with the first entry in the list, and ending
with the fetch buffer entry associated with the list entry whose index is one less than the
value of the first ready pointer, the decode/issue logic can add up the number of instructions
that will be written into each of those fetch buffer entries. The sum is an exact count of

the total number of hole instructions.

186

7.3.3 Handling of Register Dependencies

The Register Alias Table (RAT) behaves like a checkpointed register file. It contains
a set of physical registers, and, for each of the checkpoints that the machine supports, an
array—or map—that maps the architectural registers onto the physical registers. Indexing
the array with the number of an architectural register yields the number of the physical
register mapped to the architectural register for the given checkpoint. The map for a given
checkpoint records the architectural-to-physical register mapping for the point just after
the last instruction in the issue packet assigned to that checkpoint has been decoded.

Before an issue packet is issued into the machine, it is allocated a checkpoint. The
RAT map for that checkpoint is then initialized. To initialize the map, the decode/issue
logic determines which of the packets stored in the Node Tables is the youngest packet
that still logically precedes (i. e., is still older than) the packet being issued, and which
checkpoint is assigned to that packet. The map for that checkpoint is then copied to the

map for the newly allocated checkpoint.

187

To determine which checkpoint contains the youngest issue packet that is still older
than the packet being issued, the entries of the Sequence Number Information Table (SNIT)
are scanned. The first entry scanned contains the information regarding the instruction that
is one instruction older than the first (youngest) instruction in the packet being issued. The
index of this entry is equal to one less than the sequence number assigned to the first
instruction in the packet. The second entry scanned contains the information regarding the
instruction that is two instruction older than the first instruction in the packet. The index
of this entry is equal to two less than the sequence number assigned to the first instruction in
the packet. Scanning proceeds in this way towards the entry that contains the information
regarding the oldest instruction in the machine; i. e., towards the entry whose index is equal
to the head counter for the sequence numbers. Scanning stops when an entry is found whose
decode bit is set. This entry contains the information regarding the youngest instruction
that has passed through the first stage of the instruction decode pipeline and that is still
older than the instructions in the packet being issued. The checkpoint field of this entry
specifies the number of the checkpoint that was allocated for the issue packet containing
this instruction; i. e., the number of the checkpoint that contains the youngest issue packet
that is still older than the packet being issued.

If the packet being issued does not consist of post-hole instructions, determining
which checkpoint contains the youngest packet that is still older than the packet being issued
is trivial, since a scan of the SNIT entries is not actually needed. Because the packet does
not comnsist of post-hole instructions, the instruction that is one instruction older than the
first instruction in that packet has already been issued; i. e., it has already passed through
the first stage of the instruction decode pipeline. As a result, the decode bit of its SNIT
entry will be set. This SNIT entry is the first entry scanned, and scanning stops when an
entry is found whose decode bit is set. If there were a scan of the SNIT entries, the scan
would always stop at this entry. Instead of a scan, the decode/issue logic can simply read

out this first entry.

188

On the other hand, if the packet being issued does consist of post-hole instructions,
determining which checkpoint contains the youngest packet that is still older than the packet
being issued is not trivial, since a scan of the SNIT entries is needed. Figure 7.19 shows an
example of this situation. A new issue packet, consisting of two post-hole instructions whose
sequence numbers are 4 and 5, is being issued into the machine. The issue packet has passed
through the first stage of the instruction decode pipeline and has been allocated checkpoint
number 17. The SNIT entries for the instructions in this packet have already been updated
to reflect these facts. The instruction whose sequence number is 3 is a hole instruction.
It has not been issued, nor has it passed through the first stage of the instruction decode
pipeline. The instruction whose sequence number is 2 is a pre-hole instruction. It has
passed through the first stage of the instruction decode pipeline, it has been issued, and it

has been assigned checkpoint number 32.

Decode Checkpoint

Sequence Number N:

Tail =P Sequence Number 5: 1 17
New | ssue Packet
Sequence Number 4: 1 17
Sequence Number 3: 0 Don’t Care
. Preceding
Head =P Sequence Number 2: 1 32 «— Checkpoint

Sequence Number 1.

Figure 7.19: Figure showing how the Sequence Number Information Table
is used to determine which checkpoint contains the issue packet
that logically precedes a new issue packet

The scan starts with the SNIT entry associated with sequence number 3. This entry
contains the information regarding the hole instruction, which is one instruction older than
the first instruction in the new issue packet; i. e., the instruction whose sequence number is
4. Note that the hole instruction’s sequence number is one less than the sequence number

of the first instruction in the new issue packet. The scan stops at the SNIT entry associated

189

with sequence number 2, which is the first entry scanned whose decode bit is set, and which
contains the information regarding the pre-hole instruction. The checkpoint field of this
entry provides the number of the checkpoint that contains the youngest issue packet that
is still older than the packet being issued; i. e., checkpoint number 32.

After the RAT map for the checkpoint allocated to an issue packet is initialized,
the decode/issue logic performs operand fetch for each instruction in that packet. Each
source register accesses the RAT to obtain its tag, and, if available, its data. The tag is
obtained by using the architectural register number of the source register as an index to
access the map associated with the checkpoint. The returned value is the address of the
physical register that contains (or will contain) the data for the requested source register.
This value serves as the tag. Each destination register accesses the RAT to allocate a new
physical register. The address of this physical register is then used to update the map
associated with the checkpoint. This is accomplished by writing the address of the physical
register into the map entry whose index is equal to the architectural register number of the
destination register.

For machines that support out-of-order fetch/decode/issue, issue packets may be de-
coded out of program order. When a packet consisting of post-hole instructions is decoded,
the decode/issue logic may not know for certain which instructions the post-hole instruc-
tions are dependent on. The decode/issue logic assumes that the post-hole instructions are
not dependent on hole instructions. All register dependencies are assumed to be between
post-hole instructions and other post-hole instructions, or between post-hole instructions
and pre-hole instructions. Register renaming is performed as though the hole instructions
do not exist.

Later, when the hole instructions are decoded, the register dependencies of the
post-hole instructions can be correctly computed, and, if necessary repaired. Some of the
post-hole instructions may be dependent on the hole instructions. Suppose that a post-hole
instruction is only dependent on a single hole instruction. When the post-hole instruction
was decoded, it picked up the wrong tag for the source register operand that depends on
the hole instruction. Rather than picking up the tag for the value produced by the hole
instruction, it picked up the tag for a value produced by a pre-hole instruction.

To fix this, during operand fetch, for each instruction in an issue packet, the instruc-

tion’s destination register accesses the RAT to obtain the tag for the previous instance of

190

that architectural register. As before, the destination register also accesses the RAT to allo-
cate a new physical register, to obtain the tag associated with that physical register—that
is, to obtain the tag for the current instance of the architectural register—and to update the
checkpointed map. All instructions that are younger than the given instruction can only be
dependent on the current instance. They cannot be dependent on the previous instance. If
they have source register operands whose tags are equal to the tag for the previous instance,
those operands have the wrong tags. The tags for those operands must be re-written with
the correct tag value; i. e., the value of the tag for the current instance.

The tags for the operands are re-written using a technique that is similar to the
technique used to re-write the whence fields. (See the very end of Section 7.1.3 for a
description of the technique used to re-write the whence fields.) When a new packet is
issued, each instruction in the packet broadcasts the tag for the previous instance to the
instructions stored in the Node Tables. Each instruction also broadcasts the tag for the
current instance, as well as the number of the functional unit whose tag bus and result bus
will be used to distribute the instruction’s tag and data value. As the packet is issued, its
age is compared to the ages—which are stored in the Issue Packet Age Registers (IPARs)—
of the other packets stored in the Node Tables. For all instructions in packets that are
younger than the packet being issued, and that have source register operands whose tags
match one of the tags for a previous instance, the matching tags are overwritten with the
correct rename tags; i. e., the tags for the current instances. In addition, the whence
fields for the operands with matching tags are overwritten with the correct functional unit
numbers; i. e., the functional unit numbers that were broadcast along with the tags for the

current instances.

7.3.4 Modified Instruction Scheduling Logic

For processors that implement out-of-order fetch/decode/issue using the assume de-
pendence dependency handling technique, post-hole instructions are not allowed to execute
until the hole disappears. Only pre-hole instructions are allowed to execute. The instruction
scheduling logic must be modified so that only pre-hole instructions are allowed to schedule
for execution. To be more precise, the instruction scheduling logic must be modified so that
only the instructions that are older than (or as old as) the youngest pre-hole instruction are

allowed to schedule for execution.

191

The Sequence Number Information Table (SNIT) is used to keep track of the se-
quence number of the youngest pre-hole instruction. Figure 7.19 shows an example SNIT.
To determine the sequence number of the youngest pre-hole instruction, the entries of the
SNIT are scanned, starting with the entry indicated by the head counter, proceeding to-
wards the entry indicated by the tail counter, and ending with the first entry whose decode
bit is reset. Note that the entries are scanned in the order of oldest to youngest, where
the oldest entry is defined as the entry that contains the information regarding the oldest
instruction in the machine, and the youngest entry is defined as the entry that contains the
information regarding the youngest instruction in the machine. The sequence number of
the youngest pre-hole instruction is equal to one less than the sequence number associated

with the entry that ended the scan. This sequence number is 3 in the figure.

Decode Checkpoint

Sequence Number N:

[]

[]

[]
Tail =P Sequence Number 5: 1 9

Youngest Sequence Number 4: 0 Don’t Care
Pre-Hole =———=p Sequence Number 3: 1 32
Instruction Sequence Number 2: 1 17 :I New | ssue Packet

Head =——P Sequence Number 1: 1 52

Figure 7.20: Figure showing how the Sequence Number Information Table
is used to determine the sequence number of the youngest pre-
hole instruction

Before a new issue packet is issued into the machine, the decode/issue logic calculates
what the sequence number of the youngest pre-hole instruction will be after that packet
has been issued. In the figure, the new issue packet consists of a single instruction whose
sequence number is 2. This instruction is a hole instruction, since an instruction that is
younger than it (i. e., the instruction whose sequence number is 3) has already passed
through the first stage of the instruction decode pipeline. After this new packet has issued,

the sequence number of the youngest pre-hole instruction will be 3.

192

When the new issue packet is issued into the machine, the age of the youngest pre-
hole instruction (i. e., the sequence number of the youngest pre-hole instruction calculated
as described in the preceding paragraph) is compared to the ages—which are stored in the
Issue Packet Age Registers (IPARs)—of all the packets stored in the Node Tables. Each
checkpoint allocated to a packet that is older than (or as old as) the youngest pre-hole
instruction allows its instructions to be scheduled. Each checkpoint allocated to a packet
that is younger than the youngest pre-hole instruction inhibits its instructions from being
scheduled. As a result of this, only pre-hole instructions are allowed to schedule and execute,

and post-hole instructions are not allowed to schedule and execute until the hole disappears.

7.3.5 Physical Register and Checkpoint Withholding

Physical register withholding and checkpoint withholding are needed to prevent
deadlock in machines equipped with out-of-order fetch/decode/issue. When a post-hole
instruction is issued, the machine must guarantee that all hole instructions that logically
precede that post-hole instruction will have the physical registers and checkpoints they need
to be issued into the machine. If this guarantee is not met, the machine will deadlock: the
post-hole instruction will not retire—and hence, release the physical register and checkpoint
allocated to it—until the hole instructions have retired, yet the hole instructions cannot be
issued because they don’t have the required physical registers and checkpoints.

To guarantee that all hole instructions that logically precede the post-hole instruc-
tion will have the physical registers they need to be issued into the machine, the machine
withholds one physical register per hole instruction whenever it issues a post-hole instruc-
tion. Every instruction requires exactly one physical register when it is issued, so the
machine can compute the exact number of physical registers that will be needed for the
hole instructions. As described in Section 7.3.2, the fetch buffer’s first ready pointer can be
used to either estimate or compute the total number of hole instructions.

To guarantee that all hole instructions that logically precede the post-hole instruc-
tion will have the checkpoints they need to be issued into the machine, the machine with-
holds some of its checkpoints for the hole instructions whenever it issues a post-hole instruc-
tion. The machine knows how many hole instructions there are. Unfortunately, it does not
know how many checkpoints will be needed for these hole instructions, since the number of

instructions that can fit on a checkpoint varies.

193

Fortunately, as long as the machine withholds at least one checkpoint for the hole in-
structions, deadlock is prevented. Whenever there are two or more free (unallocated) check-
points, the machine may use those checkpoints to issue whichever instructions it chooses.
Whenever there is only one free checkpoint, that checkpoint is withheld for the hole in-
structions, so the machine may not use that checkpoint to issue post-hole instructions. The
machine uses that remaining free checkpoint to try to issue, in program order, all the hole
instructions, starting with the hole instruction that appears the earliest in the dynamic
instruction stream, and working towards the hole instruction that appears the latest. If
the number of hole instructions is greater than the number of instructions that can fit on a
checkpoint, the machine will need to use the remaining free checkpoint multiple times. Each
time, it will assign an issue packet’s worth of hole instructions to the checkpoint, issue those
instructions, and then wait for them to retire. After those instructions have retired, it will
use the checkpoint to issue a new group of instructions. Essentially, whenever the machine
has only one free checkpoint, it operates as an in-order issue machine that supports only a
single speculative checkpoint. Hence, even though a machine can prevent deadlock by with-
holding only one checkpoint for all of the hole instructions, this technique for preventing
deadlock may result in poor performance.

Another technique for preventing deadlock is to withhold a set fraction of a check-
point for each hole instruction. To calculate the number of checkpoints that need to be
withheld, the number of hole instructions is multiplied by this fraction, and then the result
is rounded up to the nearest integer. For example, if on average 8 instructions fit on a
checkpoint, a machine might want to withhold 1/8 of a checkpoint per hole instruction. If
there are 17 hole instructions, the machine would withhold 3 (i. e., [17 x 1/8]) checkpoints.
The fraction is selected such that the multiplication is easily performed in hardware; i. e.,
the fraction is 2% for n € {0, 1, ... }. Rounding the result up to the nearest integer ensures
that at least one checkpoint is withheld whenever there are any hole instructions. If this
technique underestimates the number of checkpoints that need to be withheld, deadlock is

prevented via the technique described in the preceding paragraph.

194

For the base microarchitecture and those derived from it, 16 instructions can fit on
a checkpoint. One of these machines might optimistically assume that the hole instructions
will be packed 16 per checkpoint. This machine would withhold 1/16 of a checkpoint for each
hole instruction. A machine might also assume the average, as was done in the example.
Or, a machine might pessimistically assume that the hole instructions will only be packed
1 per checkpoint, and therefore withhold a whole checkpoint for each hole instruction.

If the fraction of a checkpoint withheld per hole instruction is too low, the machine
underestimates the number of checkpoints that need to be withheld, and must rely on the
first technique to prevent deadlock. The first technique may result in poor performance.
Consequently, if the fraction is too low, the performance may suffer. On the other hand,
if the fraction is too high, the machine overestimates the number of checkpoints that need
to be withheld. The machine may not be able to issue a packet of post-hole instructions
because all of the free (unallocated) checkpoints have been withheld. Thus, if the fraction
is too high, the performance may suffer.

For the experiments in the next chapter, all machines that support out-of-order
fetch/decode/issue will use the first checkpoint withholding technique for preventing dead-
lock unless otherwise indicated. That is, if there are hole instructions, they withhold 1
checkpoint—and only 1 checkpoint—regardless of the number of hole instructions. Experi-
mental results presented in the next chapter will show that the performance of a machine

does not depend on which checkpoint withholding technique is used.

7.3.6 Handling of Serializing Instructions

A serializing instruction is an instruction that, from the standpoint of the instruc-
tion set architecture, must be executed in order with respect to the other instructions in the
program’s dynamic instruction stream. A microarchitecture can speculatively execute seri-
alizing instructions. Indeed, all of today’s high performance microarchitectures do. When a
microarchitecture retires a serializing instruction, however, that serializing instruction must

have executed in order with respect to the other instructions.

195

For microarchitectures that decode and issue instructions in program order (i. e.,
the base microarchitecture and the microarchitecture that supports out-of-order fetch), each
serializing instruction is placed in its own issue packet with no other instructions. A packet
containing a serializing instruction is not allowed to issue until all logically preceding (older)
instructions have retired. Once the packet containing the serializing instruction is issued,
new packets are not allowed to issue until the serializing instruction has retired.

For the most part, microarchitectures that decode and issue instructions out-of-order
(i. e, the microarchitecture that supports out-of-order fetch/decode/issue) handle serializing
instructions in the same way as microarchitectures that do not decode and issue instructions
out-of-order. However, for microarchitectures that decode and issue instructions out-of-
order, there are a couple of special considerations regarding serializing instructions.

First, a serializing instruction is not allowed to issue as a post-hole instruction, since
the hole instructions—which are older than it—must execute first. The decode/issue logic
inhibits the creation of an issue packet if that packet would contain a serializing instruction
that is a post-hole instruction. As described in Section 7.3.2, it uses the fetch buffer’s
first ready pointer to determine whether or not an instruction is a post-hole instruction.
A serializing instruction is only allowed to issue after all older instructions (i. e., the hole
instructions) have issued.

Second, the machine may issue packets containing post-hole instructions, and then,
when creating the packets of hole instructions, discover that one of the hole instructions is a
serializing instruction. From the standpoint of the instruction set architecture, the post-hole
instructions are not allowed to execute until after the serializing instruction has executed.
To handle this problem, all instructions younger than the serializing instruction—that is,
the post-hole instructions—are flushed from the machine and then re-fetched. When all
instructions older than the serializing instruction have retired, the packet containing the
serializing instruction is issued. After the serializing instruction retires, the instructions
younger than it, including the recently flushed post-hole instructions, are issued (or re-

issued) into the machine.

196

CHAPTER 8

Out-of-Order Fetch, Decode, and Issue:
Final Results

This chapter uses the more realistic machine model presented in Chapter 7, which is
modeled with the full simulator, to evaluate the actual performance benefit of out-of-order
fetch, decode, and issue. It also examines various implementation tradeoffs that could not
be evaluated with the abstract machine model used in Chapter 6, which was modeled with
the RDF simulator.

In particular, with the abstract machine model, only the performance benefit of out-
of-order fetch/decode/issue could be calculated. The performance benefit of out-of-order
fetch could not be calculated. With the more realistic machine model, the performance
benefits of both out-of-order fetch and out-of-order fetch/decode/issue can be—and are—
calculated. The results show that out-of-order fetch is almost as effective as out-of-order
fetch/decode/issue in eliminating the performance penalty that results from instruction
cache misses.

Additionally, with the abstract machine model, a machine implementing out-of-
order fetch/decode/issue using the assume independence dependency handling technique
could not be modeled. With the more realistic machine model, a machine implementing
out-of-order fetch/decode/issue using the assume independence dependency handling tech-
nique can be modeled. The results show that a machine that implements out-of-order
fetch/decode/issue using the assume independence dependency handling technique does
not perform as well as a machine that implements out-of-order fetch/decode/issue using

the assume dependence dependency handling technique.

197

This chapter also examines two minor implementation tradeoffs: performance versus
fetch buffer size, and performance versus the fraction of a checkpoint withheld per hole
instruction. (Checkpoint withholding is needed to prevent deadlock in machines equipped
with out-of-order fetch/decode/issue.) Understanding these two tradeoffs is not crucial to
the understanding out-of-order fetch, decode, and issue. This chapter examines these two
tradeoffs solely for the purpose of completeness.

This chapter is organized into five sections. Section 8.1 compares the efficacy of
various solutions (prefetching, out-of-order fetch, and out-of-order fetch/decode/issue) to
the instruction cache bottleneck for machines that use the default 16k byte direct mapped
first level instruction cache. Section 8.2 compares the efficacy of these solutions as the
size of the first level instruction cache varies. Section 8.3 evaluates the performance of
machines that employ these solutions and that use the default first level instruction cache
as their fetch buffer sizes (in number of fetch buffer entries) vary. Section 8.4 evaluates the
performance of machines equipped with out-of-order fetch/decode/issue and the default
first level instruction cache as the fraction of a checkpoint withheld per hole instruction is

varied. Section 8.5 provides a summary of the chapter.

8.1 Comparison of Instruction Cache Bottleneck Solutions

This section compares the effectiveness of three different solutions to the instruction
cache bottleneck: prefetching, out-of-order fetch, and out-of-order fetch/decode/issue. To
perform this comparison, I simulated five machines.

The first machine is the base microarchitecture presented in Chapter 7. It has a
real 16k byte first level instruction cache. It does nothing to deal with the problem of the

instruction cache bottleneck. It serves as the baseline.

198

The second machine is identical to the first machine, except that on a first level
instruction cache miss, the machine prefetches the lines located sequentially after the missing
line. Prefetch requests probe the first level instruction cache, and are only passed on to the
second level instruction cache if the probe results in a miss. Sequential prefetching continues
until either a prefetch request hits in the first level instruction cache, or the servicing of
the cache miss completes. Note that for both the first machine and the second machine,
on every first level instruction cache miss, the fetch requests logically following the request
for the cache line that missed are flushed. Consequently, on every cache miss, the branch
predictor must be backed up in order to re-generate those requests. (See Chapter 7 for more
details.)

The third machine is identical to the first machine, except that it has been equipped
with out-of-order fetch.

The fourth machine is identical to the first machine, except that it has been equipped
with out-of-order fetch/decode/issue. It implements out-of-order fetch/decode/issue using
the assume dependence dependency handling technique. This machine has higher perfor-
mance than a machine that implements out-of-order fetch/decode/issue using the assume
independence dependency handling technique. Experimental results for this latter machine
are presented later in this section.

The last machine is also identical to the first machine, except that it has a perfect
(100 percent hit rate) first level instruction cache. Hence, it cannot be implemented. This
machine provides an upper bound on the performance of any technique (prefetching, out-
of-order fetch, out-of-order fetch/decode/issue, ...) that tries to deal with the problem of

the instruction cache bottleneck.

199

Figure 8.1 shows the performance, in Instructions Per Cycle (IPC), averaged over
all the benchmarks (both SPEC and Non-SPEC) for each of the five machines. Results for
the individual benchmarks are provided in Figure 8.2 (SPEC benchmarks) and Figure 8.3
(Non-SPEC benchmarks). In the figures, OOO Fetch stands for Out-of-Order Fetch, and
00O FDI stands for Out-of-Order Fetch/Decode/Issue. The average performance of the
baseline machine is 2.70 IPC. The average performance of the machine with the perfect
instruction cache is 3.53 TPC, which is 31% higher than that of the baseline machine. The
machine with prefetching achieves an average speedup of 11% over the baseline machine,
the machine with out-of-order fetch achieves a speedup of 22%, and the machine with out-
of-order fetch/decode/issue achieves a speedup of 24%. The performance of these three
machines comes within 15%, 7%, and 5%, respectively, of the machine with the perfect

instruction cache.

67 em— 16k Byte |Cache Only
16k Byte | Cache w/ Sequential Prefetch
16k Byte |Cache w/ OOO Fetch
5- s 16k Byte | Cache w/ OOO FDI (Assume Dependence)

s Perfect | Cache

P

Instructions Per Cycle
» @

=
|

0-

Figure 8.1: Instruction Cache Bottleneck Solutions—Harmonic Average

200

= 16k Byte |Cache Only
6- = 16k Byte |Cache w/ Sequential Prefetch
16k Byte |Cache w/ OO0 Fetch
= 16k Byte |Cache w/ OOO FDI (Assume Dependence)
== Perfect |Cache

Tl

o ijpeg li m88k vortex
Benchmark

Figure 8.2: Instruction Cache Bottleneck Solutions—SPEC Benchmarks

ik

‘?

Instructions Per Cycle
e @

[EnY
1

= 16k Byte |Cache Only
6- = 16k Byte |Cache w/ Sequential Prefetch
16k Byte ICache w/ OOO Fetch
= 16k Byte |Cache w/ OOO FDI (Assume Dependence)
== Perfect |Cache

il

chess groff gs pap plot python ss
Benchmark

Figure 8.3: Instruction Cache Bottleneck Solutions—Non-SPEC Benchmarks

ik

‘?

Instructions Per Cycle
e @

[EnY
1

These results indicate that all three solutions to the instruction cache bottleneck
are effective. Out-of-order fetch is much more effective than prefetching. Given that its
implementation is simple and inexpensive, perhaps even more so than the implementation
of prefetching, it has a clear advantage over prefetching. Out-of-order fetch/decode/issue
is not significantly more effective than out-of-order fetch. Given that its implementation is
much more complex and expensive than the implementation for out-of-order fetch, it does

not have a clear advantage over out-of-order fetch.

201

Figure 8.4 plots the performance averaged over all the benchmarks for three ma-
chines. Each machine is identical to the base microarchitecture presented in Chapter 7, ex-

cept that each has been equipped with a different variant of out-of-order fetch/decode/issue.

6 —— |Gk Byte |Cache w/ OOO FDI (Assume Independence [All])
16k Byte |Cache w/ OOO FDI (Assume Independence [Non-Branch])
16k Byte ICache w/ OO0 FDI (Assume Dependence)

6]
|

N
1

Instructions Per Cycle
P @

=
1

0-

Figure 8.4: Out-of-Order Fetch/Decode/Issue Variants—Harmonic Average

The first machine, labeled “16k Byte ICache w/ OOO FDI (Assume Independence
[All])”, implements out-of-order fetch/decode/issue using the assume independence depen-
dency handling technique. All instructions—including branches—assume independence. If
a mispredicted branch is resolved, and that branch is a post-hole instruction, the fetch
unit only flushes the instructions that logically follow the branch from the front-end of the
machine. Instructions that logically precede the branch (i. e., the yet-to-be-issued hole in-
structions) must not be flushed from the front-end. Designing a front-end that can perform
such selective flushing is nontrivial.

The second machine, labeled “16k Byte ICache w/ OOO FDI (Assume Indepen-
dence [Non-Branch])”, also implements out-of-order fetch/decode/issue using assume inde-
pendence. However, for this machine, only the non-branch instructions assume indepen-
dence. Branch instructions assume dependence; i. e., they are not allowed to execute until
the hole disappears. When a mispredicted branch is resolved, it can never be a post-hole
instruction. All instructions that logically precede the branch have been issued, and are no
longer in the front-end of the machine. Any instructions in the front-end logically follow
the branch, and must be flushed. Since this machine does not need a front-end that can be

selectively flushed, it is simpler to design than the first machine.

202

The third machine, labeled “16k Byte ICache w/ OOO FDI (Assume Dependence)”,
implements out-of-order fetch/decode/issue using the assume dependence dependency han-
dling technique. It is the same as the identically labeled machine in Figures 8.1-8.3.

The machine that implements out-of-order fetch/decode/issue using assume depen-
dence outperforms the other two machines. Its average performance is 3.35 IPC. The ma-
chine that implements out-of-order fetch/decode/issue using assume independence for only
non-branch instructions has the second highest performance, at 3.28 TPC. The machine that
uses assume independence for all instructions has the lowest performance, at 3.27 IPC. Since
implementing out-of-order fetch/decode/issue using assume dependence is as easy or easier
than implementing the other two variants of out-of-order fetch/decode/issue, and since it is
more effective in eliminating the instruction cache bottleneck than the other two variants,
there is no reason to even consider building a machine equipped with one of the other two
variants. For the remaining experiments in this chapter, I won’t simulate any machines
equipped with either of the other two variants of out-of-order fetch/decode/issue.

The two machines that implement out-of-order fetch/decode/issue using assume
independence have lower performance because they assume that all post-hole instructions
are independent of hole instructions. Many post-hole instructions are dependent on hole
instructions, and, consequently, on these two machines, some of the dependent instructions
execute using source operands that contain incorrect data. These dependent instructions
generate incorrect results, and, as a result, branches are sometimes incorrectly resolved.
When a branch is resolved incorrectly, the machine may believe that the branch has been
mispredicted, when, in fact, it has been correctly predicted. The machine responds to a
perceived mispredict—real or otherwise—by flushing the instructions that logically follow
the branch from the machine, and then redirecting instruction fetch to what it believes
is the correct path of execution. Compared to the machine that implements out-of-order
fetch/decode/issue using assume dependence, the number of machine flushes due to branch
mispredicts is 13% greater for the machine that implements out-of-order fetch/decode/issue
using assume independence for only non-branch instructions. For the machine that imple-
ments out-of-order fetch/decode/issue using assume independence for all instructions, this
number jumps to 18%. Most of these additional machine flushes are probably due to in-
correctly resolved branches. The results for the individual benchmarks are provided in

Figure 8.5 (SPEC benchmarks) and Figure 8.6 (Non-SPEC benchmarks).

203

=m 16k Byte | Cache w/ OOO FDI (Assume Independence [All])
== 16k Byte | Cache w/ OOO FDI (Assume Independence [Non-Branch])
16k Byte |Cache w/ OOO FDI (Assume Dependence)

]Illllll

A

Instructions Per Cycle
w

2_
1_
0_
go ijpeg li m83 vortex
Benchmark

Figure 8.5: Out-of-Order Fetch/Decode/Issue Variants—SPEC Benchmarks

=m 16k Byte | Cache w/ OOO FDI (Assume Independence [All])
6- == 16k Byte | Cache w/ OOO FDI (Assume Independence [Non-Branch])
16k Byte |Cache w/ OOO FDI (Assume Dependence)

tnthh

plot python ss tex
Benchmar k

Figure 8.6: Out-of-Order Fetch/Decode/Issue
Variants—Non-SPEC Benchmarks

* 7

Instructions Per Cycle
I}) w

[N
1

@

204

8.2 Varying the Instruction Cache Size

Figure 8.7 shows the performance, in Instructions Per Cycle (IPC), averaged over
all the benchmarks (both SPEC and Non-SPEC) for five machines. These five machines
are the same as those that were used to generate Figures 8.1-8.3 in Section 8.1. The first
level instruction cache size for each machine (with the exception of the machine with the
perfect first level instruction cache) was varied from 4k bytes to 64k bytes. The access time
of the first level instruction cache required one cycle regardless of its size; i. e., the access

time was not scaled with the size of the first level instruction cache.

67 --- Perfect ICache
--=-- Real |Cache w/ OOO FDI (Assume Dependence)
54 —+-Real ICachew/ OOO Fetch

—— Real |Cache w/ Sequential Prefetch
-»- Real 1Cache Only

*

Instructions Per Cycle
w

O T T T
4K 8K 16K 32K 64K

Cache Size (bytes)

Figure 8.7: Varied Instruction Cache Size—Harmonic Average

205

As the cache size increases, fewer misses occur, and thus, there is less of a need to
do something about the instruction cache bottleneck. As a result, the performance benefit
of the three solutions to the instruction cache bottleneck (out-of-order fetch/decode/issue,
out-of-order fetch, and prefetching) decreases as the cache size increases. The machine
equipped with out-of-order fetch/decode/issue achieves a 59% gain in performance over the
baseline machine (labeled “Real ICache Only”) at a cache size of 4k bytes. This gain falls to
6% when the cache size is increased to 64k bytes. The machine equipped with out-of-order
fetch achieves a 53% gain at a cache size of 4k bytes and only a 5% gain at a cache size of
64k bytes. For the machine equipped with prefetching, these two percentages are 22% (4k
byte cache) and 3% (64k byte cache).

The performance of a machine that uses an effective solution to the instruction
cache bottleneck is less sensitive to cache size than the performance of a machine that
uses a less effective solution. The performance of the machine equipped with out-of-order
fetch/decode/issue drops by 8% as the cache size is reduced from 64k bytes to 4k bytes.
This percentage is 11% for the machine equipped with out-of-order fetch, and 27% for
the machine equipped with prefetching. For comparison, the performance of the baseline
machine drops by 39% as the cache size is reduced from 64k bytes to 4k bytes.

A consequence of this fact is that it is possible to achieve the same performance
at a lower cost by equipping a machine with an effective solution to the instruction cache
bottleneck. For example, the baseline machine with a 64k byte cache has a performance of
3.25 TPC. If the baseline machine is equipped with out-of-order fetch, the size of the cache
can be reduced to 16k bytes without sacrificing any performance. (The performance of this
resulting machine would be 3.28 IPC.) Results for individual benchmarks are provided in

Figure A.47 (SPEC) and Figure A.48 (Non-SPEC) of Appendix A.

206

8.3 Varying the Fetch Buffer Size

Figure 8.8 shows the performance, in Instructions Per Cycle (IPC), averaged over
all the benchmarks (both SPEC and Non-SPEC) for five machines as their fetch buffer
sizes, in number of fetch buffer entries, are varied from 4 entries to 32 entries. These five
machines are the same as those that were used to generate Figures 8.1-8.3 in Section 8.1.
(They all use the default 16k byte direct mapped first level instruction cache, with the
exception of the machine with the perfect first level instruction cache.) The purpose of the
fetch buffer is to compensate for cycle-to-cycle variances between the fetch rate and the
issue rate. Larger fetch buffers are more effective at this than smaller fetch buffers, because
they can tolerate larger variances. As a result, as the fetch buffer size increases, the average

issue rate increases, and performance increases.

67 -« PerfectICache
--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)

54 —+- 16k Byte ICache w/ OOO Fetch
o —— 16k Byte | Cache w/ Sequential Prefetch
[S) -»- 16k Byte |Cache Only
> 4
®)
aj ¢ -—-———-——————=—- - - — - —— === :- ———————————— E
a I .
g 3-;!_:’:/ " " —a
o PR X SR — X
g
% 2
=

1_

O T T T

4 8 16 32

Fetch Buffer Size (in entries)
Figure 8.8: Varied Fetch Buffer Size—Harmonic Average

The performance of the machine with out-of-order fetch is strongly dependent on
fetch buffer size, as is the performance of the machine with out-of-order fetch/decode/issue.

The performance of the other three machines is only weakly dependent on fetch buffer size.

207

The fetch buffer size sets an upper bound on the number of fetch requests with
outstanding first level instruction cache misses that the machine can support. Each fetch
request is allocated a fetch buffer entry before it is issued to the instruction cache. If all
entries are allocated, instruction fetch stalls until new entries become available. An entry
is deallocated only after its assigned request has completed, the request has written all its
instruction data into the entry, and the decode/issue logic has emptied the entry of all its
instructions. If a request misses in the instruction cache, its entry is unavailable until after
the miss has been serviced. Hence, for a machine with a fetch buffer that has X (X € {1, 2,
... }) entries, instruction fetch stalls whenever there are X fetch requests with outstanding
misses.

The machine with a perfect instruction cache does not experience instruction cache
misses, so its performance is only weakly dependent on fetch buffer size. For the baseline
machine (“16k Byte ICache Only”) and the machine with prefetching, instruction fetch
stalls whenever a fetch request misses in the instruction cache. These two machines never
have more than one fetch request with an outstanding miss. Thus, their performance is also
only weakly dependent on fetch buffer size. The only machines that support multiple fetch
requests with outstanding misses are the machine with out-of-order fetch and the machine
with out-of-order fetch/decode/issue. Hence, of the five machines, these two machines are
the only machines whose performance is strongly dependent on fetch buffer size.

At small fetch buffer sizes, the machine with out-of-order fetch/decode/issue has
a larger performance advantage over the machine with out-of-order fetch than it does at
large sizes. At small sizes, each fetch buffer entry is a critical resource. The machine with
out-of-order fetch/decode/issue uses these critical resources more efficiently than the ma-
chine with out-of-order fetch, and thus, it performs better. The machine with out-of-order
fetch/decode/issue deallocates fetch buffer entries more quickly than the machine with out-
of-order fetch, because it decodes and issues instructions out-of-order. Quickly deallocating
entries is important, because it reduces the number of times instruction fetch stalls due to
a lack of available entries. The machine with out-of-order fetch, on the other hand, decodes
and issues instructions in program order. Its fetch buffer entries are deallocated in the same

order that they were allocated, so its entries are not deallocated as quickly.

208

The results for the individual benchmarks are provided in Figure 8.9 (SPEC bench-
marks) and Figure 8.10 (Non-SPEC benchmarks).

For some of the benchmarks (most notably, cmp, ijpeg, and vortex), increasing the
size of a machine’s fetch buffer results in lower performance. As the fetch buffer size in-
creases, the average issue rate increases. The issue rate increases because the decode/issue
logic packs more instructions into each issue packet. Recall that each issue packet is as-
signed a checkpoint. With more instructions in each issue packet, more instructions are
assigned to each checkpoint. If free (unallocated) checkpoints are plentiful, increasing the
number of instructions assigned to a checkpoint is detrimental. A machine that has a large
number of free checkpoints is not bottlenecked by a lack of storage capacity in the Node
Tables. Increasing the number of instructions assigned to each checkpoint will not increase
the total number of instructions stored in the Node Tables. It will only reduce the number
of checkpoints that cover the instructions stored there. When the machine needs to repair
to a known previous state—for example, when a branch mispredict is detected—the check-
points are further apart, so more useful work is discarded. For most of the benchmarks,
free checkpoints are plentiful, so increasing the number of instructions assigned to each
checkpoint can degrade performance.

For a few benchmarks (i. e., chess, m88k, and ss), at a fetch buffer size of 4 entries,
the machine with prefetching outperforms the machine with out-of-order fetch and the
machine with out-of-order fetch/decode/issue. The machine with prefetching prefetches
sequential cache lines whenever one of its fetch requests misses in the instruction cache.
The prefetch requests probe the instruction cache, and are only passed on to the next level
of the memory hierarchy if the probe results in a miss. Sequential prefetching continues
until either a prefetch request hits in the instruction cache, or the servicing of the cache miss
completes. Many lines may be prefetched into the instruction cache during an instruction
cache miss, preventing many future misses, particularly if the machine is executing a piece
of code for the first time. For the machine with out-of-order fetch and the machine with out-
of-order fetch/decode/issue, on the other hand, instruction fetch stalls whenever there are
4 fetch requests with outstanding misses. This may occur fairly frequently, especially if the
machine is executing a piece of code for the first time. Thus, there are certain situations in

which prefetching is better than either out-of-order fetch or out-of-order fetch/decode/issue.

209

cmp
-+- Perfect ICache
--a-- 16k Byte | Cache w/ OOO FDI (Assume Dependence)
—+- 16k Byte |Cache w/ OOO Fetch
—— 16k Byte |Cache w/ Sequential Prefetch
-»- 16k Byte ICache Only

@
o
34
o]
[
23]
2
g
7 2
£
1 4
0 ; : ;
4 8 16 32
Fetch Buffer Size (in entries)
gcc
67 -« Perfect ICache
--a-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
5 —+- 16k Byte | Cache w/ OOO Fetch
° —— 16k Byte |Cache w/ Sequential Prefetch
I3 4 -»- 16k Byte ICache Only
3 4
o]
o
%]
o
o
B
=
7]
£
1 4
0 ; : ;
4 16 32
Fetch Buffer Size (in entries)
go
67 -« Perfect ICache
--a-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
51 —+- 16k BytelCachew/ OOO Fetch

—— 16k Byte |Cache w/ Sequential Prefetch
-»- 16k Byte ICache Only

Instructions Per Cycle
w

P e |

1,

0 ; : ;
4 8 16 32

Fetch Buffer Size (in entries)
I1peg
6,
5,5“_' B R S

Instructions Per Cycle
w

-~ Perfect |Cache

--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—+- 16k Byte ICache w/ OOO Fetch

—— 16k Byte |Cache w/ Sequential Prefetch

-=- 16k Byte |Cache Only

4

8 16 R
Fetch Buffer Size (in entries)

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

67 -« Perfect ICache
--a-- 16k Byte | Cache w/ OOO FDI (Assume Dependence)
5 —+- 16k Byte | Cache w/ OOO Fetch
—— 16k Byte |Cache w/ Sequential Prefetch
4 -»- 16k Byte ICache Only
¢ - - - - ---Cooonfoooo oo e e |
3 4
2 4
1 4
0 ; . ;
4 8 16 32
Fetch Buffer Size (in entries)
m88k
67 -« Perfect ICache
--a-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
5 —+- 16k Byte | Cache w/ OOO Fetch
—— 16k Byte |Cache w/ Sequential Prefetch
4 -»- 16k Byte ICache Only
1 4
0 ; . ;
4 16 32
Fetch Buffer Size (in entries)
er|
. p
5 4
29 - Perfect ICache
--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
1 —+- 16k Byte |Cache w/ OOO Fetch
—— 16k Byte |Cache w/ Sequential Prefetch
0 -»- 16k Byte ICache Only
4 : 16 32
Fetch Buffer Size (in entries)
6 vortex

0

ey

-~ Perfect |Cache

--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—+- 16k Byte ICache w/ OOO Fetch

—— 16k Byte |Cache w/ Sequential Prefetch

-=- 16k Byte |Cache Only

4

8 16 R
Fetch Buffer Size (in entries)

Figure 8.9: Varied Fetch Buffer Size—SPEC Benchmarks

210

Instructions Per Cycle

chess

-+~ Perfect ICache

--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—+- 16k Byte |Cache w/ OOO Fetch
—— 16k Byte |Cache w/ Sequential Prefetch

Instructions Per Cycle

-»- 16k Byte ICache Only

8 16 32
Fetch Buffer Size (in entries)

oroff
-+~ Perfect ICache
--a-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—+- 16k Byte |Cache w/ OOO Fetch
—— 16k Byte |Cache w/ Sequential Prefetch
-»- 16k Byte ICache Only

Instructions Per Cycle

16 32
Fetch Buffer Size (in entries)

gs

-+- Perfect ICache

--a-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—+- 16k Byte |Cache w/ OOO Fetch

—— 16k Byte |Cache w/ Sequential Prefetch

-»- 16k Byte ICache Only

16 2
Fetch Buffer Size (in entries)

pap

-+~ Perfect ICache

--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—+- 16k Byte |Cache w/ OOO Fetch

—— 16k Byte | Cache w/ Sequential Prefetch

-=- 16k Byte ICache Only

Instructions Per Cycle

8 16 R
Fetch Buffer Size (in entries)

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

-+~ Perfect ICache

-=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—+- 16k Byte |Cache w/ OOO Fetch
—— 16k Byte |Cache w/ Sequential Prefetch

-»- 16k Byte ICache Only

8 16 32
Fetch Buffer Size (in entries)

python

-+- Perfect ICache

--a-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—+- 16k Byte |Cache w/ OOO Fetch

—— 16k Byte |Cache w/ Sequential Prefetch

-»- 16k Byte ICache Only

16 32
Fetch Buffer Size (in entries)

SS

-+~ Perfect ICache

--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—+- 16k Byte |Cache w/ OOO Fetch

—— 16k Byte |Cache w/ Sequential Prefetch

-»- 16k Byte ICache Only

16 2
Fetch Buffer Size (in entries)

tex

-+~ Perfect ICache

--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—+- 16k Byte |Cache w/ OOO Fetch

—— 16k Byte | Cache w/ Sequential Prefetch

-=- 16k Byte ICache Only

8 16 R
Fetch Buffer Size (in entries)

Figure 8.10: Varied Fetch Buffer Size—Non-SPEC Benchmarks

8.4 Varying the Checkpoint Withholding

Checkpoint withholding is needed to prevent deadlock in machines equipped with
out-of-order fetch/decode/issue. When a post-hole instruction is issued, the machine must
guarantee that all hole instructions that logically precede that post-hole instruction will
have the checkpoints they need to be issued into the machine. If this guarantee is not met,
the machine will deadlock: the post-hole instruction will not retire—and hence, release the
checkpoint allocated to it—until the hole instructions have retired, yet the hole instructions
cannot be issued because they don’t have the required checkpoints.

To meet this guarantee, the machine withholds some of its checkpoints for the
hole instructions whenever it issues a post-hole instruction. The machine knows how many
hole instructions there are. Unfortunately, it does not know how many checkpoints will
be needed for these hole instructions, since the number of instructions that can fit on a
checkpoint varies.

Fortunately, as long as the machine withholds at least one checkpoint for the hole in-
structions, deadlock is prevented. Whenever there are two or more free (unallocated) check-
points, the machine may use those checkpoints to issue whichever instructions it chooses.
Whenever there is only one free checkpoint, that checkpoint is withheld for the hole in-
structions, so the machine may not use that checkpoint to issue post-hole instructions. The
machine uses that remaining free checkpoint to try to issue, in program order, all the hole
instructions, starting with the hole instruction that appears the earliest in the dynamic
instruction stream, and working towards the hole instruction that appears the latest. If
the number of hole instructions is greater than the number of instructions that can fit on a
checkpoint, the machine will need to use the remaining free checkpoint multiple times. Each
time, it will assign an issue packet’s worth of hole instructions to the checkpoint, issue those
instructions, and then wait for them to retire. After those instructions have retired, it will
use the checkpoint to issue a new group of instructions. Essentially, whenever the machine
has only one free checkpoint, it operates as an in-order issue machine that supports only a
single speculative checkpoint. Hence, even though a machine can prevent deadlock by with-
holding only one checkpoint for all of the hole instructions, this technique for preventing

deadlock may result in poor performance.

212

Another technique for preventing deadlock is to withhold a set fraction of a check-
point for each hole instruction. To calculate the number of checkpoints that need to be
withheld, the number of hole instructions is multiplied by this fraction, and then the result
is rounded up to the nearest integer. For example, if on average 8 instructions fit on a
checkpoint, a machine might want to withhold 1/8 of a checkpoint per hole instruction. If
there are 17 hole instructions, the machine would withhold 3 (i. e., [17 x 1/8]) checkpoints.
The fraction is selected such that the multiplication is easily performed in hardware; i. e.,
the fraction is 2% for n € {0, 1, ... }. Rounding the result up to the nearest integer ensures
that at least one checkpoint is withheld whenever there are any hole instructions. If this
technique underestimates the number of checkpoints that need to be withheld, deadlock is
prevented via the technique described in the preceding paragraph.

For the machines modeled in this chapter, 16 instructions can fit on a checkpoint.
One of these machines might optimistically assume that the hole instructions will be packed
16 per checkpoint. This machine would withhold 1/16 of a checkpoint for each hole instruc-
tion. A machine might also assume the average, as was done in the example. Or, a machine
might pessimistically assume that the hole instructions will only be packed 1 per checkpoint,
and therefore withhold a whole checkpoint for each hole instruction.

If the fraction of a checkpoint withheld per hole instruction is too low, the machine
underestimates the number of checkpoints that need to be withheld, and must rely on the
first technique to prevent deadlock. The first technique may result in poor performance.
Consequently, if the fraction is too low, the performance may suffer. On the other hand,
if the fraction is too high, the machine overestimates the number of checkpoints that need
to be withheld. The machine may not be able to issue a packet of post-hole instructions
because all of the free (unallocated) checkpoints have been withheld. Thus, if the fraction

is too high, the performance may suffer.

213

Figure 8.11 shows the performance, in Instructions Per Cycle (IPC), averaged over
all the benchmarks (both SPEC and Non-SPEC) for a machine with the default first level
instruction cache that implements out-of-order fetch/decode/issue using the assume depen-
dence dependency handling technique as the fraction of a checkpoint that is withheld per
hole instruction is varied from 1 to e. A fraction of € indicates that if there are hole instruc-
tions, 1 checkpoint—and only 1 checkpoint—is withheld regardless of the number of hole
instructions. That is, a fraction of € indicates that the machine uses the first technique for
preventing deadlock. The results show that the fraction of a checkpoint that is withheld
per hole instruction does not affect performance. The likely reason for this is that the
machine, which supports 63 checkpoints for speculative state, rarely uses all of its check-
points. The machine almost always has an abundance of free (unallocated) checkpoints.
Withholding too many or too few of these free checkpoints (i. e., € too high or too low)
does not matter, as long as there is at least one free checkpoint that can be used to issue
a packet. The results for the individual benchmarks, which are similarly uninteresting, are
provided in Figure A.49 (SPEC benchmarks) and Figure A.50 (Non-SPEC benchmarks) of
Appendix A.

Instructions Per Cycle
w

))

1 1/2 1/4 1/8 116 £
Fraction of Checkpoint Withheld per Instruction

Figure 8.11: Varied Checkpoint Withholding—Harmonic Average

214

8.5 Summary

Out-of-order fetch, decode, and issue is an effective way to eliminate the perfor-
mance penalty that results from instruction cache misses. The base microarchitecture loses
24% of its performance as a result of instruction cache misses, whereas the comparable
microarchitecture with out-of-order fetch loses only 7%, and the comparable microarchitec-
ture with out-of-order fetch/decode/issue loses only 5%. Put another way, equipping the
base microarchitecture with out-of-order fetch eliminates 70% of the performance penalty
that results from instruction cache misses, and equipping the base microarchitecture with
out-of-order fetch/decode/issue eliminates 78% of that penalty.

Out-of-order fetch is almost as effective as out-of-order fetch/decode/issue in elim-
inating the performance penalty that results from instruction cache misses. The per-
formance of the base microarchitecture increased by 22%, from 2.70 IPC to 3.28 IPC,
when it was equipped with out-of-order fetch. When it was equipped with out-of-order
fetch/decode/issue, performance increased by 24%, to 3.35 IPC. For a reference point,
when it was equipped with a perfect first level instruction cache, performance increased by
31%, to 3.53 IPC.

The variant of out-of-order fetch/decode/issue that uses the assume dependence
dependency handling technique outperforms the variant that uses the assume independence
dependency handling technique. When the base microarchitecture was equipped with the
variant that uses assume dependence, performance increased by 24%, to 3.35 IPC. When it
was equipped with the variant that uses assume independence, performance only increased

by 21%, to 3.28 IPC.

215

CHAPTER 9

Conclusion

Significant parallelism exists within a single instruction stream [14, 59]. To achieve
high performance, today’s processors are built to take advantage of some of this instruction
level parallelism. To exploit even larger amounts of instruction level parallelism, tomorrow’s
processors will be built with wider issue widths. It has been projected that by the year
2005, it will be possible to place a billion transistors on a chip. With a billion transistors
on a chip, a processor that can issue sixteen or more instructions per cycle is not infeasible.

Enough parallelism exists to justify building a processor that can issue 16 instruc-
tions per cycle. Using an abstract machine model, the performance of an ideal machine
with an issue rate of 16 instructions per cycle and a window size of 1024 instructions was
calculated. This machine was ideal in that it had four perfect components: a perfect (100
percent hit rate) instruction cache, a perfect (omniscient) branch predictor, a perfect exe-
cution core (i. e., an execution core with an unbounded number of functional units, each
of which can perform every desired operation), and a perfect single cycle data cache. The
performance of this machine averaged over sixteen integer benchmarks was calculated to
be 12.4 instructions per cycle (IPC). This performance is far greater than that of any ex-
isting processors. Unfortunately, because the four perfect components cannot be built, this
machine cannot be built.

To make this machine more realistic (i. e., buildable), the four perfect components
were replaced by real components. That is, the machine was given a real instruction cache,
a real branch predictor, a real execution core, and a real data cache. Both the instruction
cache and data cache were 16k byte direct mapped caches. The branch predictor used a

16-bit gshare [81] predictor to predict the direction of conditional branches; the “tagless”

216

variety of the pattern based predictor proposed by Chang, Hao, and Patt [19] to predict
the targets of indirect (or computed) branches (a 9-bit global history was used); and a 64
entry Return Address Stack to predict the targets of subroutine returns. The execution
core consisted of sixteen functional units.

Whenever a real (i. e., non-ideal) component is used instead of a perfect component,
a performance bottleneck is created. Hence, this more realistic machine had four bottle-
necks. The first bottleneck, created by using the real instruction cache, is due to instruction
cache misses. The second bottleneck, created by using the real branch predictor, is due to
branch mispredicts. The third bottleneck, created by using the real execution core, is due
to a lack of execution bandwidth. And the fourth bottleneck, created by using the real data
cache, is due to data cache misses.

Of these four bottlenecks, the bottleneck due to instruction cache misses was found
to be the most severe bottleneck; i. e., of the four bottlenecks, the bottleneck due to in-
struction cache misses imposes the most severe performance penalty on the machine. The
bottlenecks, in decreasing order of severity, were that due to instruction cache misses, that
due to branch mispredicts, that due to data cache misses, and that due to a lack of exe-
cution bandwidth. The bottleneck due to instruction cache misses and the bottleneck due
to branch mispredicts were found to impose significant performance penalties, whereas the
bottleneck due to data cache misses and the bottleneck due to a lack of execution bandwidth
were found to impose only minor performance penalties. All together, the four bottlenecks
reduce the average performance (over the sixteen integer benchmarks) of the machine from
12.4 TPC to 3.0 IPC.

Fortunately, the most severe bottleneck—the bottleneck due to instruction cache
misses—can be nearly eliminated with out-of-order fetch, decode, and issue. Instruction
cache misses prevent the machine from fetching, decoding, and issuing new useful instruc-
tions until the instruction cache miss has been serviced. Out-of-order fetch, decode, and
issue reduce the performance penalty due to instruction cache misses by enabling the ma-
chine to continue fetching, decoding, and issuing new useful instructions in the event of an
instruction cache miss. Using the abstract machine model, the performance of the more
realistic machine (i. e., the machine with a real instruction cache, a real branch predictor, a
real execution core, and a real data cache) increased by an average of 63%, from 3.0 IPC to

4.9 IPC, when the machine was given a perfect instruction cache rather than a real instruc-

217

tion cache. When the machine was given a realizable form of out-of-order fetch, decode,
and issue, performance increased by an average of 47%, from 3.0 IPC to 4.4 TPC. Thus,
out-of-order fetch, decode, and issue can be used to eliminate most of the performance
penalty that results from instruction cache misses.

Most of the performance benefit due to out-of-order fetch, decode, and issue comes
from allowing the machine to fetch instructions out of program order. A machine with
out-of-order fetch initiates fetch requests in program order, but allows these requests to
complete out-of-order. As in conventional processors, the instructions are still decoded and
issued in program order. A machine with out-of-order fetch/decode/issue not only fetches
instructions out-of-order, it also decodes and issues them out-of-order. (Both out-of-order
fetch and out-of-order fetch/decode/issue are variants of the concept of out-of-order fetch,
decode, and issue.)

Using a sophisticated machine model, the average performance of a baseline machine
was found to be 2.70 IPC. This machine could issue up to 16 instructions per cycle and had
a window size of about 1024 instructions. It used a real instruction cache, a real branch
predictor, a real execution core, and a real data cache. These four real components were
configured as described at the beginning of this chapter, except that the data cache was 64k
bytes rather than 16k bytes. This machine did not employ either out-of-order fetch or out-
of-order fetch/decode/issue. When the baseline machine was equipped with out-of-order
fetch, performance increased by an average of 22%, from 2.70 IPC to 3.28 IPC. When the
baseline machine was equipped with a realizable form of out-of-order fetch/decode/issue,
performance increased by an average of 24%, from 2.70 IPC to 3.35 IPC. For a reference
point, when the baseline machine was given a perfect instruction cache rather than a real
instruction cache, performance increased by an average of 31%, from 2.70 IPC to 3.53 IPC.

The first figure in this dissertation, Figure 1.1, demonstrated the problem investi-
gated by the dissertation; i. e., the instruction cache bottleneck. It plotted the performance,
in Instructions Per Cycle (IPC), of the gcc benchmark for two different processors as the
fetch width of these processors varied between 1 and 64. Both processors had perfect
branch prediction, large instruction windows, large pools of functional units, and perfect
data caches. To illustrate the performance degradation that results from instruction cache
misses, one processor was given a perfect instruction cache, and the other was given a real

16k byte direct mapped instruction cache.

218

Figure 9.1 is that same figure with an additional line that demonstrates the solution:
out-of-order fetch, decode, and issue. This line, labeled “Real ICache w/ OOO FDI”,
plots the performance of the processor with the real instruction cache when that processor
is equipped with out-of-order fetch/decode/issue. ! By comparing the performance of a
processor with a real instruction cache to the performance of a processor with a perfect
instruction cache, the amount of performance lost due to instruction cache misses can be
assessed. For the processor that is not equipped with out-of-order fetch/decode/issue, 22%
of the performance is lost due to instruction cache misses at a fetch width of 1, 81% is lost
at a width of 16, and 90% is lost at a width of 64. For the processor that is equipped with
out-of-order fetch/decode/issue, 13% of the performance is lost at a width of 1, 19% is lost
at a width of 16, and 2% is lost at a width of 64. Thus, out-of-order fetch, decode, and issue

eliminates most of the performance penalty that results from instruction cache misses.

35+ .
--e-- Perfect ICache '
30 —s=— Real |Cachew/ OO0 FDI
—+— Real ICache o

D 25- '
[&)
>
O
db_ 20
[%2)
c
S
] 15
>
3
£ 104

5_

O . T T T T T 1

1 2 4 8 16 32 64
Fetch Width

Figure 9.1: Demonstration of the problem (the instruction cache bottle-
neck) and the solution (out-of-order fetch, decode, and issue)
investigated by this dissertation

!The processor implemented out-of-order fetch/decode/issue using the assume dependence dependency
handling technique, which is a realistic (i. e., implementable) dependency handling technique.

219

After the bottleneck due to instruction cache misses, the bottleneck due to branch
mispredicts was the next most severe bottleneck. Indeed, branch mispredicts imposed a
performance penalty that was almost as great as the performance penalty imposed by
instruction cache misses. Branch Target Buffer (BTB) misses hinder the ability of the
branch predictor to quickly and correctly predict branches. This dissertation proposed a
new BTB indexing scheme that reduces the number of BTB misses. For a 2048 entry, 4-
way set-associative BTB, the average miss rate was reduced from 3.78% to 1.04%. However,
even with a perfect (100 percent hit rate) BTB, branch mispredicts are far too frequent.
Unless substantial advances are made in branch prediction research, the performance of a
machine that can issue 16 or more instructions per cycle may not justify the machine’s cost,

and, consequently, such machines will not be built.

220

APPENDIX

221

APPENDIX A

Additional Figures

222

o Issue Rate=8
~+-Complex Oracle
564 —=— SimpleOracle
-+ Matrix (Split Stores)
e 484 -+--Matrix (Unified Stores)
>
O 404
o 40
o
2 324
S
S 241
B
£ 16
84—
R R U PO PR I JU— oo
128 256 512 1024 2048 4096 8192 16384 = ©0
Window Size
o Issue Rate = 16
- Complex Oracle
564 —= SimpleOracle
- Matrix (Split Stores)
© 48- -+ Matrix (Unified Stores)
9
5 407
o
2 32
9
S 241
17}
=
; ; ; ; ; . ; u
128 256 512 1024 2048 4096 8192 16384 o]
Window Size

|ssue Rate = 32

56

&

Instructions Per Cycle
N w
v W

~+-Complex Oracle

—=— Simple Oracle

-+ Matrix (Split Stores)
---Matrix (Unified Stores)

b

1024 2048 4096
Window Size

512

Issue Rate = 64

0

Cycle
5 & 8

w
»

Instructions Per
N
£

- Complex Oracle

—=— Simple Oracle

- Matrix (Split Stores)
-+--Matrix (Unified Stores)

Issue Rate = 00

1024 2048 4096 8192 16384
Window Size

64
-+ Complex Oracle
56-{ —= SimpleOracle
- Matrix (Split Stores)
@ 484 -+--Matrix (Unified Stores)
9
5 407
a
%]
c
9o
B
2
17}
=
; ; ; T T T T 18
128 256 512 1024 2048 4096 8192 16384 (o]
Window Size

Figure A.1: Memory Disambiguation Techniques—Cmp

223

Issue Rate =8

64
~+-Complex Oracle
564 —=— SimpleOracle
-+ Matrix (Split Stores)
@ 484 -+--Matrix (Unified Stores)
5’
5 407
o
@ 324
S
S 241
B
£ 16
"
128 256 512 1024 2048 4096 8192 16384 = ©0
Window Size
o Issue Rate = 16
-+ Complex Oracle
564 —= SimpleOracle
- Matrix (Split Stores)
© 48- -+ Matrix (Unified Stores)
9
5 407
o
@ 324
9
S 241
17}
=
1
128 256 512 1024 2048 4096 8192 16384 = ©0
Window Size

|ssue Rate = 32

64
~+-Complex Oracle
564 —=— SimpleOracle
-+ Matrix (Split Stores)
¢ 484 -+--Matrix (Unified Stores)
O 404
© 40
a
@ 324
S
S 241
1]
£ 16
8,
0 T r ; ; ; 7 T s
128 256 512 1024 2048 4096 8192 16384 00
Window Size
o Issue Rate = 64
- Complex Oracle
564 —= SimpleOracle
- Matrix (Split Stores)
© 48- -+ Matrix (Unified Stores)
9
5 407
a
@ 324
9
S 241
1]
£ 16
8,,
0 ; ; ; T T ’ T 1%
128 256 512 1024 2048 4096 8192 16384 %Y

Window Size

Issue Rate = 00

64
-+ Complex Oracle
56-{ —= SimpleOracle
- Matrix (Split Stores)
@ 484 -+--Matrix (Unified Stores)
ES
O
T
a
%]
c
9o
B
2
17}
=
0 ; ; T T T T T 18
128 256 512 1024 2048 4096 8192 16384 (o]
Window Size

Figure A.2: Memory Disambiguation Techniques—Gecc

224

Per

Instructions

ycle

Instructions Per

IssueRate=8 Issue Rate = 32

Cycle
5 &

64 64
-+ Complex Oracle -+ Complex Oracle
56 —=— Simple Oracle 56 —=— Simple Oracle
-+~ Matrix (Split Stores) - Matrix (Split Stores)
-+--Matrix (Unified Stores) @ 484 -+--Matrix (Unified Stores)
S ol
o)
a
324 @ 32
9o
24 S 24
17}
16+ £ 16
84~
0 T T T T T T T 113 0 T T T T T T T 113
128 256 512 1024 2048 4096 8192 16384 Y 128 256 512 1024 2048 4096 8192 16384 S
Window Size Window Size
o Issue Rate = 16 o Issue Rate = 64
-+ Complex Oracle -+ Complex Oracle
56-{ —= SimpleOracle 56-{ —= SimpleOracle
-+~ Matrix (Split Stores) -+~ Matrix (Split Stores) .
48- -+--Matrix (Unified Stores) % 48- -+--Matrix (Unified Stores) ~ ==
> -
(S O 4ol
40 © 40
a
324 2 32
9
24 S 24
17}
£ 16
0 T T T T T T T 113 0 T T T T T T T 113
128 256 512 1024 2048 4096 8192 16384 Y 128 256 512 1024 2048 4096 8192 16384 S
Window Size Window Size
64 70 90
4 IssueRate=00 53 60 81

-+ Complex Oracle
5641 —= Simple Oracle v
-+ Matrix (Split Stores) 1
© 484 -+ Matrix (Unified Stores)
&
5 407
a
g 32
S 244
B
£ 16
0 ; ; ; ; ; 7 ——t
128 256 512 1024 2048 4096 8192 16384 %Y
Window Size

Figure A.3: Memory Disambiguation Techniques—Go

225

Issue Rate =8

|ssue Rate = 32

&

I
?

Instructions Per Cycle
L

=
o
1

=+ Matrix (Split Stores)
-+--Matrix (Unified Stores)

Window Size

256 512 1024 2048 4096 8192 16384 co

Figure A.4: Memory Disambiguation Techniques—Ijpeg

226

64 64
~+-Complex Oracle ~+-Complex Oracle
56 —=— Simple Oracle 56 —=— Simple Oracle
-+ Matrix (Split Stores) -+ Matrix (Split Stores)
© 48- -+ Matrix (Unified Stores) © 48- -+ Matrix (Unified Stores)
5 5
5 407 5 407
a a
2 32 2 32
i<} i<}
S 241 S 241
1] 1]
£ 164 £ 164
84— gt
o S S — — S — — 0 : : : : : , R
128 256 512 1024 2048 4096 8192 16384 00 128 256 512 1024 2048 4096 8192 16384 00
Window Size Window Size
o Issue Rate = 16 o Issue Rate = 64
~+-Complex Oracle ~+-Complex Oracle
564 —=— SimpleOracle 564 —=— SimpleOracle -
-+~ Matrix (Split Stores) -+ Matrix (Split Stores)
© 484 -+--Matrix (Unified Stores) © 484 -+--Matrix (Unified Stores)
S S
O 40 O 404
o} o}
a L
2 32 2324 At
i<} i<}
S 241 S 241
1] 1]
£ £ 164
8t
0 : : : , , , R o S — M S — —
128 256 512 1024 2048 4096 8192 16384 00 128 256 512 1024 2048 4096 8192 16384 00
Window Size Window Size
72 104
o4 Issue Rate = 0o n o
-+ Complex Oracle
564 —=— SimpleOracle

Issue Rate =8

64
~+-Complex Oracle
564 —=— SimpleOracle
-+ Matrix (Split Stores)
¢ 484 -+--Matrix (Unified Stores)
O 404
?540
o
2 32
S
S 241
B
£ 16
84— P - - - -t
"
128 256 512 1024 2048 4096 8192 16384
Window Size
o Issue Rate = 16
-+ Complex Oracle
564 —=SimpleOracle
-+~ Matrix (Split Stores)
© 48- -+ Matrix (Unified Stores)
9
5 407
o
@ 324
9
S 241
17}
=
e ——
128 256 512 1024 2048 4096 8192 16384
Window Size
64

|ssue Rate = 32

64
~+-Complex Oracle
564 —=— SimpleOracle
-+ Matrix (Split Stores)
¢ 484 -+--Matrix (Unified Stores)
O 404
© 40
a
2 32
i<}
S 24
1]
£ 164
8.
T i

Window Size

Issue Rate = 64

128 256 512 1024 2048 4096 8192 16384

- Complex Oracle

564 —= SimpleOracle

- Matrix (Split Stores)
-+--Matrix (Unified Stores)

Cycle
s &

w
»

Instructions Per

Issue Rate = 00

-+ Complex Oracle

56-{ —= SimpleOracle

- Matrix (Split Stores)

© 48- -+ Matrix (Unified Stores)

1024 2048 4096 8192 16384 co
Window Size

0 T
128 256 512

Figure A.5: Memory Disambiguation Techniques—Li

227

0 ; ; ; ; . ;
128 256 512 1024 2048 4096 8192 16384
Window Size

Instructions Per Cycle

Cycle

Instructions Per

IssueRate=8

Issue Rate = 32

64 64
~<-Complex Oracle ~<-Complex Oracle
56 —=— Simple Oracle 56 —=— Simple Oracle
-+~ Matrix (Split Stores) - Matrix (Split Stores)
484 -=--Matrix (Unified Stores) 848— -+--Matrix (Unified Stores)
>
4 O 4
© 40
a
324 2 32
9o
24- S 24
17}
16+ £ 16
84 . — 8-
1 T 1 s
128 256 512 1024 2048 4096 8192 16384 (&) 128 256 512 1024 2048 4096 8192 16384
Window Size Window Size
o Issue Rate = 16 o Issue Rate = 64
~<-Complex Oracle ~<-Complex Oracle
56-{ —= SimpleOracle 56-{ —= SimpleOracle
-+~ Matrix (Split Stores) -+~ Matrix (Split Stores)
484 -=--Matrix (Unified Stores) % 484 -=--Matrix (Unified Stores)
>
4 O 4
40 © 40
a
324 2 32
9
24- S 24
17}
=

128 256 512 1024 2048 4096 8192 16384 co 128 256 512 1024 2048 4096 8192 16384
Window Size Window Size
68
64 Issue Rate = 00 68
-+- Complex Oracle
564 —= Simple Oracle
-+~ Matrix (Split Stores)
@48 - Matrix (Unified Stores)
>
O 4ol
5 40
o
@ 32
S
S 24+
1]
£ 164
8,
0 ‘ ‘ ‘ ‘ , ‘]
128 256 512 1024 2048 4096 8192 16384 co
Window Size

Figure A.6: Memory Disambiguation Techniques—M88k

228

Issue Rate =8

64
~+-Complex Oracle
56 —=— Simple Oracle
-+ Matrix (Split Stores)
© 48- -+ Matrix (Unified Stores)
5
5 407
a
2 32
i<}
S 241
1]
£ 164
[3 — R -——
04— —
128 256 512 1024 2048 4096 8192 16384 00
Window Size
o Issue Rate = 16
~+-Complex Oracle
564 —=— SimpleOracle
-+~ Matrix (Split Stores)
o 484 -+--Matrix (Unified Stores)
O 404
© 40
a
2 32
i<}
S 241
1]
£ 167.’&/,*//.—7
0 T ; T T T T T i
128 256 512 1024 2048 4096 8192 16384 00
Window Size

Issue Rate = 00

|ssue Rate = 32

64
~+-Complex Oracle
564 —=— SimpleOracle
-+ Matrix (Split Stores)
© 48- -+ Matrix (Unified Stores)
&
5 401
o
(%2}
c
2
©
2
B
£
0 T i

128 256 512
Window Size

Issue Rate = 64

1024 2048 4096 8192 16384

0

64
~+-Complex Oracle
564 —=— SimpleOracle %
- Matrix (Split Stores) 7
o 484 -+--Matrix (Unified Stores)
O 404

Instructions Per

Window Size

201
44

-+ Complex Oracle
564 —=— SimpleOracle

&

I
?

Instructions Per Cycle
w
i

=+ Matrix (Split Stores) i
-+--Matrix (Unified Stores) =

24

16

8-

0 T T T T T T #

128 256 512 1024 2048 4096 8192 16384 (&)
Window Size

Figure A.7: Memory Disambiguation Techniques—Perl

229

1024 2048 4096 8192 16384

[ee]

o Issue Rate=8
~+-Complex Oracle
564 —=— SimpleOracle
-+ Matrix (Split Stores)
© 484 -+--Matrix (Unified Stores)
g
O 404
o}
o
@ 324
S
S 241
B
£ 16
"
128 256 512 1024 2048 4096 8192 16384 = ©0
Window Size
o Issue Rate = 16
- Complex Oracle
564 —= SimpleOracle
- Matrix (Split Stores)
© 48- -+ Matrix (Unified Stores)
5
5 407
o
2 32
9
S 241
17}
= 16—/_' U
8 P U - O P PO PO p
1
128 256 512 1024 2048 4096 8192 16384 = ©0
Window Size

|ssue Rate = 32

56

Cycle
s &

w
»

Instructions Per
N
i

~+-Complex Oracle

—=— Simple Oracle

-+ Matrix (Split Stores)
---Matrix (Unified Stores)

256 512 1024 2048 4096 8192 16384
Window Size

Issue Rate = 64

0

56

Cycle
s &

w
»

Instructions Per

- Complex Oracle

—=— Simple Oracle

- Matrix (Split Stores)
-+--Matrix (Unified Stores)

Issue Rate = 00

256 512 1024 2048 4096 8192 16384
Window Size

-+ Complex Oracle

56-{ —= SimpleOracle

- Matrix (Split Stores)

© 48- -+ Matrix (Unified Stores)

0 T T T T T T T
128 256 512 1024 2048 4096 8192 16384 00

Window Size

Figure A.8: Memory Disambiguation Techniques—Vortex

230

o IssueRate=8
~+-Complex Oracle
56 —=— Simple Oracle
-+ Matrix (Split Stores)
© 484 -+~ Matrix (Unified Stores) X4
5 5
5 407 o]
o o
2 32 2
S S
B B
£ 164 £
0 ; ; ; ; 7 T s
128 512 1024 2048 4096 8192 16384 00
Window Size
o Issue Rate = 16
~+-Complex Oracle
564 —=— SimpleOracle
-+~ Matrix (Split Stores)
@ 484 -+ Matrix (Unified Stores) X4
S S
O 40 O
o} o}
o o
2 321 2
S S
S 241 g
B B
£ £
0 ; ; ; ; 7 T s
128 512 1024 2048 4096 8192 16384 00
Window Size

|ssue Rate = 32

64
~+-Complex Oracle
56 —=— Simple Oracle
-+ Matrix (Split Stores)
484 -+--Matrix (Unified Stores)
40,
32
24
16
81
0 T T T T 7 7 T i
128 256 512 1024 2048 4096 8192 16384 00
Window Size
o Issue Rate = 64
~+-Complex Oracle
564 —=— SimpleOracle
-+ Matrix (Split Stores)
484 -+--Matrix (Unified Stores)
32
24
1
0 T i
128

1024 2048 4096
Window Size

512

241
o4 Issue Rate = 0o ' 186
-+ Complex Oracle i
564 —=— SimpleOracle i
-+ Matrix (Split Stores) i
© 484 -+~ Matrix (Unified Stores) i
5
5 40
[N
9 324
S
5 24
7
£ 16
84
0 ; ; ; y , ’ ——t
128 256 512 1024 2048 4096 8192 16384 Y

Window Size

Figure A.9: Memory Disambiguation Techniques—Chess

231

8192 16384 00

|ssue Rate = 32

~+-Complex Oracle

—=— Simple Oracle

-+ Matrix (Split Stores)
---Matrix (Unified Stores)

1024 2048 4096
Window Size

512

Issue Rate = 64

8192

0

- Complex Oracle

—=— Simple Oracle

- Matrix (Split Stores)
-+--Matrix (Unified Stores)

o Issue Rate=8 o
~+-Complex Oracle
564 —=— SimpleOracle 564
-+ Matrix (Split Stores)
@ 484 -+--Matrix (Unified Stores) @ 484
S S
O 40 O 404
o} o}
o o
@ 324 @ 324
S S
8 241 B
B B
£ 164 £
"
128 256 512 1024 2048 4096 8192 16384 = ©0 128
Window Size
o Issue Rate = 16 o
- Complex Oracle
564 —= SimpleOracle 564
- Matrix (Split Stores)
© 48- -+ Matrix (Unified Stores) © 48
9 9
5 407 5 407
o o
@ 324 @ 324
9 9
S 241 S 241
17} 17}
= =
; ; ; ; ; . ; u
128 256 512 1024 2048 4096 8192 16384 o] 128
Window Size

Issue Rate = 00

1024 2048 4096
Window Size

-+ Complex Oracle

—=— Simple Oracle

- Matrix (Split Stores)
-+--Matrix (Unified Stores)

512
Window Size

1024 2048 4096 8192 16384 co

8192 16384

Figure A.10: Memory Disambiguation Techniques—Groff

232

Issue Rate =8

64
~+-Complex Oracle
564 —=— SimpleOracle
-+ Matrix (Split Stores)
@ 484 -+--Matrix (Unified Stores)
5’
5 407
o
@ 324
S
S 241
B
£ 16
< A —
"
128 256 512 1024 2048 4096 8192 16384 = ©0
Window Size
o Issue Rate = 16
- Complex Oracle
564 —= SimpleOracle
- Matrix (Split Stores)
© 48- -+ Matrix (Unified Stores)
5
5 407
o
2 32
9
S 241
17}
=
; ; ; ; ; . ; u
128 256 512 1024 2048 4096 8192 16384 o]
Window Size

|ssue Rate = 32

56

Cycle
s &

w
»

Instructions Per
N
i

~+-Complex Oracle

—=— Simple Oracle

-+ Matrix (Split Stores)
---Matrix (Unified Stores)

256 512 1024 2048 4096 8192 16384
Window Size

Issue Rate = 64

0

56

Cycle
s &

w
»

Instructions Per

- Complex Oracle

—=— Simple Oracle

- Matrix (Split Stores)
-+--Matrix (Unified Stores)

Issue Rate = 00

256 512 1024 2048 4096 8192 16384
Window Size

-+ Complex Oracle

56-{ —= SimpleOracle

- Matrix (Split Stores)

© 48- -+ Matrix (Unified Stores)

0 T T T T T T T
128 256 512 1024 2048 4096 8192 16384 00

Window Size

Figure A.11: Memory Disambiguation Techniques—Gs

233

o Issue Rate=8
~+-Complex Oracle
564 —=— SimpleOracle
-+ Matrix (Split Stores)
@ 484 -+--Matrix (Unified Stores)
S
O 404
o}
o
@ 324
S
S 241
B
£ 16
8,
[R ittt A-—-—— il E----- P
"
128 256 512 1024 2048 4096 8192 16384 = ©0
Window Size
o Issue Rate = 16
- Complex Oracle
564 —= SimpleOracle
- Matrix (Split Stores)
© 48- -+ Matrix (Unified Stores)
9
5 407
o
@ 324
9
S 241
17}
£ 16
; , ; T ; . ; u
128 256 512 1024 2048 4096 8192 16384 o]
Window Size

|ssue Rate = 32

56

Cycle
s &

Instructions Per
= N w
e W

o

~+-Complex Oracle

—=— Simple Oracle

-+ Matrix (Split Stores)
---Matrix (Unified Stores)

0
128

b

256 512 1024 2048 4096 8192 16384
Window Size

Issue Rate = 64

0

Cycle
5 & 8

w
»

Instructions Per

- Complex Oracle

—=— Simple Oracle

- Matrix (Split Stores)
-+--Matrix (Unified Stores)

Issue Rate = 00

256 512 1024 2048 4096 8192 16384
Window Size

64

-+ Complex Oracle
56-{ —= SimpleOracle

- Matrix (Split Stores)
484 -=--Matrix (Unified Stores)
40,
324
24+
16+

; , T T T T T 18
128 256 512 1024 2048 4096 8192 16384 (o]
Window Size

Figure A.12: Memory Disambiguation Techniques—Pgp

234

Instructions Per Cycle

Instructions Per

Cycle
s &

o Issue Rate=8 o Issue Rate = 32
~+-Complex Oracle ~+-Complex Oracle
564 —=— SimpleOracle 564 —=— SimpleOracle
-+ Matrix (Split Stores) -+ Matrix (Split Stores)
484 -+--Matrix (Unified Stores) @ 484 -+--Matrix (Unified Stores)
o}
a
32 2 32
i<}
241 S 24
1]
16 c
8 -
[P R N JR— PR —
T r T T 7 7 T s 0 T T T ; ; T T s
128 256 512 1024 2048 4096 8192 16384 00 128 256 512 1024 2048 4096 8192 16384 &
Window Size Window Size
o Issue Rate = 16 o Issue Rate = 64
- Complex Oracle - Complex Oracle
564 —= SimpleOracle 564 —= SimpleOracle
- Matrix (Split Stores) - Matrix (Split Stores)
---Matrix (Unified Stores) 8 484 -=--Matrix (Unified Stores)
>
O 4
© 40
a
32 2 32
2
24 S 241
1]
164 <
0 T T T T T T T N 0 T T ; ; ; ’ T 1%
128 256 512 1024 2048 4096 8192 16384 (&) 128 256 512 1024 2048 4096 8192 16384 &

Window Size Window Size

Issue Rate = 00
-+ Complex Oracle
56-{ —= SimpleOracle
- Matrix (Split Stores)
© 48- -+ Matrix (Unified Stores)

0 ; ; ; ; ; . ;
128 256 512 1024 2048 4096 8192 16384 (o]
Window Size

Figure A.13: Memory Disambiguation Techniques—Plot

235

Issue Rate =8

|ssue Rate = 32

~+-Complex Oracle

—=— Simple Oracle

-+ Matrix (Split Stores)
---Matrix (Unified Stores)

1024 2048 4096
Window Size

512

Issue Rate = 64

0

- Complex Oracle

—=— Simple Oracle

- Matrix (Split Stores)
-+--Matrix (Unified Stores)

64 64
~+-Complex Oracle
564 —=— SimpleOracle 564
-+ Matrix (Split Stores)
@ 484 -+--Matrix (Unified Stores) @ 484
5 407 5|
o o
@ 324 @ 324
S S
S 241 S 241
B B
£ 16 £ 16
8-
"
128 256 512 1024 2048 4096 8192 16384 = ©0 128
Window Size
o Issue Rate = 16 o
- Complex Oracle
564 —= SimpleOracle 564
- Matrix (Split Stores)
© 48- -+ Matrix (Unified Stores) © 48
© 40 © 40
o o
2 32 2 32
9 9
S 241 S 241
17} 17}
£ £ 16
81
1
128 256 512 1024 2048 4096 8192 16384 = ©0 128
Window Size

Issue Rate = 00

1024 2048 4096
Window Size

512

-+ Complex Oracle

—=— Simple Oracle

- Matrix (Split Stores)
-+--Matrix (Unified Stores)

512
Window Size

1024 2048 4096 8192 16384 co

8192 16384

Figure A.14: Memory Disambiguation Techniques—Python

236

o Issue Rate=8 o Issue Rate = 32
~+-Complex Oracle ~+-Complex Oracle
564 —=— SimpleOracle 564 —=— SimpleOracle
-+ Matrix (Split Stores) -+ Matrix (Split Stores)
2 484 -+--Matrix (Unified Stores) ¢ 484 -+--Matrix (Unified Stores)
>
O 40 O 40
o} o} 40
o o
2 32 @ 324
S S
S 241 S 241
B B
£ 16 £ 16
ol . - P PO PR PO PO
" "
128 256 512 1024 2048 4096 8192 16384 = ©0 128 256 512 1024 2048 4096 8192 16384 =~ O
Window Size Window Size
o Issue Rate = 16 o Issue Rate = 64
- Complex Oracle - Complex Oracle
564 —= SimpleOracle 564 —= SimpleOracle
- Matrix (Split Stores) - Matrix (Split Stores)
848— ---Matrix (Unified Stores) 848— -+--Matrix (Unified Stores)
> >
O 40 O 40
o 40 o 40
o o
@ 324 @ 324
9 9
S 241 S 241
17} 17}
£ 16—//,-7 £ 164
1 1
128 256 512 1024 2048 4096 8192 16384 = ©0 128 256 512 1024 2048 4096 8192 16384 = O
Window Size Window Size

Issue Rate = 00

-+ Complex Oracle

—=— Simple Oracle

- Matrix (Split Stores)
-+--Matrix (Unified Stores)

256 512

Window Size

1024 2048 4096 8192 16384 co

Figure A.15: Memory Disambiguation Techniques—Ss

237

Issue Rate =8

|ssue Rate = 32

~+-Complex Oracle

—=— Simple Oracle

-+ Matrix (Split Stores)
---Matrix (Unified Stores)

1024 2048 4096 8192 16384
Window Size

512

Issue Rate = 64

0

- Complex Oracle

—=— Simple Oracle

- Matrix (Split Stores)
-+--Matrix (Unified Stores)

64 64
~+-Complex Oracle
564 —=— SimpleOracle 564
-+ Matrix (Split Stores)
2 484 -+--Matrix (Unified Stores) ¢ 48+
>
O 40 O 404
© 40 © 40
o o
@ 324 @ 324
S S
S 241 S 241
B B
£ 16 £ 16
87.,
I
128 256 512 1024 2048 4096 8192 16384 = ©0 128
Window Size
o Issue Rate = 16 o
- Complex Oracle
564 —= SimpleOracle 564
- Matrix (Split Stores)
© 48- -+ Matrix (Unified Stores) © 48
© 40 © 40
o o
2 32 2 32
9 9
S 241 S 241
17} 17}
£ £ 16
87A
s ook oesam e
128 256 512 1024 2048 4096 8192 16384 = ©0 128
Window Size

Issue Rate = 00

1024 2048 4096 8192 16384

Window Size

512

-+ Complex Oracle

—=— Simple Oracle

- Matrix (Split Stores)
-+--Matrix (Unified Stores)

512
Window Size

1024 2048 4096 8192 16384 co

Figure A.16: Memory Disambiguation Techniques—Tex

238

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

164 cmp li
144
12 k)
[5)
5
10+ =
o
8- 2
S
6 g
-~ Perfect Cache B -~ Perfect Cache
4 --a-- 6 Cycle Miss Penalty £ 4 ~=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty —+-10 Cycle Miss Penalty
2 —+— 16 Cycle Miss Penalty 2 —+— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty 0 -x- 32 Cycle Miss Penalty
16K 64K 256K ™M 16K 64K 256K ™M
Cache Size (bytes) Cache Size (bytes)
16- gcc 16- m88k
14+ 14
124 @12
[5)
5
10+ 5 101
o
84 2 g+
S
6 _ g 64
~ 7 - -~ Perfect Cache B ; -~ Perfect Cache
44 o = 6 Cycle Miss Penalty £ 44 . = 6 Cycle Miss Penalty
e —+-10 Cycle Miss Penalty L - —+-10 Cycle Miss Penalty
2y —— 16 Cycle Miss Penalty 24 -7 —— 16 Cycle Miss Penalty
o i - 32 Cycle Miss Penalty o - 32 Cycle Miss Penalty
16K 64K 256K M 16K 64K 256K M
Cache Size (bytes) Cache Size (bytes)
16+ go 16+ per|
I R S
124)
[5)
&
10+ =
o
8- 2
: S
6] - g) /
- y --- Perfect Cache B e e --- Perfect Cache
4 v --a-- 6 Cycle Miss Penalty £ 4 ~-=-- 6 Cycle Miss Penalty
T —+-10 Cycle Miss Penalty e —+-10 Cycle Miss Penalty
247 —— 16 Cycle Miss Penalty 2y T —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty 0 i ~x- 32 Cycle Miss Penalty
16K 64K 256K M 16K 64K 256K ™M
Cache Size (bytes) Cache Size (bytes)
16- Ijpeg 16- vortex

2
[S]
>
[§)
o]
Q
8- 2
9
6 g B -
--- Perfect Cache B 7 -7 --- Perfect Cache
4 --=-- 6 Cycle Miss Penalty S 4r e --=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty e —+-10 Cycle Miss Penalty
24 —— 16 Cycle Miss Penalty 2 T —+— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty 0 r -x- 32 Cycle Miss Penalty
16K 64K 256K M 16K 64K 256K M
Cache Size (bytes) Cache Size (bytes)

Figure A.17: Ideal Machine
with Varied Instruction Cache Size—SPEC Benchmarks

239

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

chess

--- Perfect Cache

44 7 --=-- 6 Cycle Miss Penalty
’ —+-10 Cycle Miss Penalty
2 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K ™M
Cache Size (bytes)
16- groff

v L --- Perfect Cache
4+ ’ --=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
27 e - —+— 16 Cycle Miss Penalty
o T - 32 Cycle Miss Penalty
16K 64K 256K M
Cache Size (bytes)
16- gs
144
P --- Perfect Cache
49 T --=-- 6 Cycle Miss Penalty

—+-10 Cycle Miss Penalty

2 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K ™M
Cache Size (bytes)
16+ pap
14
124
104
8,
--- Perfect Cache
--a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
24 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K M
Cache Size (bytes)

Figure A.18: Ideal Machine

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

16- plot
14
12
L --- Perfect Cache
a4 T --a-- 6 Cycle Miss Penalty
e —+- 10 Cycle Miss Penalty
2+ —— 16 Cycle Miss Penalty
o -x- 32 Cycle Miss Penalty
16K 64K 256K ™M
Cache Size (bytes)
16- python
144
12
10+
8,
6+ -
7 y --- Perfect Cache
4+ ’ --a-- 6 Cycle Miss Penalty
e —+- 10 Cycle Miss Penalty
2y —— 16 Cycle Miss Penalty
o r -x- 32 Cycle Miss Penalty
16K 64K 256K M
Cache Size (bytes)
16 § ,,,,,,,,,,,,,,,,,,,,,,,,,,
14
12
10+
8,
6. P
e . --- Perfect Cache
44 X --a-- 6 Cycle Miss Penalty
. —+-10 Cycle Miss Penalty
27 -7 —— 16 Cycle Miss Penalty
o -x- 32 Cycle Miss Penalty
16K 64K 256K ™M
Cache Size (bytes)
16- tex
o ‘ --- Perfect Cache
a4 7 --=-- 6 Cycle Miss Penalty
- —+-10 Cycle Miss Pendlty
2+ —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K M
Cache Size (bytes)

with Varied Instruction Cache Size—Non-SPEC Benchmarks

240

Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

Instructions Per Cycle

16- cmp
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Pendlty
-x- 32 Cycle Miss Penalty
10
8,
6
4,
2,
0 T T |
16K 64K 256K M
Cache Size (bytes)
16- gcc
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10
8,
6,

0
16K 64K 256K ™M
Cache Size (bytes)
16+ go
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10
8,
6,
4,

>

ex 64K 256K M
Cache Size (bytes)

16+ Ijpeg
--- Perfect Cache

14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty

12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty

10+

0
16K 64K 256K ™M
Cache Size (bytes)

--- Perfect Cache

14 --a-- 6 Cycle Miss Penalty

—+-10 Cycle Miss Penalty

12 —— 16 Cycle Miss Pendlty

-x- 32 Cycle Miss Penalty

Instructions Per Cycle
i

2,
0 T T |
16K 64K 256K M
Cache Size (bytes)
16- m88k
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty

Instructions Per Cycle

—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty

ex 64K 256K ™M
Cache Size (bytes)
16- perl
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty

Instructions Per Cycle
Q@

-»- 32 Cycle Miss Penalty

ex 64K 256K M
Cache Size (bytes)
16- vortex
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty

Instructions Per Cycle

-»- 32 Cycle Miss Penalty

16K 64K 256K
Cache Size (bytes)

Figure A.19: Real Machine with Varied Instruction Cache Size
(Constant Mispredict Penalty)—SPEC Benchmarks

241

Instructions Per Cycle

Instructions Per Cycle

Instructions Per Cycle
i

Instructions Per Cycle

chess

16+
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Pendlty

-x- 32 Cycle Miss Penalty

%ex 64K 256K M
Cache Size (bytes)
16- groff
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10+
8,

16K 64K 256K ™M
Cache Size (bytes)
16+ gs
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10
8,
6,

16K 64K 256K M
Cache Size (bytes)
16+ pap
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10
8,
6,

16K 64K 256K ™M
Cache Size (bytes)

Instructions Per Cycle

Instructions Per Cycle Instructions Per Cycle
it

Instructions Per Cycle
Q@

plot

--- Perfect Cache

--a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
—— 16 Cycle Miss Penalty
-x- 32 Cycle Miss Penalty

64K 256K ™M
Cache Size (bytes)

python
--- Perfect Cache
--a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
—— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty

0
16K 64K 256K ™M
Cache Size (bytes)
16+ s
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty

—+-10 Cycle Miss Penalty
—— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty

ex 64K 256K M
Cache Size (bytes)
16+ tex
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10
8,

64K 256K M
Cache Size (bytes)

Figure A.20: Real Machine with Varied Instruction Cache Size
(Constant Mispredict Penalty)—Non-SPEC Benchmarks

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

16- cmp
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Pendlty
-x- 32 Cycle Miss Penalty
10+
8,
6
P L B ki
2,
0 ; ;)
16K 64K 256K M
Cache Size (bytes)
16- gcc
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10+
8,
6,
44

Cache Size (bytes)
go

--- Perfect Cache

--=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
—— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty

ex IK 256K M
Cache Size (bytes)

16- Ijpeg
--- Perfect Cache

14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty

12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty

10+

4,

2 |

0 ; ; |

16K 64K 256K M
Cache Size (bytes)

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

16+
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Pendlty
-x- 32 Cycle Miss Penalty
10+
8,
2,
0 ; ;)
16K 64K 256K M
Cache Size (bytes)
16- m88k
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10+
0 T 7 |
16K 64K 256K M
Cache Size (bytes)
16+ perl
--- Perfect Cache
14 --=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10+
8,

ex IK 256K M
Cache Size (bytes)
16- vortex
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty

-»- 32 Cycle Miss Penalty

64K 256K M
Cache Size (bytes)

Figure A.21: Real Machine with Varied Instruction Cache Size
(Scaled Mispredict Penalty)—SPEC Benchmarks

243

Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

Instructions Per Cycle
i

chess

--- Perfect Cache

--a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
—— 16 Cycle Miss Penalty
-x- 32 Cycle Miss Penalty

16K 64K 256K ™M
Cache Size (bytes)
16- groff
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10+
8,

Cache Size (bytes)

gs
--- Perfect Cache
--=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
—— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty

0
16K 64K 256K M
Cache Size (bytes)
16+ pap
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10
8,
6,

64K 256K M
Cache Size (bytes)

Instructions Per Cycle

plot

--- Perfect Cache

--a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
—— 16 Cycle Miss Penalty
-x- 32 Cycle Miss Penalty

Instructions Per Cycle
i

64K 256K ™M
Cache Size (bytes)

python
--- Perfect Cache
--a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
—— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty

Instructions Per Cycle
Q@

64K 256K M
Cache Size (bytes)

s

--- Perfect Cache

--=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
—— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty

Instructions Per Cycle
Q@

K 256K M
Cache Size (bytes)

tex

--- Perfect Cache

--a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
—— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty

64K 256K M
Cache Size (bytes)

Figure A.22: Real Machine with Varied Instruction Cache Size
(Scaled Mispredict Penalty)—Non-SPEC Benchmarks

cmp
-+--4 Cycle Mispredict Penalty
--=-- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
—— 10 Cycle Mispredict Penalty
-x-14 Cycle Mispredict Penalty

Instructions Per Cycle
i

6,
4,
2,
0 T T T T !
0.0 12 24 3.6 4.8 6.0
Mispredicts Per 1000 I nstructions
16+ gcc
-+--4 Cycle Mispredict Penalty
14 --a-- 7 Cycle Mispredict Penalty
—+- 8 Cycle Mispredict Penalty
% 12+ —— 10 Cycle Mispredict Penalty
& - 14 Cycle Mispredict Penalty
10+
o]
a
2 8
=]
7}
£ 4]
e ercgeg e s
2 == g SEEEE SEEEr e D S .
==EE=EE
0 T T T T]
0.0 3.6 7.2 10.8 144 18.0
Mispredicts Per 1000 I nstructions
16+ go .)
-+--4 Cycle Mispredict Penalty
144 --a-- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
124 —— 10 Cycle Mispredict Penalty

- 14 Cycle Mispredict Penalty

Instructions Per Cycle
®

0 . : ; ,
0.0 5.9 11.8 17.7 236
Mispredicts Per 1000 I nstructions
16+ Ijpeg
-+--4 Cycle Mispredict Penalty
14 --a-- 7 Cycle Mispredict Penalty

—+-8 Cycle Mispredict Penalty
—— 10 Cycle Mispredict Penalty
- 14 Cycle Mispredict Penalty

Instructions Per Cycle
ind

00 11 22 33 44
Mispredicts Per 1000 I nstructions

55

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

16+
-+--4 Cycle Mispredict Penalty
14 --=-- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
12 —— 10 Cycle Mispredict Penalty
-x-14 Cycle Mispredict Penalty
2,
0 . T T T .
0.0 16 3.2 4.8 6.4 8.0
Mispredicts Per 1000 I nstructions
16- m88k
-+--4 Cycle Mispredict Penalty
14 --a-- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
12 —— 10 Cycle Mispredict Penalty
-»- 14 Cycle Mispredict Penalty
10
8
6,
/. o e .
2,
0 T T T T .
0.0 0.7 14 21 2.8 35
Mispredicts Per 1000 I nstructions
16- per|
-+--4 Cycle Mispredict Penalty
14 --a-- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
12 —— 10 Cycle Mispredict Penalty
-x- 14 Cycle Mispredict Penalty
10
8,
6,
4,
e ——————— = A —
24 -
0 . T T T !
0.0 14 2.8 4.2 5.6 7.0
Mispredicts Per 1000 I nstructions
16- vortex
-+--4 Cycle Mispredict Penalty
14 --a-- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty
12 —— 10 Cycle Mispredict Penalty
-»- 14 Cycle Mispredict Penalty
10
8
6,
44
5] mroarnans
0 T T T T .
0.0 0.7 14 21 2.8 35

Mispredicts Per 1000 I nstructions

Figure A.23: Real Machine withVaried Mispredict Rate—SPEC Benchmarks

245

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

16 chess 16 plot
-+--4 Cycle Mispredict Penalty -+--4 Cycle Mispredict Penalty
14 =7 Cycle Mispredict Penalty 14 =7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty —+-8 Cycle Mispredict Penalty
124 —— 10 Cycle Mispredict Penalty % 124 —— 10 Cycle Mispredict Penalty
-x-14 Cycle Mispredict Penalty 3 -x-14 Cycle Mispredict Penalty
10 © 10
a
8- 2 8-
=)
©
E
17}
=
2 2
0 : . : . | 0 T T T T .
0.0 0.9 18 2.7 3.6 45 0.0 0.7 14 21 2.8 35
Mispredicts Per 1000 I nstructions Mispredicts Per 1000 I nstructions
16- oroff o . python
- 4(,ycIeM!spred!ct Penalty -+--4 Cycle Mispredict Penalty
14 = 7 Cycle Mispredict Penalty 144 ~-=-- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty —+- 8 Cycle Mispredict Penalty
12 —— 10 Cycle Mispredict Penalty @ 124 —— 10 Cycle Mispredict Penalty
~*- 14 Cycle Mispredict Penalty 5 =14 Cycle Mispredict Penalty
10 R
o 10
a
8 2 84
=]
6- S 6
7}
44 £ 44
- . e
2 e e '] 2 = n e E NS "
0 T T T T) 0 . . T T .
0.0 16 32 4.8 6.4 8.0 0.0 21 4.2 6.3 8.4 10.5
Mispredicts Per 1000 I nstructions Mispredicts Per 1000 I nstructions
16+ gs 16+ s
-+--4 Cycle Mispredict Penalty -+--4 Cycle Mispredict Penalty
14 --a-- 7 Cycle Mispredict Penalty 14 --a-- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty —+-8 Cycle Mispredict Penalty
124 —— 10 Cycle Mispredict Penalty % 124 —— 10 Cycle Mispredict Penalty
-x-14 Cycle Mispredict Penalty 3 -x- 14 Cycle Mispredict Penalty
10 © 10
a
8- 2 8-
=)
17}
< 47\-..._,
2,
0) 0 T T T T !
0.0 19 3.8 5.7 7.6 9.5 0.0 15 3.0 45 6.0 7.5
Mispredicts Per 1000 I nstructions Mispredicts Per 1000 I nstructions
16+ pgp 16+ tex
-+--4 Cycle Mispredict Penalty -+--4 Cycle Mispredict Penalty
14 --a-- 7 Cycle Mispredict Penalty 14 --a-- 7 Cycle Mispredict Penalty
—+-8 Cycle Mispredict Penalty —+-8 Cycle Mispredict Penalty
12 —— 10 Cycle Mispredict Penalty % 12 —— 10 Cycle Mispredict Penalty
-»- 14 Cycle Mispredict Penalty & -»- 14 Cycle Mispredict Penalty
10+ 10+
o]
a
8 o 84
9
3]
2
1}
=
2,
0 T T T T | 0 T T T T !
0.0 0.8 16 24 32 40 0.0 14 2.8 42 5.6 7.0
Mispredicts Per 1000 I nstructions Mispredicts Per 1000 I nstructions

Figure A.24: Real Machine with
Varied Mispredict Rate—Non-SPEC Benchmarks

246

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

16+

144

124

104

- —— Perfect Execution Core
g --=-- Real Execution Core

164

14-

124

104

10 12 14 16 18 20 22 24 26 28 30 32
Number of Functional Units

gec

' —— Perfect Execution Core
’ --=-- Real Execution Core

164

144

124

104

12 4 6 8

10 12 14 16 18 20 22 24 26 28 30 32
Number of Functional Units

go

A — Perfect Execution Core
g --=-- Real Execution Core

16+

144

124

104

12 4 6 8

10 12 14 16 18 20 22 24 26 28 30 32
Number of Functional Units
1jpeg

- —— Perfect Execution Core
g --=-- Real Execution Core

12 4 6 8

10 12 14 16 18 20 22 24 26 28 30 32
Number of Functional Units

Figure A.25: Ideal Machine with

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

16

144

124

104

— Perfect Execution Core

--=-- Real Execution Core

164

14-

124

104

10 12 14 16 18 20 22 24 2 28
Number of Functional Units

m88k

30

32

— Perfect Execution Core

--=-- Real Execution Core

16+

144

124

104

10 12 14 16 18 20 22 24 2 28
Number of Functional Units

30

32

per!

— Perfect Execution Core

--=-- Real Execution Core

16+

14

124

104

10 12 14 16 18 20 22 24 2 28
Number of Functional Units

vortex

30

2

— Perfect Execution Core

--=-- Real Execution Core

10 12 14 16 18 20 22 24 2 28
Number of Functional Units

Varied Execution Core Size—SPEC Benchmarks

247

30

32

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

16+

144

124

104

chess

e e
,‘-'
6- .
49 - —— Perfect Execution Core
--=-- Real Execution Core

N
.

164

14-

104

12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of Functional Units
gr of f
12+ .
8- -
6 L
41 o —— Perfect Execution Core
--a-- Real Execution Core

n
.

144

104

12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of Functional Units
16+ gS
124 i
,"'
6+ o
41 - —— Perfect Execution Core
--a-- Real Execution Core

n
.

141

124

104

12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of Functional Units
16- pgp
6- o
- —— Perfect Execution Core
a --=-- Real Execution Core

12 4 6 8

10 12 14 16 18 20 22 24 26 28 30 32
Number of Functional Units

Figure A.26: Ideal Machine with

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

16+

144

124

104

plot

— Perfect Execution Core

--=-- Real Execution Core

164

14-

124

104

10 12 14 16 18 20 22 24 2 28
Number of Functional Units

python

30

32

— Perfect Execution Core

--=-- Real Execution Core

16+

144

124

104

10 12 14 16 18 20 22 24 2 28
Number of Functional Units

S

30

32

— Perfect Execution Core

--=-- Real Execution Core

16+

144

124

104

10 12 14 16 18 20 22 24 2 28
Number of Functional Units

tex

30

2

— Perfect Execution Core

--=-- Real Execution Core

10 12 14 16 18 20 22 24 2 28
Number of Functional Units

Varied Execution Core Size—Non-SPEC Benchmarks

248

30

32

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

16+

144

124

104

cmp

— Perfect Execution Core
= Real Execution Core

164

14-

124

104

12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of Functional Units

gec

—— Perfect Execution Core
--=-- Real Execution Core

164

144

124

104

12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of Functional Units

go

—— Perfect Execution Core
--=-- Real Execution Core

16+

141

124

104

12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of Functional Units
1/peg

— Perfect Execution Core
= Real Execution Core

12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of Functional Units

Figure A.27: Real Machine with

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

16+

144

124

104

— Perfect Execution Core

= Real Execution Core

164

14-

124

104

8

10 12 14 16 18 20 22 24 2 28
Number of Functional Units

m88k

—— Perfect Execution Core

30

--=-- Real Execution Core

32

164

144

124

104

8

10 12 14 16 18 20 22 24 2 28
Number of Functional Units

perl

—— Perfect Execution Core

30

--=-- Real Execution Core

32

16+

141

124

104

8

10 12 14 16 18 20 22 24 2 28
Number of Functional Units

vortex

— Perfect Execution Core

30

= Real Execution Core

2

8

10 12 14 16 18 20 22 24 2 28
Number of Functional Units

Varied Execution Core Size—SPEC Benchmarks

249

30

32

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

16- chess 16- plot
144 —— Perfect Execution Core 144 —— Perfect Execution Core
= Real Execution Core = Real Execution Core
124 2 124
9
10 w 10
a
8- 2 8-
9
6 8 6.
4 P L L
44 . F— E 44 . -
24w ' 29
o OFr 711 T T T T
12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of Functional Units Number of Functional Units
16- gr of f 16- python
14+ —— Perfect Execution Core 14+ —— Perfect Execution Core
--=-- Real Execution Core --=-- Real Execution Core
124 © 12
9
104 © 104
a
8- 2 84
=
6 % 64
17}
44 £ 44
24— 21—

Or— 07 T T T O T O Orr— 1 1 7 o - T O T I
12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of Functional Units Number of Functional Units

16+ gs 16+ s
14+ —— Perfect Execution Core 14+ —— Perfect Execution Core
--=-- Real Execution Core --=-- Real Execution Core
124 ® 124
9
104 © 104
a
8- 2 84
=
6 % 64
17}
4 . £ 44
24 " 2f T
Orr— 07— T T T O T Orr— 1 71 70— 0 o T O o I
12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of Functional Units Number of Functional Units
16 pPgp 16 tex
144 —— Perfect Execution Core 144 —— Perfect Execution Core
= Real Execution Core = Real Execution Core
124 2 124
9
10 w 10
a
8- 2 8-
9o
6 8 6.
12}
41 T = M i
24 o 2]
o OFr 711 T T T T
12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of Functional Units Number of Functional Units
Figure A.28: Real Machine with

Varied Execution Core Size—Non-SPEC Benchmarks

250

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

DE— B
14 — =
2] " .
104
8
64
--- Perfect Cache
4+ --=-- 6 Cycle Miss Pendlty
—+- 10 Cycle Miss Penalty
24 —+— 16 Cycle Miss Penalty
0 - 32 Cycle Miss Penalty
; ™ 256K M
Cache Size (bytes)

6,
--- Perfect Cache
44 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
27 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K ™M
Cache Size (bytes)

8,
6,
--- Perfect Cache
44 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
2 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K M
Cache Size (bytes)
16+ Ijpeg
12
10+
8,
6,
--- Perfect Cache
44 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
2 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K ™M
Cache Size (bytes)

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

6,
--- Perfect Cache
4+ --=-- 6 Cycle Miss Pendlty
—+-10 Cycle Miss Penalty
2 —+— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K M
Cache Size (bytes)
16- m88k
144
124
w05
8,
6,
--- Perfect Cache
44 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
2 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K ™M
Cache Size (bytes)
16- per|

8,
6,
--- Perfect Cache
44 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
2 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K M
Cache Size (bytes)
16- vortex

6,
--- Perfect Cache
44 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
27 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K ™M
Cache Size (bytes)

Figure A.29: Ideal Machine with Varied Data Cache Size
(Constant Load Latency)—SPEC Benchmarks

251

Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

Instructions Per Cycle

chess

16+
14
124
6,
--- Perfect Cache
44 --=-- 6 Cycle Miss Pendlty
—+-10 Cycle Miss Penalty
24 —+— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K M
Cache Size (bytes)
16- groff

--- Perfect Cache
44 --=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
2 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K ™M
Cache Size (bytes)
16 gS
14
6,
--- Perfect Cache
44 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
2 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K M
Cache Size (bytes)
16+ pgp
144
12
10+
8,
--- Perfect Cache
= 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
2 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K ™M
Cache Size (bytes)

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

plot

--- Perfect Cache

--a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
—— 16 Cycle Miss Penalty

-x- 32 Cycle Miss Penalty
64K 256K ™M
Cache Size (bytes)

python

--- Perfect Cache
44 = 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
2 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K ™M
Cache Size (bytes)
165 s
¥ R —r R
14 -
1257
10+
8,
6,
--- Perfect Cache
44 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
2 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K M
Cache Size (bytes)
16- tex

6,
--- Perfect Cache
44 = 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
27 —+— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K ™M
Cache Size (bytes)

Figure A.30: Ideal Machine with Varied Data Cache Size
(Constant Load Latency)—Non-SPEC Benchmarks

252

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

6,
--- Perfect Cache
44 --=-- 6 Cycle Miss Pendlty
—+-10 Cycle Miss Penalty
24 —+— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K M

Cache Size (bytes)

6,
-~ Perfect Cache
44 --=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
27 —+— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K ™M

Cache Size (bytes)

8,
6,
--- Perfect Cache
44 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
27 —+— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K K 256K M
Cache Size (bytes)
16- Ijpeg
pFE———————— —
12
10+
8,
6,
--- Perfect Cache
44 = 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
27 —+— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K ™M
Cache Size (bytes)

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

6,
--- Perfect Cache
44 --=-- 6 Cycle Miss Pendlty
—+-10 Cycle Miss Penalty
24 —+— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K M
Cache Size (bytes)
16- m88k
144
12
i e,
8,
6,
--- Perfect Cache
44 = 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
27 —+— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K ™M
Cache Size (bytes)

8,
6,
--- Perfect Cache
44 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
2 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K M
Cache Size (bytes)
16- vortex

6,
--- Perfect Cache
44 = 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
27 —+— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K ™M
Cache Size (bytes)

Figure A.31: Ideal Machine with Varied Data Cache Size
(Scaled Load Latency)—SPEC Benchmarks

253

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

chess

6,
--- Perfect Cache
44 --=-- 6 Cycle Miss Pendlty
—+-10 Cycle Miss Penalty
24 —+— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K M
Cache Size (bytes)
16- groff

--- Perfect Cache
44 --=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
2 —— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K ™M
Cache Size (bytes)
16 gS
144

6,
--- Perfect Cache
44 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
27 —+— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K M
Cache Size (bytes)
16- pap
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10
8,

0 ;

16K 64K 256K ™M
Cache Size (bytes)

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

plot

--- Perfect Cache

--a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
—— 16 Cycle Miss Penalty

-x- 32 Cycle Miss Penalty
64K 256K ™M
Cache Size (bytes)

python

--- Perfect Cache
44 = 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
27 —+— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K ™M
Cache Size (bytes)
16+ ,,,jsi ,,,,,,,
b [
14] IV
1257
10+
8,
6,
--- Perfect Cache
44 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
27 —+— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K M
Cache Size (bytes)
16- tex

6,
--- Perfect Cache
44 = 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
27 —+— 16 Cycle Miss Penalty
0 -x- 32 Cycle Miss Penalty
16K 64K 256K ™M
Cache Size (bytes)

Figure A.32: Ideal Machine with Varied Data Cache Size
(Scaled Load Latency)—Non-SPEC Benchmarks

254

Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

16- cmp
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
2 12 —— 16 Cycle Miss Penalty
3 -x- 32 Cycle Miss Penalty
10+
o]
a
2 8
=]
1]
2 a
= .z
=

16K 64K 256K M
Cache Size (bytes)
16- gcc
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10+
8,
6,
4,
R e
0 T 7]
16K 64K 256K M
Cache Size (bytes)
16+ go
--- Perfect Cache
14 --=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10+
8,
6,
4,

0
16K 64K 256K M
Cache Size (bytes)
16- Ijpeg
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10+
87 ,,,,,,,,,,
6]
44
2,
0 ; T |
16K 64K 256K M

Cache Size (bytes)

Instructions Per Cycle
il

--- Perfect Cache

14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Pendlty
-x- 32 Cycle Miss Penalty

0 ; ;)
16K 64K 256K
Cache Size (bytes)
16- m88k
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty

—+-10 Cycle Miss Penalty

12 —— 16 Cycle Miss Penalty

Instructions Per Cycle
it

-»- 32 Cycle Miss Penalty

0 ; T

16K 64K 256K

Cache Size (bytes)
16+ perl

--- Perfect Cache
14 --=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty

12 —— 16 Cycle Miss Penalty

Instructions Per Cycle
it

-»- 32 Cycle Miss Penalty

64K
Cache Size (bytes)
vortex

256K

--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty

12 —— 16 Cycle Miss Penalty

Instructions Per Cycle
it

-»- 32 Cycle Miss Penalty

0
16K 64K 256K

Cache Size (bytes)

Figure A.33: Real Machine with Varied Data Cache Size
(Constant Load Latency)—SPEC Benchmarks

255

Instructions Per Cycle
@

chess

--- Perfect Cache

--=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
—— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty

2,
0 . ‘ ‘
16K 64K 256K 1M
Cache Size (bytes)
16- groff
--- Perfect Cache
144 --a-- 6 Cycle Miss Penalty

Instructions Per Cycle
®

—+-10 Cycle Miss Penalty
—— 16 Cycle Miss Penalty
-x- 32 Cycle Miss Penalty

Instructions Per Cycle
®

Cache Size (bytes)

gs

--- Perfect Cache

--a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
—— 16 Cycle Miss Penalty
-x- 32 Cycle Miss Penalty

0
16K 64K 256K ™
Cache Size (bytes)
161 pgp
--- Perfect Cache
144 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
g1 —— 16 Cycle Miss Penialty
& - 32 Cycle Miss Penalty
10+
o]
o
2 8-
2
B
E .
0 . : ‘
16K 64K 256K M
Cache Size (bytes)

16+ plot
--- Perfect Cache
14+ -~ 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
312 — 16 Cycle Miss Penalty
1) - 32 Cycle Miss Penalty
10+
o]
a
2 8
=]
|4 e e
S ¥y
2,
0 i ‘ ‘
16K 64K 256K 1M
Cache Size (bytes)
16 python
--- Perfect Cache
144 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
$ 12 —— 16 Cydle Miss Penalty
(% -%- 32 Cycle Miss Penalty
10+
o
a
2 8
]
17}
£ 4
2 S S S S A ST e
0 . ‘ ‘
16K 64K 256K M
Cache Size (bytes)
16+ s
--- Perfect Cache
144 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
- —— 16 Cydle Miss Penalty
(% -x- 32 Cycle Miss Penalty
10+
o
a
2 8
]
17}
£ 4
B
0 . ‘ ‘
16K 64K 256K 1M
Cache Size (bytes)
16- tex
--- Perfect Cache
144 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
$ 121 —— 16 Cydle Miss Penalty
(% -x- 32 Cycle Miss Penalty
10+
o
a
2 8
]
17}
E ——
0 . ‘ ‘
16K 64K 256K M

Cache Size (bytes)

Figure A.34: Real Machine with Varied Data Cache Size
(Constant Load Latency)—Non-SPEC Benchmarks

256

Instructions Per Cycle

Instructions Per Cycle

Instructions Per Cycle

16- cmp
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Pendlty
-x- 32 Cycle Miss Penalty
10+
8,

16K 64K 256K M
Cache Size (bytes)
16- gcc
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10+
8,
6,
44
2 e e e e e e —
0 T 7]
16K 64K 256K M
Cache Size (bytes)
16+ go
--- Perfect Cache
14 --=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10+
8,
6,
44

16K 64K 256K M
Cache Size (bytes)

16+ Ijpeg
--- Perfect Cache

14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty

12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty

10+

Instructions Per Cycle

0 ; 7]

16K 64K 256K M
Cache Size (bytes)

16+
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Pendlty

-x- 32 Cycle Miss Penalty

Instructions Per Cycle
i

%ex 64K 256K ™M
Cache Size (bytes)
16- m88k
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty

-»- 32 Cycle Miss Penalty

Instructions Per Cycle
i

6,
44 e
2,
0 T 7 |
16K 64K 256K M
Cache Size (bytes)
16- perl
--- Perfect Cache
14 --=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty

-»- 32 Cycle Miss Penalty

Instructions Per Cycle
Q@

ex 64K 256K M
Cache Size (bytes)
16- vortex
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty

-»- 32 Cycle Miss Penalty

Instructions Per Cycle
Q@

2
Cache Size (bytes)

Figure A.35: Real Machine with Varied Data Cache Size
(Scaled Load Latency)—SPEC Benchmarks

257

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

chess

16+
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Pendlty
-x- 32 Cycle Miss Penalty
10+
8,
6
2,
0 ; ;)
16K 64K 256K M
Cache Size (bytes)
16- groff
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10+
8,
6,
4,
2 e R A R e R S s s o .
0 T 7 |
16K 64K 256K M
Cache Size (bytes)
16+ 8s
--- Perfect Cache
14 --=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10+
8,
6,

0
16K 64K 256K M
Cache Size (bytes)
16+ pgp
--- Perfect Cache
14 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
12 —— 16 Cycle Miss Penalty
-»- 32 Cycle Miss Penalty
10
8,
6,
4, ,,,,,,,,,,,,,, T ettt
A - I —
2,
0 ; ; |
16K 64K 256K M
Cache Size (bytes)

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

16+ plot
--- Perfect Cache
144 ~-=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
121 —— 16 Cycle Miss Penalty
-x- 32 Cycle Miss Penalty
10+
8,
6
pF T T T T T T T T T T T ——
2,
0 : ‘ ‘
16K 64K 256K 1M
Cache Size (bytes)
16 python
--- Perfect Cache
144 --=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
124 —+— 16 Cycle Miss Pendlty
-x- 32 Cycle Miss Penalty
10+
8,
6,
4,
2 e e EEEE b bbb deliatuliied
0 : ‘ ‘
16K 64K 256K M
Cache Size (bytes)
16- s
--- Perfect Cache
144 --a-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
124 —+ 16 Cycle Miss Penalty
-x- 32 Cycle Miss Penalty
10+
8,
6,
4,
2T —_——.
0 . . :
16K 64K 256K im
Cache Size (bytes)
16 tex
--- Perfect Cache
144 --=-- 6 Cycle Miss Penalty
—+-10 Cycle Miss Penalty
124 —+ 16 Cycle Miss Penalty
-x- 32 Cycle Miss Penalty
10+
8,
6,
0 . . ‘
16K 64K 256K M
Cache Size (bytes)

Figure A.36: Real Machine with Varied Data Cache Size
(Scaled Load Latency)—Non-SPEC Benchmarks

258

= 16k Byte |Cache Only; Not Reordered

10+ = 16k Byte |Cache Only; Reordered
9 16k Byte ICache w/ OOO FDI (Assume Dependence); Not Reordered
m 16k Byte | Cache w/ OOO FDI (Assume Dependence); Reordered

o 8- == Perfect ICache
53
S 7
fob) _
g 6
2 5
=
8 M
S
7 37
c
—_— 2 _

1-

0- ‘

gcc o i Jpeg li m88k vortex
Benchmark

Figure A.37: Impact of Out-of-Order Fetch/Decode/Issue
and Procedure Reordering—SPEC Benchmarks

= 16k Byte |Cache Only; Not Reordered

10+ = 16k Byte |Cache Only; Reordered
94 16k Byte ICache w/ OO0 FDI (Assume Dependence); Not Reordered
m 16k Byte | Cache w/ OOO FDI (Assume Dependence); Reordered
o 8- == Perfect |Cache
53
S 7
fob) _
g 6
2 5
=
8 4
S
7 37
c
—_— 2 _
1-
0-
chess groff pI ot python s
Bench mark

Figure A.38: Impact of Out-of-Order Fetch/Decode/Issue
and Procedure Reordering—Non-SPEC Benchmarks

259

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

cmp
109 -~ perfect ICache
94 —=Red ICachew/ OOO FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)

81 -+~ Real ICache Only
7,
6,
5,
4,
3,
24
14
0 . ; :)
4K 8K 16K 32K 64K

Cache Size (bytes)

gcc
109 - perfect ICache
94 —=Red ICachew/ OOO FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)

81 —«-Real ICache Only
7,
6,
5,

0 T T T]
4K 8K 16K 32K 64K
Cache Size (bytes)
go
109 --- perfect ICache
94 —Red ICachew/ OOO FDI (Oracle)
--+-- Real 1Cache w/ OO0 FDI (Assume Dependence)
81 —.—Redl ICache Only
7,
6,
5,
4,

4K 8K 16K 32K 64K
Cache Size (bytes)
lIpeg
10+
9,
51 --- Perfect ICache
44 —=—Real ICache w/ OOO FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)
371 —«-Rea ICache Only
2,
1,
0 ; : T)
4K 8K 16K 32K 64K
Cache Size (bytes)

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

li

104 - perfect ICache
94 —=Red ICachew/ OOO FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)
81 —«-Real ICache Only
7,
2,
1,
0 T T T]
4K 8K 16K 32K 64K
Cache Size (bytes)
m88k
10+
9,
8,
77
677 Perfect |Cache
—=—Real |Cache w/ OOO FDI (Oracle) .
51 - Red ICachew/ 00O FDI (Assume Dependence) _—~
44 —+-Rea ICache Only ,,,4///
3,r ########## e -
2,
1,
0 T T T]
4K 8K 16K 32K 64K
Cache Size (bytes)
perl
109 --- perfect ICache
9 —=— Real |Cache w/ OO0 FDI (Oracle)
--+-- Real 1Cache w/ OO0 FDI (Assume Dependence)
81 —.—Redl ICache Only
7,

2K 8K 16K 32K 64K
Cache Size (bytes)
vortex
10+
O
8,
7
64 ----Perfect ICache
—=—Real |Cache w/ OO0 FDI (Oracle)
571 .+ Real ICachew/ 00O FDI (Assume Dependence)
44 —+-Real ICache Only o
N B -
P2 — S
1,
0 ; : T)
4K 8K 16K 32K 64K
Cache Size (bytes)

Figure A.39: Varied Instruction Cache Size
(Constant Mispredict Penalty)—SPEC Benchmarks

260

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

chess

109 - perfect ICache

94 —=Red ICachew/ OOO FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)
81 —«-Real ICache Only

7,

2,

1,

0 ‘ ‘ ‘ ‘
2K 8K 16K 32K

Cache Size (bytes)
groff
104 - perfect ICache

94 —=Red ICachew/ OOO FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)
81 —«-Real ICache Only

0 T T T]
4K 8K 16K 32K
Cache Size (bytes)
gs
109 -~ perfect ICache

94 —Red ICachew/ OOO FDI (Oracle)
--+-- Real 1Cache w/ OO0 FDI (Assume Dependence)
81 —.—Redl ICache Only

aK 8K 16K 32K
Cache Size (bytes)

pgp

109 -~ perfect ICache

9/ —=—Red ICachew/ OOO FDI (Oracle)

--+-- Real 1Cache w/ OO0 FDI (Assume Dependence)
89—+~ Real ICache Only

aK 8K 16K 32K
Cache Size (bytes)

Figure A.40: Varied Instruction Cache Size

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

plot
--- Perfect ICache

—=—Real |Cache w/ OO0 FDI (Cracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)
—+—Real |Cache Only

8K 16K 32K 64K
Cache Size (bytes)
python
----Perfect ICache

—=—Real |Cache w/ OO0 FDI (Cracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)
—+—Real |Cache Only

8K 16K 32K 64K
Cache Size (bytes)
s
--- Perfect ICache

—=— Real |Cache w/ OO0 FDI (Oracle)
--+-- Real 1Cache w/ OO0 FDI (Assume Dependence)
—+-Real ICache Only

8K 16K 32K 64K
Cache Size (bytes)
tex
--- Perfect ICache

—=— Real |Cache w/ OO0 FDI (Oracle)
--+-- Real 1Cache w/ OO0 FDI (Assume Dependence)
—+-Real ICache Only

8K 16K 32K 64K
Cache Size (bytes)

(Constant Mispredict Penalty)—Non-SPEC Benchmarks

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

cmp

109 --- perfect ICache

94 —=— Real |Cache w/ OOO FDI (Oracle)

--+-- Real |Cache w/ OO0 FDI (Assume Dependence)
81 —+-Rea ICache Only

0 ; T
64K 256K ™M
Cache Size (bytes)

gec

109 --- perfect ICache

94 —=— Real |Cache w/ OOO FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)
81 —.—Rea ICache Only

1,
16K 64K 256K M
Cache Size (bytes)
go
109 --- perfect ICache

94 —=— Real |Cache w/ OOO FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)
81 —.—Real ICache Only

16K 64K 256K M
Cache Size (bytes)
1Jpeg
104
9,

51 --- PerfectICache
4 —=— Real |Cache w/ OOO FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)

31 —+-Red ICacheOnly

2,

l,

0 ; ;)

16K 64K 256K ™M
Cache Size (bytes)

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

li

109 --- perfect ICache
94 —=— Real |Cache w/ OOO FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)

81 —.—Real ICacheOnly
7,
3,
2
14
0 T T |
16K 64K 256K M
Cache Size (bytes)
m88k

10+
9,
34 --- Perfect ICache

—=—Real |Cache w/ OOO FDI (Oracle)
27 --+-- Real ICache w/ OOO FDI (Assume Dependence)
14 —+-Real |Cache Only
0 T T |
16K 64K 256K M
Cache Size (bytes)
perl

109 --- perfect ICache

94 —=— Real 1Cache w/ OO0 FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)

81 —+-Red ICacheOnly
7,

1,

0 ; ; |
16K 64K 256K ™M
Cache Size (bytes)
vortex

34 -
~" --- Perfect ICache
24 —=— Real ICache w/ OO0 FDI (Oracle)
14 --+-- Real |Cache w/ OO0 FDI (Assume Dependence)
—+-Real |Cache Only
0 ; . |
16K 64K 256K ™M
Cache Size (bytes)

Figure A.41: Varied Instruction Cache Size
(Scaled Mispredict Penalty)—SPEC Benchmarks

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

chess

109 --- perfect ICache

94 —=— Real |Cache w/ OOO FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)
81 —+-Rea ICache Only

0 ; T
64K 256K ™M
Cache Size (bytes)

or off

109 --- perfect ICache

94 —=— Real |Cache w/ OOO FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)
81 —.—Rea ICache Only

1,
0 T T |
16K 64K 256K ™M
Cache Size (bytes)
gs
109 - PperfectICache

94 —=— Real |Cache w/ OOO FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)
81 —.—Real ICache Only

2
1,

0 T T |
16K 64K 256K ™M
Cache Size (bytes)
pgp

107 - Pperfect ICache
9] ——Real ICachew/ OO0 FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)
81 —«—Red ICacheOnly
7,
6,
5,
L e e)
3,
2,
l,
0 T T]
16K 64K 256K M
Cache Size (bytes)

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

plot

109 --- perfect ICache

94 —=— Real |Cache w/ OOO FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)
81 —.—Real ICacheOnly

0 ;

64K 256K M
Cache Size (bytes)

python

109 --- perfect ICache

94 —=— Real |Cache w/ OOO FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)
81 —.—Real ICache Only

1,
16K 64K 256K M
Cache Size (bytes)
s
109 --- perfect ICache

94 —=— Real |Cache w/ OOO FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)

81 —.—Real ICache Only
7,
2,
1,
0 ‘ ‘ ‘
16K 64K 256K M
Cache Size (bytes)
tex
104 --- perfectICache

94 —=— Real ICache w/ OO0 FDI (Oracle)
--+-- Real |Cache w/ OO0 FDI (Assume Dependence)

81 —«—Red ICacheOnly

7,

6,

2,

l,

0 ; ; |

16K 64K 256K ™M
Cache Size (bytes)

Figure A.42: Varied Instruction Cache Size
(Scaled Mispredict Penalty)—Non-SPEC Benchmarks

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

cmp

10+ --- Perfect ICache
94 —s=— 16k Byte |Cache w/ OOO FDI (Oracle)
--+-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
84 —+— 16k Byte ICache Only
7 4
6 4
5,
4,
3 4
2 4
1 4
0 T T T |
1 2 4 8
Associativity
gcc
104 -~ Perfect ICache
94 —=— 16k Byte ICache w/ OOO FDI (Oracle)
--+-- 16k Byte ICache w/ OOO FDI (Assume Dependence)
81 —«— 16k Byte ICache Only
7 4
6 4
5,
4,
3 4
2 P — —
1 4
0 T T T \
1 2 4 8
Associativity
go
104 -~ Perfect ICache
94 —=— 16k Byte ICache w/ OOO FDI (Oracle)
--+-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
81 —«— 16k Byte ICache Only
7 4
6 4
5,
4,
3 4
2 Nt e —
1 4
0 T T T ,
1 2 4 8
Associativity
Ijpeg
104
9 4
8 4
NS ——
74 C
6 4
59 -~ Perfect ICache
44 —=— 16k Byte ICache w/ OOO FDI (Oracle)
---- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
37 —+—- 16k Byte ICache Only
2 4
1 4
0 T T T]

1 2 4 8

Associativity

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

10+ --- Perfect ICache
94 —s=— 16k Byte |Cache w/ OOO FDI (Oracle)
--+-- 16k Byte ICache w/ OO0 FDI (Assume Dependence)
81 —+— 16k Byte ICache Only
7 4
6 4
5,
4,
3 4
2 4
1 4
0 T T T |
1 2 4 8
Associativity
m88k
104
g 4
8 4
7 4
6 4
5,
4,
31 --- Perfect ICache
24 —=— 16k Byte ICache w/ OOO FDI (Oracle)
--+-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
1 —+— 16k Byte ICache Only
0 T T T \
1 2 4 8
Associativity
perl
104 -~ Perfect ICache
94 —=— 16k Byte ICache w/ OOO FDI (Oracle)
--+-- 16k Byte ICache w/ OOO FDI (Assume Dependence)
81 —«— 16k Byte ICache Only
7 4
6 4
5,
4,
3 4
2 4
1 4
0 T T T ,
1 2 4 8
Associativity
vortex
104
O
8 4
7 4
64 ----Perfect ICache
—=— 16k Byte ICache w/ OOO FDI (Oracle)
54 --+-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
2] —+— 16k Byte ICache Only T -
N /////,
2 4
1 4
0 T T T]
1 2 4 8
Associativity

Figure A.43: Varied Instruction Cache Associativity—SPEC Benchmarks

264

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

chess
---Perfect ICache
—s=— 16k Byte |Cache w/ OOO FDI (Oracle)
--+-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—+— 16k Byte ICache Only

1 2 4 8
Associativity
groff
----Perfect ICache

—=— 16k Byte ICache w/ OOO FDI (Oracle)
--+-- 16k Byte ICache w/ OOO FDI (Assume Dependence)
—+— 16k Byte ICache Only

1 2 4 8
Associativity
gs
----Perfect ICache

—=— 16k Byte ICache w/ OOO FDI (Oracle)
--+-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—+— 16k Byte ICache Only

1 2 4 8
Associativity
pgp
----Perfect ICache

—s=— 16k Byte |Cache w/ OOO FDI (Oracle)
--+-- 16k Byte ICache w/ OOO FDI (Assume Dependence)
—+— 16k Byte ICache Only

1 2 4 8

Associativity

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

plot

10+ --- Perfect ICache
94 —s=— 16k Byte |Cache w/ OOO FDI (Oracle)
--+-- 16k Byte ICache w/ OO0 FDI (Assume Dependence)
81 —+— 16k Byte ICache Only
7 |
6 |
5,
4,
3 |
2 |
1 4
0 T T T |
1 2 4 8
Associativity
python
104 -~ Perfect ICache
94 —=— 16k Byte ICache w/ OOO FDI (Oracle)
--+-- 16k Byte ICache w/ OOO FDI (Assume Dependence)
81 —«— 16k Byte ICache Only
7 4
6 |
5,
44 ..
N [— S —
24 P SN AT ‘
1 |
0 T T T \
1 2 4 8
Associativity
S
104 -~ Perfect ICache
94 —=— 16k Byte ICache w/ OOO FDI (Oracle)
--+-- 16k Byte ICache w/ OOO FDI (Assume Dependence)
81 —«— 16k Byte ICache Only
7 4
6 |
5,
4,
3 |
2 |
1 |
0 T T T ,
1 2 4 8
Associativity
tex
10+ --- Perfect ICache
94 —s=— 16k Byte |Cache w/ OOO FDI (Oracle)
--+-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
8 —+— 16k Byte Cache Only
7 |
6 |
5,
4,
3 |
2 |
1 4
0 T T T]

1 2 4 8
Associativity

Figure A.44: Varied Instruction Cache Associativity—Non-SPEC Benchmarks

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

cmp
--- Perfect ICache
—=— 16k Byte |Cache w/ OOO FDI (Oracle)
--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—=— 16k Byte |Cache Only

6 10 16 ®»
Miss Penalty (Cycles)
gcc
--- Perfect ICache

—=— 16k Byte |Cache w/ OOO FDI (Oracle)
--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—=— 16k Byte |Cache Only

6 10 16 32
Miss Penalty (Cycles)
go
--- Perfect ICache

—=— 16k Byte |Cache w/ OOO FDI (Oracle)
--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—=— 16k Byte |Cache Only

Miss Penalty (Cycles)

ijpeg

--- Perfect ICache

—=— 16k Byte |Cache w/ OOO FDI (Oracle)

--+-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—+- 16k Byte |Cache Only

6 10 16 32
Miss Penalty (Cycles)

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

104 --- Perfect ICache
94 —=— 16k Byte |Cache w/ OO0 FDI (Oracle)
--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
81 —+— 16k Byte ICache Only
7,
6,
5,
4,
3,
2,
l,
0 ; . . |
6 10 16 32
Miss Penalty (Cycles)
m88k
104 --- Perfect ICache
94 —=— 16k Byte |Cache w/ OO0 FDI (Oracle)
--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
81 —«— 16k Byte ICache Only
7,
6,
5 .
k\
4 S
R
39 T ~~.
21 T —
l,
0 ; . . |
6 10 16 32
Miss Penalty (Cycles)
perl
104 --- Perfect ICache
94 —=— 16k Byte |Cache w/ OO0 FDI (Oracle)
--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
81 —«— 16k Byte ICache Only
7,
6,
5,
4,
“ -
3 \\\\
24 e
“o T ——a
0 ; . . |
6 10 16 32
Miss Penalty (Cycles)
vortex
10+
O Ll
8,
7 .
6. --- PerfectiCache TTTTEEm—
—=— 16k Byte ICachew/ OOO FDI (Oracle) =
54 --=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
4] —=— 16k Byte |Cache Only
A
34 g
21 e
T —
0 ; . . |
6 10 16 32

Miss Penalty (Cycles)

Figure A.45: Varied Instruction Cache Miss Penalty—SPEC Benchmarks

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

chess

--- Perfect ICache

—=— 16k Byte |Cache w/ OOO FDI (Oracle)

--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—=— 16k Byte |Cache Only

6 10 16 32
Miss Penalty (Cycles)
gr off
--- Perfect ICache

—=— 16k Byte |Cache w/ OOO FDI (Oracle)
--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—=— 16k Byte |Cache Only

6 10 16 32
Miss Penalty (Cycles)
gs
--- Perfect ICache

—=— 16k Byte |Cache w/ OOO FDI (Oracle)
--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—=— 16k Byte |Cache Only

6 10 16 32
Miss Penalty (Cycles)
pgp
--- Perfect ICache

—=— 16k Byte |Cache w/ OOO FDI (Oracle)
--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—=— 16k Byte |Cache Only

6 10 16 32
Miss Penalty (Cycles)

267

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

plot

--- Perfect ICache

—=— 16k Byte |Cache w/ OOO FDI (Oracle)

--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—=— 16k Byte |Cache Only

6 10 16 32
Miss Penalty (Cycles)
python
--- Perfect ICache

—=— 16k Byte |Cache w/ OOO FDI (Oracle)
--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—=— 16k Byte |Cache Only

6 10 16 32
Miss Penalty (Cycles)
SS
--- Perfect ICache

—=— 16k Byte |Cache w/ OOO FDI (Oracle)
--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—=— 16k Byte |Cache Only

6 10 16 32
Miss Penalty (Cycles)
tex
--- Perfect ICache

—=— 16k Byte |Cache w/ OOO FDI (Oracle)
--=-- 16k Byte |Cache w/ OOO FDI (Assume Dependence)
—=— 16k Byte |Cache Only

6 10 16 32
Miss Penalty (Cycles)

Figure A.46: Varied Instruction Cache Miss Penalty—Non-SPEC Benchmarks

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

cmp

69 -—- Perfect ICache
--=-- Real 1Cache w/ OOO FDI (Assume Dependence)
5] —+—Rea ICachew/ OOO Fetch
—— Real 1Cache w/ Sequential Prefetch
4 --<--Real 1Cache Only
3,
2,
l,
0 T T T |
4K 8K 16K 32K 64K
Cache Size (bytes)
gcc
69 -—- Perfect ICache
--=-- Real 1Cache w/ OOO FDI (Assume Dependence)
5] —+—Rea ICachew/ OOO Fetch
—— Real 1Cache w/ Sequential Prefetch
4 --<--Real 1Cache Only
3,

0
aK 8k 16K 32K |
Cache Size (bytes)
dJgo
69 - Perfect ICache

--=-- Real 1Cache w/ OOO FDI (Assume Dependence)

5] —+—Rea ICachew/ OOO Fetch

—— Real 1Cache w/ Sequential Prefetch

4 --<--Real 1Cache Only
3,
l,

0 T T T |
4K 8K 16K 32K 64K
Cache Size (bytes)
1/peg

6,
[e SIS
4,
3,
29 - perfect ICache
--a-- Real 1Cache w/ OOO FDI (Assume Dependence)
14 —+—Rea ICachew/ OOO Fetch
—— Real 1Cache w/ Sequential Prefetch
o --<--Real 1Cache Only
aK 8k 16K 32K 64K
Cache Size (bytes)

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

69 -—- Perfect ICache
--=-- Real 1Cache w/ OOO FDI (Assume Dependence)
5] —+—Rea ICachew/ OOO Fetch
—— Real 1Cache w/ Sequential Prefetch
--<--Real 1Cache Only
2,
l,
0 T T T |
4K 8K 16K 32K 64K
Cache Size (bytes)
m88k
69 -—- Perfect ICache
--=-- Real 1Cache w/ OOO FDI (Assume Dependence)
5] —+—Rea ICachew/ OOO Fetch
—— Real 1Cache w/ Sequential Prefetch
4 --<--Real 1Cache Only
l,
0 T T T |
4K 8K 16K 32K 64K
Cache Size (bytes)
er|
. p
5,
= Parfect ICache

--a-- Real 1Cache w/ OOO FDI (Assume Dependence)
—+—Real |Cache w/ OOO Fetch
—— Real |Cache w/ Sequential Prefetch

-=-Real ICache Only

0 ; :]
4K 8K 16K 32K 64K
Cache Size (bytes)
. vortex

- " Perfect ICache

--a-- Real 1Cache w/ OOO FDI (Assume Dependence)
—+- Real |Cache w/ OOO Fetch

—— Real |Cache w/ Sequential Prefetch

-=-Real ICache Only

8K 16K 32K 64K
Cache Size (bytes)

Figure A.47: Varied Instruction Cache Size—SPEC Benchmarks

268

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

chess

3
29 - perfect ICache

--=-- Real 1Cache w/ OOO FDI (Assume Dependence)
14 —+— Rea ICachew/ OOO Fetch

—— Real 1Cache w/ Sequential Prefetch
o --<--Real 1Cache Only
aK 8k 16K 32K |

Cache Size (bytes)
groff

69 -—- Perfect ICache

--=-- Real 1Cache w/ OOO FDI (Assume Dependence)
5] —+—Rea ICachew/ OOO Fetch

—— Real 1Cache w/ Sequential Prefetch

--<--Real 1Cache Only

0
aK 8k 16K 32K 64K
Cache Size (bytes)
gs
69 - Perfect ICache
--=-- Real 1Cache w/ OOO FDI (Assume Dependence)
5] —+—Rea ICachew/ OOO Fetch
—— Real 1Cache w/ Sequential Prefetch
4 --<--Real 1Cache Only
l,

0 T T : |
4K 8K 16K 32K 64K
Cache Size (bytes)
pgp

69 - Perfect ICache
--a-- Real |Cache w/ OOO FDI (Assume Dependence)
5] —+—Rea ICachew/ OOO Fetch
—— Real |Cache w/ Sequential Prefetch
4 --<--Real 1Cache Only
2,
l,
0 ; T T |
4K 8K 16K 32K 64K
Cache Size (bytes)

Instructions Per Cycle Instructions Per Cycle Instructions Per Cycle

Instructions Per Cycle

plot

34 -
29 - perfect ICache

--=-- Real 1Cache w/ OOO FDI (Assume Dependence)
14 —+— Rea ICachew/ OOO Fetch

—— Real 1Cache w/ Sequential Prefetch
o --<--Real 1Cache Only
aK 8k 16K 32K 64K

Cache Size (bytes)
python

69 -—- Perfect ICache

--=-- Real 1Cache w/ OOO FDI (Assume Dependence)
5] —+—Rea ICachew/ OOO Fetch

—— Real 1Cache w/ Sequential Prefetch
4 --<--Real 1Cache Only

0
aK 8k 16K 32K 64K
Cache Size (bytes)
SS

6,

5,

24 e

o= ---Perfect ICache

--a-- Real 1Cache w/ OOO FDI (Assume Dependence)
—+—Real |Cache w/ OOO Fetch
—— Real |Cache w/ Sequential Prefetch

-=-Real ICache Only

0 T T]
4K 8K 16K 32K 64K
Cache Size (bytes)
tex

69 - Perfect ICache
--a-- Real |Cache w/ OOO FDI (Assume Dependence)
5] —+—Rea ICachew/ OOO Fetch
—— Real 1Cache w/ Sequential Prefetch
4 --<--Real 1Cache Only
l,
0 T T T |
4K 8K 16K 32K 64K
Cache Size (bytes)

Figure A.48: Varied Instruction Cache Size—Non-SPEC Benchmarks

269

cmp

Instructions Per Cycle
w
!

i

q

i

12 va 18 116
Fraction of Checkpoint Withheld per Instruction
gcc

Instructions Per Cycle
w
!

N
L4

i

q

i

N

172 va 18 116
Fraction of Checkpoint Withheld per Instruction

go

Instructions Per Cycle
w
!

i

N
L4

172 va 18 1116
Fraction of Checkpoint Withheld per Instruction

ijpeg

Instructions Per Cycle
w
!

12 va 18 1416
Fraction of Checkpoint Withheld per Instruction

Instructions Per Cycle
w
!

i

q

i

1
12 va 18 116 '
Fraction of Checkpoint Withheld per Instruction

m88k

Instructions Per Cycle
w
!

172 va 18 16
Fraction of Checkpoint Withheld per Instruction

perl

Instructions Per Cycle
w
!

N
L4

172 va 18 1116
Fraction of Checkpoint Withheld per Instruction

vortex

Instructions Per Cycle
w
!

12 va 18 1416
Fraction of Checkpoint Withheld per Instruction

Figure A.49: Varied Checkpoint Withholding—SPEC Benchmarks

chess

Instructions Per Cycle
w
!

i

q

i

12 va 18 116
Fraction of Checkpoint Withheld per Instruction

groff

Instructions Per Cycle
w
!

N
L4

i

q

i

172 va 18 116
Fraction of Checkpoint Withheld per Instruction

gs

Instructions Per Cycle
w
!

N
L4

172 va 18 1116
Fraction of Checkpoint Withheld per Instruction

pgp

Instructions Per Cycle
w
!

12 va 18 1416
Fraction of Checkpoint Withheld per Instruction

271

plot

Instructions Per Cycle
w
!

i

q

i

1
12 va 18 116 '
Fraction of Checkpoint Withheld per Instruction

python

Instructions Per Cycle
w
!

172 va 18 16
Fraction of Checkpoint Withheld per Instruction

SS

Instructions Per Cycle
w
!

N
L4

172 va 18 1116
Fraction of Checkpoint Withheld per Instruction

tex

Instructions Per Cycle
w
!

12 va 18 1416
Fraction of Checkpoint Withheld per Instruction

Figure A.50: Varied Checkpoint Withholding—Non-SPEC Benchmarks

BIBLIOGRAPHY

272

[1]

2]

3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

BIBLIOGRAPHY

A. Agarwal and S. Pudar, “Column-associative caches: A technique for reducing the
miss rate of direct-mapped caches,” in Proceedings of the 20th Annual International
Symposium on Computer Architecture, pp. 179-190, 1993.

A. Agarwal, Analysis of Cache Performance for Operating Systems and Multiprogram-
ming, Kluwer Academic Publishers, 1989.

A. Agarwal, J. Hennessy, and M. Horowitz, “Cache performance of operating systems
and multiprogramming,” ACM Transactions on Computer Systems, vol. 6, no. 4, pp.
393-431, November 1988.

A. V. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools,
Addison Wesley, 1987.

G. M. Amdahl, “Validity of the single-processor approach to achieving large scale
computing capabilities,” in AFIPS Conference Proceedings, pp. 483-485, 1967.

Arvind and R. S. Nikhil, “Executing a program on the MIT tagged-token dataflow
architecture,” IEEE Transactions on Computers, vol. 39, no. 3, pp. 300-318, March
1990.

T. M. Austin and G. S. Sohi, “Dynamic dependency analysis of ordinary programs,” in
Proceedings of the 19th Annual International Symposium on Computer Architecture,
pp- 342-351, 1992.

P. Barnes, “A 500MHz 64b RISC CPU with 1.5MB on-chip cache,” in 1999 IEEE
International Solid-State Circuits Conference Digest of Technical Papers, February
1999.

B. N. Bershad, D. Lee, T. H. Romer, and J. B. Chen, “Avoiding conflict misses
dynamically in large direct-mapped caches,” in Proceedings of the 6th International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, pp. 158-170, 1994.

R. S. Bird, “Tabulation techniques for recursive programs,” Computing Surveys, vol.
12, no. 4, pp. 403-417, December 1980.

M. T. Bohr, “Interconnect scaling—the real limiter to high performance ULSL” in
Technical Digest of the International Electron Devices Meeting, pp. 241-244, Decem-
ber 1995.

273

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. Butler and Y. Patt, “The effect of real data cache behavior on the performance
of a microarchitecture that supports dynamic scheduling,” in Proceedings of the 24th
Annual ACM/IEEEFE International Symposium on Microarchitecture, 1991.

M. Butler and Y. Patt, “An investigation of the performance of various dynamic
scheduling techniques,” in Proceedings of the 25th Annual ACM/IEEE International
Symposium on Microarchitecture, 1992.

M. Butler, T.-Y. Yeh, Y. Patt, M. Alsup, H. Scales, and M. Shebanow, “Single in-
struction stream parallelism is greater than two,” in Proceedings of the 18th Annual
International Symposium on Computer Architecture, pp. 276-286, 1991.

M. G. Butler, Aggressive Ezxecution Engines for Surpassing Single Basic Block Exe-
cution, PhD thesis, University of Michigan, 1993.

B. Calder and D. Grunwald, “Reducing branch costs via branch alignment,” in Pro-
ceedings of the 6th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 242-251, 1994.

B. Calder and D. Grunwald, “Next cache line and set prediction,” in Proceedings of
the 22nd Annual International Symposium on Computer Architecture, pp. 287-296,
1995.

J. Chang, H. Chao, and K. So, “Cache design of a sub-micron CMOS system/370,” in
Proceedings of the 14th Annual International Symposium on Computer Architecture,
pp- 208-213, 1987.

P.-Y. Chang, E. Hao, and Y. N. Patt, “Predicting indirect jumps using a target
cache,” in Proceedings of the 24th Annual International Symposium on Computer
Architecture, pp. 274-283, 1997.

R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt, “Simultaneous
subordinate microthreading (SSMT),” in Proceedings of the 26th Annual International
Symposium on Computer Architecture, 1999.

I.-C. K. Chen, C.-C. Lee, and T. N. Mudge, “Instruction prefetching using branch
prediction information,” in 1997 IEEFE International Conference on Computer Design,
pp- 593-601, 1997.

G. Z. Chrysos and J. S. Emer, “Memory dependence prediction using store sets,” in
Proceedings of the 25th Annual International Symposium on Computer Architecture,
pp- 142-153, 1998.

T. M. Conte, K. N. Menezes, P. M. Mills, and B. A. Patel, “Optimization of in-
struction fetch mechanisms for high issue rates,” in Proceedings of the 22nd Annual
International Symposium on Computer Architecture, 1995.

V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “A performance comparison of con-
temporary DRAM architectures,” in Proceedings of the 26th Annual International
Symposium on Computer Architecture, pp. 222-233, 1999.

J. B. Dennis, “Data flow supercomputers,” IEEE Computer, vol. 13, no. 11, pp. 48-56,
November 1980.

274

[26]
[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

K. Diefendorff, “Jalapeno powers cyrix’s M3,” Microprocessor Report, November 1998.
K. Diefendorff, “Xeon replaces Pentium Pro,” Microprocessor Report, July 1998.

DIGITAL UNIX Version 4.0D Reference Pages Documentation Kit, Digital Equip-
ment Corporation, 1997.

Digital Semiconductor 21164 Alpha Microprocessor Product Brief, Digital Equipment
Corporation, Hudson, MA, March 1997. Technical Document EC-QP97D-TE.

N. Drach and A. Seznec, “MIDEE: Smoothing branch and instruction cache miss
penalties on deep pipelines,” in Proceedings of the 26th Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture, pp. 193-201, 1993.

S. Dutta and M. Franklin, “Control flow prediction with Tree-Like subgraphs for
superscalar processors,” in Proceedings of the 28th Annual ACM/IEEE International
Symposium on Microarchitecture, pp. 258-263, 1995.

K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic, “Memory-System design con-
siderations for Dynamically-Scheduled processors,” in Proceedings of the 24th Annual
International Symposium on Computer Architecture, pp. 133-143, 1997.

K. I. Farkas, N. P. Jouppi, and P. Chow, “How useful are Non-Blocking loads, stream
buffers and speculative execution in multiple issue processors?,” in Proceedings of the
First IEEE International Symposium on High Performance Computer Architecture,
pp- 78-89, 1995.

J. A. Fisher, “Trace scheduling: A technique for global microcode compaction,” IEEE
Transactions on Computers, vol. C-30, no. 7, pp. 478-490, July 1981.

M. Franklin and M. Smotherman, “A Fill-Unit approach to multiple instruction is-
sue,” in Proceedings of the 27th Annual ACM/IEEE International Symposium on
Microarchitecture, pp. 162-171, 1994.

M. Franklin and G. S. Sohi, “The expandable split window paradigm for exploiting
fine-grain parallelism,” in Proceedings of the 19th Annual International Symposium
on Computer Architecture, pp. 5867, 1992.

M. Franklin and G. S. Sohi, “ARB: A hardware mechanism for dynamic reordering of
memory references,” IEEFE Transactions on Computers, vol. 45, no. 5, pp. 552-571,
May 1996.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman and Company, 1979.

B. A. Gieseke, R. L. Allmon, D. W. Bailey, B. J. Benschneider, S. M. Britton, J. D.
Clouser, H. R. F. III, J. A. Farrell, M. K. Gowan, C. L. Houghton, J. B. Keller, T. H.
Lee, D. L. Leibholz, S. C. Lowell, M. D. Matson, R. J. Matthew, V. Peng, M. D.
Quinn, D. A. Priore, M. J. Smith, and K. E. Wilcox, “A 600MHz superscalar RISC
microprocessor with out-of-order execution,” in 1997 IEEE International Solid-State
Clircuits Conference Digest of Technical Papers, pp. 176-178, February 1997.

275

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

G. F. Grohoski, “Machine organization of the IBM RISC system/6000 processor,”
IBM Journal of Research and Development, vol. 34, no. 1, pp- 37-58, January 1990.

R. Gupta and C.-H. Chi, “Improving instruction cache behavior by reducing cache
pollution,” in Proceedings of Supercomputing 90, pp. 82-91, 1990.

J. R. Gurd, C. C. Kirkham, and I. Watson, “The manchester prototype dataflow
computer,” Communications of the ACM, vol. 28, no. 1, pp- 34-52, January 1985.

L. Gwennap, “Digital 21264 sets new standard,” Microprocessor Report, pp. 11-16,
October 1996.

L. Gwennap, “Klamath extends P6 family,” Microprocessor Report, February 1997.

L. Gwennap, “Alpha 21364 to ease memory bottleneck,” Microprocessor Report, Oc-
tober 1998.

E. Hao, P.-Y. Chang, M. Evers, and Y. N. Patt, “Increasing the instruction fetch rate
via block-structured instruction set architectures,” in Proceedings of the 29th Annual
ACM/IEEE International Symposium on Microarchitecture, 1996.

E. Hao, P.-Y. Chang, M. Evers, and Y. N. Patt, “Increasing the instruction fetch rate
via block-structured instruction set architectures,” International Journal of Parallel
Programming, vol. 26, no. 4, pp. 449-478, August 1998.

A. H. Hashemi, D. R. Kaeli, and B. Calder, “Efficient procedure mapping using cache
line coloring,” in Proceedings of the ACM SIGPLAN’97 Conference on Programming
Language Design and Implementation, pp. 171-182, 1997.

A.H. Hashemi, D. R. Kaeli, and B. Calder, “Procedure mapping using static call graph
estimation,” in Proceedings of the Workshop on the Interaction between Compilers and
Computer Architectures, 1997.

W. W. Hwu and P. P. Chang, “Achieving high instruction cache performance with
an optimizing compiler,” in Proceedings of the 16th Annual International Symposium
on Computer Architecture, 1989.

W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,
R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery,
“The superblock: An effective technique for VLIW and superscalar compilation,”
Journal of Supercomputing, vol. 7, no. 9-50, , 1993.

W. W. Hwu and Y. N. Patt, “Checkpoint repair for high-performance out-of-order
execution machines,” IEEE Transactions on Computers, vol. C-36, no. 12, , December
1987.

W. W. Hwu and Y. N. Patt, “Checkpoint repair for out-of-order execution machines,”
in Proceedings of the 14th Annual International Symposium on Computer Architecture,
pp- 18-26, 1987.

Q. Jacobson, E. Rotenberg, and J. E. Smith, “Path-based next trace prediction,” in
Proceedings of the 30th Annual ACM/IEEE International Symposium on Microarchi-
tecture, 1997.

276

[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

M. Johnson, Superscalar Microprocessor Design, Prentice-Hall, Inc., 1991.

T. L. Johnson, M. C. Merten, and W. mei W. Hwu, “Run-time spatial locality detec-
tion and optimization,” in Proceedings of the 30th Annual ACM/IEEE International
Symposium on Microarchitecture, pp. 5764, 1997.

D. Joseph and D. Grunwald, “Prefetching using markov predictors,” in Proceedings
of the 24th Annual International Symposium on Computer Architecture, pp. 252-263,
1997.

N. P. Jouppi, “Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers,” in Proceedings of the 17th Annual
International Symposium on Computer Architecture, pp. 364-373, 1990.

N. P. Jouppi and D. W. Wall, “Available instruction-level parallelism for superscalar
and superpipelined machines,” in Proceedings of the 2th International Conference on
Architectural Support for Programming Languages and Operating Systems, pp. 272—
282, 1989.

S. Jourdan, T.-H. Hsing, J. Stark, and Y. N. Patt, “The effects of mispredicted-path
execution on branch prediction structures,” in Proceedings of the 1996 ACM/IEEE
Conference on Parallel Architectures and Compilation Techniques, pp. 58—67, 1996.

S. Jourdan, P. Sainrat, and D. Litaize, “Exploring configurations of functional units
in an out-of-order superscalar processor,” in Proceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture, pp. 117-125, 1995.

S. Jourdan, J. Stark, T.-H. Hsing, and Y. N. Patt, “Recovery requirements of branch
prediction storage structures in the presence of mispredicted-path execution.,” Inter-
national Journal of Parallel Programming, vol. 25, no. 05, pp. 363-384, 1997.

T. Juan, T. Lang, and J. J. Navarro, “The difference-bit cache,” in Proceedings of the
23rd Annual International Symposium on Computer Architecture, pp. 114-120, 1996.

J. Kalamatianos and D. R. Kaeli, “Temporal-based procedure reordering for improved
instruction cache performance,” in Proceedings of the Fourth IEEFE International Sym-
posium on High Performance Computer Architecture, pp. 224-253, 1998.

J. Keller, The 21264: A Superscalar Alpha Processor with Qut-of-Order Execution,
Digital Equipment Corporation, Hudson, MA, October 1996. Microprocessor Forum
presentation.

R. E. Kessler and M. D. Hill, “Page placement algorithms for large real-indexed
caches,” ACM Transactions on Computer Systems, vol. 10, no. 4, pp. 338-360, Novem-
ber 1992.

R. Kessler, R. Joss, A. Lebeck, and M. Hill, “Inexpensive implementations of set-
associativity,” in Proceedings of the 16th Annual International Symposium on Com-
puter Architecture, pp. 131-139, 1989.

T. Kimura, K. Takeda, Y. Aimoto, N. Nakamura, T. Iwasaki, Y. Nakazawa,
H. Toyoshima, M. Hamada, M. Togo, H. Nobusawa, and T. Tanigawa, “64Mb 6.8ns

277

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

random ROW access DRAM macro for ASICs,” in 1999 IEEE International Solid-
State Clircuits Conference Digest of Technical Papers, February 1999.

D. Kroft, “Lockup-free instruction fetch/prefetch cache organization,” in Proceedings
of the 8th Annual International Symposium on Computer Architecture, pp. 81-87,
1981.

G. Kurpanek, K. Chan, J. Zheng, E. DelLano, and W. Bryg, “PA7200: A PA-RISC
processor with integrated high performance MP bus interface,” in COMPCON Digest
of Papers, February 1994.

M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via value prediction,” in
Proceedings of the 29th Annual ACM/IEEE International Symposium on Microarchi-
tecture, pp. 226-237, 1996.

C.-K. Luk and T. C. Mowry, “Cooperative prefetching: Compiler and hardware sup-
port for effective instruction prefetching in modern processors,” in Proceedings of the
31th Annual ACM/IEEE International Symposium on Microarchitecture, 1998.

W. L. Lynch, G. Lauterbach, and J. . Chamdani, “Low load latency through sum-
addressed memory (SAM),” in Proceedings of the 25th Annual International Sympo-
sium on Computer Architecture, pp. 369-379, 1998.

S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal, D. M. Gallagher,
and W. W. Hwu, “Characterizing the impact of predicated execution on branch pre-
diction,” in Proceedings of the 27th Annual ACM/IEEE International Symposium on
Microarchitecture, pp. 217-227, 1994.

S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, “Effective
compiler support for predicated execution using the hyperblock,” in Proceedings of the
25th Annual ACM/IEEE International Symposium on Microarchitecture, pp. 45-54,
1992.

D. Matzke, “Will physical scalability sabotage performance gains?,” IEEE Computer,
vol. 30, pp. 37-39, September 1997.

G. McFarland, CMOS Technology Scaling and Its Impact on Cache Delay, PhD thesis,
Stanford University, 1995.

S. McFarling, “Program optimization for instruction caches,” in Third International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, pp- 183-191, 1989.

S. McFarling, “Cache replacement with dynamic exclusion,” Technical Report TN-22,
Digital Western Research Laboratory, November 1991.

S. McFarling, “Procedure merging with instruction caches,” in Proceedings of the
ACM SIGPLAN’91 Conference on Programming Language Design and Implementa-
tion, pp. 71-79, 1991.

S. McFarling, “Combining branch predictors,” Technical Report TN-36, Digital West-
ern Research Laboratory, June 1993.

278

[82]

[83]

[84]

[85]

[86]

[87]

[83]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

S. Melvin and Y. Patt, “Enhancing instruction scheduling with a block-structured
ISA,” International Journal of Parallel Programming, vol. 23, no. 3, pp. 221-243,
June 1995.

S. Melvin and Y. N. Patt, “Exploiting fine-grained parallelism through a combination
of hardware and software techniques,” in Proceedings of the 18th Annual International
Symposium on Computer Architecture, pp. 287-297, 1991.

S. W. Melvin and Y. N. Patt, “Performance benefits of large execution atomic units in
dynamically scheduled machines,” in Proceedings of Supercomputing ’89, pp. 427-432,
1989.

S. W. Melvin, M. C. Shebanow, and Y. N. Patt, “Hardware support for large
atomic units in dynamically scheduled machines,” in Proceedings of the 21st Annual
ACMY/IEEE International Symposium on Microarchitecture, pp. 60-63, 1988.

A. Mendlson, S. S. Pinter, and R. Shtokhamer, “Compile time instruction cache op-
timizations,” in Proceedings of the Fifth International Conference on Compiler Con-
struction, pp. 404-418, 1994.

K. N. Menezes, S. W. Sathaye, and T. M. Conte, “Path prediction for high issue-rate
processors,” in Proceedings of the 1997 ACM/IEEE Conference on Parallel Architec-
tures and Compilation Techniques, 1997.

D. Meyer, AMD-K7T™) Technology Presentation, Advanced Micro Devices, Inc.,
Sunnyvale, CA, October 1998. Microprocessor Forum presentation.

I. MIPS Technologies, “R10000 microprocessor product overview,” in MIPS Open
RISC Technology, MIPS Technologies, 1994.

S.-M. Moon and K. Ebcioglu, “An efficient resource-constrained global scheduling
technique for superscalar and VLIW processors,” in Proceedings of the 25th Annual
ACM/IEEE International Symposium on Microarchitecture, pp. 55-71, 1992.

A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi, “Dynamic specula-
tion and synchronization of data dependences,” in Proceedings of the 2/th Annual
International Symposium on Computer Architecture, 1997.

A. Moshovos and G. S. Sohi, “Streamlining inter-operation memory communication
via data dependence prediction,” in Proceedings of the 30th Annual ACM/IEEE In-
ternational Symposium on Microarchitecture, pp. 235-245, 1997.

I. Naritake, T. Sugibayashi, Y. Nakajima, S. Utsugi, M. Hamada, M. Togo, R. Kubota,
T. Fujii, N. Yoshimatsu, H. Hatayama, T. Murotani, and T. Okuda, “A 12ns 8MB
DRAM secondary cache for a 64b microprocessor,” in 1999 IEEE International Solid-
State Circuits Conference Digest of Technical Papers, February 1999.

A. Nicolau, “Run-time disambiguation: Coping with statically unpredictable depen-
dencies,” IEEFE Transactions on Computers, vol. 38, no. 5, pp. 663678, May 1989.

S. Palacharla and R. E. Kessler, “Evaluating stream buffers as a secondary cache re-
placement,” in Proceedings of the 21st Annual International Symposium on Computer
Architecture, pp. 24-33, 1994.

279

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

S. J. Patel, M. Evers, and Y. N. Patt, “Improving trace cache effectiveness with
branch promotion and trace packing,” in Proceedings of the 25th Annual International
Symposium on Computer Architecture, 1998.

S. J. Patel, Trace Cache Design for Wide-Issue Superscalar Processors, PhD thesis,
University of Michigan, Ann Arbor, 1999.

S. J. Patel, D. H. Friendly, and Y. N. Patt, “Critical issues regarding the trace cache
fetch mechanism,” Technical Report CSE-TR-335-97, University of Michigan Techni-
cal Report, May 1997.

Y. Patt, S. Patel, M. Evers, D. Friendly, and J. Stark, “One billion transistors, one
uniprocessor, one chip,” IEEE Computer, vol. 30, pp. 51-57, September 1997.

Y. Patt, W. Hwu, and M. Shebanow, “HPS, a new microarchitecture: Rationale and
introduction,” in Proceedings of the 18th Annual ACM/IEEE International Sympo-
sium on Microarchitecture, pp. 103-107, 1985.

Y. N. Patt, S. W. Melvin, W. Hwu, and M. C. Shebanow, “Critical issues regard-
ing HPS, a high performance microarchitecture,” in Proceedings of the 18th Annual
ACM/IEEE International Symposium on Microarchitecture, pp. 109-116, 1985.

A. Peleg and U. Weiser. Dynamic Flow Instruction Cache Memory Organized Around
Trace Segments Independant of Virtual Address Line. U.S. Patent Number 5,381,533,
1994.

K. Pettis and R. C. Hansen, “Profile guided code positioning,” in Proceedings of the
ACM SIGPLAN’90 Conference on Programming Language Design and Implementa-
tion, pp. 16-27, 1990.

J. Pierce and T. Mudge, “Wrong-path instruction prefetching,” in Proceedings of the
29th Annual ACM/IEEE International Symposium on Microarchitecture, pp. 165-175,
1996.

G. Reinman, T. Austin, and B. Calder, “A scalable front-end architecture for fast
instruction delivery,” in Proceedings of the 26th Annual International Symposium on
Computer Architecture, 1999.

S. E. Richardson, “Caching function results: Faster arithmetic by avoiding unneces-
sary computation,” Technical report, Sun Microsystems Laboratories, 1992.

J. A. Rivers and E. S. Davidson, “Reducing conflicts in direct-mapped caches with
a temporality-based design,” in Proceedings of the 1996 International Conference on
Parallel Processing, pp. 151-162, 1996.

E. Rotenberg, S. Bennett, and J. E. Smith, “Trace cache: a low latency approach to
high bandwidth instruction fetching,” in Proceedings of the 29th Annual ACM/IEEE
International Symposium on Microarchitecture, 1996.

A. Seznec, “A case for two-way skewed-associative caches,” in Proceedings of the 20th
Annual International Symposium on Computer Architecture, pp. 169-178, 1993.

280

[110]

[111]

[112]

[113]

[114]

[115]
[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

A. Seznec, “DASC cache,” in Proceedings of the First IEEE International Symposium
on High Performance Computer Architecture, 1995.

A. Seznec, S. Jourdan, P. Sainrat, and P. Michaud, “Multiple-block ahead branch pre-
dictors,” in Proceedings of the 7th International Conference on Architectural Support
for Programming Languages and Operating Systems, 1996.

R. L. Sites, Alpha Architecture Reference Manual, Digital Press, Burlington, MA,
1992.

K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark, “Improving prediction for
procedure returns with return-address-stack repair mechanisms,” in Proceedings of
the 25th Annual International Symposium on Computer Architecture, pp. 259-271,
1998.

A. J. Smith, “Sequential program prefetching in memory hierarchies,” IEEE Com-
puter, vol. 11, no. 12, pp. 7-21, December 1978.

A. J. Smith, “Cache memories,” Computing Surveys, vol. 14, no. 4, pp. 473-530, 1982.

J. E. Smith, G. E. Dermer, B. D. Vanderwarn, S. D. Klinger, C. M. Rozewski, D. L.
Fowler, K. R. Scidmore, and J. P. Laudon, “The ZS-1 central processor,” in Proceed-
ings of the Second International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 199-204, 1987.

J. E. Smith and W.-C. Hsu, “Prefetching in supercomputer instruction caches,” in
Proceedings of Supercomputing ’92, pp. 588-597, November 1992.

K. So and R. N. Rechtschaffen, “Cache operations by MRU change,” IEEE Transac-
tions on Computers, vol. 37, no. 6, pp. 700-709, June 1988.

Welcome to SPEC, The Standard Performance Evaluation Corporation.
http://www.specbench.org/.

J. Stark, P. Racunas, and Y. N. Patt, “Reducing the performance impact of instruc-
tion cache misses by writing instructions into the reservation stations out-of-order,”
in Proceedings of the 30th Annual ACM/IEEE International Symposium on Microar-
chitecture, pp. 34-43, 1997.

J. Stark, M. Evers, and Y. N. Patt, “Variable length path branch prediction,” in
Proceedings of the 8th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 170-179, 1998.

R. M. Tomasulo, “An efficient algorithm for exploiting multiple arithmetic units,”
IBM Journal of Research and Development, vol. 11, pp. 25-33, January 1967.

N. Topham and A. G. J. Gonzilez, “The design and performance of a conflict-avoiding
cache,” in Proceedings of the 30th Annual ACM/IEEE International Symposium on
Microarchitecture, pp. 71-80, 1997.

J. Torrellas, C. Xia, and R. Daigle, “Optimizing instruction cache performance for
operating system intensive workloads,” in Proceedings of the First IEEE International
Symposium on High Performance Computer Architecture, pp. 360-369, 1995.

281

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

D. M. Tullsen, S. J. Eggers, J. S. Emer, and H. M. Levy, “Exploiting choice: Instruc-
tion fetch and issue on an implementable simultaneous multithreading processor,” in

Proceedings of the 23rd Annual International Symposium on Computer Architecture,
pp- 191-202, 1996.

G. S. Tyson and T. M. Austin, “Improving the accuracy and performance of memory
communication through renaming,” in Proceedings of the 30th Annual ACM/IEEE
International Symposium on Microarchitecture, 1997.

S. Vajapeyam and T. Mitra, “Improving superscalar instruction dispatch and issue by
exploiting dynamic code sequences,” in Proceedings of the 24th Annual International
Symposium on Computer Architecture, pp. 1-12, 1997.

D. W. Wall, “Limits of instruction-level parallelism,” in Proceedings of the 4th Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 176-188, 1991.

W.-D. Weber and A. Gupta, “Exploring the benefits of multiple hardware contexts in
a multiprocessor architecture: Preliminary results,” in Proceedings of the 16th Annual
International Symposium on Computer Architecture, pp. 273-280, 1989.

S. Weiss and J. E. Smith, “Instruction issue logic in pipelined supercomputers,” IEEE
Transactions on Computers, vol. C-33, no. 11, pp. 1013-1022, November 1984.

C. Xia and J. Torrellas, “Instruction prefetching of system codes with layout optimized
for reduced cache misses,” in Proceedings of the 23rd Annual International Symposium
on Computer Architecture, 1996.

W. Yamamoto, M. J. Serrano, A. R. Talcott, R. C. Wood, and M. Nemirovsky, “Per-
formance estimation of multistreamed, superscalar processors,” in Proceedings of the
Twenty-Seventh Annual Hawaii International Conference on System Sciences, pp.
195-204, 1994.

T.-Y. Yeh, D. Marr, and Y. N. Patt, “Increasing the instruction fetch rate via multiple
branch prediction and branch address cache,” in Proceedings of the International
Conference on Supercomputing, pp. 67-76, 1993.

T.-Y. Yeh and Y. N. Patt, “Alternative implementations of two-level adaptive branch
prediction,” in Proceedings of the 19th Annual International Symposium on Computer
Architecture, pp. 124-134, 1992.

T.-Y. Yeh and Y. N. Patt, “Branch history table indexing to prevent pipeline bubbles
in wide-issue superscalar processors,” in Proceedings of the 26th Annual ACM/IEEE
International Symposium on Microarchitecture, pp. 164-175, 1993.

T.-Y. Yeh and Y. N. Patt, “A comparison of dynamic branch predictors that use two
levels of branch history,” in Proceedings of the 20th Annual International Symposium
on Computer Architecture, pp. 257266, 1993.

R. Yung, “Design decisions influencing the UltraSPARC’s instruction fetch architec-
ture,” in Proceedings of the 29th Annual ACM/IEEE International Symposium on
Microarchitecture, 1996.

282

