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ABSTRACT

THE THEORY OF SIGNAL DETE CTABILITY:
COMPOSITE DEFERRED DECISION THEORY

By Richard A. Roberts

The theory of sequential detection problems is extended to procedures of a com-
posite signal hypothesis, such as signals whose amplitude or phase is unknown. Observations
of signal-and-noise are assumed not to be independent, so that information can be extracted
about the signal parameters for use in the detection process. The yes-no terminal decision
must be made within a finite period.

A general theory is presented for the solution of practical problems in the se-
quential detection of composite signal hypotheses. The theory specifies the optimum stopping
rule needed for the sequential detector and the dependence between the observer's opinion of
the cause of the reception and the distribution of the unknown signal parameters. The general
theory implies the information that must be extracted from the observation is the likelihood
ratio and the a posteriori signal parameter distribution. The form of the optimum detector,
derived from the general theory, must include an adaptive capability, so that the signal
parameter distribution can be sequentially updated.

Applications of the general theory to a signal of unknown phase and a signal of un-
'known amplitude are presented. The numerical results include (1) optimum receiver designs
for both sequential and nonsequential observation procedures, (2) evaluations of the optimum
receivers in terms of error performance and average observation time, and (3) comparisons
of optimum sequential and nonsequential detectors.

The unknown amplitude problem results in several new conclusions. Some of the
more important are: (1) as signal uncertainty increases, the average observation time and

range of a priori opinions for which it is profitable to observe, decreases, (2) the savings of



sequential procedures over nonsequential procedures is primarily in error performance
rather than observation time, (3) due to the large signal uncertainty of unknown amplitude,

the optimum detector must observe for long periods of time to obtain acceptable detection per-
formance, and (4) the graph of the optimum decision boundaries and the mean-motion trajec-
tories of different signal amplitudes can be used as a good approximate method for describing

the operation of the optimum seguential detector in the unknown amplitude problem.



CHAPTER 1

INTRODUCTION

The development and study of methods for extracting information from a back-
ground of random interference is called signal detection theory. This thesis is an extension
of the present theory of signal detectability in the area of sequential observation procedures
and is based on three areas of study: classical detection theory of Grenander, Middleton
and Van Meter, and Peterson, Birdsall and Fox (Refs. (1-3); sequential analysis of Wald
(Ref. 4); and deferred decision theory of Goode, Birdsall and Roberts (Refs. 5, 6).

Signal detection theory is statistical in nature because of the presence of random
interference; thus, a basic mathematical operation of the theory is to make decisions in the
face of uncertainty. The method of statistical inference employed throughout this study is
the Bayesian philosophy of subjective or personal probabilities, perhaps, best expounded by
Savage (Ref. 7). Bayesian statistics are based on a definition of probability as a measure of
the opinions of ideally consistent people. The modification of these opinions upon receipt of
information, through observation or otherwise, is achieved according to Bayes' Rule.

To place the present work in proper perspective, it is necessary to review cer-
tain aspects of classical detection theory, Wald's sequential analysis, and deferred decision

theory.

1.1 Background and Related Work

Classical detection theory, as developed in the early 1950's (Refs. 1-3), has
emphasized a relatively simple detection problem; that of deciding the presence or absence
of a signal in noise after a fixed observation length. This highly idealized problem is an
appropriate model for the study of many basic sensory and decision processes. However, if
a cost is associated with the observation process, classical detection theory must be ex-
tended to detection problems in which the observation length is based on observations already

taken, i.e., sequential-observation procedures.

1



The major theory of sequential observation and decision has been based primari-
ly on Wald's theory of sequential analysis (Ref. 4) developed in the 1940's. In this theory
Wald assumes that the available observation time is unbounded, i. e., the observer has the
option of deferring his terminal decision endlessly if he so chooses. Wald's standard theory
is, therefore, often not applicable to detection problems, because approximations are made
which are unreliable for small numbers of observations typical in many detection situations.
Moreover, standard sequential analysis does not consider as explicit variables the important
parameters of observation cost, terminal deci‘sion error loss, and a priori opinions, i e.,
probﬁbilities of the occurrences of signal-and-noise or noise alone. Standard sequential
analysis cannot consider the effects of time varying costs, nonstationary observation statis-
tics, and nonindependent observations in signal-and-noise.

The general formulation of observation-decision procedures has been considered
by Wald in a very general and abstract form (Ref. 8). This formulation, because of its
generality, contributes little to an understanding of any specific problem. Only in specific
applications is it possible to ascertain the effect of various parameters on observation-deci-
sion procedures. 1

Deferred decision theory is a theory of sequential observation and decision
characterized by a finite allowable observation time. That is, the observer must make a
terminal decision within a specified time. Thus, by choosing a small allowable observation
time, it is possible to obtain accurate quantitative results for small numbers of observations.
In addition, deferred decision theory considers as explicit variables, observation costs,
terminal decision error loss, and a priori probabilities of the occurrence of signal-and-
noise or noise alone. It is also possible to investigate the effects of time varying costs,
nonstationary observation statistics, dependent signal-and-noise observations, and other
complications.

1.1.1 Optimization of Sequential-Observation Decision Procedures. A basic

consideration of this work is the design of optimum detectors. Therefore, it is important

to define "optimum. "

1 . = : . :
"Observation-decision procedures' is used, in the context of a detection problem, to denote
an idealization of a detection device or receiver used to ascertain signal presence.



3

In fixed-observation procedures, i.e., the classical detection problem, optimum
can be defined in terms of the error performance1 of the procedure. Fixed procedures are
optimized by the correét balance of terminal decision errors. The optimum balance between
the miss and false alarm probabilities is obtained by using the likelihood ratio2 of the obser-
vation as the basis for the terminal decision. Birdsall (Ref. 9) has shown, ingreat gener-
ality, that optimum performance based on the likelihood ratio includes any definition of opti-
mum éuch that detections are not bad and false alarms are not good.

From the above discussion, we can conclude that optimum terminal decisions
are based on the likelihood ratio of the total observation. Therefore, in optimum sequential
procedures, the terminal decision must be based on the total likelihood ratio (or any mono-
tone function of the likelihood ratio). Classical detection theory supplies the answer of how
to respond yes or no after the decision has been made to stop observing. The optimization
of sequential procedures, therefore, reduces to a study of how and when to terminate the ob-
servation process. The method or rule used to determine how to stop the observation pro-
cess is termed the "stopping rule" or "'observation rule." |

In observation-decision procedures for which the observation is sequential in
nature, optimum cannot be defined in terms of the error performance alone. We must also
consider the average length of observation necessary to reach a terminal decision. The op~
timum procedure is a balance between the error berformance and the observation time.

In deferred decision theory losses are assigned to terminal decision errors and
- a cost is associated with the observation process. The correct balance between error per-
formance and observation time is achieved by minimizing the expected or average loss for a
terminal decision. In other words, the optimum deferred decision procedure is the proced-
ure which minimizes the expected loss for a terminal decision, and this is accomplished by
the optimum stopping rule.

The familiar method of optimization of sequential procedures is that used by

Wald in sequential analysis. In this optimization the error performance is chosen at some

1Error performance refers to the probability of the two errors that can result from a termi-
nal decision. One can response "signal present' when noise is the true cause of the receiver
input, or one can respond "signal absent'" when signal-and-noise is the true cause. These
errors are termed a false alarm and miss, respectively.

2
The likelihood ratio of the input z is denoted by £(z) and is equal to the probability of z in
signal-and-noise over the probability of z in noise alone, i.e., £(z) = f(z|SN)/f(z| N).



preselected level; the procedure is then optimized by minimizing the average time necessary
to reach the prescribed error performance. The often quoted rule-of-thumb is that the
sequential procedures save 50 percent in the average time over comparable fixed procedures.
This method of optimization places a primary concern on error performance. Deferred de-
cision, in contrast, takes account of the error performancé and observation time according
to their relative importance as quantitatively described by the losses assigned to errors and
the cost assigned to observing,.

1. 1.2 Background in Deferred Decision Theory. Deferred decision theory was

formulated abstractly by Wald (Ref. 8) and Blackwell and Girshick (Ref. 10). 1 As mentioned,
the mathematics implied by the above authors becomes useful in signal detection theory only
as it is applied to specific problems.

The first application of the mathematical theory of deferred decision theory was
published by the late H. Goode (Ref. 5). Goode studied the problem of a signal known exactly
in added white Gaussian noise and developed a computing algorithm from the basic mathema-
tics of Blackwell and Girshick. The work of Goode has recently been expanded by Birdsall
and Roberts (Ref. 6). They extended the work of Goode and evaluated deferred decision re-
ceivers. They also compared the optimum nonsequential procedure and deferred decision
and showed that is is not possible to predict where the savings of the sequential procedure
occurs, i.e., in error performance or observation time, independently of the available ob~
servation time.

Deferred decision theory as studied by Goode, Birdsall, and Roberts assumes:
(1) all costs are time invariant, (2) all costs are stationary, and (3) observations are inde-
pendent in both noise and signal-plus-noise. These assumptions are sufficient to show that
(1) the likelihood ratio contains all the observation information needed to determine the opti-

mum stopping rule, and (2) deferred decision processes reduce to Wald's sequential tests

1The mathematical formulation of the deferred decision problem is given in Section 10. 2 of
Blackwell and Girshick. The following is quoted from Section 10. s :

"It is to be observed that, while the averaging process is
laborious from a computational point of view, the fact that the de-
termination of the stopping regions and the Bayes risk involves
nothing more complicated than taking expectations is of theoretical
interest. Also this method can be considered as an iterative pro-
cedure for obtaining the Bayes risk and the stopping regions of the
nontruncated sequential procedure. "



for large available observation times. The implementation of the stopping rule, in the latter
case, results in two thregholds , constant in time.

This thesis is an extension of the previous work in deferred decision discussed
above, hereafter termed simple deferred decision theory. The theory of simple deferred
decision can be generalized in several aspects. For example,‘ the effects of nonstationary
observation statistics or time varying costs might be studied. The research reported here
generalvizes simple deferred decision theory to include uncertainties-in the signal hypothesis.
In other words, the signal is no longer known exactly, but instead possesses one or more
distributed parameters. The problem is termeda composite signal hypothesis. The pres-
ence of signal uncertainty in the deteétion problem implies that observations in signal-and-
noise are no longer independent, because there is the possibility of "learning" about the
signal parameters as additional observations are taken. In simple deferred decision theory,
the concept of learning or ada.ptation1 is not applicable, because observations are assumed
independent in noise and signal-and-noise. In other words, if signal uncertainties exist,
they remain unknown throughout the entire detection process. A practical aspect of a com-
posite signal hypothesis is that a more realistic modeling of many physical problems can be
achieved than by a simple signal hypothesis.

An understanding of what is implied by a composite and a simple hypothesis is
important for the remainder of this work. To define a composite and simple hypothesis, let
91, ooy Bk be unknown parameters of the distribution of a random variable z. A statement
of the values of 61, ceny Gk is called a simple hypothesis if it determines all k parameters
uniquely. The statement is called a composite hypothesis if it is consistent with more than
one value for some paraﬁeters. For example, if 61 and 62 are the mean and variance, re-
spectively, of the normally distributed random variable z, then the statement that z is dis-
tributed normally with mean equal zero (91 = 0) and variance equal one (92 = 1) is a simple
hypothesis. The statement that z is distributed normally with mean equal zero (61 = 0) and

unknown variance (92) is a composita hypothesis.

1

Adaptation is defined as the process of updating probability density functions upon the re-
ceipt of information (obtained usually through observations). The updating procedure is
given by Bayes' Rule.



Classical detection theory, sequential analysis, and deferred decision theory all
implicitly assume that the optimum detector is an unlimited memory device. In other words,
the optimum receiver can remember everything needed to solve any specific problem. Asa
practical consideration, optimum detectors should possess a finitego_ft memory. 1 A detec-
tor with an infinite soft memory is probably not of engineering interest and its performance
may be impossible tg evaluate. Unlimited memory detectors possessing a finite soft memory
are termed adequate-memory devices. The reduction of receiver memory to less than
adequate can be justified only on the basis of receiver cost, since the performance of such
a receiver is, clearly, suboptimum.

1.2 Problem Formulation and Notation

With the preceding as background, let us formulate the detection problem we wish
to consider. The basic problem is to design and evaluate detection receivers for the detec-
tion of signals in noise. A cost is associated with the observation process. Three types of
observation-decision problems will be considered: the fixed-time or classical detection prob-
lem, the optimum fixed procedure, and deferred decision.

The optimum fixed procedure allows the observer the freedom of choosiqg his
observation time before the start of the observation. The procedure is called optimum be-
cause the observation length is based on all of the observer's a priori knowledge and results
in the minimum average loss for a terminal decision, This knowledge includes the cost per
unit time, the losses due to a terminal decision error, the "quality of observation, "2 and
the a priori probability of signal-and-noise or noise alone.

As an aside and in order to give the reader a more intuitive understanding of
optimum detectors, consider the implementation of the optimum detection receiver for
clas_sical detection theory, Wald's Sequential analysis, and simple deferred decision theory.

The detection receiver of classical detection theory is a likelihood ratio pro-

cessor followed by a simple threshold device, In the study of a detection device, we usually

1Soft memory is a function of the observations and is usually erasable, e. g. , magnetic stor-
age in a digital computer. Hard memory is not a function of the Observations, e.g. , the
wiring configuration of an electronic circuit. : ‘ :

2"Qliality of observation" is a phrase used here to denote such factors as output signal-to-~
noise ratio, noise figure, and other similar quantities. In each specific problem it is
quantified by an appropriate definition.



partition the device into two cascaded sections. The first section processes the physical
waveforms, and in the optimum device, transforms them into the likelihood ratio. This
first section is a transformer of the multidimensional input waveform into the one dimen-
sional likelihood ratio. Classical detection theory places primary interest on the first sec-
tion of the receiver. The second section operates on the output of the first section and has
as an output the actual decision A", "signal present," or "B", "signal absent." The second
section has been previously defined as the stopping or observation ‘rule. Figure 1.1 presents

a schematic diagram of a typical fixed detection device.

SN \
Likelihood (z) Threshold "YES"
z Ratio = Device
/ Processor "NO"
N

Fig. 1.1. The optimum detection receiver for a fixed
observation-decision procedure.

To implement a detection device for a Wald sequential procedure, the first sec-
tion would again be a likelihood ratio processor, since the optimum terminal decision must
be based on the total likelihood ratio of the input. The second section, however, is more
complicated than the simple threshold device of a classical detector. The stopping rule for ’
a Wald sequential procedure consists of two thresholds, (I, A), constant in time. The values
of thresholds or decision boundaries depend on the desired error performance. The obser-
vation continues as long as the logarithm of the total likelihood ratio remains between the
two thresholds. Figure 1.2 depicts the detection receiver for a Wald procedure.

| Thé detection receiver for a simple deferred decision theory is similar to the
receiver of Fig. 1.2. The stopping rule for simple deferred decision theory is implemented
by a pair of thresholds which converge as the time remaining for observation decreases.
The decision boundaries on thresholds meet at a point at the end of the allowable observation

time. Figure 1.3 is a schematic representation of a simple deferred decision detector.
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/ Processor ) Rule "NO"
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"CONTINUE"
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Likelihood
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N
"CONTINUE"
time
T
Y’NO”

Fig. 1.2. The optimum detection receiver for a
Wald sequential procedure.

To state the abstract deferred decision problem, consider a detection situation
with possible alternatives signal-plus-noise (SN) or noise alone (N). The observer responds
"A" if he decides SN is the cause of the input, otherwise he responds "B". The possible
alternative causes, SN and N, have known a priori probabilities P(SN) and P(N), respectively.
The receiver input, z, is a random variable because of the added noise. In noise, z(t) = n(t),
where n(t) is the noise. In signal-plus-noise, z{t) = n(t) + Se(t), where Se(t) is the received
signal and, in general, has one or more pérameters, 6 = (91, Bgy +ees Bk), known statistic-
ally, i.e., the probab‘ility distribution of © is known. More concisely, the signal hypothesis
is composite. The noise hypothesis is assumed to be simple. The a _priori density function
of the signal parameters, £(©), is assumed known. The conditional probability density
functions of the input, z, are also assumed known and are denoted by f(z|SN) and f(z| N).

The probability density function of the input under the condition signal-plus-noise is given by

f(z|SN) = [ £(z|SN, ©) i(©) d® (1.1)
' e
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o f
. | Likelihood (2) Stopping
Ratio Rule
N / Processor
"CONTINUE"
Total
Likelihood 1
Ratio "YES"
A
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time
T
”No"

Fig. 1.3. The optimum detection receiver for a
deferred decision procedure.

number of observations or deferrals, Dax’ is finite and known.

tion cost can all vary with the allowable number of deferrals, n.

"YES"

VINOH

Due to the added noise two types of errors may occur when a terminal decision
is made. The observer may respond "A" when the actual cause of the input is N. Similarly,
the response "B" may be given when the actual cause is SN. The first error is termed a
f:?.lse alarm, the second error a miss. A loss WF A is associated with a false alarm and WM
is associated with a miss. The cost of a single observation is C. The maximum allowable
In general, the density

functions f(z |SN) and f(z|N), the losses WF A and WM’ the observation quality, and observa-
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The deferred deferred decision problem is to find the procedure which minimizes
the total expected loss for a terminal decision, given the parameters of the problem discussed
above. The solution to this minimization problem determines the optimum receiver design
for the deferred decision problem.

The remainder of this chapter will be devoted to several loosley connected con-
cepts which are common to the specific problems of Chapters 3 and 4. We mention these
concepts here to present the reader the necessary notation and ideas needed for the sequel.

The present mathematical formulation assumes the observation process is dis-
crete. That is, the intermediate decisions of whether to terminate or continue observing
are made at discrete times rather than continuously. This does not imply that the observa-
tion itself is necessarily discrete. It means that the times when this decision is permitted
are discrete, usually equally spaced throughout the complete observation.

The abstract deferred decision problem is linked to the physical world, primarily,
through the conditional probability density functions of the input, f(z|SN) and f(z|N). The
specification of these quantities in a physical problem is, perhaps, the most difficult prob-
lem of the receiver designer. The density function of the input under the cause of noise,
f(z|N), is usually the easier of the two to specify. This is because in most physical situations
the cause of the input is usually noise; there are long periods of time when no signal is trans-
mitted. Thus, the statistics of the noise can be observed for long periods of time allowing
f(z| N) to be readily evaluated.

The application of the general theory assumes the noise is added white Gaussian
noise (WGN). This type of noise is, in many cases, an appropriate model for physical prob-
lems. For example, vacuum tube noise, noise due to thermal motion of electrons, and cer-
tain types of atmospheric noise (Ref. 11) are all modeled very closely by WGN. The assump-
tion of added WGN also is mathematically tractable, and this property is often reason enough
for using WCN as the noise hypothesis.

Deferred decision detectors are evaluated in terms of the expected loss for a
terminal decision. The expected loss is generally expressed as a function of the lbg-odds

ratio, L, defined as

P(SN
L = ﬂn[PN:| (1.2)
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The log-odds ratio is a quantitative measure of the observer's opinion of receiver input cause.

The log-odds ratios before and after an observation, z, are related by Bayes' Rule. If

P(SN|z) is the a posteriori probability of SN, then Bayes' Rule states

P(SN) £(z| SN)

PENI2) = BERTTE| SN+ PO Kz [N)

(1.3)
Expressed in terms of the log-odds ratio, Eq. 1.3 is

L (basedongz) = L+ ﬂnli%—(]zz%z] (1. 4)

The last term in Eq. 1.4 is the likelihood ratio of the observation. Equation 1.4 states that
the log-odds ratio after an observation is the log~odds ratio before the observation plus the
logarithm of the likelihood ratio of the input observation.

If the value of the log-odds ratio at the time of a terminal decision is L, then the
corresponding probabilities of SN and N are

L
P(SN) = —— P(N) = —% (1.5)

l+e 1+eL

If the response "B" is made, the probability of error is P(SN). If the response "A" is made,

the probability of error is P(N). The minimum expected loss for a terminal decision is,
w

therefore, the minimum of the expected loss for an "A" response, —Lﬁ , and the expected
l+e
loss for a "B'" decision, ——b_% . This minimum average loss is denoted by T(L).

l+e

A more symmetric form for T(L) is obtained if W and AO are defined as follows.

w
2 1 1 [ FA]
. S A = {n (1'6)
w WM WFA ’ 0 WM

Using the above equations, the average terminal loss for a log~odds ratio of L is

-A
T(L)=___1_E_‘g/_<1+e °>, L<a,
e

14

A

1 W ]

= L—2—<1+e >, L>A0 (1.7)
l+e
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To obtain this minimum average loss, the response "B' must be made whenever L < Ao and
"A'" whenever L > AO. For L = Ao either response or a random mixture of the two is per-

mitted. A plot of a typical terminal loss function is shown in Fig. 1. 4.

A Expected Loss, T(L)

W/2 |———

Y
~

Respond "B" . . Ao ~«—Respond "A" —

Fig. 1.4. The optimum average terminal loss function, T(L),
as a function of the log-odds ratio.

The evaluation of deferred decision procedures is made on the basis of the ex-
pected risk for a terminal decision. The evaluation is made more meaningful if one decom-
poses the total average risk into the average risk due to errors and the average cost due to
observation. Since the losses of terminal decision errors and the cost associated with ob-
serving are assumed known, this decomposition consists of specifying the error performance
and average time necessary to reach a terminal decision.

Error performance, in this study, is given in terms of the receiver operating
characteristic (ROC). The ROC is a plot of the probability of detection, P("A"|SN), versus
the probability of false alarm, P("A"| N). The parameter along the curve is the log-odds

ratio.



13
A ROC is called normal if the curve can be parameterized by the normal proba-
bility distribution function. This means that the probability of detection, P("A"|SN), and

the probability of false alarm, P("'A"|N), can be written as

P("A"[SN) = ®( +Vd), when P("A"|N) = &() (1. 8)
where
1 * t2 ) ‘
&%) = — f exp<--§- dt (1.9)
21 -

Normal ROC curves arise whenever} the logarithm of the likelihood ratio is normally distri-‘
buted under N and SN with equal variances and means separated by the variance, say d.
From Egs. of 1.8 we see that normal ROC curves can be parameterized by the quantity, d,
the quality of an observation.

The utility of normal ROC curves is that a physical significant can be attributed
to the parameter d. In general, d is the output signal-to-noise ratio of the likelihood ratio
processor. For example, a d of one represents a zero db output signal-to-noise ratio. In
the special case of a signal known exactly in added white Gaussian noise, a greater physical
significance can be given to d. In this case d equals .‘ZE/No where E is the received signal
energy and N0 is the noise power density at the receiver.

The concept of normal ROC curves provides some basis for comparison between
various ROC curves. The ROC curves obtained in this work are not generally normal, how-
ever, the curves are often approximately normal over the L range of interest. The quality
of observation, d, serves as a convenient quantitative measure for both normal and approxi-
mately normal ROC curves. For nonnormal ROC curves d is usually measured on the nega-
tive diagonal. Using special paper, 1 normal ROC curves plot as a straight line with a slope
of one. Figure 1.5 is a graph of several normal ROC's with parameter d. Figure 1.6 shows
two nonnormal ROC curves with the implied parameter d.

The average length of observation is measured by the average number of obser-

vations (ANO) which is a function of the log-odds ratio. A separate ANO curve exists for

1
No. 42, 453 of Codex Book Co., Norwood, Massachusetts.



14
each total available observation time. In other words, the average observation time depends

on the available observation. The ROC curves are also a function of the observation time.

Jd=9
Vd=8

. 999 Vd=6

Vd=3
vd=2

Vd=0

P("A"ISN)
i

107° |

10°r

1077

10
60 %10%10% 1077, 5 9 .99

P(”A”!N)

Fig. 1.5. Normal ROC curves with parameter d plotted
on normal coordinate paper. '
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. 999

P("A"ISN)

1G

P("AIN)

Fig. 1.6. Two nonnormal curves with implied parameter d
plotted on normal coordinate paper.

1.3 Contributions of the Present Work

Previous applications of deferred decision theory have assumed a simple signal
hypothesis, (Refs. 5,6). This assumption implies that observations in N and SN are inde-
pendent. Thus, the concept of learning about the signal during the observation process is

not applicable.
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The extension and application of deferred decision theory to include composite
signal hypotheses is our basic contribution. In addition to the general formulation and
method of solution, given in Chapter 2, we study two specific applications of the general
theory. In Chapter 3, we examine the signal uncertainty of unknown phaée. Chapter 4 ex-
amines a greater amount of signal uncertainty in the form of unknown signal amplitude.

One of the interesting aspects of our work concerns the use of adaptation in opti-
mum detectors. There seems to be a great deal of confusioﬁ in the literature on adaptive
receivers. The literature (Ref. 12) leads one to believe that adaptive receivers will in-
crease detectability beyond present day optimum receivers. This is not the case. Adaptation

does not buy better performance than already optimum detectors. It is possible for adapta-

tion to decrease receiver memory and thereby decrease receiver cost (Ref. 13). In certain

problems adaptation is necessary because of receiver memory limitations (Ref. Ibid). Our
study of sequential detection of a composite signal hypothesis is another example where
adaptation must be used to obtain an optimum solution.

Applications of the general theory to the problems of unknown signal phase and
unknown signal amplitude result in receiver designs, receiver evaluations, and conclusions
concerning the effect of signal uncertainty in sequential detectors. For example, from the
evaluation of the optimum detector for a signal of unknown phase, we can conclude that a
phase dispersion of less than 65° is, for detection, a signal known exactly. From the
numerical evaluations of the optimum detector of a signal of unknown amplitude, we find
that increasing signal uncertainty decreases the average number of observations, and results
in a high error rate (40%) as compared to the detection of a signal known exactly. Other
conclusions conerning the applications of the general theory are given as they occur in the
text.

The concept of receiver design which is employed here for composite signal
hypotheses is basically different from work in the published literature. The usual method
is to design a signal-known-exactly receiver based on some estimate of the distributed
signal parameter. We have chosen to include the signal parameter distribution in the over-
all design without resorting to the concept of estimation and des‘ign. Our method is not

without its difficulties, as will be seen, however, it is an optimum detector design rather

than a suboptimum design obtained by estimating the signal parameter.



CHAPTER II

THE GENERAL SOLUTION AND PROPERTIES OF THE
COMPOSITE-SIGNAL-HYPOTHESIS,
DEFERRED DECISION PROBLEM

2.1 The General Solution

The general solution to a ‘composite—signal-hypothesis, deferred decision prob-
lem can be given in terms of an iterative algorithm similar to the simple deferred decision
problem of Refs. 5 and 6. The iterative solution is possible because at any stage of the ob-
servation one can minimize the expected loss for a terminal decision without regard to any
loss previously incurred. In the language of state variables, i we say that the state of the
obéervation— decision procedure can be specified at any stage of the observation, and the
minimum expected loss can be expressed as a function of the state and future observations.
Readers familiar with the work of Bellman (Ref. 14) will recognize this as a statement of
the principle of optimality.

Consider a sequent‘ial, composite-signal-hypothesis problem in which the ob-

- server's state of knowledge before the observations begin includes:

(1) 1(®), the probability density function of the signal

parameters, ©, prior to the start of observation,

(2) 1i(z]SN), f(z|N), the distributions of the input, z,

in N and SN,

(3) W and Ao’ the losses due to terminal decision

errors,

The state of a physical system is the specification of a minimum set of variables, called
State variables, from which it is possoble to predict the future behavior of the system if

: the future inputs to the system are known. Similarly, the state of an observation-decision
E PI‘OCEQure is the minimum set of variables needed to predict the future behavior of the pro-
Cess given the future observations.

17
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(4) C, the cost of an observation, and

(5) nmax’ the maximum allowable number of observa-

tions or deferrals.

We have two possible alternatives, N and SN, which we know from prior know-
ledge occur with probability 1/(1 + eL)and 141 + e'L), respectively. To make decisions, we
observe the random variable z with the probability distributions of (2) above. The penalty
for taking observations is the cost of an observation. Our problem is to choose N or SN on
the basis of the observations and our prior knowledge in such a fashion that the expected loss
for our terminal decision is a minimum. Whether we should delay the terminal decision will
depend on whether the expected loss for additional observations is less than the loss for
making an immediate terminal decision. The expected loss of taking another observation
will depend on the expected loss of taking another observation beyond that, etc., until we have
exhausted all possible observations. In other words, the expected loss of taking additional
observations depends on the allowable number of observations, the actual value being the re-
sult of a complicated series of expectations.

1.2.1 General Theory. To begin the process of solution, suppose no observa-

tions may be taken, i.e., an immediate terminal decision must be made. The optimum ex-
pected loss function as a function of the log-odds ratio for no observations has been derived
in Section 1.3, i.e., T(L). This minimum loss is obtained, as is shown in Section 1. 3, by
responding "A" whenever L > AO and "B" whenever L < AO. As a matter of notation, we
denote the optimum expected loss for no observations by another symbol, Fo(L) = T(L).

Consider next the possiblity of one allowable deferral, i.e., Max = 1.*Fora
given log-odds ratio, L, the '"lock-ahead loss," the loss incurred if an observation is taken,
is compared with the loss if no observation is taken, the optimum terminal loss function.
The observation is taken only if the average look-ahead loss is smaller than terminal loss
function for the log-odds ratio in question.

If "z" is observed and L1 is the a priori log-odds for n = 1, then the log-odds

after the observation is L0 and is given by

LO = L1 + 2nf4(z)] (2.1)
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where £(z) is the likelihood ratio of the input observation. The loss for this observation z is
T(Lo) = T{L1 + 4n0(z)]} . The average loss if the observation is taken is found by aver-
aging T{L + £n[¢(z)]} over all possible observations, z. To this must be added the cost of
the observation. The sum of these two quantities is the average look-ahead loss at stage

n=1, Gl(l)'
G,(L) = [ T{L+n[0@)]} fz)dz+C (2.2)

where f(z) is the probability density function of z. The optimum expected loss function at

stage n = 1is FI(L)'

(L) = min [T(L), G,(L)] (2. 3)

The intersection of GI(L) and T(L) define two points, (1"1, Al), which constitute
the optimum stopping rule for n = 1. If, with one more possible observation, the log-odds
has value between Fl and Al , then the next observation is profitable; otherwise, the observa-
tion should not be paid for, and instead, an immediate terminal decision should be made.
Figure 2. 1 depicts the alternatives that may be taken for the n = 1 state.

The composite nature of the signal hypothesis has thus far been suppressed. In
order to calculate the likelihood ratio, £(z), however, we must use our knowledge of the
composite-signal-hypothesis. The likelihood ratio of the input is an average likelihood ratio

obtained by a weighted average with respect to the signal parameter density function, fl(@).
2z) = [ 0(z|9)1,(0) dO (2. 4)
©

The conditional likelihood ratio £(z | ©) can be written as

_ izlsn, @)

(z]®©) iz |3

(2.5)

Thus, Eq. 2.4 can be written as

1) = éi(—ﬂ%‘;\% 1,(0) 4o (2.6)
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Fig. 2.1. The look-ahead average loss function, the optimum
average loss function, and the possible alternatives
for one allowable observation.

Equation 2. 4 states that the likelihood ratio of the observation, {(z), is given by averaging
the likelihood ratio for known signal parameters with respect to the probability of occurrence
of the signal parameters. The probability density function of the input can be written in terms

of the conditional probability density function as

f(z) = P(SN) - f(z]SN) + P(N) - f(zIN) (2.7
= —L— sa]sn) s —L— 12| (2.8)
-L L '
l+e l+e

The conditional probability density function f(z[SN) can be expressed by

Hz|SN) = [ f(z|sN, ©) £,(0) d© (2.9)
)
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If z is observed, the probability density function of the signal parameters after the observa-

tion can be found by Bayes' Rule as shown in Eq. 2. 10

f(zle

fo(®) = fj6lz) = =

f,(0) (2. 10)
Equation 2. 10 can be rewritten as

P(SN) - {(z|SN, ©) + P(N) {(z|N) _
P(SN) - 1(z|SN) + P(N) f(z|N)

£,(0) = £(0) (2.11)

Since it is possible to update the signal parameters only under the condition SN, Eq. 2.11

‘can be written as

2(z|©
£4(0) = szszTz £,(0) (2. 12)

The one-allowable-observation case does not make use of the a_posteriori dis-
tribution of Eq. 2. 12 in the solution. However, for n greater than one, the updated proba-
bility distributions of the signal parameters must be used in the solution for the calculation
of the average likelihood ratio. This continual modification of the observer's opinion of the
signal parameters is part of the adaptation that is used in the decision process. The ob-
server's opinion of the presence or absence of a signal is also modified through the observa-
tion in a similar manner.

The calculation of the updated probability distribution of the signal parameters
as observations are taken can also be used as a classification output. Classification is the
next hierarchy of decision beyond the simple yes~-no decision on signal existence. It is the
specification of the values of the signal parameters after one has decided a signal is present.
For a continuous distribution on the signal parameters, classification is the specification of
the; probability distribution of the signal parameters.

To illustrate the use of the a posteriori distribution of the signal parameters,
consider next the case of noox equal to two, i.e., there is a maximum of two allowable de-
ferrals. The solution procedure is to compare the average look-ahead loss at stage n = 2
with the terminal loss function, T(L). If the average look-ahead loss function, GZ(L) is
smaller that T(L),then it is profitable to take the observation. The observation information

modifies both the a priori signal parameters distribution and the a priori log-odds ratio.
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After one observation, these updated quantities are used to determine the optimum procedure

for the remaining observation. The method of solution must be such that the Noax = 2, "one-

observation-taken' state is identical to the N oax = 1, "no-observation-taken" state to effect
an economical computer solution {see Section 2. 3).

At stage n =2, et L2 be the a priori log-odds ratio and fz(e) the a priori dis-
tribution on the signal parameters. The terminal loss if no observations are taken is again
T(L). The average 1ook-ahead loss is FI{LZ + n[2(z)]} averaged with respect to the distri-
bution of z. This average look-ahead loss plus the cost of the observation at stagen =2 is

Gy(L).
Gy(L) = | FAL + 0f0(2)]} £(z) az + C (2.13)

The optimum expected loss at stage n = 2 is F,(L)
Fo(L) = min [T(L), Gy (L)] (2.14)

The intersections of T(L) and G2(L) determine the optimum decision points (1"2,A2), in log-
odds ratio. For the log-odds ratio greater than the upper decision point, Az, the response
is "A", for L less than the lower decision point, 1"2, the response is "B", otherwise the re-
sponse is ""C", continue. As before the likelihood ratio is calculated by averaging the condi-
tional likelihood ratio, £(z |©), with respect to the a priori distribution of the signal param-

eters atn =2, i.e., fz(e). This is Eq. 2. 15.
£z) = [2(z]) £,(0) dO (2. 15)
o

The a posteriori signal parameters density function is fl(e) and is given by

_ Xzle)
fl(e) = i@ fz(e) (2. 16)
Using Eq. 2.4, Eq. 2. 16 can be written
z]6)

f1(8) = (©) 2.17)

_O[l(z|6)- fz(e) aw 2

The observer is now in the n = 1 state with a new log-odds ratio, Ll’ determined

from the a priori log-odds, Lz, by Bayes' Rule
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Ly = Lo+ 2n[L(z)] (2.18)

It has been demonstrated above that it is necessary to calculate the "current
opinion" of the signal parameter distribution at each stage of the observation. It is up to
the receiver designer whether to make explicit use of this function or not. In the case of
detection, there is no need to design the equipment so that this density function can be re-
covered. However, in the case that one wanted a classification ou{put, it is probable that
one could design the receiver to obtain the density function. This adaptive feature of the
problem solution is a natural consequence of the manner in which the solution is obtained.
The adaptation is a by-product which one may choose to use or ignore depending on the
engineering application.

2.2 The Closure Property

The general formulation of the deferred decision problem presented in Section
2. 1.1 is rather straightforward. It is similar to the formulation of simple deferred deci-
sion theory. Again, as in the case of simple deferred decision theory, it is the application
of the general theory to specific problems that is of interest in the design and evaluation of
detection receivers. The application of the general theory, of course, implies computations
of numbers and in the computations certain difficulties arise. The remainder of this chapter
is devoted to a discussion of two computational problems.

Consider the stage-by-stage calculation of the distribution of the signal param-
eters as given by Eq. 2. 12. Equation 2. 12 is a simple application of Bayes' Rule and given
any distribution oh the parameters, the stage-by-stage calculation of the resulting distribu-
tions is, conceptually, simple. However, if the functional form of the distributions changes
with succeeding observations, then there is a practical problem concex.'ned with receiver
memory, The solution procedure we have presented is predicated on known the stage-by-
stage a posteriori distribution of the signal parameters. Therefore, a problem in which the
signal parameter distirubtion changes functional form with each observation means the re-
ceiver must possess an infinite soft memory, or at least a very large amount of soft memory.

Because we are interested in (1) engineering applications of the theory presented here, and
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(2) full memory receivers, the specific problems we consider must be restricted to prob-
lems in which full memory receivers possess a finite soft memory, i.e., adequate memory
receivers.

A necessary condition for a receiver design to result in an adequate memory re-
ceiver is the closure property. The closure property is the invariant character of the func-
tional form of the a priori signal parameters distribution after an observation. In other
words, the functional form of the distribution must remain the same after it is modifiéd by
observation; the only changes that may occur are changes in the value of the signal parameters.

In addition to the engineering design considerations, the closure property is im-
portant in the computational aspects of deferred decision problems. Because of the com-
plexity of the functions involved, analytical solutions to deferred decision problems are not
possible, even for the very simplest problems. To obtain quantitative results, computations
must be programmed on high-speed digital computers. If the pararﬁeter distribution is not
closed, computations become prohibitive even for large computers. Thus, all parameter
distributions considered in this thesis will possess the closure property.

Some simple consequences of the closure property are evident from Eq. 2. 19

below.

f(@lbased onz) = ﬁﬂé(lzﬁ)ﬂ - 1(9) (2.19)

Consider the problem of choosing the functional form of £(©) such that £(9) is
closed under observation. The specific form of {(®), of course, depends on the particular
problem in question. A suitable choice for (@) can be found without resorting to a trial and
error method by noting the functional form £(z|©). Since £(z) is a normalizing constant in-
dependent of ©, £(z| 6) is the function which determines the closure property. For specific
examples the reader is referred to Chapters 3 and 4.

Another property evident from Eq. 2. 19 is that independent of the form of £(©),
the functional form of f(©) after several observations is, in many cases, a closed form times
a term proportional to the original distribution. This can be seen more clearly by examining

the form of f(9) after two independent observations, zy and Zg. After two such observations
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the distribution of {(9) is

1z,|0) (z;]0)

f(é|z1, 2y) = I . 1(©) (2. 20)

2) 1)
(A similar expression results for more than two observations.) The functional form of the
conditional likelihood ratio, IZ(zI@), in a specific problem does not change with observation.
For example, if £(z]O) is an exponential in z and O, then !Z(z2 |8) !Z(z1 |©) is again an expon-
ential in z and ®. For many problems !Z(zk|®) !Z(zk_1|6) .-+ is a closed form. Since

E(zk) E(zk_l) -+ is independent of ©, the functional form of f(©) after several observations

is, therefore, a closed form times a term proportional to the original distribution.

The concept of closed distributions can be characterized using the theory of
sufficient statistics. A sufficient statistic of an observation is information equivalent to the
observation for the purposes of the problem. For example, in the yes-no detection problem
the likelihood ratio of the input (or any monotone function of the likelihood ratio) is a sufficient
statistic of the observation. |

In symbols, the concept of a sufficient statistic can be characterized as follows.

It f(@]z) is the a posteriori probability of © based on the observation of y and
1(®]z) ~ f[o1s,(z), Sy(z), ..., Sk(z)] (2.21)

‘then{Sj(z)} ].lil is a sufficient statistic for the observation z. (The symbol e " means "is
equivalent to. ") From the preceding discussion, we can infer that a closed distribution
exists for a particular problem if there exists a sufficient statistic of the observation with
a finite number of parameters and the number of these parameters is independent of the
number of observations taken. Equation 2.21 is a statement that the éignal parameter dis-
tribﬁtion has a finite number of parameters dependent only on the observations and independ-
ent of the number of observations taken.

An independent study of closed distributions has been carried out by Spragins
(Ref. 15). Spragins investigates closed distributions abstractly without specific application
to a particular problem and claims to exhibit a method for constructing closed distributions
in any given problem. The method is basically the same as discussed in the paragraph be-
low Eq. 2.19. The work by Spragins gives a tabulation of ten types of closed density func-

tions but does not include the closed distributions derived in Chapters 3 and 4.
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One further point concerning closed distributions should be mentioned. There
are two points of view of how to carry out the updating procedure defined by Eq. 2.19. We
can update the signal parameter diétribution under the possiblity that either N or SN is
present, or we can investigate the signal parameter distribution only under the SN hypothesis.
Although, at first glance, the two methods may seem very similar they result in different
conclusions. The present study assumes that the updating procedure occurs only under the

condition SN, because only when the signal is being transmitted is it possible to obtain ‘in-

formation on the signal parameter distribution. Referring to Fig. 2.2, the switch must be
connected to the signal generator before we can apply Eq. 2.19.

These two methods of considering closed distributions can be stated in a more
formal manner. If z is an observation and {z} a sequence of observations, then to update
under N or SN is to investigate closed distributions for which the a posteriori distribution
is of the form f(@l{z}) . The present study assumes the input is due to signal-plus-noise,
i.e., the a posteriori distribution is of the form f(@l {z}, SN) .

The results of the latter study are altogether distinct from the results of up-
dating f(@] {z}) . For example, in the detection of a signal of unknown amplitude, developed
in Chapter 4, if one updates f(@l{z}) , it is not possible to obtain a closed signal amplitude
distribution. Using the formulation of the present work, however, a very general set of

closed distributions on signal amplitudes are obtained. (See Chapter 4. )

Signal Signal
Generator
S e (t) Observation, z
o]
No Signal

Noise

Fig. 2.2. A schematic diagram depicting two situations for
updating a signal parameter distribution.
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2.3 Subspace Separability

In the development of the general method of solution for sequential, composite-
signal-hypothesis probiems presented in Section 2. 1, the basic computation is the calculation
of expected values. The expected values are used in determining the average look-ahead
risk functions which, in turn, are compared with the terminal loss function to ascertain the
optimum stopping rule.

The computation of an expected value is a weighted average, and in our problem,
is an average with respect to the distribution of the observation. The distribution of the
observation is a function of the values of the signal parameters. The observation distribu-
tion, therefore, changes after each observation because of the updating procedure on the
signal parameter distribution.

For purposes of discussion consider a distribution of signal parameters given by

£(9) = g, 8., 64, ..., 6

1* Yo = g(S, @) (2-23)

)

where © is a vector with component values equal to the value of the parameters in the signal
Se(t). At the nth stage of observation the average look-ahead risk, Gn’ is a function of the
updated log-odds ratio, Ln’ and the updated values of the signal parameters, G)n. (The dis-

tribution of signal parameters is assumed closed.) Thus

G = G (L

n n' o’ el,n’ 0

2w O ) (2. 24)

. The risk at the nth stage is found by averaging the optimum expected risk function of the

(n-l)'s—t stage.
G (L;®) = E[Fn_l(Ln_l; en_l)] (2.25)

The notation of Eq. 2.25 is compressed in that Ln_1 and Gn_l are functions of Lrl and On and

the observation, z.

L@, 2) (2. 26)

€
]
Q
6
=

(2.27)
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The averaging process implied by Eq. 2.925 can be calculated in many equivalent
ways. For example, in the case of simple signal hypothesis (Ref. 5), this averaging process
is accomplished by averaging with respect to the distribution of ¢n[e(z)] . This is a "one-
dimensional" average in that the average risk functions are calculated as a function of a
single variable, L.

Let us consider some possible methods of calculating the expectation of Eq. 2. 25.
For example, it is theoretically possible to take the expected value with respect to the ob-
servation space. This means that for each possible observation the transformation of
Ln -~ Ln—l and en - en-l is calculated. Each observation is then multiplied by an appropri-
ate weight in accordance with its frequency of occurrence. These results are summed to ob-
tain the expected value. Typically, the dimensionality of the space of observations is the
dimensionality of the input observation in 2WT space. In practice, this might be easily 106
or more. Thus, this manner of computing the expectation of Eq. 9. 25 involves far too many
computations.

If the probability distribution of the signal parameters is closed, then it is
possible to reduce the dimensionality from that of the observation space to k + 1 dimensions,

where k is the number of signal parameters, e = (01, 62, veey B This can be seen by

k)'
examining the state of the observation process at any stage of the observation. The state
of the observation-decision process is givenby L, ©, 0, 0. Suppressing the overt

specification of n and noax? to calculate the average look-ahead risk function at stage n, Gn’
it is sufficient to know the optimum risk function at stage n - 1for a k + 1 dimensional space,
i.e., the space Ln-l X G)n_l. To calculate Gn for one point in the k + 1 dimensional space
of Ln X en, the optimum risk function at stage n - 1 must be known. Thus, the averaging
process necessary to .calcula.te the average look-ahead loss function is an average calculated
over k + 1 random variables. To calculate one point on the Gn+1 look-ahead loss function,
the solution over the entire L X © space for all previous n stages must be known.

Is this a satisfactory sitvation for computations to proceed economically ?‘ To
answer this question, consider a problem in which the parametexf space is one dimensional,
i.e., O = 61. The L x © space is thus two dimensional. At the nth stage of the observation

in order to calculate one point on the average look-ahead loss function, Gn’ the expected

value of the optimum loss function at the n - 1 stage, Fn—l’ must be known. This expectation
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must be taken over the complete L x 6 1 Space at the n - 1 stage. Assume that the L x 91 can
be represented approximately by 100 points along the L axis and 100 points along the 61 axis.,
For this hypothetical case, to obtain one point on the Gn look-ahead loss function, the aver-
aging process must be computed over 10° x 10° = 10* points. To continue the iterative pro-
cess to the n + 1 stage, the risk function for the complete L x 91 space at the nth stage must
be known. If the L x 91 is represented by 10* points and each point 1s obtained by averaging
between 10* points, then 10° averages must be computed to continue the process one deferral.
Even with today's high-speed computers, the two-dimensional average discussed above
represents a large amount of computation time. For a larger dimensional parameter space
the number of computations is, of course, very much larger.

From the calculations presented in the preceding .paragraph it would seem that
the detailed solution to a specific composite~signal-hypothesis problem in a sequential ob-
servation procedure is not economically possible. However, it may be possible to reduce
the dimensionality of a deferred decision problem from the dimension of the L x © space to

a lower dimension; in particular, to one dimension. In certain problems the probability

density function of the signal parameter(s) at the (n - 1)§—t stage is zero except on some

proper subspace of L x © at the nth stage. In symbols f(Ln_l, en—l Ln’ G)n) = 0 except
on some proper subspace of Ln X 6n where f is the probability of obtaining (Ln-l’ 6n_1).
If this is the case, then instead of having to solve for all the points in a k + 1 dimensional
subspace of the Ln-l X Gn_ 1 Space to calculate one point on the average look-ahead loss s
Gn’ one need carry out the average over a smaller subspace, namely, the dimension of the

proper subspace of Ln X @n.

More precisely, let Q be the proper subspace of L x ©. If there exists a se-

quence of proper subspaces {Qj} jr=11 such that the average look-ahead loss function at the

jth stage, Gj (Qj)’ depends only on Fj—l(Qj-l)’ then the problem is said to be "subspace
separable. " The solution to the deferred decision problem at the jth stage in a subspace-
separable problem is the solution on the union of the subspaces from j = 1 to the jth stage.

I Q]Y and Qj are subspaces of I x © at the jth stage, then either

QJ!ﬂQJ. = Qj or QJ.ﬂQj =g (2.27)
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That is, either the subspaces at the jth stage are identical or they are disjoint. The sub-
spaces are layers like sheets of mica, in the L x © space, and one subspace, Qj , does not
intersect another subspace QJ!, for all j. As discussed previously, for an economical solu-
tion Q must be a one-dimensional subspace of the L x ® space. This is true for the two
problems considered in detail in Chapters 3 and 4.

In summarizing the results of this chapter, we emphasize again that the general
formulation is much too abstract to give any insight into sequential observation procedures
as they pertain to detection problems. It is only in the applications of the general theory
that one is able to draw conclusions about sequential detection procedures. From the dis-
cussion presented in this chapter, it is clear that it may be computationally impractical to
apply the general theory unless two simplifying assumptions are met: (1) closed signal

parameter distributions, and (2) one-dimensional subspace separability.



CHAPTER III

DETECTION OF A SIGNAL KNOWN EXCEPT FOR PHASE

The first problem we consider in detail is the detection of a signal known except i
for phase (SKEP) in added white Gaussian noise (WGN). The solution to this problem is well
known (Refs. 3, 16-18) for an a priori uniform phase distribution and a fixed observation-
decision procedure, i.e., a detection procedure in which the terminal decision is made after
a fixed observation time, or more generally, fixed observation qualify. Under these assump-
tions the optimum (likelihood ratio) receiver can be realized by a matched filter (Refs. 3,

16-18).

3.1 Problem Statement and Notation

The detection problem of a SKEP in added WGN is generalized here to include:
(1) optimum receiver design and evaluation for fixed observation-decision procedures for a
class of a priori phase distributions, (2) optimum receiver design and evaluation of the opti-
mum nonsequential procedure for the same class of a_priori phase distributions considered
in (1), and (3) the optimum likelihood processor for the receiver of a deferred decision pro-
cedure. |

The functional form of the a priori phase distribution contains two parafneters,
and _by proper choice of these parameters, we can model unimodal phase distributions which
include the uniform distribution and phase known exactly as special cases. The form of the
phase distribution was chosen (1) to include the uniform distribution, and (2) so that the func-
tional form of the distribution did not change with observations of a stable SKEP in added
WGN, i.e., the phase distribution is closed under normal observations.

The only distribution closed under normal observations and including the uniform
distribution on the interval [0, 27] is that given by Eq. 3. 1. This can be seen by calculating

the a posteriori distribution that results from updating a uniform a priori distribution. This
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distribution is the phase distribution obtained by an ideally consistent person taking measure-
ments of a stable SKEP in added WGN assuming, a priori, all phases are equally likely.
exp EA‘O cos (BO - ¢Z|

=0 , otherwise (3. 1)

The parameter AO is a measure of the dispersion of the distribution about the
parameter BO' For large AO, the distribution approaches a Gaussian distribution, the vari-

ance of the distribution, in this case, being A As AO varies from zero to infinity, the

0
distribution varies from a uniform distribution on [0, 27] to a phase known exactly. If we
plot the half angle spread at one-half the most probable value for ¢ as a function of AO’ we
obtain the graph of Fig. 3. 1. Figure 3.1 can be used to measure the dispersion of ¢ about
BO as a function of A0 (if one wishes to characterize the phase distribution by a single
number). Of course, it is better to present the entire phase distribution rather than a single
number. In Fig. 3.2 two distributions are plotted for p(¢) for values of AO equal to 2 and 4.
Note also that the distribution of Eq. 3.1 offers the advantage of being naturally defined on
[0, 27]. If a Gaussian phase distribution is assumed, for example, one must make the
further approximation of disregarding the tails of the distribution.

Before continuing let us introduce some additional notation to describe the prob-
lem. Let s(t) = a(t) cos (wt - ¢) be the transmitted signal and E = fT [a(t) cos (wt - ¢)]* at
be the received signal energy. Further, let the receiver input be (?enoted z(t) and defined
for all times t, 0 < t < T. The noise is assumed limited to a bandwidth of W cycles per
second with a noise power density of No' The Nyquist sampling theorem (Ref. 16) permits
the representation of each receiver input as a point in a 2WT dimensional space; the coordi-

nates of each point are the values of the function at the sampling points ti =i/2W, 1 <i<

2WT. The true signal phase is ¢ and the true signal frequency is w.
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Fig. 3.1. A graph of the half-angle separation for the phase
distribution of Eq. 3.1 as a function of the parameter AO‘
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p(9)

] +80 +180

Fig. 3.2. A graph of two phase distributions for two values

of the parameter AO'

3.2 The Average Likelihood Ratio for a Signal Known Except for Phase with A Priori
Phase Information

Optimum receiver design is based on the likelihood ratio of the received wave-
form z(t). To derive the likelihood ratio of z(t), we use the distributions of z(t) in noise
H

alone and signal-plus-noise. The derivation is made simpler by defining the two quantities

x(t) and y(t).

9 T 1 Z.WT )
x(T) = -IE Of z(t) a(t) cos (wt) dt = m 121 Z(ti) a(ti) sin (Wti) (3.2)

;T ) 2WT ‘
¥(T) = —EN—O (')/ z(t) a(t) sin (wt) dt = —\)&-I—ZEI;(; igl z(t;) a(t,) sin (wt.) (3.3)
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The right-hand expressions in Egs. 3.2 and 3.3 are true by virtue of the sampling theorem.
Using the right-hand expressions for x(T) and y(T) the distributions of x(T) and y(T) in N and
SN can be found.

Consider first, the distribution of x(T) in noise alone. [The same logic applies
to y{T).] Since in noise alone each Z(ti) is due to noise only, each Z(ti) has a normal distri-
bution with zero mean and variance equal to NOW :WNTwhere N is the 'noise power. The z(ti)
are independent; therefore, the sum (I/W/ZE—NO i& Z(ti) a(t.l) cos (Wti) has a normal dis-
tribution with the mean equal to the sum of the mea;ls, i.e., zero, and variance equal to the
sum of the variances, i.e (l/W\/Z_E_N—f ) cos® (wti) = 1. The distributions of x(T)
and y(T) are independent because they are orthogonal.

In signal-plus-noise each Z(ti) is due to the noise and the signal. The signal is
known except for the carrier phase and the phase is, in general, not uniformly distributed.

2WT
If the observer knew the transmitted phase, then the sum (1/W /2EN ) Z(ti) a(ti) cos (Wti)
=1

1/2

would be normally distributed with mean ( 2E/N ) cos ¢ and variance equal to unity. For
this problem we define the quality of observation as the square of the separation between the
mean value of z(t) in noise alone and in signal-plus-noise. The quality of observation is de-
noted by D and is equal to ZE/NO.

" From the above discussion it is possible to determine the joint probability density

function of x and y in noise alone and in signal-plus-noise. Because of the independence of x

and y, we can write f(x, y|N) as the product of the marginal distributions.

f(x, y|N) = f(x|N) - {(y|N) (3. 4)
S Xy (3.5)
= 37 %P 2 ’
In polar coordinates Eq. 3.5 is
1 r’
f(r, 6|N) = 3= T exp |- (3.6)

The r multiplying the exponential term in Eq. 3.6 is the Jacobian of the transformation. In

signal-plus-noise, if the observation quality is D and the transmitted phase is known to be ¢,
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- 2 - . 2
f(x, y|SN, ¢) = '217, exp | - (x \/ECOS 9) ;(y \/f)—sm 0) (3.7)
Rewriting Eq. 3.7 in polar coordinates results in Eq. 3.8 below.

2
ir, 6]SN, §) = o= 1 exp - - D Dreos(6-0) (3.8)

Using Eqs. 3.6 and 3. 8, the conditional likelihood ratio of the input, L(r, 6]9), is

2(r,6]¢) = i(x, 61SN, ¢) = exp [-%)4- D r cos (9-;25)] (3.9)

f(r, 6| N)

The average likelihood ratio is found by averaging Eq. 3.9 with respect to a specific distri-
bution for phase. If f(¢) is given by Eq. 3.1, the average likelihood ratio is

27

Ur, 8) = [ o, 0]p) {(o) do
0

1

exp [AO cos (BO - 9)]

27
D
Of exp l:— 5 ﬁr §os (6 -9) 3 IO(AO) d¢ (3. 10)

it

where IO is the Bessel function of the zero order and pure imaginary argument. Expanding

the integrand of Eq. 3. 10 and collecting terms, we obtain

expl-3 f27r [ ] exp --—]2) IO(Al)
(r, ) = exp|A. cos (B, - ¢){ d¢ = (3.11)
27710(AO 0 1 1 IO(AO
The quantities A1 and B1 in Eq. 3. 11 are given by
Ay = D’ + A+ 240/D r cos (B, - 0) (3. 12)
Drsin §+A, sinB
B, = tan’| VP 0 0 (3. 13)

ﬁrcosG+AOcosBO

The reduction of the integrand of Eq. 3. 10 to 'the integrand of Eq. 3. 11 demon-

strates the closure of £(¢) as given by Eq. 3.1. Recall that the updating equation for f(¢) is

given by Eq. 2. 5.

o(r, 6‘|¢Q

e - 1) | (2.5)

f(¢’lry 9) =
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Substituting in Eq. 3.4, we obtain Eq. 3. 14,

exp[- 2 +Y/D r cos (6- ¢;'| exp [AO cos (6 - Bo)]

2
2n I (A,)
exp [’%] oAy oo

IO(AO)

f(¢|r, 6) = (3. 14)

Expanding the numerator of Eq. 3. 14, we have
exp I:— —1% +/Dr cos(6-¢)+ A, cos(BO- ¢ﬂ = exp[— -%)] exp{cosEb(fﬁr cos 6 + A cos BO)]

+ sin[ﬁs(fD—r sin 6 + A, sin BO)]} = exp[——]zz] exp [A1 cos (B, - )] (8. 15)

where A1 and B1 are given by Egs. 3.12 and 3. 13. Equation 3. 15 is the numerator of
Eq. 3.14. Substituting Eq. 3. 15 into Eq. 3. 14 and reducing it to simplest terms, we obtain

exp [A, cos (B - ¢)]

27 IO(AI)

f(elr, 6) = (3. 18)

thereby demonstrating the closure of £(¢) under normal observations.

3.3 Optimum Receiver Design and Evaluation for Fixed-Observation Procedures

3.3.1 Receiver Design, Nonseguential Realization. Receiver design, in a fixed

procedure, is the realization of the mathematical expression for the likelihood ratio in block
diagram form. Equivalent receiver performance is obtained by basing receiver design on
any monotone function of the likelihood ratio. The art in receiver design is the method of
obtaining different receiver designs from the same mathematical expression by mathematical
manipulations and transformations. These manipulations and transformations serve to indi-
cate many different physical devices capable of the same receiver performance (since they
all result from the same mathematical expression). The choice of a particular physical de-
vice depends on the designer's experience and ingenuity in realizing block diagrams froma
mathematical expression. This is an art best learned by experience.

For example, experience has shown that certain monotone functions of the likeli-
hood ratio point to simple receiver designs, and one such expression useful in optimum re-
ceiver design is the logarithm of the likelihood ratio. Receiver design based on the logarithm

of the likelihood ratio is, of course, optimum, since the logarithmic function is a monotone
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function of its argument. For the problem of a SKEP, the logarithm of the likelihood ratio,

Eq. 3.17, can be used as the starting point of the receiver design presented in this section.

Qn[}l(r, 9)] = -—122 + [fn IO(Al)] - !Zn[IO(AO)] (3.17)

Equation 3. 17 is the mathematical expression whose realization is the optimum
detection receiver for a fixed observation-decision procedure which incorporates the possi-
bility of a priori phase information of varying degrees. Since the IO function is a monotone
function of its argument, Eq. 3. 17 indicates that A1 is monotone with the likelihood ratio of
the input. Therefore, the optimum detector can be realized by calculating the quantity Al'
In Fig. 3.3 we schematically represent the quantities in the defining equation for Al’ Eq. 3.12.

The operation of the optimum nonsequential detection receiver is quickly ob-
tained with reference to Fig. 3.3. As mentioned above, the optimum receiver may calculate
A1 or any monotone function of Al' The calculation of A1 can be accomplished by adding to
the x and y components of AO’ the x and y components of the reception, respectively. This
process is repeated for each additional observation. The pair (Al’ Bl) is modified by the
reception in the same manner (AO’ BO) is modified. The above manner of realizing Eq. 3.17
is achieved by the receiver shown in Fig. 3.4. The reception, z(t), is first multiplied, inte-
grated, and sampled as shown, to obtain x(T) and y(T); to these orthogonal components are

added the x and y components of AO; the resulting sum is Al'

y

}

Fig. 3.3. A schematic representation of the terms of Eq. 3. 12.
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Fig. 3.4. A block diagram of a fixed-observation detector
incorporating the a priori phase distribution of Eq. 3. 1.

3.3.2 Receiver Design, Sequential Realization. Equivalent realization of the

likelihood ratio can be obtained for fixed procedures by breaking the total observation into
several smaller sequential observations. The likelihood ratio of the total observation is ob-
tained by updating the likelihood ratio of each smaller observation taken in sequence. This
is in contrast to the usual method of considering the total observation as a single reception
as was done in the realization presented in Fig. 3.4. The equivalence of the likelihood
ratios obtained by these two derivations has been proved in generality by Nolte (Ref. 13).
The receiver for the optimum sequential-observation procedure consists of the
sequential realization presented in this section in cascade with a decision device consisting
of a set of dual thresholds. If the total observation quality is D and the total quality can be
divided into n observations of quality d, such that d = D/n, then for n observations the per-
formance of the sequential realizations are identical to the fixed realization of Fig. 3.4.
Generalizing the results of Eqs. 3. 11 and 3. 16, the likelihood ratio and phase

distribution after k observations of quality d can be written as

exp [— %] IO(Ak)

o(r, 6| k obs. ) =
’ IO(Ak)

(3.19)
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exp[Ak cos (Bk-;bﬂ

p(#|k obs.) = (3.20)
27 IO(Ak)
where
2 2° 2
Al = A +ride 2Ak_1r/a'cos (Bk_¢) (3.21)
k
-1 Z yi+AO sinB0
B = tan (3.22)

k
Z X+ AO cos BO

Schematically, we can represent the quantities in Eqs. 3.21 and 3. 22 as shown in Fig. 3. 5.
Equation 3. 19 is the basis of the sequential realizations of the likelihood ratio

presented in Figs. 3.6 and 3.7. The sequential receiver design of Fig. 3.6 is similar to

the nonsequential version of Fig. 3.4. Sequential operation and a priori phase information

have added an integrator and summer, as shown in Fig. 3.6. The adaptive version of

Fig. 3.7 is designed so that it appears 1o "learn' the signal phase as observations are taken

by updating the values of Ak and Bk according to Bayes' Rule. This design offers the ob-

server a classification output, i.e. , the receiver not only decides on the presence or ab-

sence of a signal but also presents the observer a distribution of the transmitted phase angle.

yA

Fig. 3.5. A schematic representation of the terms of
Egs. 3.21 and 3. 22.
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Although this design appears to learn the signal phase, its performance is identical to the

sequential realization ot Fig. 3.6 (and the receiver of Fig. 3.4, if the total observed quality

is the same in each case).

The sequential design of Fig. 3.7 also offers the observer a

method by which he can determine phase dispersion as a function of the observation time

—

Gated Sample 1|
I(xzteigrato)r each Integrator
K™kl t \
k
| (AO/‘/E) cos B
a(t) cos wt l
l square
z(t) | , Decision _D_e_.c_ision
-—d l Device
: square
alt) sin wt ’ (A /VD) sin B_ |
[e} o]
Gated Sar:tple l
Integrator Integrator
(t — ) each
K ke 1 t |
IO,

Section added for sequential
operation and initial phase
information

Fig. 3.6. A block diagram of a sequential realization of a
fixed-observation detector for a SKEP.

and input signal-to-noise ratio. This is achieved by calculating Ak from the X and Vi

i=1,2, ..., k, and using the graph of Fig. 3.1 to determine the phase angle dispersion.

The above discussion points out the art of receiver design. There is no opti-

mum receive realization, since many equivalent receivers, all different from the standpoint

of equipment, result in exactly the same performance. The particular receiver realization

one chooses depends on the engineering application.
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Fig. 3.7. A block diagram of an adaptive realization of a
fixed-observation detector for a SKEP.

3.3.3 Evaluation of the Optimum Detection Receiver in a Fixed-Observation

Procedure. The evaluation of detection receivers is, usually, considerably more difficult
than their design. For fixed-observation procedures, the evaluation can be completely de-
scribed by the error performance of the receiver (see Section 1. 1). Error performance is
conveniently displayed by means of the ROC curves presented in Fig. 3.8. There are two
parameters, Dand AO’ associated with each ROC curve. For different amounts of initial
phase information, i.e., different values of AO, the quality of observation, D, is varied.
From the ROC in Fig. 3.8, we see that the performance of the optimum fixed receiver is

within one db of the performance of the optimum receiver detecting a signal known exactly
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for A0 equal to four or more. A0 equal to four corresponds to, roughly, a half-angle

spread of 33°. In other words, we need know only the quadrant the phase angle lies in to

approximate the detection performance of a phase known exactly.

P("A"ISN)

Chance
Diagonal

. 10

.05 -
.04

.03

.02

.01 ! | | ] | ! ] ] |
.01 .02 .03.04.05 .10 .20 .30 .40 .50 .60 .70 . 80

P("A"IN)

Fig. 3.8. The ROC curves for the optimum fixed-observation
detector as a function of a priori phase dispersion
and observation quality.
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The design method we have used in incorporating a distributed signal parameter
in the design of the optimum detector is, to the author's knowledge, unique. The usual de-
sign method for considering distributed signal parameters is to estimate the signal param-
eter and design a fixed receiver with the estimated value assumed to be "true.' This
method of receiver design is suboptimum, although it is a reasonable engineering solution.
The design method for including a distributed signal parameter presented here is optimum
for fixed procedures. It represents a significant departure from the philosophy of estimation
and fixed receiver design.

The remainder of this section is devoted to the derivations of the probability of
detection and false alarm for use in plotting the ROC curves of a SKEP, such as those of
Fig. 3. 8.

Consider first the calculation of the false alarm probability. The probability of
false alarm is the probability of responding "A" when noise alone is the actual cause of the
input. It is denoted by P("A"|N). The response ""A" occurs whenever the likelihood ratio of

the input exceeds a critical value, denoted BO' In symbols, we can write

P("A"|N) = P[{(r, 6) > BCIN] (3.23)

To calculate the false alarm probability, therefore, we need to determine the distribution of
the likelihood ratio in noise alone, or equivalently, the distribution in noise of any quantity
monotone in the likelihood ratio.

A1 has been shown to be monotone with the likelihood ratioc. Therefore, Eq. 3. 23

can be written as

P(nAnlN) . P(R > BC‘N) (3.24)
where
Al Ay 2Ar
R2 _—_—D—— =r2+-l—)—+ \/_ COS(BO'G) (3'25)
D

The problem of determining P("A" IN) is reduced to {inding the distribution of R in noise
alone. If we knew the distribution of R in noise alone, then P("A'[N) is given by calculating

the amount of the R distribution outside of an arbitrary circle centered at the origin of the x-y
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plane with radius equal to Bc , as pictured in Fig. 3.9. We have previously determined that
the joint probability density function of x and y in noise alone is bivariate Gaussian with mean
centered at the tip of the AO//B vector and variance unity. (The AO vector represents

a priori knowledge of the phase. ) Thus, the probability of false alarm is reduced to finding
the ""volume" under a bivariate Gaussian distribution outside the radius of a circle as shown

in Fig. 3.9. The center of the circle is not coincident with the center of the distribution.

~ ¥
—
\\\ Noise Alone
~ Distribution of
N R(r, 6)
N
N\
\

—
A /D

(o)

Probability

f

S — -

Pe

~
i

k)

Fig. 3.9. A schematic diagram of the noise alone
distribution in the x-y plane.

This is a well-known problem in statistics; the answer is given by the cumulative distribu-
tion function of the noncentral chi-squared distribution with two degrees of freedom and non-
centrality parameter equal to the distance between the center of the circle and the center of
the distribution squared (Ref. 19). For purposes of illustration and completeness, let us
derive the false alarm probability using Eq. 3.24.

The distribution of r and 6 in noise alone is given by Eq. 3.6. Thus, the proba-

bility that R(r, ) is greater than some critical threshold, B, is
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o w0 2m r ?
[R >g, IN] =Bfg 5= exp |- 5 [dadr (3. 26)
C

Equation 3. 26 represents the nyolume" under the bivariate Gaussian distribution outside a
circle of radius 6c; the center of the circle and the distribution are separated by AO/ J/Das
shown in Fig. 3.9.

The integration of Eq. 3.26 is facilitated by a change of coordinates from (r, &)
coordinates to (R, y) coordinates, as shown in Fig. 3.10. Under the transformation, the
differential area dadr becomes J(%) dydR where J(—;;—%) is the Jacobian of the transforma-

tion and is equal to R/r. Rewriting Eq. 3.926 in the (R, ¥) coordinate system, we obtain

w 27 . A2 A Rcosy
by R 0 0 R
P[R>B lN] = ff 5=eXp |-s5 ~"Ss T — R4 dl,l/dR
c Bc b 27 2 2D /b T
AO2 o0 R AR :
-exp |-55 | J Rew |- |L|— | B (3.27)
B D
c
y

Fig. 3.10. A schematic diagram depicting the change of
coordinates carried out in Eq. 3. 26,

The integral of Eq. 3.27 arises in the evaluation of the detection of a signal of
unknown phase and was defined by Rice (Ref. 20), and tabulated by Marcum in an unpublished

report of the Rand Corporation (Ref. 21). It is called the Q function and is a function of two
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parameters: (1) the radius of the circle, B and (2) the separation between the center of
the circle and the center of the noise distribution, AO/JE. Equation 3. 27 written in terms

of the Q function is

P["A"|N] = P[R > B,|N] = Q(Ay/VD, B) (3.28)

The derivation of the corresponding detection probability, P("'A"|SN), is de-
rived in a similar manner. The probability of detection is the probability of responding
"A'" when the true cause of the input is due to signal-plus-noise. The response "A™ occurs

whenever the likelihood ratio of the input exceeds some critical value, Bc' In symbols
P[A"|SN] = P[L(r, 8) > BCISN] (3.29)

Equation 3.29 can be written, using the same logic as we used in the determination of

P["A"|N], as
P["A"|SN] + P[R> BC|SN] (3.30)

where R is defined by Eq. 3.25. As before, the basic problem is the determination of the
distribution of R in SN. Knowing the distribution of R in signal-plus-noise, we find the
probability of detection by calculating the volume under the R distribution (not bivariate
Gaussian) outside a circle of radius Bc'

To calculate the detection probability, we proceed as we did in the calculation
of the false alarm probability. R is a function of r and # whose distribution in signal-plus-
noise given the transmitted phase, is given by Eq. 3.8. Thus, the probability that R(r, 6)

is greater than some critical threshold, Bc’ is

w 27 27
P[R> g |sN] = f f j f(r, 6|SN, ¢) dp dAdr (3.31)

Substituting the expressions for i(r, 9|SN, ¢) and £(¢) and carrying out the ¢ integration, we

obtain

I(RJﬁ
P[R> g |SN] = ff —z—ﬁexpl: :]expl:] o(Ao) dadr  (3.32)
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If we again write Eq. 3. 32 in the (R, ¥) coordinate system, then we obtain

w© 27 1 Ay 2A4R cos (RVD)
PR > fo[SN] = fof Zr e -3 R e - 7 "XP[ ]T?A—r

¢ (3. 33)

exp [— ] expl: :] R AOR
exp ':‘ 7] Iy _/_[): IO(R/ﬁ) drR  (3.34)

Equation 3. 34 defines a new function of three variables we designate by R{a, vy, Bc). This

function is examined in detail in Appendix A.

(3. 35)

©w exp l:— gi] I (at) exp[— -ﬁ:] I (yt) 2
R(a, v, Bc) =/ 240 2] 0 texpl:—t—]dt

6, Io(ay) 2

The probability of detection corresponding to a false alarm probability of
Q(AO/J_D, BC) is R(A,O/‘/ﬁ’ VD, 8,) where Ao/fﬁ is the separation between the noise alone
distribution and the center of the "threshold circle" of radius /BC and D is the quality of an
observation. As shown in Appendix A, the quantitative evaluation of R(a, y, Bc) is possible
only by use of numerical integration. In the calculation of both Q(a, ,Sc)‘ and R(e, vy, Bc)
various approximations are made for large and small arguments to facilitate calculations.
These approximations are given in Appendix B. The average computing time on an IBM

7090 is approximately 20 seconds per ROC curve as plotted in Fig. 3. 8.

3.4 The Optimum Nonsequential Observation-Decision Procedure

3.4.1 Analytic Derivation. In the preceding sections of this chapter, we have

considered fixed-observation procedures in which the observation time (or quality) is fixed
independently of the observer. This is, as we have mentioned, the framework of classical
signal detection theory. We have generalized previous studies of a SKEP in a fixed-obser-
vation-decision procedure by: (1) assuming the phase distribution is taken from a class of

distributions which include the uniform distribution and phase known exactly as special cases

b

and (2) considering receiver realizations which are sequential in nature. Evaluations of the
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optimum receiver for a SKEP in a distributed phase environment have also been presented.

In this section we study another form of observation and decision: the optimum nonsequential-

observation-decision procedure for a SKEP.

The optimum nonsequential-observation-decision procedure, hereafter called
the optimum nonsequential procedure (ONP) is a fixed-observation process optimized, in
the sense of minimum expected loss for a terminal decision, by the correct choice of the
observation length. The observation length is given in terms of the more general quantity
of quality rather than time for the SKEP problem. The choice of the optimum observation
quality is based on all information relevant to the detection problem known before the start
of the actual receiver reception. The relevant information consists of: (1) the a priori
distribution of signal phase, (2) the a priori log-odds ratio, (3) the cost of observation per
unit quality, (4) the losses due to terminal decision errors, (5) the observation statistics,
and (6) the total available quality of the observation.

Receivers for the ONP are similar to receivers used in classical fixed proced-
ures. The fixed procedure is optimized by correct operation of the receiver, and optimum
operation is accomplished by: (1) correct choice of the observation length, and (2) observing
only for a specified set of a priori log-odds ratios dependent on the ratio of error loss to ob-
servation cost.

The method for determining the optimum observation length is straightforward.
We express the value of an observation in terms of the parameters {AO, BO; W, AO’ L, c, D}
where (AO, BO) are the parameters of the a priori phase distribution, (W, AO) represent the
losses due to a false alarm and a miss, L is the a priori log-odds ratio, c is the cost of an
observation of quality one, and D is the total available observation quality. From the ex-
pression for the value of an observation, the maximum value due to an observation in terms
of the observed quality is found by differentiating the value expression with respect to D
(treated as a continuous variable), setting the resultantexpression equal to zero, and solving
the differentiated expression for D.

The value of an observation is defined as the amount to be gained observation.

It is the optimum terminal loss function, T(L), minus the expected look-ahead loss function,
G(L, DO’ AO). (We have chosen to suppress the dependence of G on the error losses and

observation cost. ) DO is the actual observed quality, L is a priori log-odds, and A0 is the
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dispersion parameter of the 3 priori phase distribution. In symbols, the value associated

with an observation of quality DO is
V(L, DO’ Ao) = T(L) -~ G(L, DO’ AO) (3.36)
The average loss associated with an observation of quality DO is

G(L, Dy, Ay) = P(SN) - W - P("B"[SN) + P(N) - W - P('A"|N)+ ¢- D (3.37)

0

The functional form of T(L) changes depending on whether L is less or greater

than AO. This implies there are two functional forms for the value function, V. Assuming

the false alarm loss equals the miss loss, i.e., AO =0, we have for L < AO

V(L, D, A

0’ O) = P(SN) + W - G(L, DO’ AO)

i

P(SN) - W - P("A"|SN) - P(N) - W - P(”A"IN) - CDO

L

= —S— . W. P("A"|SN) - —L— . w . P("A"|N) - ¢D (3. 38)
L L 0
l+e l+e
In a similar manner for L > AO’ we obtain
V(L,D,,A,) = -5 — . w. P("B"[SN) + —1 . w . P('"B"|N) - ¢D (3.39)
0’70 L L 0
1+e l+e

The probabilities of detection and false alarm, correct rejection and miss used in Eqgs. 3.38

and 3. 39, are related as shown in Eqs. 3.40 and 3. 41.

P("A"[SN) = 1- P("B"|SN) (3. 40)

it

P("B"|N) = 1- P("S"|N) (3. 41)

From Eqgs. 3.40 and 3. 41, we see that it is sufficient to consider only the probability of
detection and false alarm to calculate the value function in terms of L.

From Section 3. 3, we have that when the probability of false alarm is
Q(AO/Jf)-, B.), the corresponding detection probability is R(Ao/fﬁ, VD, B,)- Thus, the

value associated with observation of a stable SKEP can be written as
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V(L, Dy, A

W | W
o = — 1 Rlay/vDy, vy, B.) "L Q(a,/ VD, B.) -cDy (3.42)

l+e

To find the optimum observation quality from Eq. 3. 42, we solve for DO after
setting the differentiated equation (differentiated with respect to Do) equal to zero. Before
we can do the differentiation of Eq. 3. 42 with respect to DO’ we must express the critical
threshold value, 8, in terms of the parameters of the problem, i.e., {AO, By L, W, D, c}.

The expression for Bc in terms of the above parameters can be found by calcu-
lating the probability of detection or false alarm and expressing the cut value in terms of
the parameters of the problem. Consider the calculation of the probability of detection.
The probability of detection is the probability that the a posteriori log-odds ratio is greater

than AO in signal-and-noise, in symbols

P(”A"‘SN)

i

P[L + £n &(r, 6) > AO|SN]

1}

P[en 4(r, 6) > & - L|SN] (3.43)

Using the equation for likelihood ratio, (r, §), we can write Eq. 3.43 as

D
exp [— —i:lIO(Al)
> Ap-L SN (3. 44)

P("A"[SN) = P{In >
Ay

where A1 is defined by Eq. 3.12. Solving the expression in Eq. 3. 44 for Al’ we obtain

D

" Tt -.——0 - -
P("A"|SN) = P 5 - dnIy(Ag) + nIp(A) > Aq L|SN

D
-1 0 ‘ :
P A1 > 10 exp | Ay - L +om in IO(AO) ‘ SN (3. 45)

However, we have determined that the probability Al/fﬁo is greater than some quantity is

given by R(Ao/fﬁo, VD, B.) where B is

D
-1
B, = 1/, - 1, {exp [:AO - L+ +fn IO(AO)] (3. 46)
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In a similar manner the probability of false alarm, P("A"|N) is

PA>1'1 X A—L+EQ+!Z 1.(A.)
12% P (%0 7 T Y\

Q(Ay/vDy, B) (3.47)

P("A”IN) N

i

t

where 8, is again given by Eq. 3. 46.

We are now in a position to differentiate the value function, Eq. 3. 42, with
respect to DO' This is a very complicated function of DO; the functional dependence of DO
oceurs in the integrand of the integrals of the Q and R functions and also in the limits of
these integrals (Bc). Because of the complicated functions involved we used an IBM 7090
to obtain quantiative results.

A convenient graph for displaying the value function and the optimum observa-
tion quality is the "contour graph of the value of observation." This isa graph of the quality
of observation versus the log-odds ratio with contour curves of constant value. For each
W/c and AO there corresponds a set of value contours. We are primarily interested in the
contour of zero value and the optimum observation quality line. The latter is the optimum
observation quality as a function of L, for fixed W/c and AO’ and results in the minimum
expected loss for a terminal decision. This is the observation quality that is obtained by
numerical differentiation of Eq. 3. 42 with respect to DO' The computer programs used in

obtaining the contour graphs are presented in Appendix C.

3.4.2 Numerical Results. For any specific set of parameters, the computer

programs given in Appendix C can be used to determine a contour graph of the value of ob-
servation. Figures 3. 11 and 3. 12 depict two contour graphs for W/c =30 and W/c =100
The contours shown are the zero value contours for several values of AO, the dispersion
parameter of the phase distribution. The approximately horizontal dotted lines represent
the optimum observation quality for various A0 values. Any point that falls inside the zero
value contour, for a specific set of parameters, represents a profitable observation, and

conversely, any point that falls outside the zero value contour represents an unprofitable

observation.
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Fig. 3.12. The value contour graph for the ONP for W/c

AO = 0, and several values of AO.



55

The computer programs used in the determination of Figs. 3. 11 and 3. 12 are not
accurate for large and small values of D simultaneously. Figure 3. 13 is an expansion of the
contour graph for small values of observation quality for W/c equal to 30. We are primarily
interested in observation quality near the optimum observation quality.

Consider the characteristics of the ONP which can be inferred from the value
contour graph for a SKEP. Referring to Fig. 3. 11, one immediate conclusion is the exist-

ence of a finite range of a priori log-odds ratios for which an observation is profitable. This

range of L values is a function of A0 and the W/c¢ ratio. For example, if W/c = 30 and A0 =4,

then observations are profitable only for -0.95 < I, < 0. 90. For log~odds ratios outside of
this range, it is more profitable to make an immediate terminal decision. In Fig. 3. 14 one
zero-value contour graph for W/c = 30 and A0 = 4 has been repeated from Fig. 3. 11 to depict

various aspects of the ONP with less confusion.

{
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Fig. 3.13. An expanded section of the value contour
graph of Fig. 3. 11.
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Referring to Fig. 3. 14, if the log-odds ratio is equal to 0. 6, then we see that it
is profitable to observe and the optimum observation quality (the dotted line) is 3. 56. An ob-
servation quality of 3. 56 results in the minimum average loss for a terminal decision; al-
though, any observation quality between 0.28 and 7. 51 is profitable, i.e., an observation
quality between 0.28 and 7. 51 results in a value greater than zero. For the same set of
parameters, an observation quality above 7. 51 or below 0.28 costs more than it is worth.

Other characteristics of the optimum nonsequential procedure can also be in-
ferred from the value contour graph. The zero value contour for the same A0 value but
different W /c ratios expands as the W/c ratio increases. A large W/c ratio means it costs
less for the same amount of observation quality; or equivalently, the loss due to a terminal
decision is large. Thus, it is profitable to buy larger amounts observation quality than for
smaller W/c ratios.

With reference to Figs. 3. 11 and 3. 12, we also see that as AO increases, the
zero value contour "grows' in both L and D, i.e., as initial phase information becomes
more certain, it is more profitable to observe. The outermost zero value contour, labeled
""", is the phase known exactly zero value contour. This latter curve was not obtained by
use of the program in Appendix C but rather from programs used in Ref. 6 for the case of a
signal known exactly in added WGN. Since the signal known exactly contour is the most
certain case, it should fall outside any zero value contour in which A0 < . The agreement
in the gross characteristics of the zero value contour for a signal known exactly compared
with the results of SKEP zero value contours serves as a cross-check on the calculations
and numerical results presented here.

Again referring to Figs. 3. 11 and 3. 12, we notice that for AO < w the zero value
contours are all skewed toward negative log-odds ratios. The skewness of the contour graph
is also present in Chapter 4 in the study of unknown amplitude signal uncertainty; thus, it is
appropriate to explain the skewness of the value contour graph.

The discussion that follows is heuristic in nature; however, because it is consis-
tant for different forms of signal uncertainty it seems most probable. The basic concept of
this discussion is that an observation is profitable only for those situations in which the ob-
server's a priori log-odds ratio is likely to be changed sufficiently by the observation so that

the appropriate terminal decision is not the terminal decision dictated by the original L.
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For example, in the case of a SKEP the value contour is skewed toward negative L's and
away from positive L's.  From this we infer that for the same absolute value of log-odds
ratio, all other parameters being equal, we are more likely to obtain a positive indication
of signal-and-noise than noise alone. In other words, we are more likely to change our
opinion of the cause of input if we think, a priori, that the cause of the input is noise alone
rather than signal-and-noise. For AO < w is there a reasonable explanation of why there
is a better indication of signal-and-noise? (Notice for A0 =, phase known exactly, the
value contour graph is symmetric. )

Yes, there is, for in signal-and-noise there exists the possibility of learning the
signal phase, thereby increasing the detectability of the signal in noise. For the same condi-
tions in noise alone no such possibility exists. Thus, for comparable a priori log-odds, the
observer is more likely to change his opinion for negative a priori log-odds than for positive
a priori log-odds. Therefore, the value contour graph is skewed toward negative L's for
SKEP in added WGN. .

From Figs. 3. 11 and 3. 12, we see that the optimum observation quality in nearly
independent of L, in the continue region, 1 for all values of AO. It is also evident that as
signal uncertainty increases, i.e., as AO decreases, the optimum observation length also
increases, all other parameters being equal. Intuitively, we might expect this to occur; to
extract the same amount of "information'" from an observation, for greater signal uncertainty,
we have to observe for a longer period.

The error performance of the ONP is given by the ROC curves of Figs. 3. 15 and
3.16 for W/c = 30. and W/c = 100., respectively. These ROC curves are identical to the
ROC curves of the fixed-observation procedure except they are truncated for L's not in the
continue region. The curves are labeled as in Section 3. 2 with AO’ the dispersion parameter

of the initial distribution, and D, the quality of observation.

1"Continue region” is a phrase used to denote the L region for which it is profitable to take
an observation.
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3.5 Derivation of the Deferred Decision Procedure for a Signal Known Except for Phase

In this section we present the analytic derivation of the equations necessary to
solve a deferred decision procedure. Quantitative results are not presented because, from
an engineering standpoint, the use of deferred decision in the SKEP problem does not appear
to be justified. The signal uncertainty that is due to unknown phase is a small uncertainty;
thus, the increase in performance of a deferred decision procedure over the ONP for the
SKEP problem is approximately the same as the increase in performance of a deferred de-
cision procedure, over the ONP for signal known exactly problem. The amount of computer
time necessary to obtain quantitative results in a deferred decision problem is considerable.
Since the results of the deferred decision SKEP problem would be approximately those of the
signal known exactly problem, which has been solved in great detail in Ref. 6, the numerical
calculations of the deferred decision SKEP problem have not been carried out. The equations
are derived here for completeness and to demonstrate the subspace separable property as
applied to the SKEP problem.

Let us consider first the determination of the separable subspaces and the rela-
tionship between the signal parameters in the phase distribution, {A.l, Bi} and the log-odds
ratio, Li’ on the separable subspaces.

Let n be the available number of observations in a deferred decision procedure.

By Bayes' Rule, we can write

Ln-l =L + fn L(r, 8) (3. 48)

Again using Bayes' Rule, the updating equation for the phase distribution is

ir, 0l g
g = L8 1) (3. 49)

Substituting the expression for likelihood ratio from Eq. 3. 49 into Eq. 3. 48 and rearranging
terms, we obtain

o(x, 69) £ (9)
L -L = {n

1oL @ (3. 50)

Solving for fn- 1(gz&), we obtain the following general expression used to determine the separ-

able subspaces
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£ 4(#) = exp[Ly - L _4]0(r, 6]9) - £ (9) (3. 51)

n-

To find the separable subspaces in the SKEP problem, substitute the expressions

for the probability density functions fn- 1(9)) and fn(gb) in Eq. 3. 5L

exp[A_ _;cos(B ;- )] b exp[A cos(B - $)]
2 LA ) = exp[L - L _ 1] exp[:— 3 +/Dr cos (8- qﬂ T IyA)

(3.52)

The last two numerator terms on the right-hand side of Eq. 3. 52 combine to form

[An_1 cos (B ¢)], cancelling the same term on the left side of the equation. Cancelling

n-1"

the 2 7's in the denominators on each side of Eq. 3.52, we can write

1 1
m = exp[Ln - Ln—l] I_O—(_A;j (3.53)

Taking logarithms of both sides of Eq. 3. 53 and rearranging terms, we have

fn IO(An) + Ln = {n IO(An— 1) + Ln—l (3. 54)

Equation 3. 54 implies that the relationship {n IO(Ak) + Lk is independent of the value of k;
therefore, we can set {n IO(Ak) + Lk equal to a constant Q, thereby defining a fixed relation

between Ak and Lk at any stage of the observation in a sequential observation procedure.

Q = {n IO(Ak) + Lk (3. 55)

The value of Q, in Eq. 3. 55, defines the separable subspaces of the SKEP prob-
lem assuming the phase distribution is of the form given by Eq. 3. 1. As we vary the values
of Q, we vary the relationship between the observer's log-odds ratio (his opinion of the pres-
ence of a signal) and the observer's opinion of the phase distribution (represented by the value
of AO). Consider two values of Q, one negative and the other positve, for a given phase dis-
tribution. A negative value of Q represents a situation in which the observer's opinion of the
presence of signal is less than even odds for the given phase distribution. The converse is
true for positive values of Q. The latter case represents a situation in which the observer's

opinion of signal presence is better than even odds for the given phase distribution.
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As explained in Chapter 2, the relationship between Ak and Lk throughout a series
of observations in a deferred decision procedure is locked together through the value of the
subspace, i.e., in such a manner that Eq. 3. 55 is always satisfied. This property is the
reason that it is possible to obtain a computing algorithm that is economically feasible to use.

To illustrate the subspace separability property, consider the solution of the
SKEP deferred decision problem from two initial states. First, by specifying the initial
phase distribution and log-odds ratio and second, by specifying the state by the value of Q
and the log-odds ratio. The first method of specifying the state of the decision process is
perhaps the more ""natural'” method. The idea of using a separable subspace to describe the
state of a detection problem is a new concept necessitated by the dependent SN observations.

Consider first a deferred decision procedure in which we specify our initial
state of knowledge by the log~odds ratio and the phase distribution, i.e., L and A. The
solution procedure is as de;s,cribed in Chapter 2. The solution process begins at stage
n = 0 for which the optimum expected loss is FO(L) = T(L).

max

The solution process continues by solving the Dlax = 1 stage. The a priori log-

odds ratio is L1 and the a priori phase f1(¢). The questions we must answer are: (1) for a

log-odds ratio of L., should the observation be taken? and (2) what is the average or ex-

1’

pected loss if the observation is taken? The average loss if the observation is taken is

GI(L)’ given by Eq. 3. 56.
Gy(L) = E{Fy[L+nt(x,0)]} +C = [ FolL + fn2(r, 0)] £;(r, 6) drdé +C (3. 56)

The observation is taken only if GI(L) is less than T(L). The intersections of Gl(L) and

n
i=1

constitute the optimum stopping rule for the deferred decision problem. The minimum of

T(L) determine the decision points in L, (l"l, Al). The set of decision points, (I“i, Ai)

Gl(L) and T(L) is denoted by Fl(L) and represents the minimum expected loss for one ob-
servation possible. We note that no use is made of the updated density function of phase
angle for D oax = 1 problems.

Consider next the Noox = 2 problem, 1i.e., there are at most, two possible ob-

servations before a terminal decision must be made. We have an a priori log-odds ratio
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and phase distribution, L, and f2(¢), respectively. As before we determine the average

loss if an observation is taken, denoted by GZ(L)'
Gy(L) = E{F,[L + 0 i(r, )]} + C = J P L+ tai(r, 6)] fy(r, 6) drdd + C (3.57)

The observation is taken only if GZ(L) is less than T(L): The optimum average loss function,

FZ(L)’ is
Fy(L) = min[Gy(L), T(L)] (3.58)

After one observation, we are in the Dax = 1 state. The log-odds ratio is now L1 and the

phase distribution is f1(¢). These quantities are obtained from L, and f2(¢) by Bayes' Rule.

L, = L2 + in U(r, 8) (8. 59)
o - Ll g (3. 60)

If the problem solution is to iterate, after one observation from noax = 2 problem, the state

of the problem must be mapped into the n x = 1, '"no-observation-taken" state previously

ma
solved. At stage n = 1 we solved the optimum expected loss function given any L1 and a
specific f1(¢). After an observation from the D oax = 2 state, the a priori log-odds, LZ’ is
transformed into Ll’ a random variable dependent on the observation (r, ). The a priori
phase distribution, f2(¢) is transformed into f1(¢), or, equivalently, A, is transformed into
Al(r, ), a random variable dependent on the observation r, 8. Because we have solved the
noax = 1 problem for only one phase distribution, the solution process does not iterate. In
order to iterate the solution, the entire L x A1 space must be known. As discussed in
Chapter 2, this is computationally impractical.

Suppose that instead of specifying the initial state in the "natural manner" i. e.,
by specifying L and the phase distribution, we specify the initial state in terms of the separ-
able subspace, Q and L. (We can obtain the phase distribution that corresponds to this
state. )

For Doax = 0 the optiﬁlum terminal loss function is again FO(L) = T(L).

Consider the solution for the Doax = 1 problem. The initial state is Q and L1 from which

e e s . s
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we can determine the initial phase distribution if we desire. (We need also the initial value
of B to express the actual phase distribution.) As before, the average look-ahead loss is
GI(L) and the optimum expevcted loss is Fl(L), the minimum of GI(L) and T(L).

Let us proceed now to the inductive step. For the N oox = 2 problem, the initial

state is L2 and Q. If an observation is taken, the average loss is G2(L).
Gy(L) = E{Fl[L +fn U, 6)]} + C (3.61)

The optimum expected loss is FZ(L) = min [GZ(L)’ T(L)]. We are now in the n = 1 state
(after the observation has been taken). The log-odds ratio is now Lg + fn 2(r, 6); however,
Q is the same since the subspace remains invariant under observation. The new value of
AZ’ i.e., Al’ is determined by the subspace specification Q through Eq. 3. 55. Notice that

Doax = 1, "no-observation-taken' problem state is identical to the n

ma = 2, "one-observa-

max
tion-taken' state. Thus, the solution process iterates in a one-dimensional subspace,
namely, in the L space.

It should be mentioned that the value of B in the phase distribution is never used
in the calculations. As we carry through the mathematics, the mode value, B, of the phase
distribution is integrated out of every expression in which it appears. This is a reasonable
circumstance when we consider that our problem is one of detection rather than identification
(or classification). It is the probability of the mode value, represented by A, rather thana
particular mode value that is important. This, of course, assumes that the initial value of B
assumed is consistent with the observer's opinion of the phase distribution. In order to ob-

tain the phase distribution at each stage of the observation, the value of B must be recorded

from observation to observation.

3.6 Summary of Chapter III

_ The problem of detecting a signal of unknown phase has been solved here for the
first time for: (1) fixed procedures in which the a priori phase distribution is other than
uniform, (2) the optimum nonsequential procedure, including the evaluation of the optimum
nonsequential detector, and (3) the deferred-decision procedure. Numerical calculations
have been presented for added WGN for (1) and (2) above in addition to several receiver de-
signs. The detailed conclusions of the evaluations and receiver designs are too lengthy to

be repeated here; they can be found at the conclusion of the various sections.



CHAPTER IV

DETECTION OF A SIGNAL KNOWN EXCEPT FOR AMPLITUDE

We consider in this chapter the detection of a signal known except for amplitude
(SKEA) in added WGN. The solution to this problem has been published only for the classi-
cal detection situation, i.e., a fixed-observation procedure, assuming the amplitude is
distributed according to a Gaussian or Rayleigh distribution, (Ref. 16).

4.1 Problem Statement and Notation
—- c7onlem platement and Notation

4.1.1 Preliminary Remarks. The amount of signal uncertainty can be varied

over a much larger range in the detection problem of a SKEA than is possible in the detec-
tion of a SKEP discussed in Chapter IIL. The possibility of using more sophisticated detec-
tion receivers for detecting a SKEA may, therefore, result in large increases in detection
performance when compared to the simple fixed-observation receiver of classical detection
theory. Large increases in detection performance over previous detection receivers do not
occur in the SKEP problem, because unknown phase represents a relatively small amount of
signal uncertainty.

Previous studies of the detection of a SKEA in noise are generalized here, for
the first time, to include (1) optimum receiver design and evaluation for the classical de-
tection problem for three classes of a priori amplitude distributions, (2) sequential realiza-
tions of the optimum receiver for fixed-observation procedures, (3) optimum receiver de-
sign and evaluation of the optimum nonsequential procedure (ONP), and (4) optimum receiver
design and evaluation for the optimum sequential procedure, deferréd decision. Comparisons
of the ONP detector and the deferred decision detector are also presented. The three classes

of signal amplitude distributi;ms considered are discussed below.

4.1.2 The Signal Amplitude Distributions. The functional form of the amplitude
distribution was chosen (1) to meet the closure condition under r.;bsez;vations in normal added
noise, and (2) to model as many different types of signal amplitude uncertainty as possible.

66 '
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The functional form of the amplitude distribution is given by Eq. 4.1, and is called the

Halsted distribution (Ref. 22).

2
f(a) = M pla) exp ah--a;-z-g] , a>0
= 0 , otherwise (4.1)
The quantity p(a) = AO a% + Ay aa-1 + .. 4+ An_1 a+ An is, in general, a polynomial in a.

We will confine our study to p(a) = a% M is the normalizing constant. for the amplitude den-

sity function.

The number of distributions included in the Halsted distribution is large. For
example, we have (1) for ¢ = 0 and h = 0, the Gaussian distribution, (2) for a = 0, the trun-
cated Gaussian distribution, (3) for @ = 0 and g = 0, the exponential distribution, and (4) for
a = 1land g = 0, the Rayleigh distribution. .

In applying the general theory to obtain numerical results, we will limit the
namber of signal amplitude distributions to three classes corresponding toa =0, a = 1,
and @ =h = 0 in Eq. 4.1. The latter distribution, a =h =0, is of interest in itself and as
an approximation for signal amplitude distributions for ¢ > 2. Each class of signal ampli-
tude distribution must be solved as a separate problem. Although the basic concepts in
detecting an unknown amplitude signal do not depend on the particular form of the amplitude
distribution, the detailed mathematics of the solution does depend on amplitude distribution.
Thus, we will present the mathematics for three problems but will concentrate on the trun-
cated Gaussian distribution, i.e., a = 0, in the numerical results.

Before continuing, let us derive the normalizing constants for the three classes
of diétributions and discuss some of the properties of each distribution.

For « = 0, the amplitude distribution is

f(a)

2
Mexp[ah-%g], a>0

=0 , otherwise (4.2)

Since f(a) is a probability density function, we have

>0 [>9] 2
f fa)da = M f exp ah-%g:l da = 1 (4. 3)
0 0
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Solving Eq. 4.3 for M, we obtain

h
J§¢<':‘:>
M = 1 %3 (4.4)

w0 2 =

where #(a) =(1//27)exp[- ¥ /2] and ®(x) is as defined in Eq. 1.9. The quantity &(x)/#(x)

occurs so often in the analysis of the SKEA problem that it is given a new symbol, w(x):

wx) = %% (4. 5)

Thus, for @ = 0, the amplitude distributionis given by

n

2
f(a) ——’E—exp ah-g’—z-g], a>0

w(h//8)

=0 , otherwise (4. 6)

Equation 4. 6 can also be written as

1

f(a)

—E ¢<——15a‘h ) , a>0
®(h/ /) 1//8 -

= 0 , otherwise (4.7)

Equation 4.7 is a convenient form since it points out that h/g and 1//g are approximately

the mean and variance of the distribution, respectively. The actual mean and variance of

the distribution, given below in Eqs. 4.8 and 4.9, respectively, are complicated functions

of h and g.
[+o]
E(a) = f a f(a) da =—-——-1———+E (4.8)
0 JE wh/ B B
o
E(a®) =bf a’f(a) da =-l;g1 é+.h_2%_17/>2£§) + ﬂ%\//zz—@ (4.9)
g g

We can find the normalizing constant for the a = 1 distribution in a similar

manner. This results in the probability density function of Eq. 4. 10.
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2
f(a) = hg a exp ah-f'Lé-g , a>0
1+ wh//E)
VE

=0 : , otherwise (4. 10)

The density funetion for @ = 1 possesses a first-order zero which means that the probability
of zero amplitude signal is zero. For the a = 0 density function, the probability of a zero
amplitude signal is nonzero. The latter distribution models a situation for a signal ampli-
tude close to zero. For o > 2, the Halsted distribution possesses higher-order contacts at
the origin. This distributions can be effectively modeled by the Gaussian distribution given

in Eq. 4.11.

f(a) = \/é_§Z$<-a—-:/h~/—__/_g)1 -0 <a< o (4. 11)
1//8

Graphs of the signal amplitude density functions for different values of @, h, and
g are included throughout this chapter as they occur.

4.1.3 Notation. The notation used in this chapter is consistent with notation
thus far introduced. The receiver input is denoted z(t) and the cause of z(t) is due to N or
SN. In symbols, we write z(t) = n(t) in N and z(t) =a u(t) + n(t) in SN. The quantity u(t) is
a unit signal. More generally, u(t) is a normalized autocorrelation, i.e., if a - s(t) is the
SKEA and s(t) is a known waveform, then

© a f s(t) - s(t) dt @ 12)
a u = .
NECREGES

The quantity a in Eq. 4. 12 is distributed according to the Halsted distribution. The receiver
input is assumed to be defined for all time t, 0 <t < T. The noise is assumed limited to
the receiver bandwidth, W cycles per second, with a noise power density equal to NO' The

observation, Z;s in noise alone are normalized such that each z; is N(0, 1).

4.2 The Average Lil_{elihood Ratio of a Signal Known Except for Amplitude

Optimum receiver design in fixed-observation procedures is based entirely on
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the average likelihood rattiol of the input observation. In this section, we derive the average
likelihood ratio for the three classes of signal amplitude distributions previously discussed.
These average likelihood ratios are, in turn, used to obtain optimum receiver designs for

fixed-observation problems. The results are also used in the design of optimum sequential

detectors.
In general, the average likelihood ratio of a distributed parameter variate is
2z) = [ 1(z]@) £(8) dO (4.13)
(3]
For a SKEA,
aZ
2€z|©) = 2(z]|a) = exp|az -—2—] (4. 14)

The right-hand equality of Eq. 4. 14 is evident when we note that the likelihood ratio, given
the amplitude, is merely the likelihood ratio of a signal known exactly. Thus, the average
likelihood ratio for the three classes of amplitude distributions can be found by substituting

the appropriate density function for £(8) in Eq. 4.13.

(1) For a =0, we have that the average likelihood ratio is

0 2 2
2(z) = f exp[az-%—]-—ﬁ——- exp[a.h‘%g]da
0 w(h//E)

=/E§_T R S w(l’-i—z—) (4. 15)

w(h//E) vE+ 1

(2) For a = 1, we obtain

o]

2 2
£(z) = f exp az-%—]- T 2 © a exp [ah_%g] da
0 1 +—— w(h//E)
E
= 5 1 °—-g—+1- 1+h+z w<h+z) (4. 16)
1+— wh//F) & JE+ 1 vg+1
JE

1Any monotone function of the likelihood ratio is equivalent to the likelihood ratio for detec-
tion. :
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(3) For the Gaussian case, we have

+0 2 5
i) = | eXp[az-%{l . {&_ exp [—%(a-ﬁ)]da

-0

2
/8 exp |-
Vg+1 u‘pl:Zg

{
L
%

T
E,-\
UQ:‘
St

N
|
~—) R
L J

(4. 17)

4.3 Optimum Receiver Design and Evaluation for Fixed-Observation Procedures

4.3.1 Receiver Design, Nonsequential Realization. The basis of optimum re-

ceiver design for a SKEA for signal amplitude distributions corresponding toa =0, a =1,
and o = h = 0 is given by Egs. 4. 15 through 4. 17, respectively. Because the functions w( )

and exp [ | are monotone in their arguments, the average likelihood ratio, for all three

signal amplitude distributions considered, is monotone with the quantity h + z. Thus, the

optimum detection receiver can be realized by calculating the quantity h + z for the three
amplitude distributions considered. One possible nonsequential realization is shown in
Fig. 4. 1. Tt should not be surprising that the optimum receciver is independent of the par-
ticular amplitude distribution chosen, since the physical problem in all three cases is

basically the same.

SN

/ HAH

Threshold
7, ———igp——— Z o Device p——

1
/ ngn

N

Fig. 4.1. An optimum fixed-time detector for a
signal of unknown amplitude.



72
Although we have determined the optimum detector for only three classes of
amplitude distributions, the results imply that the receiver of Fig. 4.1 is the optimum de-
tector for any amplitude distribution. This optimum receiver is an integrator of the input
followed by a threshold device.

4,3.2 Receiver Design, Sequential Realization. In order to effect a practical,

in terms of receiver memory, sequential realization of the average likelihood fatio, we
must demonstrate closure of the amplitude density function under normal observations. If
the amplitude density function is closed, then the total observation can be broken into several
smaller cascaded observations, and the average likelihood ratio of the total observation can
be calculated by updating the likelihood ratio of each smaller observation taken in sequence.
The closure property permits the updating process to be carried out by an adequate memory
receiver.

Let us demonstrate the closure of the amplitude distribution for @ = 0. The up-

dating process is achieved according to Bayes' Rule as given by Eq. 4. 18.

0(z] a

falz) = . f(a) (4. 18)

[ee]

[ t(zla) i(a) da
0

The quantities on the right-hand side of Eq. 4. 18 have all been previously calculated.

Substituting these quantities into Eq. 4. 18, we obtain

f(a]z) - exp[az - 32/2] . JE exp | ah - 9-125] (4. 19)

/T . 1 ) h+z w(h//@)
g+ 1 w(h/JE) /g+1

Combining terms in Eq. 4.19, we have

f(alz) = h+z exp[a(h+z)--azi(g+1):l, a>0
“(«/g”)

=0 , otherwise (4. 20)
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thereby demonstrating the closure of f(a) under normal observations. The observation maps
h-h+z,g~1, anda ~ a. Thus, there is one constant parameter, @, one deterministic

parameter, g, and one random variable, h. Generalizing the results of Eq. 4. 20 for k ob-

servations, we obtain

g
falk obs.) = —3&

2
hk exp[ahk-%—gk] , a>0
Bk
=0 R otherwise (4.21)
where
k
h = by + 2 2 (4. 22)
i=1
g, = gy + k . (4. 23)

and 8y hO are the parameters of the initial amplitude distribution.

The average likelihood ratio after two observations can be easily obtained from

the results of Eqs. 4.21 through 4. 23, using Eq. 4.24

B(zl, ZZ) = lZ(zzlzl) . Q(zl) (4. 24)

The conditional likelihood ratio ﬂ(zzlzl) is the likelihood ratio of Zy given the observation

215 and can be written as

()

of —2

g g

Uzy]2,) =/—-1——h2_ (4. 25)
g ( 1

Thus

2z
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(=)
of —2-
:/i_?_f:_g—z_ (4. 26)
? <.?_o_>
By

Generalizing, the likelihood ratio after k observations is

(=)
ol X
€0 VB

(zlk obs) = /-9 . k7 (4.27)
| )
8y

A sequential realization of the optimum fixed-observation detection receiver
can be obtained by using Eq. 4.27 as the basis of the design. Since w( ) is a monotone
function of its argument and =R is deterministic, hk is a monotone function of the likelihood
ratio of the input observations. Thus, the optimum receiver can be realized as shown in
Fig. 4.2. The performance of the receiver in Fig. 4.2 is identical to the performance of
the nonsequential realization presented in Fig. 4. 1.

The sequential realizations of the optimum receiver for the ¢ = 1 and Gaussian
amplitude distribution are the same as shown in Fig. 4.2. The average likelihood ratios

after k observations for the @ = 1 and the Gaussian amplitude distributions are given by

Egs. 4.28 and 4. 29, respectively.

h
1 + _li. w _L
0 VB Ve
£(zlk obs) = -g—— 0 T (4. 28)
k 1+ 9. w< -—0—->
VB )
' g h?* h?
!Z(zlk obs) = /-2 . exp z—gk— - 22 (4.29)
Sk k 0

the optimum receiver for a = 1 and the Gaussian distributions (amplitude) again calculates

hk which is a monotone function of the 1ikelihood ratio.
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k
A h + E zZ;
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1 1
/ Integrator T
N
h .

Fig. 4.2. A sequential realization of an optimum fixed-time
detector for a signal of unknown amplitude.

4.3.3 Evaluation of the Optimum Fixed-Observation Receiver. Evaluation of

fixed-observation procedures can be given in terms of the error performance of the proced-
ure. We present in this section the error performance for the ¢ = 0 amplitude distribution
in terms of ROC curves. The length of observation is measured in the number of observa-
tions taken rather than by the more general concept of observation quality. The reason for
this is discussed later in this section along with the units of the time scale used. The ROC

curves presented are parameterized according to the length of the observation, i.e., the

number of observations taken.

Consider the calculation of the false alarm probability P("A"lN). A false alarm

occurs whenever the log-odds ratio, at the time of termination, is greater than the threshold,
Ao, in noise alone. In symbols

P("A"|N) = P(L, > AOIN) (4. 30)
where

Lk = L0+£n !Z(zl, Zogy veey zk) (4.31)

Using Eq. 4.27, the above equation can be written as



of
5 | =)
Lk = L0 + £n 7 r |t | ———~ (4. 32)
(_0> v
)

The zero subscript again corresponds to the a priori state of the detection problem.

Substituting Eq. 4. 32 into Eq. 4.30, the probability of false alarm can be written as

h
w ————hk w _._.O
VB V&g
P("A"|N) = P4tn [——2L) S A 1 4ogp |20/

0" Ly IN (4.33)
Ve /%5

Because the logarithmic and w( ) functions are monotone in their arguments, Eq. 4.33 is
equivalent to

P("A"'N) = P(h, > h*[N)

(4.34)
where h* is the solution to the equation
n* By
W [ e—— W[ ——
By %y
fn = AO—L0+2n —_—— (4.35)
VB By
Equation 4. 35 is a transcedental equation and is solvable only by approximate methods.
Using the solution for h* from Eq. 4.35, the false alarm probability is easily obtained.
The quantity hk is defined by Eq. 4.22 as
)
= h, + Z. (4.22)
hk 0 ot
Thus
k
he - hy = .Z z; (4. 36)
i=1
k

In noise alone Z z; is distributed according to a Gaussian distribution with zero mean and
i=1
variance k. Thus, we have



1

- h h* - h h, - h*

3 3

The corresponding probability of detection, P("A"lSN), is found in a similar

manner. The detection probability that the log-odds ratio is greater than the threshold, AO’

in SN. This can be written as
p(rar|sn) = P(L, > Ay|SN) (4. 38)

The total log-odds ratio, L, , is again given by Eq. 4.22 and, as in the derivation of P("A"IN),

k’
the probability that Lk > A o S0 be wkritten

P('A"|SN) = P(h_> h*|sn) (4.39)

k
where h* is the solution to Eq. 4.35. The quantity hk - hO is defined in Eq. 4. 36 as Z z;-
i=1

The distribution of h,_ - h_ in 8N, if the signal amplitude is known is, therefore, Gaussian

k 70
with mean ka and variance k. Thus, the probability of detection, given the signal amplitude,
can be written as

E 3
hk'ho> h" -h,

P("A"[SN,a) = P
~k ~k

SN, a (4. 40)

The probability of detection for a distributed signal amplitude is found by a weighted average

of Eq. 4. 40 with the signal amplitude density function. That is,

0
P("A"|SN,a) = [ P("A"lSN, a) f(a) da (4. 41)
0
. k
Since Z z; is distributed N(ka, k), then the random variable, £, defined below is distributed
i=1
N(0, 1)
k
L %
i=1 : .
£ = -avk (4. 42)
k

Thus, we can rewrite Eq. 4.40 in terms of £ as

*

)
0
P("A"|SN,a) = P({ > ——— -a/E|[sN, 4.43
("a"[sN, a) (¢ = a ] a) (4. 43)
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From the expression for the conditional detection probability, Eq. 4.43, we {ind
P("A"ISN) by averaging P("A"|SN, a) with respect to the amplitude distribution. An equiva-
lent calculation of P("A"|SN) is obtained by averaging P("A" |SN, £) with respect to the £

distribution, i.e., the Gaussian distribution of zero mean and unity variance. In symbols,

we have

h*-h
P("A"|SN, £) = Pla > — 0. —i|SN, g> (4. 44)
NG'S NG3 )

The reason this alternate function for P(”A"ISN) is given is that the averaging
process for ¢ assumed known is easier and faster to perform on the IBM 7090. The proof
that the two formulations for obtaining P("A"ISN) are equivalent is given in Appendix D.

Continuing from Eq. 4. 44, we have that the probability that "' is greater than
any threshold, in this case (h* - ho)/k - E/Jl? is the integral of f(a) from zero to the thres-
hold value. The amplitude is assumed to be always nonnegative. Therefore, if the right-
hand side of the inequality contained in Eq. 4. 44 is negative, then "a'' is greater than thres-

hold with probability one. That is, if (h* - hy)/k < t//X, then

n* - hy ¢
Pla> — ———ISN = 1.0 (4. 45)
Vi
b* - hy, :
However, if T > % then
*
L - B Bo kh LE
- +0 g g
Pa>——k——°-i|s1\1 - J ho a| -9 ; VE las(e) (4. 46)
Jk -0 0 —
. /go v gO
h* - hq
Summarizing, P("A”| SN) is given by Eq. 4.45for £ > and by Eq. 4. 46 for
h* - hy k

£ <

vk

The preceding derivation pertains only to the a = 0 signal amplitude distribution.
A similar derivation must be performed for the ¢ = 1 and Gaussian signal amplitude distri-
butions. These derivations of P(”A"IN) and P("A"ISN) contribute little to a basic under-

standing of the evaluation problem, and so we have placed these derivations in Appendix E.
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4.3.4 Numerical Results of the Fixed-Observation Procedure. The association

of a cost with the observation process implies that the optimum receiver must balance the
observation cost and terminal decision error performance. The length of observation is,
therefore, an important explicit variable in discussing optimum detectors.

In the detection of a SKEP, we were able to define the length of observation in
terms of the observation quality, a measure of the separation between the noise alone and
signal-plus-noise distributions. In the problem of a SKEA, there is-no simple quantity that
can be defined as the quality of observation. We define the length of an observation in terms '
of the number of observations taken.

Let T be the observation time and W the receiver noise bandwidth. By the
Nyquist sampling theorem, it is necessary to sample every 1/2W seconds in order to com-

pletely describe the receiver waveform. Thus,

observation time
number of samples

sampling time =

L
2w

=3

(4. 47)

Since the noise power is equal to NOW’ Eq. 4. 47 implies that the length of an observation is

T = 315_15 (4. 48)
0

where k is the number of observ'ations.

The numerical evaluation of the probability of false alarm and probability of de-
tection as derived in Section 4. 3. 3 is accomplished by means of an IBM 7090 programmed
according to the algorithm presented in Appendix F. The results that follow pertain to the
a =0 signal amplitude distribution. Results for the o = 1 and Gaussian signal amplitude dis-
tributions are similar to those obtained for the a = 0 distributions.

Figure 4. 3 depicts the ROC curves for none truncated Gaussian signal amplitude
distributions. Several of the amplitude distributions are shown in Figs. 4.4 and 4.5. The
ROC curves represent performance of a single observation, i.e., k = 1.

The mean and variance of the ¢ = 0 amplitude distributions are approximately
h/g and 1/ /8, respectively. It would be very useful if we could order the ROC curves, in

terms of distance from the (0, 1) point, by some simple combination of the parameters h and g.
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- If these were possible, we could predict the performance order of a sgt of g = 0 distributions
and also predict the performance (approximate) of a = 0 distributions from the knowledge of a
small number of amplitude distributions. Unfortunately, the author has not been’ able to find
2 simple combination of h and g which can be used to order the ROC curves over the com-
plete range from (0, 0) to (1, 1). A few generalities can be made.

Referring to Fig. 4.3, we see that for the same approximate mean, h/g, the
ROC curves with the smaller variances, 1/ /g result in fewer detections for low false alarms
and greater detection for high false alarmé. As the mean value of the amplitude distributions
increase, the crossover point, wher_a the last statement is true, shifts toward lower false
alarm rates.

If observations of increasing longer length are taken of the same truncated ampli-
tude distribution, we obtain a set of ROC curves similar to those shown in Figs. 4.6 and 4. 7.
The parameter across the set of ROC curves is the length of observation, i.e., k=1, 2, ... .
The striking feature of the ROC curves shown in Figs. 4.6 and 4.7 is the manner in which
they converge as longer observations are taken. A comparable set of ROC curves for a signal
known exactly results in ROC curves that do not converge. The convergence of the ROC
curves implies that ratio of the mean to the variance of the distribution of the likelihood ratio
does not continue to increase at the same rate as the receiver input is observed for increasing
longer times.

The ROC curves of Figs. 4.6 and 4.7 will continue to be monotonely better as the
observation time increases. However, the rate of increase in performance is small. Let us
show that as longer observations are taken the ROC curves continue to improve monotonely.

If the amplitude of the signal is known, the ROC curves are normal. Consider
the rate of mérease in detections for a given false alarm probability, say, x = ®(). The
corresponding detection probability for a given amplitude and length of observatioﬁ is
y(x~|a, k) =& ’+ﬁn). The detection probability fo‘r’ an amplitude distributed according to
f(a) is 7 ‘ g '

s o] i
y(x) = of ®(\ +fka) f(a) da . (4.49)
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We will show that for any false alarm probability, ®(x ), the detection probability, ®(x +[ka),
can be made as close to one as we wish as we letk increase, and thus the integral

f oA +‘(Ra (a) da can be made as close to one as we wish. Formally we wish to show
that hm / O\ +JEa) f(a) da = 1. That is, given Agande > 0, there exists a number kO
such that for k > kO the integral f tI)(A +JKa) f(a)da > 1-¢. We can write

03]

¢ oC
Of (g +fka) f(a) da =Of o0, +an)f(a)da+Of o0, +ka) f(a) da -

C ]
Of () f(a)da+cf o, +ke) f(a) da

AV

v

C
qa(xo)oj f(a) da + &(r +ﬂEc)f f(a) da

v

@(AO) F(e) + @(AO +[ke) [1 - F(c)] (4. 50)

where F(c) is the distribution function of f(a). Rewriting Eq. 4. 50, we have

je0]
Of ®(r, +Ka) f(a) da > 20y +fke) - Flc) [@(r, +[Ee) - 20 g)] (4. 51)
The quantity in brackets is less than or equal to one, and thus if we replace the brackets by

one we insure the inequality. Thus we have

o]

j o(, +/ka) f(a) da > (x o Ee) - F(c) (4. 52)

Choose ¢ > 0 such that F(c) < e/2; then choose k =k, ¢, €¢) such that @(A +jl-<c) >1-¢€/2.
This demonstrates the monotone increase of the ROC curves with increasing k.

The most significant consequence of the convergence of the ROC curves is that

it is profitable to observe for only a relatively short time in the SKEA problem. This con-

clsuion will become more apparent when the results of the dptimum nonsequential procedure

are presented.

4.4 The Optimum Nonsequential Observation- Decision Procedure

4.4.1 Analytic Derivation. We consider in this section the derivation of the

optimum nonsequential procedure (ONP) for the case of a SKEA. This is the same observa-

tion-decision procedure as described in Section 3. 4. 1. In the interest of continuity and
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clarity, we will derive the ONP in detail for the unknown amplitude problem. There are
three mathematical problems to solve, one for each amplitude distribution. A detailed
derivation of the ONP is given for the ¢ = 0 amplitude distribution and only the results are
summarized for the ¢ = 1 and Gaussian amplitude distribution.

The ONP is a fixed-length observation procedurc optimized by the correct choice
of the observation length. The observation length is based upon the relevant parameters of
the detection problem prior to the actual start of the observations.” This information includes
(1) the a priori amplitude distribution, (2) the a priori log-odds ratio, (3) the cost of a single
observation, (4) the losses due to terminal decision errors, (5) the observation statistics, |
and (6) the total available observation time.

The optimum observation length is obtained by determining the maximum of the
value for an additional observation in terms on the parameters described in the previous
paragraph. The maximum of the value function, as a function of observation time, is deter-
mined, as in the SKEP problem, by differentiating the value function with respect to observa-
tion time. The differentiated expression is set egual to zero, and the resultant equation is
solved for the optimum observation time.

The value of an observation is defined as the amount to be gained by observation
and is the optimum terminal loss function, T(L), minus the average look-ahead loss,

G(L; k; g, h, @). L is the a priori log-odds ratio, k is the available number of observations,
and g, h, and ¢ are the signal amplitude distribution parameters. Referring to Eqs. 3.38
and 3. 39, the value of an observation can be written in terms of probability of detection and

the probability of false alarm as

V(L, k) = __E___L P(HAHISN) - W T P(HAHIN) - Ck’ L < AO
1+e l+e
W 1t 1 Tt "
= ——1 P("B"|SN) + 7 P(B"IN)- Ck, L > A (4. 53)
l+e l+e
Consider the determination of the optimum observation length for L < AO. (The

same logic applies for L > AO. ) From Egs. 4.37, 4.45, and 4. 46, we obtain the expressions

for P("A”[SN) and P("A"|N) in terms of the parameters of the observation procedure.
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Because of the complicated functions, the differentiation of Eq. 4.53 with respect to observa-
vtion time was carried out numerically by use of an IBM 7090. The program used is given in
Appendix F.

Before presenting the numerical results of the ONP, consider the manner in
which that state of ONP is given. In order to compare the results of the ONP with deferred
decision, a description of the state of the decision problem must be given in terms of the
separable subspaces. Thus, the numerical results of the ONP will be presented for a state
specified in two ways: (1) by specification of the separable subspaces and the log-odds ratio,
and (2) in the more "natural” manner, by specifying the amplitude distribution and the log-
odds ratio. Rather than deri've the definitions of the separable spaces here, we present the
definitions below and leave the derivations for Section 4. 5.

The separable subspaces for the ¢ = 0 signal amplitude distribution are given by
the value of Q as defined in Eq. 4. 54.

Q = L+4n <-Lf— > (4. 54)
w(h//B)

For the @ = 1, signal amplitude distribution the value of Q is defined as

Q = L+!Zn( T g ) (4. 55)
1+— w(h )
+,/E"w YALS '

And finally, for the Gaussian amplitude distribution, the separable subspaces are defined by

2
Q=L+£n/——g—g (4. 56)

4.4.2 Numerical Results of the Optimum Nonsequential Procedure. The numeri-

cal results of the ONP are best presented in the form of the contour graph for the value of
observation as in the SKEP problem. Each contour graph is parameterized by the error
loss-to-observation cost ratio, W/C, and amplitude distribution. The amplitude distributions
are defined in two ways: (1) by specification of the actual distribution through the set of
parameters (e, g, h), or (2) by the specification of the separable subspace Q, the log-odds
ratio, and g. As the former method of description is more natural and intuitive, let us con-

sider the value contour graph from this point of view first.
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Each class of amplitude distribution, i.e., a =0, a = 1, and the Gaussian case,
presents its individual problems in the calculations of quantitative results. Results are
grossly the same for the.three classes of amplitude distributions studied. Thus, extensive
computations are presented only for the o = 0 signal amplitude distribution. The general
discussions and conclusions concerning the numerical results of the o = 0 distribution carry
over to the a = 1 and Gaussian distributions.

I the state of the decision problem is given in terms of the o = 0 amplitude dis-
tribution, i.e., gandh, L, and W/C, we obtain the value contour graphs shown in Figs.

4.9 through 4. 14. In Figs. 4.9 through 4. 14, the zero value contour is plotted as a function’
of the number of observations and L'for W/C = 30. The approximately horizontal dotted line
in each graph is the optimum observation length, as a function of L, for the minimum average
loss for a terminal decision. Each value contour graph corresponds to a different o = 0
amplitude distribution. Several of the amplitude distributions are shown in Figs. 4.4, 4.5
and 4. 8.

Several conclusions can be drawn from the set of value contour curves shown in
Figs. 4.9 through 4.14. For example, the optimum observation length is relatively small
for all the amplitude distributions of Figs. 4.9 through 4,14. The corresponding ROC curves
shown in Figs. 4. 15 through 4. 20 exhibit a convergence phenomena as observations of in-
creasing longer length are taken. This implies that it does not pay in decreased error per-
formance to take proportionately longer observations, since the rate of increase in error
performance is small.

We note that as the mean of the amplitude distribution increases (for the same
variance), the zero value contour graph expands. Thus, the zero value contour forh =3
and g = 1 is larger than for h = 2 and g = 1. This can be explained intuitively by the fact
that as the mean becomes larger, the uncertainty of presence or absence of the signal de-
creases, and whenever "'cause uncertainty" decreases, the zero value contdur increases in

size. (This can also be seen in SKEP pfoblems. See Fig. 3.11.)
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Fig. 4.15. The ROC curves for the ONP for a SKEA with
parameters W/C =30, h =g =1, and a = 0.
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Referring to Figs. 4.9 through 4. 14, we note that the zero value contour is
skewed toward negative log-odds ratio. As explained in Section 3. 4.2, an observation is
profitable only for those situations in which the appropriate terminal decision is not the
terminal decision dictated by the original log-odds ratio. In other words, observations are
profitable only when it is possible to change the observer's opinion of the cause of the input.
The skewness toward negative log-odds ratio in Figs. 4.9 through 4. 14 results because
there is a greater indication of signal-and-noise for negative L's than there is of noise alone.
Thus, if we compare amplitude distributions with the same mean but different variances,
the distributions with the larger variances should be skewed farther toward negative L's.
This last statement is verified by comparing the value contour graphs forh=g =1, h=¢g = 2,
andh =g =3.

The ROC curves of Figs. 4. 15 through 4. 20 show the trace of the zero value
contour. (In two of the figures only one side of the trace falls within the scale of the graph. )
The trace of the zero value contour shows the region of the ROC for profitable operation.
This operating region is relatively small and is confined approximately to the region centered
about the negative diagonal.

Specifying the state of the decision process in terms of the separable subspaces,
Q, we obtain value contour graphs shown in Figs. 4.21 through 4.26. The contour graphs
are plotted as functions of the number of observations and the log-odds ratio. For each log-’
odds ratio and value of g, the corresponding amplitude distribution can be found by solving
for the value of h through the definiing equation for the subspace. The numerical results
displayed in the graphs of this section were obtained by means of an IBM 7090 programmed
according to the programs of Appendix C.

The value contour graphs obtained by specifying the initial state in terms of Q
and g skew toward positive L's. Recall that when the state is given in terms of h and g, the
value contour graphs skew toward negative L's. However, the same explanation can be given
for both phenomena. A few of the amplitude distributions for the ROC curves of Figs. 4.21
through 4. 26 are shown in Figs. 4. 27 through 4.31. Because of the subspace specification

each log-odds ratio, for fixed g, results in a new amplitude distribution. We see thatas g
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increases, for a given L, the mean of the signal amplitude distribution shifts toward zero
and the variance decreases. As the log-odds increases, for fixed g, the mean of the dis~
tribution shifts away from zerc. The latter statement implies that a positive value of L is
more likely to be changed by observation toward negative L's than vice versa, because noise
alone is a more definite observation than is signal-plus-noise. This is a result of the Q
surface curvature. On a Q surface the distribution of amplitude and the opinion of presence
of a signal are not independent. If the log~odds ratio is negative, then the amplitude dis-
tribution shifts toward very small amplitude distributions. On the other hand, if the log-
odds ratio is positive, the amplitude distribution tends to be displaced from the origin.

Referring to the value contour graphs of Figs. 4.21 through 4. 26, we see that
as g increases, for Q fixed, the value contour graphs shrink. This is caused by a shift of
the mean of amplitude distribution toward zero and a decrease in the variance as g increases.
The observer's opinion of the signal amplitude is, that if the signal is present, it is small.
Small signal amplitudes mean that there is less possibility of the observer changing his
a priori log-odds ratio. Thus, it becomes less profitable for one to observe for large
valués of L, positive or negative, as g becomes larger.

The concept of Q surfaces is new, and thus it is helpful to examine many combi-
nations of the parameters Q, g, and L to obtain an intuitive understanding of Q surfaces.
-For example, if the value of g is held fixed and the value of the Q surface is decreased, we
obtain results similar to those depicted in Figs. 4.30 and 4.31. We see that as the value of
Q decreases, for a given g value, the amplitude sigqal distribution becomes less difuse. It
follows that it is more profitable to observe as the value of Q decreases, if all other param-
eters remain the same. Therefore, the value contour graphs should increase in size as Q

decreases in value. This is illustrated in Figs. 4.25 and 4. 26.
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The corresponding ROC curves for the value contour graphs of Figs. 4.21 through
4.26 are shown in Figs. 4.32 through 4.37. We again note the convergence phenomena of the
ROC curves as longer observations are taken. The dotted lines on Figs. 4. 32 through 4. 37
are the trace of zero value contour and they are a function of the W/C ratio. If the W/C
ratio increases, there is a corresponding widening of the zero value trace. In Fig. 4.32 the

optimum ROC curve results from observing the optimum amount of time as determined from

the value contour graph of Fig. 4.22. Notice the optimum ROC differs greatly from a

normal ROC. (A normal ROC plots as a straight line with a slope of one.)

4.5 Deferred Decision Theory for a Signal Known Except for Amplitude

4, 5.1 Derivation of the Deferredk Decision Procedure. The derivation of the

optimum sequential procedure for an unknown amplitude signal parallels our previous deri-
vation in Section 3. 5 concerning the SKEP. Numerical results are obtained by means of an
IBM 7090 as hand calculations are too tedious and long to be of any practical use. FEach class
of amplitude distribution creates its own special problems both with the mathematics and
with the numerical computations. We have completed derivations for the @ =0, o = 1, and
Gaussian signal amplitude distributions. However, in order to facilitate easier reading of
this material, we will present only the detailed mathematics and computations for the ¢ = 0
signal amplitude distribution. The corresponding derivations for the ¢ = 1 and Gaussian dis-
tribution are relegated to the appendices. Gross characteristics of the decision problem do
not depend on whether the analytical form of the amplitude distribution is the ¢ =0, ¢ = 1, or
Gaussian distribution.

As we have discussed previously (see Séctions 2.4 and 3. 5), to effect an economi-
cal computer solution, the state of a sequential procedure must be specified in terms of the
separable subspaces. We have already defined the separable subspaces for the three ampli-
tude distributions under consideration in Section 4. 3. 3. The derivation of the Q surface for
the @ = 0 amplitude distribution follows. The derivations of the separable subspaces for g = 1

and the Gaussian amplitude distribution are given in Appendix G.
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Fig. 4.32. The ROC curves for the ONP for a SKEA with
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The @ surfaces determine the relationship betweeen the log-odds ratio and the
amplitude distribution at any stage of observation. The functional form of this felationship
is invariant for a given axﬁplitude distribution. If nis the available number of observations
in a deferred-decision procedure, then by Bayes' Rule, the log-odds after observation,

Lo-v is
Ln_1 = Ln + 0n 0(z) (4.57)

Applying the Bayes' Rule again, the updated amplitude distribution is
_ _ 4(zla) :
fn- 1(a.) = flalz) = @ fn(a) (4. 58)

Substituting the expression for the likelihood ratio from Eq. 4.57 into 4. 58 and rearranging

the terms, we obtain

i(z|a) - fn(a)
Ln-l - Ln = (n ——-f-—-—'(r (4. 59)

Solving for the a posteriori amplitude distribution, fn_ 1(a), we obtain the following general

expression for determining the separable subspaces.

i @) - exp[Ln- Ln_l] tzla) 1 (@) (4. 60)

i the expression for the probability density functions and the conditional likelihood ratio are

substituted into Eq. 4.60, we obtain

azgn-l a’ azgn
Mn_lexp[ahn_l- ) ] = exp Ln- Ln—l] exp Ez - —2-—] Mn exp Elhn- 3 ]

(4.61)

where Mn- 1 and Mn are the normalizing constant for the density functions. Equation 4. 61

can be reduced to

fInM 4+ L1 = M+ Ly (4. 62)

Equation 4. 62 implies that fn M + L is independent of the stage of observation,

and thus, defines the invariant relationship between L and amplitude distribution parameters,



124

g, h, and o. Recalling that the normalizing constant M is equal to g w(h g), we have

Q = L+tn [—& (4. 63)
w(h//E)

The value of Q as defined above specifies the separable subspaces for the @ =0
distribution. The value of Q determines the relationship between L and the amplitude param-
eters, h and g. By appropriate choice of the Q surface, we can model various relationships
between L and the amplitude distribution. For example, if we wish to model a problem in
which the signal amplitude is fairly well known, (a large ’mean value and small variance),
then we would choose a large negative value for Q and a large positive value for g.

It is of interest to determine the value of Q corresponding to a signal known ex-
actly so that past work in sifple deferred decision theory can be related to the present work.
To determine the Q value of a signétl known exactly, consider the functional form of the signal
amplitude distribution and the role of the parameter g. The quantity g is the reciprocal
variance of the amplitude distribution, and thus large values of g correspond to well-defined
amplitude distributions. Thus, in order to determine the Q value for a signal known exactly,
let the value of g approach infinity while the mean of distribution remains finite. The Q value
resulting from the above procedure is a good approximation to the Q surface for a signal
known exactly. Using the approximation that w(h/,/g) = —%;T- expl:g—zg] , we obtain, by sub-

W
stituting into Eq. 4. 63, the following approximate formula for Q.

2

1 h'
Q = L+E£ng——2§+ln\/ﬁ
= L+-2]¢ ing -%(mean)zg+£ns/r‘n T (4.64)

As g increases, the value of Q decreases, because the logarithm of g is domi-
nated by the term% (mean)® g. We conclude from this heuristic discussion that the signal
known exactly surface is a Q of minus infinity. The above discussion is not rigorous, how-

ever, it does point out a useful rule of thumb: as Q becomes more negative the amplitude

distributions become less diffuse. This fact was also noted in the discussion of the numerical

results of the ONP in Section 4. 4. 2.
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In Section 3. 5 we showed that the state of the decision procedure must be given
in terms of Q, the separable subspaces, to obtain an iterative procedure in terms of a one-
dimensional expectation. It is easy to prove this same result for the unknown amplitude
problem. Rather than repeat the proof for the unknown amplitude problem, we refer the
reader to the similar proof for the unknown phase problem given in Section 3.5. The deriva-
tion of the deferred-decision procedure for a SKEA with the state specified in terms of Q
follows.

We begin the solution for a state with no available observations. The optimum
average loss for a terminal decision is, as derived previously, the terminal loss function
T(L) = FO(L).

Consider next the optimum procedure for one available observation. The state
of the decision process includes n = 1, w/C, AO’ L, g, and Q. Our problem is to decide
whether to take an observation or to make an immediate terminal decision such that average
loss for terminal decision is a minimum. If we take the observation, the average loss is
equal to (1) the cost of the observation, and (2) the average of the optimum loss function of
stage n - 1 weighted with respect to the probability density function of the observations.

This average look-ahead loss is denoted GI(L) for stage n = 1.
G,(L) = E{FO[L+ fn f(z)]} + C (4. 65)

The observation is taken only if Gl(L) is less than average loss for an immediate decision
(terminal), T(L). The intersection of GI(L) and T(L) define two decision points in L, namely,
1“1 and Al. The set of decision points, (ri”Ai) 121 , consitutes the optimum stopping rule.
The minimum of GI(L) and T(L) is denoted by Fl(L) and is the optimum average loss for

or;e available observation. The signal amplitude distribution can be found from the initial
state {L, g, ¢, g - g} by using Eq. 4. 63 to determine the corresponding value of h. The
quantity g, - & is another equivalent method of specifying the available number of observations.
For g -8 equal to one, i.e., one available observation, no use is made of the updated ampli-
tude distribution.

Suppose there are two available observations and the initial state is LZ’ 89> Q,

gt -8y = 9. If an observation is taken, the average loss, GZ(L)’ is
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Gy(L) = E{FI[L +4n0(z)]} + C (4. 66)

The observation is taken only if GZ(L) is less than T(L). The intersection of GZ(L) and T(L)
determine the decision points, I'y and By The optimum average loss function is F2(L) and

is given by

Fo(L) = min[Gy(L), T(L)] (4.67)

2

After one observation we have the possibility of one more observation. The log-
odds ratio after one observation is L1 = L2 + fn £(z). The value of Q, however, does not
change since the decision processes can never change the initial Q state variate. The value
of g9 becomes gqas given by gy =89 * 1. From the above discussion, it is clear that the
.gt - gy = 2 and "one-observation-taken' state is identical to the g 817 1 and ""no-observa-
tion-taken' state. Therefore, the solution procedure iterates in the one-dimensional L

space. The general set of iterative equations necessary to solve the deferred-decision

problem is

L 4 =L +n@) (4. 68)

g 1 = g +1 (4.69)

G (L) = E{Fn_l[L+ fn 2(z)]} + C (4.70)
F_ (L) = min[G (L), T(L)] (4.71)
i@ L(zl2) £ (a) (4.72)

) [izla)t @) da "

Consider the application of the general Eqs. 4. 68 through 4. 72 to the specific
problem of a SKEA for a signal amplitude distribution corresponding to @ = 0. The initial
state of the decision process for one available observation is {Ll, g1 Q, g~ 81 % 1;,w/C,
AO’ a} . The amplitude distribution is specified completely by calculating h from the de-

fining equation for Q, Eq. 4.63. Thus

h o= /g o [VE e (L - Q] (4.73)
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The log-odds ratio after one observation is LO and is given by

Ly = L1+£ni(z)
2 h1+z
v Ve +1
= L1+£n = + in | ———
w—l , .g1+i
%3
h1+z
w—_
Jg1+1
=Q+ In| ————— (4.74)
ng-t-l

Using Eq. 4.74, we can determine the average loss of taking one observation, i.e., GI{L),
by

-~

[ee]
G,(L) =_£ T<Q+En f,z)dz+C (4.75)

where il(z) is the probability density function of the observations. This density function can

be written as

o ;

1) = —25 [ 1SN, 2)1(a) da + —1— 1z N) (4.76)
l+e 0 l+e

From the assumptions of the problem, the distribution of z in noise alone is normal with

zero mean and unity variance. . The distribution of z in signal-and-noise, given the ampli-

tude, is normal with mean equal to the given amplitude and unity variance. Thus, Eq. 4.76

can be written as

fl(z) =

1 2 VB hy 1 ;
~ ¢(z - a) ¢(a/B;-—) da+——— d(z)
L f ( : 51) 1+ eL 2

l+e 0 t:.(hl)
: , g

1Tl'm.- variance of the noise may be any number without complicating the problem. We have
normalized the variance for convenience.
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- °1 o) (2| | e (4.77)
1+ g+l wil_) Ve, + 1 1+el
Ve

The average look-ahead loss is obtained by evaluating Eq. 4.75 where fl(z) is
given by Eq. 4.77. The optimum average loss is then obtained by choosing the minimum of
Gl(L) and T(L), i.e., Fl(L) = min [GI(L)’ T(L)].

Generalizing the results of stage g -8 = 1, we have for k available observations

and a state {Q, Lk’ 8 = 8_ 1-1, 8 -8 = k}, the following iterative equations.

Skt
Ve + 1
Ve + 1

Lk-l = Q+4n (4.78)

GﬂL):_f F_{Q+fn|—F—= f(z) dz + C (4.79)

l+e

hk+z) + 2z) (4. 80)

F (L) = min[Gy (L), T(L)] (4.81)

The inters'éction of Gk(L) and T(L) defines the decision boundary points which
are used in determining the correct response of "A", "B", or "continue." The set of deci-
sion boundary points for k = 1, 2, ..., n constitutes the optimum stopping rule. Note that
the decision boundary is intimately involved with the initial state. In simple deferred-deci-
sion theory the stopping rule is a function of the available observa.tion time and the costs in-
volved in the detection problem. However, in composite deferred-decision theory, the

stopping rule is not only a function of the available observation time and the costs, but it is
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also a function of the initial probability distribution (as specified as Q, g, and L) and the

observation time already used. These latter two dependencies are a direct result of the

learning or adaptation thaf occurs in the observation process.

The reader may question where use is made of the updated amplyitude distributions.
Overt use of these distributions is not necessary because of the closure property, and thus it
may appear, at first glance, that there is no updating process. Equations 4.78 and 4. 80,
however, are a direct result of updating the signal amplitude distributions.

The numerical results presented in Section 4. 5. 3 were obtained by a computing
algorithm programmed for an IBM 7090. The program, given in Appendix H, computes the
average risk functions and decision points in h space rather than L space because computa-
tion in h space requires a direct interpolation of the w( ) function rather than an inverse
interpolation. The corresponding L values are found in the program by use of Eq. 4. 63.

For a detailed derivation of the deferred-decision procedure for the @ = 1 and
the Gaussian signal amplitude distribution, the reader is referred to Appendix I.

4.5.2 Evaluation of the Deferred-Decision Procedure for a Signal Known

Except for Amplitude. The evaluation of a deferred-decision procedure is given by the

average loss for a terminal decision as a function of L. It is helpful for an intuitive under-
standing of the evaluation to decompose the average loss into the average time spent in ob-
serving and the average error performance obtained in making terminal decisions. The
latter quantity is displayed by means of ROC curves and the former is given by the average
number of observations (ANO). The complete evaluation requires a separate ROC and ANO
curve for each stage of the observation procedure. The ROC curves are calculated as a
function of L and presented as an implicit function of L. The ANO curves are presented as
an explicit function of L.

We can solve for the ROC and ANO curves in a manner similar to that used for
obtaining the optimum average loss functions. The solution is again an iterative type of
solution solved, first, for one deferral, then two deferrals, etc. The derivations of the
ROC and ANO curves follow.

The specific functions of L which describe the ROC at stage n of the observation
procedire are denoted by yn(L) and xn(L). The function yn(L) is the probability of re~

sponding "A" given that SN is the cause of the receiver input and Lrl = L. Similarly, xn(L)
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is the probability of responding "A" given that N is the cause of the receiver input and Ln = L.

The basic iterative equations for the ROC curves, with n possible deferrals, are

y (L) =0 , L < Fn

= Sy qlLeme@]q@lsme , To<L<a

=1 ,  L>a (4.82)
x (L) =0 , L<r

= S xyLeme@l e T <L <a

=1 ;o Lzl (4.83)

The quantities (Fk, Ak) kl_ll are the optimum decision boundaries obtained from the optimum

average loss functions. The probability density functions fn(z |N) and fn(Z[SN) are defined

as in Section 4. 5. 1. These equations are repeated below.

£ (z|N) = exp ( - 22—2) (4. 84)

2

e h
f (z] SN) fn . #(z) -w( “+Z) (4. 85)

:\/gn-{-l 3 _h_l;l_ Jé——l
Ve

+
n
The specific quantities used to define the average time spent in observing, i.e.,

the ANO curves, are denoted by un(L) and vn(L). The function un(L-) is the average number
of observations undgr the conditions:SN is the cause of the receiver input, there are n de-
ferrals, and Ln = L. The function vn(L) is the average number of observations under the
conditions:N is the cause of the input, there are n deferrals, and Ln = L.

The basic iterative equations for the ANO functions, with n deferrals, are

il
o

a (L)

1+ [u_ [L+1n0(z)] 1 (z|SN) dz : (4. 86)
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and

[}
<o

v, (L)

it

1+ f vn—l[L + In £(z)] fn(z|N) dz (4. 87)

where fn(le) and fn(zlSN) are defined by Eqs. 4. 84 and 4. 85, respectively.

Equations 4. 82, 4. 83, 4. 86 and 4. 87 can be used to find the ROC and ANO
curves at any stage of observation if the ROC and ANO curves for the n = 1 stage are known.
For n = 1, the ROC curves are identical to the ROC curves derived in Section 4. 3.3. For
n = 1, the ANO functions are equal to zero for L < 1"1 and L > A1 and are equal to one for
L in the continue region. Equations 4. 82, 4.83, 4.86 and 4. 87 were solved iteratively in
the same program that determined the optimum average loss curves given in Appendix H.
The average loss curves were found first to determine the decision points. These were
then used in the determination of the ROC and ANO curves. The computational program is
explained further in Appendix H.

The derivations of the optimum average loss functions and the ROC and ANO
curves for the ¢ = 1 and Gaussian signal amplitude distributions are similar to the deriva-
tions presented for the ¢ = 0 distribution. The derivations for these amplitude distributions
are given in Appendix I, since they do not serve to increase the reader's understanding of

the basic detection problem.

4.6 Numerical Results of the Deferred-Decision Procedure for a Signal Known Except for

Amplitude

The numerical results of deferred-decision theory for a signal known except for

a,mplitucie are divided into two parts. The first section is concerned with the optimum deci-
sion boundaries and the related performance of the optimum receiver. The second section
is concerned with comparisons of the optimum deferred-decision receiver and other subopti-
mum receivers.

4.6.1 Decision Boundaries of the Optimum Detection Receiver for a Signal

Known Except for Amplitude. The optimum decision boundaries, for a composite signal

hypothesis, are a function of the initial state of the detection problem which, for a SKEA, is
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givenby {Q, L, g, g - g}. The last statement implies that the decision boundaries are a
function of the a priori signal amplitude distribution (because of the dependence of the state
onQ, L, and g). Thus, for eacha priori signal amplitude distribution, there is a set of de-
cision boundaries. Therefore, to completely describe the optimum stopping rule for a given
w/C, g, and 8, - &, we must solve the continum of all Q surfaces in the range of intérest.

In the specific case of a distributed amplitude problem, the decision boundaries can be repre-
sented as a three-dimensional solid with axes L, g, and h. Different values of @ cut-the
solid into two dimentional surfaces. The extent of the surface, in terms of L, g, and h,
constitutes the optimum stopping rule for a given Q ;surface. The value of W/C determines
how large the three-dimensional solid is in the L and h directions.

Using what we know of the optimum stopping rule, the optimum detection re-
ceiver for a composite signal hypothesis takes the form shown in Fig. 4.38. In previous
optimum receiver designs, as shown in Figs. 1.1 through 1.3, the optimum recelver con-
sists of a likelihood ratio processor and a stopping rule. In the case of a composite signal
hypothesis, a further complication of the receiver is necessary. The input, z, is used in
determining not only the likelihood ratio, but also in determining the a posteriori amplitude
distribution. The latter process is necessary for calculating the average likelihood ratio
and for determining the decision boundaries.

The modification of the signal parameter distribution with each succeeding ob-
servation is achieved in accordance with Bayes' Rule. The continual updating process is
what many authors term learning or adaptation. Wg see that this process is a natural con-
sequence of the design of the optimum deferred-decision procedure rather than a precon-
ceived concept. In other words, the fact that the learning or adaptation process is necessary
is a natural outgrbwth of our optimum receiver and not a planned result that the optimum
receiver must be adé.ptive. ’

The updating process of the signal amplitude distribution also furnishes the ob-
server with a classification output. The classification output is another natural consequence
of the solution procedure and not é.n overt design objective. In the remainder of this section,

we are primarily interested in the optimum stopping rule.
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The optimum stopping rule for a SKEA can be representéd as a three-dimensional
solidin L x h x g space, as we have previously mentioned. Because we describe the state of
the problem in terms of {Q, L, g, 8 - g}, the value of h (and hence, the amplitude distribu-
tion) must be found from the defining equation for Q. The more natural method of describing
the state is in terms of the amplitude distribution and the ‘log-odds ratio, i.e., in terms of
{L, g, h, g - gt. If one wishes to specify the state by {L, g, h, g - g}, then it is necessary
to solve the problem in tefms of {Q, L, g, g - g} and use the correspondence between Q and
has defined by Eq. 4. 63. ‘ '

A degree of understanding Q surfaces can be obtained by plotting the surface Q-L

as a function of g and h. From the defining equation for Q, we have

Q-L = ¢n (—E-—" ) (4. 88)
w(h//B) /
Plotting Q-L versus h and g, we obtain the graph shown in Fig. 4.39. Suppose, for purposes

of discussion, the log-odds ratio is zero. We see, from Fig. 4.39, that as Q becomes more

negative, the Q surface approaches a plane, and thus becomes independent of the parameter h.
This collaborates an earlier discussion given in Section 4. 5. 1 showing that the signal known
exactly surface is Q equal to minus infinity. All Q surfaces for the @ = 0 amplitude distribu-
tion are a translate of the surface shown in Fig. 4.39 along the Q-L axis.

The optimum stopping rule for a specific case of the ¢ = 0 amplitude distribution
is shown in Fig. 4.40. The parameters of the problem are W/C = 100, 4, and g =21. The
axes are L, h, and g, and physically represent the observer's opinion of the cause of the in-
put, the value of the integrated input, and the time observed, respectively. The stopping
rule shown in Fig. 4. 40 was obtained by means of an IBM 7090 programmed according to the
program given in Appt.andlx H. The Q surfaces shown correspond to Q = +1, 0, -2, and -6.

The Q surface corresponding to a’ value of -6 is the upper surface and exhibits
the least amount of curvature. As the value of Q becomes more positive, the signal ampli-
tude distribution becomes more diffuse, and tﬁe L range for which it is profitable to observe
decreases. The spacing of the approximately vertical sides of the stopping rule is dependent
on the W/C ratio. As the W/C increases, the extent of the stopping rule increases in the L

and h directions.
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Fig. 4.39. A graph of the Q-L surfaceas a
function of h and g.

(Q-1)

From Fig. 4. 40, we can obtain the relationship between the observer's log-odds

ratio and the amplitude distribution on a @ surface as a function of observed time, g.

Referring to Fig. 4.40, we see that Q surface tips downward in the negative L direction.

This means that if the observer thinks the cause of the input is noise alone, then he also

thinks that the signal amplitude distribution is near zero, and visa versa.

The concept of a Q surface is useful not only in computations, but also in under-

standing the operation of the detection receiver. In operation the receiver always operates

in such a manner that it's output remains on the initial Q surface. Thus, by examining the
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Fig. 4.40. The optimum deferred-decision boundaries for a SKEA with
parameters W/C = 100, g = 21, anda = 0.

operation of the receiver on a set of representative Q surfaces, we obtain a reasonably accu-
rate picture of the receiver’s functions.
Notice that as the time spent in observing increases (g increasing), the Q surface

tips upward in the positive h direction. Physically, h is the integrated receiver input. Thus,

we expect, when signal-and-noise is the cause of the receiver input, the value of the inte-
grated input to increase. For noise alone the integrator output will wander about some value
near the initial condition of the integrator. Therefore, we would éxpect, from the physical

operation of the receiver, the decision boundaries in terms of h to increase as g increases.
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The complete optimum stopping rule for a SKEA consists of a specification of
the three-dimensional stopping rule similar to that depicted in Fig. 4.38. However, the
complete stopping rule involves a great deal of computation and is valid for only a given
W/C and g In the remainder of this section, we discuss various aspects of the optimum
stopping rule directed toward approximate methods for finding the decision boundaries as
various parameters of the detection problem are changed.

Suppose, for example, we fix the W /C ratio and decrease the value of g - Can
any conclusions be drawn concerning the resultant optimum stopping rule? We can, for ex-
ample, show that the stopping rule fqr the smaller 8¢ is contained in the stopping rule with |
the large 8 The proof follows below.

If Fk(L’ g]gt, Q, W/C) is the optimum average loss function for a fixed set 8y
Q, and W/C with k possible deferrals, and Gk(L’ g) is the average look-ahead loss function
with k possible deferrals, then Gk(L’ g) < Gk_ l(L’ g). It is clear that, given the same
state in a decision process, the possibility of an additional observation results in an average
loss less than or equal to the average loss for an immediate terminal decision. In symbols,

this can be expressed as

F,(L, glg, =&*, Q W/C) < Fy(L, glg, =¢" -1,Q, W/C) = T(L). (4.89)

Now
Go(L, g) = E{F (L, glg")} + C (4.90)

and
G,(L, g = E{Fy(L, glg* -1} + C (4.91)

implying that GZ(L’ g) < Gl(L’ g). By induction, we can establish that Gk(L’ g) < Gk— 1(L, g).
From the last statement it follows that Gk(L’ g) intersects T(L) at a larger L value than
Gk- 1(L, g) implying that the decision boundary for a given gt* contains the decision boundary
for all g < gt*.

A numerical verification of the preceding discussion is depicted in Fig. 4.41.
The optimum decision boundaries are shown for the same Q and W/C and two values of g

The boundaries for g, = 10 are everywhere inside the boundaries for g, = 21. Although we
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have shown the boundaries projected only onto the L x g plane, the same result holds true
for the boundaries projected onto the h x g plane.

The three-dimensional graph of the stopping rule presented in Fig. 4. 38 does not
give as accurate a description of the stopping rule as does the projection of the decision
boundary, for a given Q surface, onto the L x g or h x g plane. The projections of the opti-
mum stopping rule are shown in Figs. 4. 42 through 4. 44 for a detection problem with param-
eters W/C = 50 and 100 and g = 21.

From Figs. 4.42 and 4. 43, we see that the general character of the projection
of the optimum stopping rule onto the L x g plane is a convergence of the boundaries as the
available observation time decreases coupled with a definite expansion of‘the decision bound-
aries at the time when observations begin, i.e , g =1, 2, ..., . The latter phenomenon is
due to the desire to make good decisions on large amplitude signals which, if they are pre-
sent, cause early terminations.

Figure 4. 44 depicts the projection onto the h x g plane of the same optimum
stopping rule of Figs. 4.42 and 4.43. Again, we note the expansion of the decision bound-
aries for small g values and the convergence of the decision boundaries for small available
observation times, i.e., g -8 small. Notice also that as the value of Q decreases, the
slope of the h versus g decision boundaries increases. This implies that the integrator
output in SN increases faster per unit time as the value of Q decreases. This again verifies
our conclusion that signal amplitude becomes better known as the value of Q decreases.

The evaluation of the optimum receiver for a simple deferred-decision problem
(Ref. 6) pointed out that the performance of the optimum receiver could be approached very
closely by a suboptimum receiver whose decision boundaries are near the optimum decision
boundaries. In simple deferred-decision theory, the decision boundaries for large available
observation time, i.e., the asymptotic boundaries are convenient to use in operating the re-
ceiver, because the boundaries are independent of time. The asymptotic boundaries also
provide the connecting link between simple deferred-decision theory and Walds' theory of
of sequential analysis. Thus, the asymptotic solution of simple deferred-decision theory is
an important aspect of the over-all solution. From the above discussion it would appear that

the asymptotic solution to composite deferred-decision theory might also be quite useful.
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Unfortunately, there is no asymptotic theory for every composite deferred-decision problem,
and the present SKEA problem is an example.

This, perhaps, startling statement is quite evident when we examine the state of
the detection problem as observations are taken. The state is given by Q, L, g, g - g} at
any stage of the observation process. The absence of an asymptotic solution for the SKEA
problem is directly attributed to the dependence of the state on g, -8 and g simultaneously.
In the simple deferred-decision problem the state depends on the available number of ob-

servation, g " & but not on observations already taken, g. It is because of the dependence

of the state on the available number of observations and the observations already taken that

the SKEA problem possesses no asymptotic solution. This dependence can be attributed to

the learning or adaptation process. The possibility of learning from observation to observa-
tion implies that we can never reach a situation in which the decision boundaries are inde-
pendent of observations already taken and available observations left.

In simple deferred-decision theory, we can solve a nested set of problems be-
cause the solution for n available deferrals contains the solution for k available deferrals,

k <n. Thus, we may extend any simple deferred-decision solutionton+ 1, n+ 2, ...,
available observations. This type of extension is not possible for the SKEA problem, be-
cause the state of the problem depends not only on the available observation time, 8 - &
but also on the time spent in ﬁbserving, g.

The relation of the projection of the optimum decision boundary onto the L x g
plane to the W/C ratio was examined over a range of W/C ratios as shown in Figs. 4.45 and
4.46. The computations pictured in Figs. 4.45 and 4. 46 indicate that (1) the optimum deci-
sion boundary for fixed g as a function of €n(W/C) is approximately linear over a wide range
of W/C, and (2) as Q decreases and g increases, the approximation becomes better. Figure
4. 45 is for the o = 0 distribution, and Fig. 4. 46 is for the Gaussian amplitude distribution.

Additional insight into the general character of the optimum decision boundary
can be obtained by studying the average trajectory of a known amplitude signal as a function
of L, g, and h. Since we use L as an explicit variable, it is convenient to examine the

average trajectories in the L x g or (L-Q) x g plane.
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A knowledge of the average trajectories for various size signal amplitudes can
be used in an approximate placement of the lower decision boundary. For example, the
average trajectories of a small amplitude signal and noise alone have the form shown in
Fig. 4.47. The lower decision boundary should discriminate against the noise alone trajec-
tory, but still permit small amplitude signals to terminate in an "A' response. Thus, the
lower decision boundary for moderate g values would have a value approximately equal to

the dotted line shown in Fig. 4.47.

\ %__ Small amplitude signal

° ~—_ g (time).

Decision boundary

Noise alone

Fig. 4.47. The average trajectories of noise alone and small
amplitude signals in the (L - Q) x g plane.

A numerical example of several amplitude trajectories are shown in Fig. 4.48

for the amplitude density function given by
f(a) = ﬂ (_‘_':‘i \/.71— ) >0
a) = 7 eXP\ 3 5 | a>
=0 s otherwise (4.92)

The above density function represents the "maximum diffuseness' or uncertainty one can ob-

tain with an a = 0 distribution.
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Plotted in Fig. 4.48 are trajectories in the (L-Q) x g plane for signal amplitudes
representing 0% probability (noise alone), 10% probability (a = 0. 11), 50% probability (a = 0. 61),
and 60% probability (a = 0.75). The 10% probability amplitude means 10% of the time the sig-
nal amplitude is less than or equal toa = 0.11. Also shown in Fig. 4.48 is the trajectory of
the average motion in signal-and-noise. From Fig. 4. 48, we conclude that (1) the noise alone
trajectory is quite slow downward as compared to the signal-and-noise trajectory upward, and
(2) the spread in amplitude trajectories is fairly broad. The latter conclusion seems to indi-
cate that amplitude information is important. That is, it does not appear that we can use an
estimated signal amplitude to predict average performance.

Signals with amplitudes less than or equal to 0. 11 take a very long time to inte-
grate up to values such that they would result in an "A" response. For example, at g = 400
the value of the a = 0. 11 trajectory is only 0. 46. Thus, to find small amplitude signals the
receiver has to operate for a long period of time.

This completes our discussion of the optimum stopping rule for the SKEA problem.
The next section presents evaluations of optimum receivers in terms of ROC and ANO curves.

4.6.2 Performance of the Optimum Deferred- Decision Receiver. The perform-

ance of the optimum deferred-decision receiver is given in terms of the average loss functions.
As before, we use the ROC and ANO functions for an equivalent evaluation. The mathematical
derivation of the above two functions is given in Section 4.5.2. The necessary computations
are performed by an IBM 7090 programmed according to the algorithm given in Appendix H.

In this section only the numerical results of the a = 0 signal amplitude distribution are dis-
cussed in detail. The evaluations for the a = 1 and Gaussian amplitude distributions result in
similar conclusions.

Typical ev?.luation functions for the optimum deferred-decision detector are
shown in Figs. 4.49 through 4.52. Figures 4. 49 and 4.50 are the ANO and ROC curves,
respectively, corresponding to an observation state of {Q =-2, g = 21, W/C =100, g = 20,
10, ...,}. Figures 4.51 and 4.52 are the ANO and ROC curves, respectively, for the same
observation state as above expect Q = 0 instead of Q = -2. From previous discussions, Q = 0

represents an observation state of greater signal uncertainty than Q = -2.
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Fig. 4.50. The ROC curves of a deferred-decision receiver with
parameters Q = -2, g =21, W/C =100, and a = 0.
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Fig. 4.52. The ROC curves of a deferred-decision receiver with
parameters Q =0, g = 21, W/C = 100, and @ = 0.
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Consider the ROC curves of Figs. 4.50 and 4.52. The curves are plotted with g
as a parameter. (If the value of g is subtracted from 8> the resulting number is the avail-
able number of observations.) The shape of the ROC curves closely approximates normal
ROC curves. (A normal ROC plots as a straight line with unity slope.) Notice that the in-
crease in error performance as more observations are taken is approximately linear. This
is in contrasf to simple deferred-decision theory in which the ROC curves converge as longer
observations are taken.

The comparison between the ROC curves for Q = 0 and Q = -2 shows, as we ex-
pect, that the error performance for greater amplitude uncertainty is poorer, i.e., the ROC
curves in Fig. 4.52 fall below the comparable ROC curves in Fig. 4.50.

The ANO curves of Figs. 4.49 and 4. 51 are plotted as a function of L with g as
a parameter. The most outstanding feature of the curves shown in Figs. 4.49 and 4.51 is
the large amount curvature they possess. The average observation time becomes small
quickly as the log-odds ratio differs from 50-50 odds (L = 0). This phenomenon is more
pronounced as the signal amplitude becomes less certain and, again, points to the interde-
pendence between the observer's opinion of the cause of the receiver input and his opinion
of the signal amplitude. If the observer's opinion of the cause of the receiver input is
strongly in favor of SN, then his opinion of the signal amplitude is biased toward large ampli-
tudes. Conversely, if the oberver's L is negative, he is biased toward small amplitude sig-
nals. In either case, his observation time is relatively small. The interdependence of L
and f(a) is governed by the f/alue of Q; as Q becomes larger the interdependence becomes
greater.

A comparison of Figs. 4. 49 and 4.51 shows that greater signal amplitude uncer-
tainty causes a decrease in the average observation time. In other words, as signal uncer-
tainty becomes greater, it becomes less profitable to observe. This same phenomenon has
been demonstrated in the optimum nonsequential procedure discussed in Sections 3. 4.2 and
4. 4. 2.

The preceding discussion of the evaluation curves for the SKEA deferred-decision
problem is for the o = 0 signal amplitude distribution. The same general conclusions are
true for the ¢ = 1 and Gaussian distributions. The next Section, 4. 6.3, considers another as-

pect of the deferred-decision evaluation, comparisons with subdptimum receivers.
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4.6.3 Comparisons of the Deferred-Decision Receiver with Suboptimum

Receivers. We have presented in this chapter two optimum procedures, one sequential and
the other nonsequential. In order to determine the advantage of sequential procedures as
compared to nonsequential procedures, we will compare the deferred-decision procedure
with the ONP of Section 4. 4. All other nonsequential procedures fall below the performance
of the ONP, the "upper bound" on performance for fixed-observation procedures.

The standard comparison between sequential and nonsequential procedures, in
the past, has been to compare a Wald sequential procedure and a fixed-time test. The com-
parison is made by assuming the error performance of the Wald procedure and fixed-time
test are equal. One then compares the average time necessary to reach the desired error
performance. The usual result quoted is that the sequential procedure saves approximately
50% in the average number of observations taken (Ref. 4).

The comparison of a simple deferred-decision procedure and the optimum fixed
procedure (Ref. 6) results in quite a different conclusion. The optimization of the two pro-
cedures is based on minimizing the average loss for a terminal decision. Under this method

of optimization, the fixed observer no longer operates with the error probabilities of sequen-

tial observer and, as a result, it is not possible to predict where the savings of the sequential
procedure occurs, i.e., in better error performance of small observation times. If the
available output signal-to-noise ratio is small (on the order of +4 db in ZE/NO), simple de-
ferred-decision procedures consume about 60% of the time of fixed procedures and the resul-

tant error probabilities are approximately equal. However, if the available output signal-to-

noise ratio is large (on the order of +10 db in 2E/N0), then simple deferred-decision proced-

ures and ONP consume about the same time and the savings occurs in improved error per-

formance.

The comparison of composite deferred-decision procedures and ONP is usually
considerably more difficult. For example, in the problem of a SKEA a difficulty arises be-
cause the state of the observation depends not only on the available number of observations,
g "~ 8 but also on the number of observations already taken, g. For a meaningful compari-

son, the two procedures should be compared for the same initial state or a priori information.
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The state of the ONP is given by {g, Q, L} and By if (gt - g) is less than the opti-
mum observation time. That is, the state of the ONP is dependent on 8 only if the choice of
the optimum observation time is restricted by the value of By The state of a deferred-deci-
sion procedure is {g, Q, L, B - g} and muét always include g Thus, there are two methods
of comparing deferred decision and ONP for a SKEA. For Q, W/C, and Ay fixed, we can
compare, as a function of L, deferred decision and the ONP by varying g with 8 fixed, or by
varying 8 with g fixed. ’

The first method of comparison involves the solution of one deferred-decision
procedure and many solutions of the ONP. One interpretation of this type of comparison is,
for (g, - g) > optimum observation time, the effect of a priori amplitude information on de-
tection performance. 'i‘he second method of comparison involves the solution of many de-
ferred-decision procedures and one ONP solution. The interpretation we give to this com-
parison is the effect of termination and the usefulness of available observation time, again
for (gt - g) > optimum observation time.

In order to exhibit the characteristics of a comparison between deferred decision
and the ONP, consider the following numerical example. The amplitude is distributed
according to the a = 0 distribution and the parameters of the procedure are wW/C =50, g = 21,
ag = 0. We have chosen to compare the two procedures using two functions, the average loss
due to terminal decision errors and the average observation time. The results of the com~
parisons are shown in Figs. 4.53 and 4. 54.

Figure 4.53 depicts the probability of a terminal decision error as a function of
the available observation time for a log-odds ratio of zero. The graph for the ONP was ob~
tained by evaluating twenty ONP's with an initial value of g aquai tol, 2, ..., 20. For
(gt - g) greater than the optimum observation, the optimum observation time was used in the
comparison; otherwis‘e, (gt - g) was used for the observation time. Thus, Fig. 4.53 repre-

sent data from many ONP's and one deferred-decision procedure. :

Figu:é 4,54 displays the average observation timé as a function of the available
observation time for a 1og-odth ratio of zero. From the two figures, we conclude that (1) de-
ferred decision saves primarily through better quality decisions and, except for very small
available observation times, takes longer to reach terminal decision than the ONP, and (2)

the quality of decision is relatively poor, i.e., the number of terminal decision errors is
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quite large for the parameters evaluated. In fact, the high rate of terminal decision error,
for even the optimum procedure, might be prohibitive in many practical problems.

Notice also that the ONP has a relatively short optimum observation tim;a. This
indicates that the ndnsequential observer does not bother with small amplitude signals, but
instead, detects only large amplitude signals and terminates. Interpreting the graph in
Figs. 4.53 and 4. 54 ask the effect of a priori amplitude information on detection performance,
we see the reasonable result that as the a priori amplitude distribution becomes less diffuse
(g increasing), the performance of the optimum receiver improves.

The reader may be puzzled as to why the average observed time for the ONP in-
creases as the available observation time increases. This does not occur for simple-signal-
hypothesis problems. However, in composite-signal-hypothesis problems the average ob-

served time increases in the ONP because the receiver is constrained to operate on a Q sur-

face.

The comparison of deferred decision and the ONP made by fixing the value of g
and varying the value of 8 results in evaluation curves as shown in Figs. 4.55 and 4.586.
The numerical example is the same as discussed in Figs. 4.53 and 4.54, namely, Q =0,
W /C =50, 40=0, and L = 0. The initial g value is three.

From the comparison shown in Figs. 4.55 and 4.56, we see, again, that the
savings of the sequential procedure occurs primarily in error performance rather than ob-
servation time. If we interpret this comparison as exhibiting the effect of termination, we
conclude that termination effects are present only in the ONP, a fact we knew beforehand.
The deferred-decision procedure does not exhibit any unusual effects as we increase 8-
The average observed time increases, with increasing 8¢, While the probability of terminal
decision error decrmes pointing out the balance that occurs between error performance
and observation time. As in the previous comparison, the second comparison shows that
the optimum procedure incurs a large number of terminal decision errors.

The two most striking conclusions of the comparisons presented between de-
ferred decision and the ONP are: (1) sequential procedu;-es save primarily in better error
performance, and (2) the optimum sequential procedure, for thé parameters evaluated, in-

cur a large number of terminal decision errors.
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Nonsequential procedures, if given the option of choosing the observation time,
will choose a relatively small observation time. The small observation time implies that
the receiver detects only the large amplitude signals. For a nonsequential receiver it does
not pay to spend time in order to detect small amplitude signals.

Deferred-decision receivers, on the other hand, attempt to take advantage of
"small" and "middle' amplitude signals by continuing to observe. In this way, although ob-
servation times are fairly long, better error performance is obtained. However, even the
optimum procedures make a large amount of errors.

The question of what is a "middle' amplitude signal is of concern to the sequen-
tial observer because these signals take the most time to detect. Small and large amplitude
signals should terminate in small observation times because of the Q surface interdependence.
The "middle" size signal tends to wander down the center of the stopping rule, resulting in
long observation times.

To determine middle amplitude signals, we have evaluated the performance of the
optimum receiver for any given amplitude signal. The conditional evaluation is given in terms
of the ROC and ANO curves. The derivation of these conditional evaluation curves follows.

I z; is a receiver input in noise alone, then z; is N(0, 1); in signal-and-noise zy
is N(a, 1) for a given signal amplitude, a.

The ROC curves can be derived in an iterative manner as follows. For one avail-

able observation, the probability of false alarm is

%) (h)

h

P("A"] N) = P(L,> 0|N)

w(l‘@..)
_\V&/

=P(Q+Mn > o|n
0
By -Q *
=P w(———) > VB e |N = P(h,> b*|N) (4.93)
)

where

n* = B w’l(,/E' e’Q) (4. 94)
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and
gy = 8y + 1 (4.95)
hy =hy+z (4.96)
The distribution (h0 - hl) is N(0, 1). Therefore, the probability of false alarm is
b _ _ h*
xl(h) = <I>(h1 h*) , I‘h < hy < s,
1 1
=0 , r >
hy = By
=1 , Ah1 < hy (4.97)

For two available observations, we average the previous stage's probability of false alarm.

Thus
Xp(h) = [ X (h+2)f(z N)dz
= [ El(h+ z) d®(z) , I‘h2 < hy < Ahz
= 0 r, >
: ’ hy = hy
= 1 , Ah2 < hy (4.98)

For more than two available observations, the probability of false alarm is found in an itera-
tive manner in the manner shown above.

The probability of detection for a given signal amplitude is also a straightforward
application of the iterative procedure, we have presented several times previously. For one

available observation, we have

~ h 3
0
w ———————
- (*’go> .
y,(h) = PC'A"|SN, a) = PQ+ | ——25| > o|sN, ap (4. 99)
g0
\_ o

P(h, > h* IsN, a)

where h*, hy

for a given amplitude signal is N(a, 1). Therefore, we have

, and gy are defined in Eqs. 4.94 through 4.96. The distribution of h0 - hl’
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o~ _ - h¥
§h) = (@+h -n), L < hy <Ay
1 1
=0 , h, 3 M
1
-1 8y Sy (4. 100)

For two available observations, we obtain

yoh) = J ¥ (b +z)f(zISN, 2) dz
=f§71(h+z)dc1>(z-a), I, < hy <Ay
2 2
=0 C Ty 2 M
=1 , Ah2 < hy (4. 101)

For more than two available observations, the probability of detection is found by extending
the iterative shown above.
The conditional average number of observations is given by a similar iterative

solution. For one available observation, we have

ul(h) =1, Fh < h1 < Ah
1 1

=0, otherwise (4. 102)
ul(h) =1, I‘h < h1 < Ah
1 i

=0, otherwise (4. 103)

where Ek(h) and Vk(h) are the ANO curves for k available observations, given the signal

amplitude, in SN and N, respectively. For two available observations, we obtain

vy (h)

Juj(h+2)de(z - a), r‘h2 < h, < Ahz

=0 , otherwise (4. 104)
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v,(h) = | v,(h + 2) d®(2) , rhz < hy < Ahz

=0 , otherwise (4. 105)

For more than two available observations, the ANO curves are found by extending the itera-
tive procedure shown above.

Using the iterative equations derived for the conditional ROC and ANO curves,
we can obtain the conditional evaluation curves for the optimum SKEA receiver. The nufneri—
cal results that follow were obtained by use of an IBM 7090 programmed according to the al-
gorithm given in Appendix K.

Conditional performance curves can be presented in many forms to exhibit vari-
ous aspects of optimum receiver operation. For example, to determine the middie amplitude
signals, we can obtain the performance for various amplitude signals. These conditional
performance curves are the performance of the optimum receiver in signal-and-noise for a
given amplitude signal. Numerical results of conditional evaluation curves for a deferred-
decision procedure with parameters Q = 0, W/C = 50, g = 21, L =0, and e =0 are shown in
Figs. 4.57 and 4. 58.

Figure 4.57 is a plot of the probability of error versus the available observation
time for various amplitude signals under the condition signal-and-noise. Because the condi-
tion at the input is signal-and-noise, the probability of error is the probability of a miss.
Figure 4.58 is a plot of the average observation time versus the available observation time
for various amplitude signals in signal-and-noise.

From Fig. 4.58, we see that an amplitude signal of approximately 0.2 results
in the longest average observation time. Thus, we conclude that an amplitude of 0. 2 is the
"middle" amplitude sigr;al. This same result can be obtained by referring to Fig. 4.59 de-
picting the optimum decision boundaries in terms of h and g, and shows the L = 0 contour
(dotted line) and the "average motions' of various amplitude signals. The "average motions"
are the average trajectories of the various amplitude signals in h x g space. In other words,
the various arrows represent the average operational path of a given amplitude signal on the
h x g plane. Notice, from Fig. 4.59, that there exists a middle amplitude signal of approxi-

mately 0.25 resulting in an average motion down the center of the decision boundaries.
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This, of course, implies that the longest observation time occurs for signals of value approxi-
mately 0. 25, agreeing very well with computer computations depicted in Fig. 4.58.

It is most convenient and practical to obtain results from Fig. 4. 59, since this
figure can be obtained from the computer program for the optimum boundaries. If it is possi-
ble to predict the operation of various amplitude signals from a knowledge of the optimum de-
cision boundaries and the average motion, then we can eliminate a large amount of computa-
tion in the evaluation programs. We have demonstrated the ability to predict the value of the
middle amplitude signal. Let us consider some further properties of the conditional perform-
ance curves of Figs. 4.57 and 4. 58, and our ability to predict certain of these properties by
means of the decision boundaries and the amplitude mean motions.

From Fig. 4.58, the average observed times for each of the amplitudes examined
are presented. It is possible, using Fig. 4,59, to predict the approximate average observa-
tion time for those amplitudes which terminate relatively quickly. Thus, the conditional aver-
age time for an amplitude of zero is approximately four observations from Fig. 4.59 which
agrees reasonably well with the computer computations. It is difficult to predict the average
observation time for the middle amplitude signals from Fig. 4.59, because the variance of
the tip of the mean motion vector is large in comparison to the width of the boundaries.

Notice, in Figs. 4.57, the increase in the miss probability as the available ob-
servation time increases for small signal amplitudes. This can also be explained from the
decision boundary--mean motion graph. The increase in miss probability as (gt - g) increases
is due to the curvature of the boundaries. A miss occurs whenever the integrated input recep-
tion crosses the lower decision boundary in signal-and-noise. As we increase the available
observation time (decrease g), the curvature of the boundaries causes small amplitude signals
to have a greater probability of crossing the lower boundary. Therefore, the error proba-
bility increases for small amplitude signals. For large amplitude signals, the mean motion
is so strongly upward that it overcomes any boundary curvature.

From the preceding discussion, it is clear that a great deal of both qualitative
and quantitative information of optimum receiver (;peration can be obtained from a decision
boundary--mean motion graph. This graph gives one a good intuiti\;e feel of the performance

of various size signals, and can be used as a method of predicting the middle amplitude signal.
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The middle amplitude signal may be an important practical design parameter.
Although the mathemaﬁca_l problem assumes an amplitude distribution defined on [0, @), a
practical receiver must work over a limited dynamic range. The middle amplitude signal
would appear to be an appropriate signal to center the receiver's dynamic range. Thus, it
might be of practical interest to know the value of middle amplitude signals even in the de-
sign of suboptimum receivers.

From Figs. 4.57 through 4.59, we might classify amplitudes below 0.7 -1, as
relatively small amplitudes and amplitudes above 1.5 -2. 0 as large amplitude signals. It is
interesting to compare the probability of the large amplitudes against the small amplitude
signals, since the optimum SKEA receiver is, in some sense, a balanced design taking into
account both the large and small amplitude signals. A plot of a four-representative amplitude
distributions, shown in Fig. 4.60, indicates that the probability of the large amplitudes is
less than 5% of the total amplitude distribution function.

The final numerical computations we present below are the performance curves
of the optimum SKEA receiver for various size signals. These curves represent the per-
formance we would expect if the noise and signal were present an equal amount of time, i.e.,
L =0. The results are similar to the conditional signal-and-noise only performance of
Figs. 4.57 and 4.58. The addition of noise alone for half the time has tended to smooth out
large differences between the different signal amplitudes. Conclusions we obtain from Figs.
4.61 and 4. 62 do not add to previously obtained concepts.

The evaluation of suboptimum receivers is a fascinating but never-ending job.
We have written a computer program that can be used to evaluate various suboptimum re-
ceivers. Many suboptimum receivers were evaluated, but the results have not been in-
cluded, because they are, in retrospect, largely self evident. If a suboptimum receiver is
a receiver with decision boundaries approximating the optimum decision boundaries, the
receiver's performance is close to optimum perfoi'mance. A poor approximation to the op-
timum decision boundaries results in poor average performance. Until such time as we can
obtain approximate methods for obtaining stopping rules based on the a priori amplitude dis-
tribution, the evaluation of suboptimum receivers does not appear to yield any further in-

sight into the design of optimum detectors.
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3.0

2.5 T

f(a)

0 .5 1.0 1.5
Amplitude, a

Fig. 4.60. Probability density functions for the truncated Gaussian
distribution with parameters Q =0, L = 0, and
g =8, 12, 16, and 20.
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4,7 Summary of Chapter IV

The study of detecting a distributed signal in noise presented here has, for the
first time, included: (1) fixed-detection procedures for a priori amplitude distributions
other than the Rayleigh and Gaussian, (2) the optimum nonsequential procedure and evalua-
tion, (3) the optimum sequential procedure, deferred decision, and evaluation, and (4) com-
parisons between (2) and (3) above. The form of the optimum sequential detector for a
SKEA indicates that the receiver must include an adaptive capability and must extract from
the observation, not only the likelihood ratio, but also information to update the signal param-
eter distribution. Numerical results of the detection of a SKEA presented here are, perhaps,
the most important contributions of this chapter. These results are summarized in the sec-

tions in which they appear but are not repeated here because of their length.



CHAPTER V

We have derived the optimum, i.e., minimum expected loss for a terminal de-
cision, sequential and nonsequential detection procedure for a composite signal hypothesis.
In Chapter II the sequential procedure is presented in generality. Chapters III and IV ex-

" amine two specific problems, a signal known except for phase and a signal known except for
amplitude, respectively. The numerical results of these two problems include evaluations
of the optimum procedure and comparisons with suboptimum procedures.

The conclusions and results of this work can be separated into two parts:

(1) those that pertain to the general derivation and the general form of the optimum detector,

and (2) those that stem from the numerical calculations.

5.1 Conclusions from the General Solution

The general formulation and solution of composite deferred-decision problems
are given in Chapter II. The general derivation leads to some striking conclusions. These
results are, perhaps, best summarized by the block diagram of the optimum receiver shown
in Fig. 4.38.

Recall that in simple deferred decision theory (Ref. 6), the likelihood ratio of
the input observation is sufficient to ascertain both the optimum terminal decision and the
optimum stopping rule. To be sure, other parameters of the problem must be known, but
from the observation itself only the likelihood ratio is necessary. In other words, in simple
deferred decision theory the observation information needed for optimum detection is com-
pletely contained in the likelihood ratio of the observation.

The results of Chapter II, however, show that the likelihood ratio of the observa-
tion does not give the necessary observation information needed for optimum detections in
composite-hypothesis problems. The optimum detector must, from the observations, ob-
tain information to update the signal parameter distribution. Without this information the
receiver cannot determine the average likelihood ratio needed in terminal decisions and the

correct set of decision boundaries needed for the optimum stopping rule. The receiver must
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process the observation to calculate the updated signal parameter distribution in addition to
the likelihood ratio. This updating (learning or adaptation) is performed after each observa-
tion or whenever new infofmation pertaining to the detection problem is obtained.

The general form of a composite deferred-decision detector is shown in Fig. 4. 40,
The adaptive portion of the receiver is the block that modifies the signal parameter density
function after eaéh observation. From Fig. 4. 40, we cénclude that the detection receiver
for a composite-signal-hypothesis problem is a device where an adaptive form must be used

to obtain optimum performance. The adaptive nature of the optimum receiver is a result of

optimizing detection performance rather than ad hoc postulation that adaptation is necessary

for optimum performance. This last point is made because in present day literature, adap-

tation is sometimes postulated as a necessary part of the receiver. It is important to note
that the adaptive portion of the composite deferred-decision receiver may not be overtly
present in every receiver realization. That is, it may be difficult to separate the receiver
into blocks as shown in Fig. 4. 40.

A second conclusion drawn from the general block diagram of Fig. 4. 40, that we
will only mention, is the classification output that is available. The probability density func- |
tion of the signal parameteris the observer's opinion of signal parameter. Thus, it is pre-
cisely the function needed for classification. Again, it may be difficult to design a receiver
in which the classification is easily obtained. Classification is a '"by-product’ of the solution
of composite deferred decision rather than a primary objective of the .solution just as the
adaptive form of the receiver is a "by-product.™

The final summary remark concerning the general derivation of a composite
deferred-decision problem is not obtained from any result per se, but rather pertains to
our over-all receiver design philosophy. We have presented the solution for a distributed
signal parameter detection problems by incorporating the complete signal parameter dis-
tribution in the optimum receiver design. This has not been done previously in sequential
procedures. The more generally used design philosophy is to estimate the signal parameter
in some manner, and design a fixed receiver for the estimated vvalue assumed to be the
"true" value. This eliminates any possibility of adaptation or learning during the observa-
tion process, and, for sequential procedures, reduces the problem to that of simple deferred-

decision theory. Designing receivers on the basis of estimates is a reasonable engineering
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procedure. However, it is suboptimum to incorporating the complete signal parameter dis-
tribution in the over-all design. There are, to be sure, problems connected with our design
philosophy. For example, we must use closed-signal parameter distributions. However,
since the solution method presented is optimum, it may prove valuable in, at least, estab-

lishing an upper limit on performance.

5.2 Conclusions From Numerical Computations

The results and conclusions of the numerical computations have been given
throughout this work as they occur. They are too numerous to repeat in detail here. As a
summary of the numerical results, we present general trends and concepts indicated by our
calculations of the effect of signal uncertainty in sequential and nonsequential detection prob-
lems.

Consider the results obtained from ONP caiculations for a SKEP and a SKEA.
The computations are best summarized by the value contour graph of an observation as a
function of observation time (or quality) and the log-odds ratio. The value contour graphs
of the SKEP and SKEA problem indicate that: (1) as signal uncertainty increases, the L
range over which it is profitable to observe decreases, (2) it is profitable to observe only
if it is possible for the observer to change his a priori terminal decision upon receipt of ob-
servation information, and (3) large amounts of signal uncertainty imply relatively small
optimum observation times. From the ROC curves of the fixed procedures, we conclude
that the rate of improvement in performance decreases with longer observation times. This
last conclusion can be seen from the convergence of the ROC curves as longer observations
are taken.

The results of the computations for the deferred-decision procedure for a SKEA
can be divided into two parts; those pertaining to the decision boundary, and the results con-
cerned with performance curves of the optimum receiver.

Consider the numerical computations of the optimum stopping rule. The com-
plete description of the stopping rules is a time-consuming computational job because of its
three-dimensional character. Computations indicate, however, that reasonable approxima-
tions to the projected decision boundary in, say, the L x g space result in performance

close to optimum. For example, if the optimum boundary is approximated by two constant
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boundaries (in time) which are spaced to fit the optimum boundary, then there is very little
difference in the 'performa‘nce of a réceiver using the optimum and suboptimum boundaries.

One of the most interesting results of the SKEA problem is that the deferred-
decision process does not permit an asymptotic solution. This is the only sequential detec-
tion problem, known to the author, that does not permit unbounded available observation
times. This is a result of the signal uncertainty of an unknown amplitude signal. The cor-
responding problem for a signal of unknown phase does possess an asymptotic solution.

The absence of an asymptotic solution creates a problem, because it eliminates the possi-
bility of useful approﬁimations. One of the most useful approximations in simple deferred-
decision theory is the approximation of the optimum decision boundary by the very simple
asymptotic solution to the decision boundary. Asymptotic solutions are useful as they can
often be solved analyticalli without resorting to computer computations.

The conclusions taken from the performance curves for a SKEA receiver are
the most appropriate for an intuitive understanding of the basic detection problem. The
performance curves that result from a comparison of the ONP and deferred decision indicate
that deferred decision saves primarily in error performance. Quantitatively, the average
performance of even the optimum procedure is not good enough for many practical problems,
i. e., the average error rate (40% errors) is too high. The result of a high average number
of errors is because the optimum decision boundaries are spaced very close together.
Comparable decision boundaries for a signal known exactly are five or six times more
widely spaced. The close spacing of the SKEA decision boundaries is a result of the ampli-
tude distribution squeezing down near zero for negative L values, i.e., the L and f(a) de-
pendence on a Q surface. This dependence creates a situation in which it does not pay to
"work on" small signals, thereby causing the boundaries to be spaced close together. For
comparable W/C ratios, the error performance for SKEA is about an order of magnitude
worse than for a signal known exactly.

Conditional performance curves of the optimum receiver in signal-and-noise
indicate the existence of a middle amplitude signal which has an average observation time
longer than very small or very large signals. The middle size signal is the signal that

causes the integrated input to drift down the center of the decision boundaries. This signal
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may be an important design parameter in practical receivers for use in centering the re-
ceiver's dynamic range. The middle size signal can be found by means of a most useful
graph, the decision boundary-mean motion graph. This graph depicts the decision bound-
aries, for a given Q surface, and the average trajectory of a given amplitude signal. The
graph is very helpful in gaining an intuitive feeling of the operation of the optimum receiver.

5.3 Additional Results of the SKEP and SKEA Detection Problems

_ In addition to the conslusions and results presented in Sections 5. 1and5.2,
mention should be made of the following new results. These results are not logically placed
in either Section 5. 1 or 5. 2. V

The design and evaluation of the optimum SKEP receiver for fixed procedures
produced the following new results. From the ROC curves, we conclude that phase informa-
tion to within 65° is, for detection, a signal known exactly. The optimum receiver design of
Fig. 3.7 presents an adaptive receiver which yields a classification output. Using this re-
ceiver and Fig. 3.1, one can obtain phase angle dispersion as a function of the input signal-
to-noise ratio. This method of obtaining phase angle dispersion as a function of the input
signal-to-noise ratio and integration time is a new and, perhaps, practical result. The opti-
mum sequential receiver designs of Figs. 3.6 and 3.7 are practical receiver designs for
present-day technology, and could be implemented as they are presented in block diagram
form.

The conclusions from the design and evaluation of the optimum SKEA reéeiver

have been discussed in Sections 5.1 and 5. 2.

5.4 Future Work

The results of this work can be used as the basis of considering further types of
signal uncertainty in sequéntial observation-decision procedures. For example, one might
consider the detection of a signal of unknown phase and amplitude as a logical extension of
the present work. This problem may be simpler than the unknown amplitude problem, and
is, basically, a problem of determining an unknown position in two spacek.

As we have already mentioned, the average error rate obtained by the optimum
SKEA receiver is too high for the W/C ratios investigated. This implies that we should in-
crease the W/C ratio, thereby making it profitable to detect small signals. However, in-

creasing the W/C ratio by an order of magnitude results in drastic computational problems.
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The main cause of the high rate of error can be traced to the effect of negative L's on the
signal amplitude distribution, as we have previously explained (Section 5.2). In order to
limit the high error rate without resorting to large W/C ratios, it may be possible to work
with truncated signal amplitude distributions so that negative L's would shift the amplitude
distribution not to zero; but to some preset truncation value greater than zero. This, it
appears, may permit one to investigate the more practical detection range of 99% detections
rather than the present 60% detections.

The problem of considering time uncertainties in the signal ensemble is another
problem area which has not been investigated. Thus far we have assumed complete time
knowledge in the signal ensemble. In our present framework, we would have to consider
problems in which the time uncertainty is learnable. That is, the unknown time pattern
would have to exhibit some type of dependence from observation to observation.

Another problem that has not been considered is the problem of embedding the
present detection problem into a series of detection problems. In this type of problem the
optimization of a single terminal decision may not be as crucial as optimizing the maximum
number of correct terminal decisions or some other quantity. This problem might first be
considered for a signal known exactly and later extended to include signals with distributed

parameters.



APPENDIX A

INVESTIGATION OF THE INTEGRAL

foo exp I:-:gi] Io(a«/Z—t) exp ]:—:)2/—2—] Io(y«/2_t) t exp[——g-:' dt
Be

The following integral arises in the calculation of the detection probability of a
signal known except for phase. Two questions are of interest: (1) the value of the definite
integral from zero to infinity, and (2) a closed-form expression for the integral in terms of
well-known (tabulated) functions. The answer to the first question is the normalizing con-

stant for P(”A”ISN). The answer to the second question is the value of P("A"[SN). The in~

tegral is
w0 2 _2 -2
1 = f exp[ g} IO(a\/Q t) exp [—?2—/—] Io(yﬂt)t exp [:—2—-] dt (A. 1)
Be
Now
2k 2n
0 W, aZk yZn (-—2@) (%)
L2010 V2 = L L TR e T ) (4.2)

n=0 k=0

© n 0 n
Using the relationships I'(x + 1) = x! and Z Z A(n, k) = Z Z A(n - k, k), we can re-

write Eq. A.2 as

a2k yZn - 2k (t/Z)n (a.3)

2ol n
Ip(@v/2 1) Ij(r /2 1) = n;) 120 [(n-K)!1]? (k!)?

The definition of the ordinary hypergeometric function, 2F1’ can be used to rewrite Eq. A.3.

The ordinary hypergeometric function is defined by Eq. A. 4.

) @ . ®) 2"
o F; 2 :’ z Z:) —GT A (A. 4)
The notation (a)n means
(@, =a@+1)@+2),...,@+n-1) (A.5)
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From Eq. A. 4, we have the following

e o (10! -1 (%)

U oy v | T4 TR RTO R (4.9
o 2k
n (n!)z(—) A
= _— .
K=o L(n-K)17* (k1)
Therefore, using Eq. A.7, we can write Eq. A.3 as
© -n, -n; o2 Zntzn

t 2t) = = Y /2) A.8
pleVZ 01 /Z 0 = L 5T, 1 G) | i (A 8)

There is a relationship between the ordinary hypergeometric function and the Legendre poly-

nomials (Ref. 23), as shown in Eq. A.9.

P(x)=(£—1nF T xe (A.9)
n 2 271 1_x+l ’

Using the results of Eq. A.9, we can write the integral in Eq. A.1as

exp[: ]exp[ ] f [7 +a] 72"32 (t/2)nt exp -—zﬁi' dt (A. 10)
n=0 ¥ -ad (n!)

For Bc equal to zero, we have

I

2 .2 ® 2 2 0 .n -
- oo g L or g ] o-ep 7 LR (a1
n=0 y -a 0 2" (n!)?
However,
® o
[ t"exp[-t] @& = n! (A. 12)
0

Therefore, Eq. A. 11 can be written as

0 2 2 20 2 2

Y+ d Y - a 1 o -

I = ZO Pn [Yz_ e ( p) ) o7 exp[——z— —%—] (A. 13)
n=
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Equation A. 13 can be simplified in terms of Bessels function by means of Eqg. A. 14,

P (%) "

n!

exp [xt] JO(tVl -x) = (A. 14)

ERREE

By use of the identity given in Eq. A. 14, we can write the integral of interest as

2
2 2 2 2 2 2 2 2
_ Y +a - a Yy -« Y +a -y" -a
1 = explly e D) J0 5 1 <—_—’y2-0/2> exp[——2 5 ]

= JO(ICI‘)/

= Io(a'y) (A. 15)

Equation A. 15 is the normalizing constant for the integrand of Eq. A. 1, and is
the answer to the first question. The answer to the second question posed is evident from

Eq. A.11. For § # 0, Eq. A.11 can be written

2 .2 © 2, 2 Lt exp[-t
I - exp - =y Z p y2+a % 2)I1 _/ p[-t]
g, 2wy

o at  (A.16)

c
The difficulty in obtaining a closed-form answer lies in the evaluation of the integral

j ——QM dt . This integral is the incomplete gamma function. - The author was unable
g 2%(n1)?
c

to find a closed-form solution in terms of tabulated functions. The numerical evaluation of
Eq. A.1 is obtained by means of numerical integration. Using the results of Eq. A. 15, we

define a new function of three variables, R(a, 7, BC) as

© 2 C .2 2
R(a, v, Bc) = Io(tl)/) Bf exp[%:l Io(at) exp[;g—] Io(yt) t expl:—-—tz—] dt  (A.17)
c

The approximations used in the evaluation of R(e, v, Bc) are given in Appendix B.




APPENDIX B

APPROXIMATIONS TO R(e, ¥, g,) AND Q(a, 8,)

Numerical evaluation of Q(a, Bc) and R(a, v, B c) is facilitated by various approxi-

mations depending on the values of the arguments a, v, and Bc' Consider first the evaluation

of R(a, v, Bc).
BC
Rla, v, 8,) =f dR(e, v, t) dt (B. 1)
-0
where
dR( = 1 e 8 -t

a, y, t) = W eXp| 5~ 3 [t exp |5 | lat) I,(rt) (B.2)

Thus
dR(@, ¥, t) = exp{ - Ln[ly(ay)] + fnt + £n[1 ()] + £alL (1t)] - f"‘z—*;*—tzl (B.3)

The modified Bessel function, Io(x), is approximated to within 1 part in 10'7 (Ref. 24) by

2
Iox) = ERE Lo 013285017) 35 , (g 00225387) 200,
X 27 X X
_exp) [, 0.12488 , 0.079425 (B.4)
2mx X X

Using the approximations in Eq. B. 4 for the IO function in Eq. B. 3, we obtain the following

dR(a, v, t)

exp{-ay +'% fn(ay) + In V27 + ot -51 {n(at) - ¢n V27

!Znt+yt-§1lln(yt)-2n~/-2-17-—(g&—5z—+—t—z)+...} (B.5)

It

If we assume a, v, and t are large, then the terms in the expansion not evaluated are approxi-

mately zero. Simplifying Eq. B.5, under the above assumption, we obtain

dR(a, ¥, t) = joexp [—% (t-a+y)2] (B. 6)
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Thus, the approximation for a, v, and t large is

dR(a, Y, t) = ¢[t = (a + 7)] (B'7)

where

Thus

R(, 7, B,) = @[p, - (@+7)] (B.8)

Equation B. 9 is a good approximation whenever aBC, yﬁc, and ay are simultaneously greater
than 5.

If aﬁc and yBc are simultaneously greater than 5, then by using the approximation
to the IO function given in Eq. B. 4 for the aﬁc and yﬁc arguments, we obtain the approxima-

tion

R(a,7,8,) = ®[p - (a+y)] —2@r) (B.9)
7, B, (8, +7)] "_—2na710(ay)

As an example of the approximations given above, consider the evaluation of

R(1, 3, Bc) where 8, is allowed to vary from zero to infinity. The approximation is

R(1, 3, -3 - (t) 1.(3t) t []ﬂy—e—, <5
B.) exp[ :IO) (3t) t exp = B,
(B. 10)
@(BC-4)e
g —— 3 >5 : (B. 11)
JEFIO(a) ¢

The approximations to the Q function are similar to the same as the approxima-

tions used in the R functions, since we can write the Q function as

Qe, 8,) = R, 0, B,) (8.12)
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The Q and R functions were evaluated numerically by use of an IBM 7090. The
computer programs used.in all numerical calculations in this work were written in an alge-
braic source language developed at The University of Michigan called the Michigan Algorithm
Decoder (MAD). We present flow diagrams of the important programs and omit the com-
plete MAD listings because of their great bulk and questionable worth. Interested readers
can obtain the binary decks for all programs used in this work by contacting the author.

The Q and R programs are merely an evaluation of the formulas givén above, and because

the programs are straightforward, we have omitted them.



APPENDIX C

GENERAL OPTIMUM NONSEQUENTIAL SUBROUTINE

To optimize the fixed-observation procedure for the signal known except for
phase (SKEP) problem, a generalized computer subroutine was developed. This system
otpimizes any fixed time procedure in which the detection and false alarm probabilities are
known as a function of the initial log-odds ratio, L, and the quality of observation, d. The
operation and use of this system is described below.

Optimization of a fixed-observation procedure requires an analysis of the value
qf the observation over the L - J3 plane. A contour plot of this surface yields two useful
boundaries for the decision process. When the value for a given L and /d is greater than
zero, observation yields smaller expected losses than an immediate terminal decision.
Thus, the value equal zero contour bounds the region where an observation should be taken.
The optimum J/d for a given initial L corresponds to a peak in the value surface on a Ccross
section along that L. A plot of these optimum /d's as a function of the initial L describes
a ridge line on the value surface. The subroutines GONS1., GONS2. and GONS3. provide
for a systematic search of the value surface and locate both boundaries.

Figure C. 1 shows a flow diagram for a typical main program using the GONS
routines. For discussion purposes, it will be assumed that the main program, like the sub-
routines themselves, is written in the MAD language and that the reader is familiar with that
language. Intermediate print outs of the probabilities; risks, etc., have been omitted from
the flow diagram, but are highly recommended in practice. The three subroutines of the
system are described in the order of their use in the following paragraphs.

The GONS1. routine sets up the GONS system by establishing a grid in the L - Ja
plane and by read‘mg in the W/C ratio. The value of the observation of each point of this grid
will be computed by the second routine. Decision boundaries are then determined by linear
interpolation from these points by the same routine. Current storage assignments in the
routines limit the size of this grid to a maximum of 100 x 100 poihts. The following call for
" GONS1. produces the grid shown in Fig. C. 2. GONS1. (DP,L,DPSTRT,DPSTEP, l_)PSTOP,
LMIN, LSTEP, LMAX,W2C).

186



187

. START
¥

GONS1. (DP, L,DPSTRT, DPSTEP, DPSTOP, LMIN , LSTEP, LMAX , WZC )

Set Up
Grid

YES
Search
Value Compute: PASN(DP, L)
Surface
PAN(DP, L)
! NORMAL EXIT NEWDP EXIT
GONS2. (DP, L, PASN, PAN, RSUBE ,RISK, VALUE , LLOW, LEIGH , NEWDP )
+
GONS3. (1.,0,0,0,0,0,0,0)
Print Out GONS3. (2.,0,0,0,0,0,0,0)
Boundarig¢s
R

Fig. C.1. Flow diagram for typical main program,
(Intermediate print outs have been deleted. )

Once the grid on the L - +/d plane has been defined, the main program begins
searching the value surface under the control of the GONS2. subroutine. The main program
computes the probabilities P(A}SN) and P(A|N) for the L - +/d coordinates given it by either
GONS1. or GONS2. and gives these to GONS2. From the probabilities, GONS2. computes
the value, risk, and risk due to error and returns them to the main program. GONS2. also
returns the coordinates of a new point in the L - +/d plane for which the main program will
computer the next pair of probabilities. The search continues on a line of constant Vd, as

indicated in Fig. C.2, until the entire line is transversed, then the routine transfers to the
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—Jf iy, - ~ —— JF' DPSTOP

——_1_ — | pDPSTEP

d

| | .
INITIAL — - — n DPSTRT
AL ] | —1

Direction of Search

LMIN —™ LSTEP l" LMAX +L
Fig. C.2. Grid produced by call of GONS1. routine.

location specified in its last argument. At this location the main program may print out the
observation region boundaries, then it continues to provide GONS2. with the probabilities as
before. A typical call for GONS21 might be:
GONS2. (DP, L, PASN, PAN, RERROR, RISK, VALUE , LLOW , LHIGH, NEW DP)
where:
DP,L are the coordinates of the next point for which the
probabilities are to be found. These are returned
by GONS2.
PASN, PAN are the detection and false alarm probabilities
provided to GONS2. by the main program.
RSUBE, RISK
VALUE are the risk due to error, risk and value, re-
spectively computed by GONS2.
LLOW, LHIGH are the boundaries of the observation region
provided by GONS2. after the value surface

has been searched along a line of constant vd.
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NEWDP is the location to transfer to after completing

a search across a line of constant /d.

When the search of the value surface is complete, the routine GONS2. sets the
value of v'd to -1. This is recognized by the main program as a flag to stop the search
process and print out the boundaries. At this time the GONS routines have both boundaries
stored within them and the GONS3. routine is used to print them out.

The call to print out the observation ‘region boundaries as é. function of /d would

be:
GONS3. (1. 0.,0.,0.,0.,0.,0.,0)
To obtain the optimum vd as a function of L, the call would be:
GONs3. (2.,0.,0.,0.,0.,0.,0.,0.)

Both calls print the variables out on $520,2F30. 6*$ format.



APPENDIX D

A PROOF ON THE INTERCHANGE OF AN AVERAGING PROCESS

In this appendix we present a proof which allows one to interchange the manner
in which the averaging process used in the calculation of the probability of detection is carried
out. (See Section 4.3.3.) .

Theorem: If p(a) and g(x) are continuous probability density functions, then
© w0
f P(x >ala) p(a) da = f P(a < x|x) g(x) dx (D. 1)
-0 =0
Proof:

a
P(x >aja) = 1. - [ g(x)dx by definition

s
Also
a
Pla < x|x) = f p(a) da
-0
Thus, it is equivalent to show
e a PR X
J (v -J gwax)pa)da £ [ [ pa)da dx (D.2)
-0 -0 -a -0
The above can be written
© b e a
J el [ ns@)da Jax £ 1. - [ pa)| [ ex) dx |da (D.3)
-0 -0 -a -0
Rewriting the above, we obtain
0w X 5 © a
J J nhix,a)dadx 2 1 - [ [ h(x, a)dxda (D. 4)
-0 -~ -0 -®

where h(x, a) = g(x) p(a) and can be considered as the joint probability density f}lnction of x
anda. If we consider the mass density in the (x, a) plane, the term on the left-hand side of
Eq. D. 4 is the total mass below the line x = a in the (x, a) plane. The double integral on

the right-hand side is the mass above the line x = a in the (%, a) plzine. Thus, since the total

mass in the (x, a) plane is one, Eq. D. 4 is an equality.
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APPENDIX E

DERIVATIONS OF THE PROBABILITY OF FALSE ALARM AND
DETECTION FOR THE GAUSSIAN AMPLITUDE AND
« = 1 AMPLITUDE DISTRIBUTIONS

This apf)endix includes the derivations of the probability of detection and false
alarm for the Gaussian amplitude distribution and the amplitude distribution corresponding
toa =1. The derivations are similar to the derivation presented in Section 4. 3. 3 for the

truncated Gaussian amplitude distribution.

Gaussian Amplitude Distribution

Consider the calculation of the probability of detection and the probability of
false alarm for the amplitude distributed according to a Gaussian distribution as defined by

Eq. E. 1.

f(a) = \/% exp [—% (a - h/g)z—J = ¢a/E-h/g), ~0o <a < (E.1)

After a single observation the distribution is given by Eq. E. 2.

fa|z) = ’Zfz’zia f(a) (E.2)

Subsituting in Eq. E.2, we obtain
2 J— 4 : 2
exp za-a/Z]—g— exp[— (a—h/g)]
2 2

fw exp[za-az/z] 7‘/% em[—% (a- h/g)ﬂda

-0

f(a z) =

(E.3)

The integral in the denominator of Eq. E.3 can be evaluated by comgining the exponential

terms and completing the square. This results in Eq. E. 4 below.

f(alz)v =~/ E-g—nl exp [,g_;__l_ (a_ h:zl)z]

g

,=¢<an—:T_ h+z ) (E. 4)
/g+1 '

Thus, from Eq. E. 4, we see that under normal observations h is transformed into h + z,

a random variable, and g is transformed intog + 1, a determinsitic variable.
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We can now obtain the total log-odds ratio after one or more observations using
the results of the updating process in the amplitude distribution. The total log-odds ratio

after an observation is given by

L (basedon z) = L, + £n £(z) (E.5)

0

If the amplitude distribution is given by Eq. E. 1, then the total log-odds ratio is

L, =L +!Zn*\/EEE fooex az - 2°/2| ex [——g—o-(a—h/ Vi da
17 "o ar P P12 o’%o
WAL ° 2 &9 2
=L0+!Zn ZT-+!Zn -[;[o exp[az-a/2:|exp|:--§—(a-h0/go) da
S ho2 (hO+z)2
:L0+Jln,/%-2n go+1-§g—0+?(-g—(;—+—1)‘
h?® h?
:Lo+ﬁn,—£—§9—+—2—1— (E.6)
g, 28y 28

where h1 = h0+ z and g =8+ 1.

Generalizing the results of Eq. E. 6, the log-odds ratio after k observations is

given by
g h 2 2
Lo-ngetn [0 00 &)
&k B B
where
k
hkz h0+i§1zi and g =g0+k (E.8)

The probability of false alarm is the probability of responding "A" in noise alone, and this
response is appropriate whenever the log-odds ratio, at the time of a terminal decision, is

greater than the threshold, AO. In symbols,

P("A"|N)

[
sl
=
V
B>

(=
2

i
d
U =
()
+
=
=
I(m
o
3
]
[ =)
(=)
+
#]
g
V
L
o
2z

(E.9)
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Equation E. 9 can be written as
pa|N) = (b > w|N) (E. 10)

where h* is the solution to the equation

2 1/2
. Bo ﬁk
h* = ng(AO - Lo + -ZEO— + fn -g—o ) ) (E.11)

From Eq. E. 8, we have that (hk - ho) = Z z, and so (hk - hO) is distributed N(0, k). The
i=1

probability of false alarm is, therefore, given by

P("A" N) = P(h_- hy> b* - hy|N)

ho-h*
= .12
d’( Vi3 ) (E.12)

The corresponding probability of detection is the probability that the total log-odds ratio is

greater than the threshold, AO, i.e.,

P("A" ISN)

P(Lk > AO lSN)

P(h, > h*[SN) (E. 13)

where h* is the solution to Eq. E. 11. Equation E. 13 can be written

P("A"|SN) = P(hk - ho > h* - hOISN) (E. 14)
k
The quantity (hk - ho) = Z z; is distributed, if the amplitude is known, according to a
i=1

Gaussian distribution with mean equal to ka and variance equal to k. Thus, given the ampli-

tude, the probability of detection is

SN
P("A"|SN, a) = > SN, a (E. 15)
|SH, P( vk vE )
B = B
We define a new variable § = v avk which is distributed N(0, 1). Equations E. 15

can be writtenkin terms of £ as

h* - h
AT - 0 - _."'?:__
P("A |SN, a) P<a> 7 JEISN, g) (E. 18)
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Thus, the probability of detection is given by
0
P("A"‘SN) = f P("A"]SN, £) d@(£)
-0

h h, - h*
g
go vk )d@(g)
-0 1/J§6

(E. 17)

The evaluation of Eq. E. 17 was accomplished by means of numerical integration using the
general program of Appendix C with the appropriate subroutines. The specific evaluation
of the integral in Eq. E. 17 was accomplished using Stieltjes integration, by approximating
the normal distribution, d® (&), with 50 values chosen to represent two percent probability.

Numerically, Eq. E. 17 is evaluated according to

by & hg - h* hy A hg - I*
®© g, "k E 50 (g, "k K
J e () = 0.02 ), @
(E. 18)

Amplitude Distribution for o = 1

The calculation of the probability of detection and false alarm for the a = 1 ampli-
tude distribution parallels the derivation of the Gaussian amplitude distribution. We will not

present the detail of the derivation given above.

% The amplitude distribution for the a = 1 case is as defined in Eq. E. 19.
- —l
f(a) = B 2 exp[ah - ag®/2], a>0
1+= w(—)
g g
=0 ‘ s otherwise “ (E. 19)

After a single observation, the updated amplitude distribution is

falz) = ) h+§+1 Tz ‘a explalh +2)-a’(g+1)/2], 220
+ w
Jg+1 KJQ+1)

= 0 ,otherwise (E. 20)
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A normal observation transforms the parameter h into the random variable h + z
k
and transforms g into g + 1. For k normal observations, h is transformed into h + Z zg
. i=1
and g is transformed into g + k.

The total log-odds ratio after k observations is obtained from Eq. E.21.
L.k = L0+!Zn Q(zl, Zgs v Zk) (E.21)

In a manner analogous to the derivation of the Gaussian amplitude distribution, we obtain

- (hk >
14— wf—
&g Ve VB
Lk = L0 + In 5 m + {n (E. 22)
1.0 ( 0 > &K
4 — w|—
Vg, Ve
where
k
h = hy + 12=1Z'1 and g, = g+ k (E.23)

The probability of false alarm is equal to the probability that Lk is greater than
A 0 in noise alone. In terms of the random variable hk’ the probability of false alarm is the

probability that hk is greater than h*, where h* is the solution to the equation

h h
* *
L w(—h——-> = g, (eXp (AO- L0)+ 1+—-9- w(——o—-) + 1 (E.24)

V& \VE Ty WE
k
The quantity (hk - ho) = Z z, in noise alone is N(0, k). Therefore, we can write the proba-
i=1
bility of false alarm as
P("A"|N) = Pl - hg> bx - ho|N)

[l

(%)
o2y —m{:r— (E. 25)

The corresponding probability of detection is obtained in terms of the random
variable h in a manner analogous to the derivations used in the Gaussian amplitude distribu-
tion and the truncated Gaussian distribution. The probability of detection, if the amplitude

is known, can be written
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l h* - h : I
P("A" SN, a) = Pja > —07— - —2— SN, E.26

where £ = (hk - hO)/‘/E - a vk is distributed N(0, 1) and h* is given by Eq. E.24. Thus,
the probability of detection is given by averaging Eq. E. 26 with respect to the normal dis-
tribution with mean zero and unit variance. The probability that "a'" is greater than some
threshold value, in this case the threshold is equal to (h* - hO)/k - ¢ Jk, is given by the
cumulative probability distribution function of "'a'".

The cumulative distribution function of "a'" is defined as probability that "a" is
less than some cut value. (We are interested in one minus the distribution function.) In

symbols, the cumulative distribution function is

P@a> x|SN, &) = 1 - fxf(a)da
0
X h/
1- ag ¢(a' g)da (E.27)
0 eh/./8) +7_g_®<h/ JE) 1/ /8

The evaluation of the integral in Eq. E. 27 can be obtained in terms of the normal distribution

function and the normal density function as

Pa> x|SN, &) = 1 - g -é ¢(§_'h_/€) - ¢(_h_)

h
¢(h/ /B) +— @(h/ /) 1/ /g Jg
JE
+ B @(x'—h/g)-o.s (E. 28)
'L Vi vE
Using Eq. E. 28, the probability of detection can be found from
] h* - h
. 0 g
P("A"|SN) = a > —— - —=|SN, f(a) da (E. 29)
carlsn = Joofa > —=2 - 2w, ¢) s

The numerical evaluation of Eq. E. 29 was obtained by use of an IBM 7090. The

computer program used is given in Appendix C.



APPENDIX F

THE COMPUTER FLOW DIAGRAM OF THE SUBROUTINE FOR
THE PROBABILITY OF DETECTION AND FALSE
ALARM FOR A SKEA

This appendix presents the computer flow diagram of the éubroutines for the
probability of detection and false alarm for a single observation of a signal of unknown -
amplitude. The program shown in Fig. F.1 is an external function used in conjunction
with the general calling program presented in Appendix C. The external function contains
two entry points; one for the detection probability, and the other for the false alarm proba-

bility. The amplitude distribution is assumed to be truncated Gaussian, i.e., o = 0.

197



198

-yaS 107 (N1.V.)d pue (NSl.V.)d f0§ supnoaqng °1°4 814

uoyounyg Jo puy

q -
(g @ pVACRERY
ajenyeAd 97B[NOTED

(N1

uIn)ay uoijoung

.<:v&

:

(N1L V)

0} L1pug

:

O (NSIuVd

uamyay uoypung

gs9004d Jmdeaaas

sjurod Anigeqoad

juadaad g

uoyeasajuy sefra1s 4q

‘08 ynm

J0J JUB)SUCD
Su1Z1[BW.IOU 3FRINITBD

%+ o
—_—t + —®

z ) o

- U q
afetaay

1/(4 - +4)
‘(z)y ug uo Az.m_:<:vm
anrea nd 0} Axjug
aye[nored ‘




APPENDIX G

DERIVATIONS OF THE SEPARABLE SUBSPACES FOR THE
GAUSSIAN AND o = 1 AMPLITUDE DISTRIBUTIONS

The determination of separable subspaces for the Gaussian amplitude and the
a = 1 amplitude distribution are obtained easily by using the general equality of Eq. 4.67

repeated below.
f.1@) = exp[Ln - Ln—l] £(z]a) fn(a) (4. 67)

The subscripts n and n-1 refer to post and prior observation, respectively.

The Gaussian Amplitude Distribution

For the Gaussian amplitude distribution, the substitution of the expression for

the a posteriori and a priori density function in Eq. 4. 87 results in

2

En-1 €n-1 h -1 g
el (- g2) | - emlr, -1, ) ewplen - /21432
n—
g h ¢
n n
e -5 la-— G.1
xp| - 52 ( : ) G. 1)
Expanding Eq. G. 1 and rearranging terms, we obtain
3 ! g
n-1 2 n-11 _ n - n?
T exp[ a gn_1/2 rah -5 n—l] = 5 exp[Ln Ln-l] exp[ a (gn+1)/2 + a(hn + Z)
h 2
n
- (G.2)
Zgn
Using the relations hn—l = hn+z and 8,17 g, * 1, we can write Eq. G.2 as
2 h2
in [/ - n_1+L = In JT. - 5=+ Ln (G. 3)
fo-1 T %g " Toet n g :

Equation G. 3 implies that the quantity of ¢n /g - h®/ 2g is invariant with observation, and

this is the specification of the separable subspace, Q, for the Gaussian amplitude distribution

Q = L + ¢n Vg - h®/2g (G.4)
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The Amplitude Distribution for a = 1

The separable subspaces for the amplitude distribution corresponding to a =1
are also found by using Eq. 4. 67 as a starting point. Substituting the appropriate functions

into Eq. 4.67, we obtain the following

M _,aexplah - a® gn_l/z] = exp[L - L__ ) explaz - a®/2] M aexplah - a’ gn/Z]

(G.5)

where Mn_1 and Mn are the normalizing constants for the amplitude density functions.

Expanding Eq. G.5, collecting terms, and taking logarithms of both sides of the equation,

we obtain

InM +L = 4{(nM + L
n n n-

1% *n-1 (G. 6)

From Eq. G.6, we conclude that fn M + L is independent of the stage of observation and this

defines the separable subspaces for the o = 1 amplitude distribution. Recalling that the nor-

malizing constant M is equal to g/[l + \/l__ w(h/ ,/E)], we have for the separable subspaces
g

Q=L+ﬂn[ - ) /f] G.7)
1+— wh
+J§w( g)




APPENDIX H

THE COMPUTER FLOW DIAGRAMS FOR THE DESIGN AND EVALUATION
OF THE OPTIMUM SKEA DETECTOR FOR THE o = 0 AND
a = 1 AMPLITUDE DISTRIBUTIONS

This appendix presents computer flow block diagrams for calculation of the
optimum risk functions, the probability of detection, the probability ;)f false alarm, and
the ANO functions for the a¢ = 0 and o = 1 amplitude distributions. Figure H. 1 presents the
flow diagram for calculation of the decision boundary from the optimum risk functions.
Figure H.2 presents the flow diagram for calculation of the ROC and ANO curves for sub-
optimum decision boundaries that are read in as data.

The programs in Figs. H. 1 and H. 2 both use a set of external tables occupying
approximately a third of the IBM 7090 core memory. The tables are of the w( ), ®( ) and
¢( ) functions, and their use in the programs permits a more rapid computation time than

calculation of these functions from power series (as is usually done).
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APPENDIX 1

DERIVATIONS OF THE OPTIMUM RISK FUNCTIONS AND EVALUATION
FUNCTIONS FOR THE GAUSSIAN ANDa =1
AMPLITUDE DISTRIBUTIONS

This appendix presents the derivations of the optimum average loss functions
and the ROC and ANO functions for the Gaussian and a = 1 amplitude distributions. The
basic method of solution is identical to that presented in Sections 4.5.1 and 4.5. 2. The
mathematics, however, are distinct frbm the truncated Gaussian amplitude distribution

problem.

Gaussian Amplitude Distribution

Consider first the derivation of the optimum average loss function. The ampli-

tude distribution is given in Eq. L. 1.

fla) = ,/-Q% exp [—% (a:- h/g)z] = ¢a /E-h/g), -0 <a <o (1. 1)

As in the case of truncated amplitude distribution, the state of the decision process must be
expressed in terms Q, L, g g - g} in order to effect a one-dimensional averaging process

in obtaining the optimum average loss functions. The separable subspaces, Q, are derived

in Appendix G. They are given by
h2
Q=L+!Zn,/g-§§ ; (1. 2)

Rather than carry through the iteration steps in detail, as presented in Section 4. 5. 1, the
general iteration step is stated. The same logic used in Section 4.5. 1 applies both to this
problem and the @ =1 amplitude distribution problem.

To obtain the general iteration step for the determination of the optimum average
loss function, assume the state of the decision process is {Q, Lk’ g B~ 8 = n}. Since
g " 8 = n, this imples the available number of deferrals is equal to n. Our problem is 'to
decide whether to take an observation or make an immediate terminal decision. The immedi-
ate terminal decision results in an average loss of T(L) while a deferral results in an average

.
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loss of Gk(L), for a log-odds ratio L = Lk The average look-ahead loss, Gk(L), is given by

>0}
G, (L) = ofo Fy_ L+ L) f(z)dz+C (1.3)

where Fk-l(L) is the optimum average loss function at stagek - 1, i.e., the stage for the
available number of observations one less than stage k. The optimum average loss function

for stage k is Fk(L).
F, (L) = min[G(L), T(L)] (L 4)

The intersections of Gk(L) and T(L) are, again, the optimum decision boundary points.
The quantities fk(z) and #n £(z) of Eq. I. 3 are the probability density function

and the log likelihood ratio of the observations. For the Gaussian amplitude distribution,

we have
f(2) = —Lp 1,G|SN) + — g (z]N)
l+e l+e
-1 foo f(zISN, a) 1, (a) da + —1— 1, (z|N) (1.5)
-L e L k :
l1+e -0 l+e

Now the distribution of the observation, z, in noise alone is assumed to be N(0, 1). The
distribution of z in signal-and-noise, if we know the amplitude, is N(a, 1). Thus, Eq. I.S

can be written

f(Z)=-—L— fw¢(z-a)¢(a,/é—-k')da+ oz
k 1+ e-L -0 k &k 1+ eL
1 +2
B N el T ) (1.6)
l+e Ex l+e
And finally, we have the updating equation for the log-odds ratio
Lk;l = Lk + In £(2z)
by +2) 4 |
= Q + m - i !Zn(gk + 1) (I~7)

The updating equation for the probability amplitude density function is given in Appendix E.
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The evaluation of the optimum procedure is, again, given in terms of the average
loss functions as a function of L. The decomposition of these functions into loss due to ter-
minal decision errors and the loss due observation time is accomplished in terms of the ROC
and ANO functions, respectively. The derivations of these functions exactly parallels the
derivations presented in Section 4.5.2. The initial ROC curves for one allowable deferral
are derived in Appendix E. The solution to these equations were obtained by means of an

IBM 7090. The various computer programs are presented in Appendix J.

Amplitude Distribution for ¢ = 1

The optimum average logs functions, the ROC and the ANO functions are derived
in the same manner as for the Gaussian amplitude distribution. The equations that corre-
spond to Eqs. 1.1 through 1. T are presented below. The words that explain the equations are

the same as used in the Gaussian amplitude distribution problem given above.

f(a) = hg T aexp(ah-a—;-g) ) a> 0
1+ — wf—
= )
=0 , otherwise (I.8)
Q=L+1¢ (1.9)
[ P N
VAN
©
G, (L) =_f Fy_q[L+2n0()]1(2) dz + C (1 10)
F (L) = min [G, (L), T(L)] ' (L. 11)
f(z) = ——1——3 fk(z|SN) + ——1——E fk(le)
k 1+e'_ l+e
L [ talsy, 21,0 Lty
= — f(z |SN, a a)da + ——= { (z|N
1+e_L -0 k 1+eL k

=_—_IF foogz&(z—a) h.kgk hk a-exp'}hk—gg-gk]da

1+ -00 1+—5 w(———
&
+——1-_—L-¢(Z)
l1+e
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. by +2 w(hk+z )

) 1 . & . Jgk +1 Jgk +1 o)
- -L g +1
l+e k 1+_h£ w<hk>
Ve Ve
v —1 42) (I 12)
I .
l+e .
Lk-l = Lk+£n12(z)
+Z +z
=Q—£n(gk+1)+£n 1+hk w hk (1. 13)
-./gk+1 Jgk+1 ’

The updating equation for the probability density function on the amplitude is given in
Appendix E.

The evaluation of the optimum procedure in terms on the ROC curves and ANO
functions, again, parallels the derivations presented in Section 4.5.2. The initial ROC
curves for one allowable deferral are derived in Appendix E. The numerical solution of the f

equations comprising the solution to the a = 1 amplitude distribution problem was obtained

by means of an IBM 7090. The program is the same program used in the truncated ampli-
tude distribution prlblem and is given in Appendix H. This program also gives the ROC and

ANO functions for the a = 1 amplitude distribution.




APPENDIX J

THE COMPUTER FLOW DIAGRAMS FOR THE DESIGN AND EVALUATION
OF THE OPTIMUM SKEA DETECTOR FOR THE GAUSSIAN
AMPLITUDE DISTRIBUTION

This appendix presents the computer flow block diagrams for the design and
evaluation of the optimum SKEA receiver for a signal amplitude distributed according to
Gaussian distribution. The gross characteristics of the operation and evaluation of this
receiver are the same as for the receivers designed for the a =0and a = 1 distributions.
The Gaussian distributions differ from the a =0 and a = 1 distributions in that negative as
well as positive amplitudes may oceur.

Figure J. 1 is the computer flow graph for the determination of the optimum
decision boundaries. The evaluation of the Gaussian amplitude distribution is accomplished
by means of a second program as shown in Fig. J.2.

The terms "old" and "new" functions correspond to the optimum risk function,
Fn, before and after the averaging process, respectively. The initial optimum riskAfunction
is T(L) = FO(L), the terminal loss function. The computer program stores vectors, one
filled with Fn- old and the other filled with Fn-new.

A more detailed flow diagram is available from the author upon request along

with the binary cards used in the IBM 7090.
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APPENDIX K

THE COMPUTER FLOW DIAGRAM FOR CALCULATION OF THE
CONDITIONAL PERFORMANCE EVALUATORS FOR A SKEA

This appendix presents the computing algorithm, in block diagram form, for
the conditional performance curves presented in Section 4. 6. 3. The program calculates
conditional performance in signal-and-noise, in noise alone, and in any mixture of SN and N.
The program is written in terms of the parameter h rather than the log-odds ratio, L. The
input data needed include & & Q, and the signal amplitude. The program can be thought of
as a simulation of the optimum detection receiver for a SKEA. in which specific amplitude
signals are received at the input. The notation used in the block diagrams is consistent with

notation introduced in Chapter IV. The computer block diagram-is shown in Fig. K. 1.
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