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CHAPTER 1

INTRODUCTION

1.1. Preliminaries

A packet radio netw rk consists of a collection of geographically distributed and
possibly mobile nodes which wish to communicate with one another via one or more

broadcast radio channels.

Associated with each node is a network interface unit (NIU) consisting of a
communications section, which transmits and receives units of information called
packets, and a logic section, which controls the communications section and processes
packets. [If an NIU serves only as the source or sink of packets, then it is called a
terminal; if it serves only to forward packets, then it is called a repeater; and if it serves

both as a terminal and a repeater, then it is called a station.

Because of the limitations of NIUs, e.g., insufficient transmission power, packets
may be sent to one or more intermediary NIUs, stations or repeaters, before reaching
their final destinations and each link in this chain is called a hop. A single-hop
network is one in which all NIUs are terminals and each packet is transmitted directly

from source to destination. All other networks are multihop networks.



At a specified time and with respect to a certain NIU, a communication channel is
idle if no transmission is detected by the NIU on the channel; otherwise, the channel is
busy. It is assumed that channels are noiseless and that transmissions are received by
all NIUs within specified regions surrounding the transmitters unless two or more
transmissions on the same channel “collide’” at an NIU, i.e., the transmissions are
coincident at an NIU within overlapping transmission regions. Thus power capture and
time capture are modelled as follows: an NIU can receive but one transmission on any
channel at any time and any other transmission on the same channel within a specified
region will interfere. Note, however, that there can be several successful coincident
transmissions in different parts of a multihop network, i.e., spatial reuse of the
communication channel, if the transmissions do not collide at the intended recipients’

NIUs.

Access to a shared communication channel is governed by a set of rules called a
channel access protocol. These rules specify the procedure that must be followed by
NIUs which wish to use the channel. They dictate when, which, and to whom NIUs
may transmit. Protocols may be centralized or distributed: in a centralized protocol a
single NIU controls access of all NIUs to the channel and in a distributed protocol each
NIU controls its own access to the channel. Protocols may dedicate a portion of the
capacity of the communication channel to each NIU or may permit each NIU to
randomly access the entire capacity of channel. If decisions at an NIU are based on
information about the state of the network which is not available locally, the protocol

must specify the manner in which information is exchanged among NIUs.

In multihop networks, a routing algorithm is used to determine the path that a

packet follows between its source and ultimate sink. The forward progress of any



transmission is defined to be the distance achieved along the line connecting the
transmitting NIU to the NIU which is the ultimate sink of the packet, and a routing
algorithm which maximizes the forward progress of any transmission is called a most

forward progress (MFP) routing algorithm.

The criteria used to evaluate channel access protocols in this dissertation include
measures of channel utilization, packet delay time, packet throughput, stability,
fairness, and capacity. The definitions of some of these criteria depend on a statistical
characterization of the network or the class of networks to which they are applied, i.e.,
probabilistic specifications of node locations, nodal packet arrival processes, packet

length distributions, traffic patterns and routing algorithms.

o The [effective) channel utilization of a protocol for a specific network is defined to
be the ratio of the expected rate at which data are (successfully) transmitted on
the communication channel to the bandwidth of the channel, excluding potential
spatial reuse, for a specified statistical characterization of the network. Unless
qualified by the term “nodal”, channel utilization refers to the global utilization
of the channel in the network. (For a homogeneous network with isotropic traffic
patterns the global utilizations are just the products of the nodal channel
utilizations and the number of nodes in the network.) The average (effective)
channel utilization of a protocol for a specific statistical characterization of a
network is the (effective) channel utilization averaged over time. Note that for
multihop networks the global channel utilization may exceed one because of

spatial reuse and may also be normalized to that per unit area.

For large, homogeneous networks with isotropic traffic patterns in which edge



effects can be ignored, having a slotted channel communication channel in which
packets are the length of one slot, and having nodes with independent Poisson
exogenous packet arrival processes with mean rates \ per slot, then the nodal
channel utilization for any node in the ¢-th slot is

E(L,,(N\) + I, (\)
where 7, ,(\) and I, ,(\) are indicator random variables assuming values 1 if and
only if there are successful or unsuccessful transmissions, respectively, from the
node in the ¢t-th slot; and the effective nodal channel utilization for any node in
the ¢-th slot is

E(Z,:(\)).
The average nodal channel utilization and the average effective nodal channel

utilization are
1 T 1 T
lim sup— M E(J, ,(\) + I, ,(\)) and lim sup—, 3 E(/, ,(A)),
T - T‘=° ! ! T—oo T (=0 ’

respectively. The global channel utilizations are simply the nodal utilizations
multiplied by the number of nodes in the network.

Packet delay is defined to be the difference between the time at which a packet
appears at its source and the time at which the last bit of a packet is successfully
received at its ultimate destination unless qualified by the term ‘“one-hop”, in
which case the delay is measured from arrival to reception at the next
destination. The mean or expected packet delay for a specific protocol and
statistical characterization of a network is the expected value of the packet delay.
The throughput for a specific protocol and statistical characterization of a network
is the expected rate av which data, typically packets, arrive at their destinations.

The average throughput for a specific protocol and statistical characterization of



a network is the rate at which data arrive at their destinations averaged over
time. Throughput is usually specified as the rate at which data reach their
ultimate destinations unless qualified, e.g., by the term ‘“‘one-hop’. Like
utilization, throughput may be normalized to the unit area.

A protocol is stable for some statistical characterization of a network if the
average packet delay in the network is finite.

A protocol is called fair if for all homogeneous networks with isotropic traffic
patterns, the average packet delays at all nodes in a specific network are equal.
The (average) capacity of a protocol for a homogeneous network with an uniform,
isotropic traffic pattern in which the exogenous data arrival processes at nodes are
independent Poisson processes with mean rates \ is the maximum for 0<\ < oo of
the (average) effective channel utilization for a statistical characterization of the
network. Unless qualified as “nodal”, capacity refers to the global capacity of the
network. Unless qualified as “one-hop’’, capacity refers to the rate at which data
are delivered to their ultimate destinations (normalized by the bandwidth of the

communication channel).

For large, homogeneous networks with isotropic traffic patterns in which edge
effects can be ignored, having a slotted channel communication channel in which
packets are the length of one slot, and having nodes with independent Poisson
exogenous packet arrival processes with mean rates \ per slot, then the one-hop
nodal capacity for any node in the ¢-th slot is

max t.1/, (X))

0<x< <
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FDMA protocols for the single-hop, finite source, network model is 1.0 and both

protocols are stable in this context.

Nelson investigated the use of TDMA in static, multihop, packet radio networks
with known topologies and packet flow patterns [Nel82|. He attempted to find a
method to assign the time slots in TDMA frames to sets, or cliques, of transmitter-
receiver pairs which could converse without interfering with one another in such a way
that the average packet delay in the network would be minimized. While he was
unable to find an optimal assignment of slots to cliques he was able to find an upper
bound to the minimum delay by computing the delay for the case in which cliques are

randomly assigned to slots.

Dedicated protocols like FDMA and TDMA can be effective in packet radio
networks if the traffic is not bursty in nature. (An information source is called bursty
if its burst factor g [Lam78], the ratio of the acceptable average message delay time to
the mean message interarrival time, is small.) Dedicated protocols become inefficient if
the traffic is bursty because the portion of the entire bandwidth of the channel
allocated to each NIU must be large enough to meet message delay constraints;
however, the capacity is unused most of the time. It is this inefficiency which motivates
the use of variants of strict TDMA protocols like statistical TDMA and of random
access protocols like ALOHA and CSMA in which the entire capacity of the

communication channel is allocated on packet-by-packet basis when required.

1.2.2. ALOHA protocols

A simple distributed random access protocol for packet radio networks was

developed by Abramson and is called ALOHA [Abr70|. (Note that a distinction is



and the network nodal capacity for the :-th node is

max EY 7, (\)

0Sh<m 2
where [,,,(\) is an indicator random variable assuming value 1 if and only if
node k is successfully receiving a transmission that originated at node 1, L.e., node
i was the original source of the data, and is also the ultimate destination of the
data in the t-th slot. (Without loss of generality it is assumed that nodes 1,2,...,n
are the potential ultimate destinations for data originating at node i.) The
average capacities and the global capacities are defined in manners analogous to

the average and global channel utilizations, respectively.

1.2. Channel access protocols

In this section, we review two classes of dedicated access protocols, the TDMA
protocols and the FDMA protocols; review four classes of random access protocols, the
ALOHA protocols, the CSMA protocols, the BTMA protocols, and the tree protocols;
and review one class of hybrid protocol, the ALOHA/FDMA protocol. All of these

protocols can be used in either single-hop or in multihop networks.

1.2.1. TDMA and FDMA protocols

In time division multiple access (TDMA) and frequency division multiple access
(FDMA) a portion of the capacity of the communication channel allocated to each NIU.
In TDMA the channel is temporally multiplexed among NIUs and an NIU is assigned
one or more time “slots”’ in a repeating sequence of “frames’” during which it can use
the channel. In FDMA the channel is frequency multiplexed among NIUs and an NIU

is allocated a portion of the frequency spectrum. The capacity of the TDMA and



drawn between the ALOHA network and the ALOHA protocol.) In this protocol,
whenever an NIU is not busy and a new packet arrives, the packet is transmitted.
NIUs make no attempt to ascertain if the communication channel is idle before
transmitting. Also, NIUs make no attempt to detect interference or to abort
unsuccessful transmissions. In the event that two or more packets collide, none is

acknowledged and the sources retransmit the packets after a random delay. Lam found

that the capacity of ALOHA for the single-hop, infinite source, network model! is 1/ 2¢
or approximately 0.184. He also showed that ALOHA is unstable in this context

[Lam75].

The characteristics of slotted ALOHA , ALOHA with a temporally slotted channel
in which NIUs can initiate slot length transmissions only on slot boundaries, were first
described by Roberts [Rob72]. Like ALOHA, the protocol is unstable in the context of
a single-hop, infinite source, network model; however, its capacity is 1/e or

approximately 0.388 [Lam?75].

In multihop packet radio networks the capacity of the ALOHA protocols may
increase since several conversations can coexist without interfering with one another.
Silvester coined the term ‘‘spatial reuse” to describe this phenomenon and he and

Akavia investigated the use of slotted-ALOHA in multihop networks Aka79, Sil80|.

For multidimensional, homogeneous networks, Akavia derived a relationship
among the optimal transmission range for an NIU (the range that minimizes the
channel bandwidth required to satisfy constraints on average packet delay), the average
distance traveled by messages, the total traffic emerging from a unit area of the

network, and the desired average packet delay. He showed that ALOHA performed

'See Appendix A.



well when the traffic is bursty and that networks in which the transmission range of
NIUs could be controlled suffered less from steady traffic than single-hop ALOHA
networks. While in the latter case, ALOHA is only 1/e times as efficient as the best
M/D/ 1 queue; in the former case, it is 1/ Ve times as efficient. Of course, such a queue

is an ideal model and cannot be constructed in a distributed environment.

Silvester looked at one- and two-dimensional homogeneous networks in which each
NIU is assumed to have the same, limited transmission range and to be equally likely to
transmit to any other NIU. He showed that there exists an optimal value for this
transmission range for which the expected forward progress of a packet per attempted
transmission is maximized. If the transmission range is increased beyond this value,
then the expected forward progress decreases due to the increased probability of
interference from other transmissions. For two-dimensional networks having regular or
random topologies which are neither fully connected nor disconnected, he found that
the network nodal capacity is proportional to the reciprocal of the square root of the
number of nodes in the network. He also showed that for two-dimensional networks
with random topologies the optimal transmission range is such that an average of 5.89

other NIUs can “hear” a transmission.

Nelson generalized Silvester’s work to include capture [Nel82| for random planar
networks using slotted-ALOHA. He derived a formula for the network capacity as a
function of the number of nodes in the network, the average number of nodes within
the hearing range of a randomly selected node, the capture parameter of the receivers in
the network, and the probability that a node in the network transmits in any slot. He
showed that when the capture parameter is 0.7, typical for good FM, the network nodal

capacity is 0.074/v'n and occurs when an average of 4.99 other nodes can hear a
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transmission.

Akavia investigated the performance of hierarchical slotted-ALOHA networks in
which many terminals are linked to repeaters and repeaters to one central station
[Aka79]. Each repeater is assumed to receive packets from a unique collection of
terminals, each repeater is associated with a different collection of terminals, and each
collection of terminals is assumed to generate traffic as a Poisson source with common
rate. All terminals transmit to local repeaters using the slotted-ALOHA protocol and
similarly, each repeater transmits to the central station using slotted-ALOHA. Akavia
suggested that such hierarchical networks could be established by either employing
capture and assigning different transmission power levels to different hierarchies or by
employing FDMA and assigning different frequencies to different hierarchies. Akavia
showed that multilevel ALOHA networks of the type described have better performance

when heavily loaded than comparable single level ALOHA networks.
1.2.3. CSMA protocols

Tobagi analyzed the performance of a class of carrier sense multiple access
(CSMA) protocols in a single-hop packet radio environment [Tol;74]. Unlike the
ALOHA protocols, the CSMA protocols require that an NIU test the channel for
activity before transmitting and defer from transmitting if the channel appears to be
busy. In a p-persistent CSMA protocol an NIU (a) defers until the channel is idle and
then it either (b) transmits immediately with probability » (0<p <1), or (c) defers for a
short period of time with probability 1-p and then reverts to {a). In a non-persistent
CSMA protocol, an NIU repeatedly defers for a randomly chosen interval of time until

it finds the channel idle. whence it transmits immediately.
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In a single-hop network, collisions occur if a transmission is initiated by an NIU
before it realizes that another NIU has also started to transmit. (A transmission is
vulnerable for a period of at most 7 units of time {rom its start, where r is the
maximum signal propagation time between NIUs in the network.) In the event that
two or more packets collide in either a p-persistent or a non-persistent CSMA protocol,
no packet is acknowledged and the sources retransmit the packets after a random
delay. The capacity of a non-persistent CSMA protocol for the single-hop, infinite
source, network model is about 0.815 when the ratio of propagation delay to packet

.

transmission time ¢ is .01 [Kle75a|.

The effect of using any CSMA protocol in a multihop environment differs from
that of using the same protocol in a single-hop environment. In a single-hop CSMA
network, an idle channel guarantees that a transmission will be successful if the effect
of the propagation time r is neglected and a busy channel guarantees that a collision
will occur. However, in a multihop CSMA network, neither of the aforementioned is
true. These phenomena, depicted in Figures 1.1 and 1.2, are called ‘“hidden area
effects”’ and are inherent in any multihop communication network in which NIUs have
limited transmission power. In Figure 1.1, the channel appears idle to node C even
though node A is transmitting to node B and any transmission from C will interfere
with the transmission from A to B. In Figure 1.2, the channel appears busy to node C;
however, were node C to transmit to D, the transmission would be successful and

would not interfere with the transmission from node A to B.



Figure 1.1

Hidden area effect

Figure 1.2

CSMA inefficiency

* Node A is transmitting to
node B.

* Node C sees an idle channel
and transmits to node D.

* The-transmission from C to
D interferes with that from A
to B.

* Node A is transmitting to
node B.

* Node C sees a busy channel
and does not transmit to node
D.

* The transmission from C to
D would not interfere with
that from A to B.

Tobagi showed that the capacity of a non-persistent CSMA protocol decreases

from 0.815 to a value less than 0.30 when one-half or more of all NIUs are hidden from

each NIU (¢ = 0.01) and he introduced the busy tone multiple access (BTMA) protocol

as a modification of the CSMA scheme to eliminate the effect of hidden areas ‘Tob75].
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[n his work, Tobagi considered networks with a unique topology: he assumed that the
networks were composed of terminals which wish to communicate with a central
station, e.g., a centralized computer system. All terminals are within the transmission
range of the central station but not necessarily within the transmission range of one
another; thus, transmissions from one terminal to the central station may not be
apparent to another terminal. To eliminate the hidden area problem, he suggested that
the central station transmit a “busy tone” on a subchannel whenever the main channel
is busy and that terminals check the status of the subchannel rather than the main
channel before transmitting. The capacity of the non-persistent BTMA protocol for a
network with the topology described above is approximately 0.70. This is significantly
better than the performance of non-persistent CSMA in the same environment but
inferior to non-persistent CSMA in an environment in which all nodes can hear one

another.

While the BTMA protocol solves the problems that any CSMA protocol
experiences when used in a multihop environment, it introduces another problem which
is depicted in Figure 1.3. Here the channel appears idle to node C; however, were node
C to transmit to node D, the transmission would experience interference from node A
and would be unsuccessful. As we show later, this seemingly innocuous problem limits
the performance of BTMA multihop packet radio networks. (We also described a

method to correct the problem.)
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* Node A is transmitting to
node B.

* Node C sees an idle channel
and transmits to node D.

* The transmission from A to
B interferes with that from C
to D.

Figure 1.3

BTMA inefficiency

Nelson suggested another approach to improve the performance of CSMA in the
multihop networks [Nel82]. He observed that if NIUs were able to estimate the number
of nodes that are transmitting within their hearing range, then this information might
be used to bias a strict CSMA protocol. In particular, he suggested that a node may
want to transmit if few NIUs within its range are transmitting on the chance that its
transmission would not interfere with other transmissions. Nelson called this
generalization of CSMA, rude-CSMA. He concluded that for random planar networks,

rude-CSMA does not improve performance.

1.2.4. Tree protocols

A number distributed, random access protocols, loosely termed ‘“‘tree” protocols,
have been described by Berger |Ber81|, Capetanakis [Cap79a, Cap 79bl, and Gallager
Gal78|. All of these protocols rely on a communication channel which is temporally

slotted and it assumed that NIUs can synchronize their transmissions on slot

boundaries. Also, it is assumed that NIUs do not have information about other
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transmissions on the channel as in CSMA and BTMA, but that NIUs receive feedback

about the outcome of any transmission after a transmission has ended.

The operation of these protocols can be viewed as the cyclic searching of an
imaginary n-ary tree which is superimposed on all NIUs. Each vertex of the tree
corresponds to a subset of NIUs that may transmit in the next time slot if the vertex is
scanned -- the root corresponds to the set of all nodes. The m children of any vertex
(m <n) are disjoint sets, each containing approximately 1/m of the NIUs associated
with the parent, which are scanned if and only if a collision occurs when their parent is
scanned. The structure of the tree, the level at which the search begins, and the
searching pattern (typically depth-first or breadth-first) may be varied to optimize the

search for NIUs having packets to transmit.

In Capetanakis’ seminal work, he assumed that whenever an NIU has a packet to
transmit, it waits until the current tree has been expanded and a new tree expansion
begins, whence it transmits the first packet in its queue whenever a vertex of which it is
a member is scanned, and deletes that packet from its queue only if no collision occurs.
He also assumed that all vertices in a tree are binary except for the root which may
have more than two children; that a pseudo depth-first search pattern is used starting
with the children of the root. Capetanakis showed that the capacity of an optimal tree
protocol for the single-hop, infinite source, network model is 0.430. He also showed that
for a finite source model the optimal tree protocol becomes a TDMA protocol as the

load increases; hence, has a capacity of 1.0.

Berger and Gallager suggest modifications of Capetanakis’s searching algorithm
which increase the capacity of the tree protocol for the single-hop, infinite source,

network model to 0.487.
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1.2.5. Hybrid protocols

Akavia suggested that a combination of an ALOHA protocol and FDMA or
TDMA might be an effective hierarchical, hybrid protocol for broadcast packet radio
networks [Aka79]. In his networks, terminals are linked to repeaters and repeaters to
one central station in the case of centralized systems or to each other in the case of
distributed networks -- the basic configuration is similar to that described before
except that all terminals transmit to local repeaters using the ALOHA protocol and
each repeater transmits using a dedicated protocol. Thus Akavia uses ALOHA in an
environment to which it is suited, one in which the traffic is bursty, and a dedicated
protocol in an environment to which it is suited, one in which the traffic is steady: the
traffic from many terminals is combined at the repeaters. He shows that for centralized
systems and for one-dimensional distributed networks, the performance of two-level,
hybrid protocols is superior to single level protocols over a wide range of operating
conditions -- whenever the traffic is neither very bursty nor very steady. He also shows
that while additional protocol levels may improve performance in some cases, the
magnitude of the improvement is far smaller than that experienced when changing from

a single level protocol to a two level protocol.

1.3. Performance limits

There have been a sequence of results that have placed bounds on the capacity of
random access protocols in packet radio networks. The bounds pertain protocols which

do not use supplementary feedback, e.g., channel state in CSMA.

In the single-hop environment, Gallager's tree protocol, the modified version of

Capetanakis’s protocol, is a random access protocol with a capacity of 0.487 which
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places a lower bound on the capacity that can be achieved by random access protocols.
Pippenger used an information-theoretic argument to show that the capacity of any
random access protocol for the single-hop, infinite source network model could not
exceed 0.7448 [Pip79] and later Molle used a ‘‘genie’’ argument to show that the

capacity for any random access protocol for this model could not exceed 0.8731 [Mol80].

In the multihop environment, Nelson found an upper bound on the one-hop nodal
capacity over all random access protocols in connected random planar packet radio
networks to be 0.9278/N where N is the average number of nodes within the
transmission range of a randomly selected node [Nel82|]. Lower bounds have have been
established by Silvester, Nelson, and Akavia with various assumptions as described

earlier.

1.4. Preview

In this dissertation, we address several important issues. First we examine the
criteria that must be satisfied for multihop packet radio networks to operate without
collisions and derive two general laws for the conflict-free operation of networks. Using
these laws, we then place bounds on the operating characteristics of a subclass of all
packet radio networks, the regular, planar networks. Next we show that the
application of these laws leads to new random access protocols for multihop packet
radio networks, a class of bi-level TREE/TDMA protocols and a carrier sense, collision
avoidance multiple access (CS/CAMA) ;)rotocol. Analytical and simulation models of
the protocols are described and are used to evaluate their operating characteristics. A
Petri net model of the second of the protocols is used to prove that it operates

correctly.
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In Chapter 2 the criteria that must be satisfied for the conflict-free operation of
multihop networks are examined. Both necessary and sufficient conditions are
presented in the form of two “laws,”’ the weak law and the strong law. These laws are
then applied to protocols for two-dimensional regular networks, i.e., the triangular,
square, and hexagonal networks. Upper bounds are placed on the capacities of
protocols which obey the weak law for each of the regular networks and it is shown
that there exist protocols achieving these bounds. It is also shown that there exist
protocols for regular networks which obey the strong law and have capacities exceeding
those that can be obtained by protocols obeying the weak law. It is shown that of
protocols for the regular networks, those for square networks obeying the strong law

have the highest potential capacities.

In Chapter 3, a new class of channel access protocols for packet radio networks is
presented. The protocols are called TREE/TDMA protocols and are based on regular
backbones of repeaters which are superimposed on irregular networks of terminals. In
these protocols, two levels of control are used on a shared broadcast channel: a tree
multiple access (TREE or TMA) link exists between each terminal and a nearby
repeater and a spatial TDMA link exists between adjacent repeaters -- the TREE link is
embedded in the TDMA framing. Hence a packet is transmitted from its source to a
local repeater; then from repeater to repeater until it reaches the vicinity of its
destination; whence, it is transmitted to its destination. An analytical model of selected
operating characteristics of networks using TREE/TDMA is presented. Necessary and
sufficient conditions for the stable operation of these are derived, capacities are

calculated, and mean packet delay times are evaluated.



19

In Chapter 4, a new random access protocol is introduced and analytical models
describing the operating characteristics of the protocol are presented. The protocol is a
carrier sense, collision avoidance, multiple access (CS/CAMA) protocol and operates
under the strong law of conflict-free operation described in Chapter 2 with a single level
of control on a shared broadcast channel. Like the TREE/TDMA protocols,
CS/CAMA can be used in irregular or random planar networks. In this chapter, we
prove that CS/CAMA is essentially conflict-free and that it operates correctly, e.g., is
free of deadlocks. We present both analytical and simulation models of the protocol

and compare the operating characteristics of the protocol predicted by each model.

The TREE/TDMA and CS/CAMA protocols exhibit characteristics which make
them attractive alternatives for use in a multihop packet radio environment. Both
protocols are reliable since they are distributed, the latter more so than the former: the
NIUs function independently of one another and require only local state information;
hence, there does not exist a single node whose failure can render the entire network
inoperative as in a centralized network. Both protocols are flexible and can
accommodate mobile users. No elaborate mechanism is needed for adding or deleting
nodes from a network as in certain ‘“token-passing’’ and reservation protocols. Both
protocols allow terminals to maintain a low EM profile; hence, limit detection:
terminals need only transmit when conversing and any transmission can be confined to
the neighborhood of the transmitter. Neither protocol requires expensive or complex

hardware at an NIU.

Most importantly, the protocols are efficient. Most, if not all, of the earlier
random access media access protocols are rendered inefficient in the multihop packet

radio environment because either the “hidden area” is ignored by the protocols or in



accommodating the hidden area, the potential for spatial reuse of the channel is
sacrificed. Both the TREE/TDMA and CS/CAMA protocols eliminate the effect of the

hidden area without sacrificing the potential for spatial reuse of the channel.



CHAPTER 2

TWO-DIMENSIONAL REGULAR NETWORKS

2.1. Introduction

In this chapter, we examine the criteria that must be satisfied for multihop packet
radio networks to operate without collisions and discuss two general laws for the
conflict-free operation of packet radio networks. The weak law stipulates a sufficient
condition for the conflict-free operation of networks and is transformed into an
operational protocol easily. The strong law stipulates necessary and sufficient
conditions for the conflict-free operation of networks and is transformed into an

operational protocol with more difficulty than the weak law.

Using these laws we place bounds on the maximum, instantaneous and average,
one-hop and network, nodal capacities that can be achieved by protocols for a subclass
of all packet radio networks, the two-dimensional regular networks. Upper bounds are
placed on the capacities of protocols which obey the weak law for each of the regular
networks and it shown that there exist protocols achieving these bounds. It is also
shown that there exist protocols for regular networks which obey the strong law and
have capacities exceeding those that can be obtained by protocols obeying the weak

law. Among the three classes of regular networks, the triangular, square, and
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hexagonal networks, it is proved that protocols for hexagonal networks have the largest
potential network capacities under the weak law, and that protocols for square

networks have the largest potential network capacities under the strong law.

Both the weak law and the strong law, and regular two-dimensional networks,
play a central role in this chapter and those that follow. In the next chapter, we show
that regular networks can be used to form the backbones for more general networks in
which nodes are randomly distributed in the plane. Finally in Chapter 4, we describe a
protocol which obeys the strong law and also eliminates the problems which limit the

performance of the CSMA protocols and BTMA protocols.

2.2. Laws of conflict-free concurrent transmissions

In this section, we present necessary and sufficient conditions for the steady-state,
conflict-free, operation of multihop networks in which nodes share a common
communication channel. We first describe a sufficient condition, hereafter called the
“weak’” law, for conflict-free concurrent transmissions. We then describe a necessary
and sufficient condition, hereafter called the “strong” law, for conflict-free concurrent

transmissions.

The weak law of concurrent conflict-free transmissions
If every transmitter in a network is at least three hops away from other
transmitters, then the network is conflict-free.
Proof
® Assume that there exists one network whose transmissions satisfy the condition
but is not conflict-free. Then, there exist transmissions which collide. Without

loss of generality (WLG) assume that in the first (second) of these transmissions



transmitter T, (T,) is transmitting to receiver R, (R,).

e If a collision occurs, then either the transmission from T, interferes with R, i.e.,
T, is one hop away from R, or the transmission of T, interferes with R, i.e., T,
is one hop away from R,. Since T, (T,) is one hop away from R, (R,) by
assumption, then T, and T, are no more than two hops away from each other.

e This contradicts the condition that T, and T, are at least three hops away from

each other. O

The strong law of concurrent conflict-free transmissions
A network is conflict-free if and only if every transmitter in the network is at
least two hops away from other receivers exciuding the receiver which is the
intended recipient of the transmission.
Proof
o If a network is conflict-free, then a receiver can not hear other transmitters
excluding its own transmitter. Therefore, all the other transmitters must be at
least two hopAs away from the receiver.
e If every transmitter in a network is at least two hops away fromr other receivers
excluding the receiver which is the intended recipient of the transmission, then
one receiver can hear exactly one transmission. Therefore, the network is

conflict-free. ©

The weak law and the strong law describe conditions which, if satisfied, will
ensure the conflict-free operation of a network. Note that these laws implicitly pose
constraints on static states of the network in terms of topological constraints on a

graph which specify which nodes are neighbors, i.e., who can “‘hear’ whom, and not in
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terms of temporal constraints. When these laws are applied to a real network, one
must adjust the constraints to account for the signal propagation time between

neighbors.

2.3. Tessellations of the plane

In this section the structure of regular two-dimensional networks is examined.
First we identify the equilateral polygons which can be used to generate regular
tessellations of the plane. We then calculate the density of nodes in the plane for each
regular network and find the mean number of hops that a packet will travel for each

network.

Lemma 2.1.
There are three equilateral polygons which generate regular tessellations of the
plane: the triangle, square, and hexagon [Cox69)|.
Proof
e The degree of an interior angle of an n-sided equilateral polygon is 180(n-2)/n.
Since each vertex belongs to m (a positive integer) equilateral polygons, m times
the degree of an interior angle is 360, i.e, 180m(n-2)/n = 360.
e Since n and m must be positive integers, the above equation has the following
three sets of solutions:
(i)  n =3, m = 6 which implies that the polygons are triangles;

4, m = 4 which implies that the polygons are squares; and

=~
I

(iii) n =6, m = 3 which implies that the polygons are hexagons. O



When one of these three planar tessellations is used to represent the structure of a
regular communication network, we associate a node or an NIU with each vertex in the
tessellation and a communication channel with each edge in the tessellation.

If we assume the distance between two adjacent nodes to be r, then we can

calculate the density of the nodes or vertices per unit area in the network as follows.

Lemma 2.2.

The node densities v, in triangular, square, and hexagonal networks are,

respectively,

Nt —:5, and v, = Nk
Proof
e Triangular network - If that there are / triangles on a plane which is large
enough so that the edge effect can be neglected, then there are 3!/ 8 vertices on the
plane since each triangle has three vertices and each vertex is shared by six

triangles. The node density is the number of vertices divided by the area covered

by the ! triangles, i.e.,
2 2

[mrz] A
4

vy

e Square network - Apply the technique used for the triangular network. There are
4i/ 4 vertices in a plane tessellated with squares and each square has an area of r2.
e Hexagonal network - then there are 3!/6 vertices There are 6//3 vertices in a

plane tessellated wirh hexagons and each hexagon has an area of 3v3r%/2. O



Lemma 2.3.
In networks in which a packet originating at any node, its source, is equally likely
to have any of the n nodes within m, m € Z*, hops of the source as its ultimate
destination, in which nodes transmit with power sufficient to just reach nodes
which are k-distant (node A is k-distant from node B if the shortest path from A
to B is of length k), £ ¢ Z*, and in which nodes use a most forward routing
algorithm, the mean numbers of hops a packet makes in traveling from its source

to its ultimate destination in triangular, square, and hexagonal networks are,

respectively,
A = 4km? + 3k + 1)m -k + 3
* 8(mk + 1)
1 in + a, .
for m = 5;[ —_— 1], oy = 3, @, = 2, and a, = 1.5. If the network is
a,

large, i.e.,, n >> 1, then

Proof
e The numbers of nodes that are within m hops of nodes if transmissions cover
nodes that are k-distant are for triangular, square, and hexagonal networks
nem) = a,mk(mk + 1)

for , defined for the appropriate network as above. Note that this implies that

1 in + a,
m = — —— -1
2k a,

e Using n,(m) we find that the numbers of nodes that are exactly i hops away are



nai) = nu(i-1) = ak(2tk - k + 1).

e Thus the expected numbers of hops are

hy= —L g‘i(n.(i)—n.(i—l))or

nJm) 2
2
hy = dkm_ + 3k + )m -k + 3 for m or n chosen as outlined above.
8(mk + 1)
1 /n 2m 2 n
0Forn>>1,m27c a—.andh.zTorh.zﬂ Z . Qa

2.4. Weak law -- capacity

In this section, we first derive upper bounds on the one-hop nodal capacities
(instantaneous and average) that can be achieved by protocols obeying the weak law
for triangular, square, and hexagonal networks. Next we place bounds on network
nodal capacities of protocols for regular networks with uniform, isotropic traffic
patterns. Finally we show that there exists a fair protocol whose one-hop nodal
capacities (instantaneous and average) and network nodal capacities equal the

respective bounds for each type of regular network.

Theorem 2.1.
Assuming that the transmission range of each node is fixed such that a
transmission just reaches nodes that are k-distant, £ € Z*, then the one-hop
nodal capacities (instantaneous and average) of protocols obeying the weak law
for triangular, square, and hexagonal networks do not exceed é,,,, = 1/ (n,(1) + 1),
for n,(1) defined in Lemma 2.3. Furthermore, the bounds on nodal capacities are
greatest when k equals 1 and assume values of 1/7, 1/5, and 1/4 for triangular,

square, and hexagonal networks, respectively.
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Proof

e Since the weak law requires that transmitters be at least three hops away from
each other, no node can be within the transmission range of two different
transmitters. Thus we can bound the instantaneous one-hop nodal capacity,
hence all other types of nodal capacity, by estimating the largest fraction of
nodes in a network that can transmit at any time.

o In a triangular network, there are at least n,(1) == 3k(k + 1) nodes within the
transmission range of any transmitter (see Figure 2.1). Thus the fraction of
nodes that can transmit at the same time must not exceed 1/ (ny(1) + 1). Since

is an positive integer, the maximum one-hop nodal capacity is 1/7 when k = 1.

There are 60 nodes in the
shaded area. (k=4)

Figure 2.1

Weak law -- triangular networks

e In a square network, there are at least n,{1) = 2k(k + 1) nodes within the
transmission range of any transmitter (see Figure 2.2). Thus the fraction of
nodes that can transmit at the same time must not exceed 1/(n,(1) + 1). Since &

is an positive integer, the maximum one-hop nodal capacity is 1/5 when k£ = 1.



There are 40 nodes in
the shaded area. (k=4)

Figure 2.2

Weak law -- square networks

e In a hexagonal network, there are at least n,(1) = 3k{k + 1)/ 2 nodes within the
transmission range of any tr‘ansmicter (see Figure 2.3). Thus the fraction of
nodes that can transmit at the same time must not exceed 1/(n4(1) + 1). Since k
is an positive integer, the maximum one-hop nodal capacity is 1/4 when &k = 1.

0

There are 30 nodes in the
shaded area. (k=4)

Figure 2.3

Weak law -- hexagonal networks
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Theorem 2.2.
Assuming that the transmission range of each node is fixed such that a
transmission just reaches nodes that are k-distant, ¥ € Z*, and that any of the »
nodes within m hops of the source of data is equally likely to be its destination,
then the netwé)rk nodal capacities (instantaneous and average) of protocols
obeying the weak law for triangular, square, and hexagonal networks do not

exceed

for ;',,,. and k, as defined in Theorem 2.1 and Lemma 2.3, respectively.

The maximum values of §, , occur when k equals 1 and are

. 3
Spe= Za. = @m = 1) for a, as defined before and

1{ 4n + a ]
m = — —— ]
2 a,

If the network is large, i.e., n >> 1, then

3ak
Spo 2 2
a.

2n{ok?® + ak + 1)

For large networks the maximum values of S, , (k = 1) are

da, ) 0.3712  0.4243 0.4593
2 nd

e — or
on(2a, + 1) \/ a. vn ' R AT

for triangular, square. and hexagonal networks, respectively. If these values are
normalized to the unit area, we find the corresponding bounds per unit area

based on v, to be
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0.4288 0.4243 and 0.35386
r2\/.rr’ r2\/71_’ r'zx/‘r;.“'

Proof
e The network nodal capacity is the one-hop nodal capacity divided by the
expected number of hops encounted by data. To prove this for node 7,
1 € lbl,.,nrb, define indicator random variables X, , Y, and Z;, j k=1,.,n. Let
X; be 1 if and only if node ; is transmitting data that originated at node 1; let
Y. be 1 if and only if node  is receiving data that originated at node i and is an
intended destination, i.e., on the most forward path from the source to the
ultimate destination; let Z, be 1 if and only if node k is receiving data that

originated at node i and is also the ultimate destination of the data. Now

B
I
&3]
I

since the ultimate destination is randomly chosen from the n nodes and hence

from the nodes receiving data from i. Since S, , = EYZ, and Y X; =Y 7,,
1 1 1

EYY,
1

h

Spo=

Furthermore, ¢, .= EY X, since the sum of the traffic originating at node ¢
1

(primary transmissions by i and secondary transmissions by other nodes which
are forwarding data originating at i) must equal the rate at which nodes
transmits data in the network, i.e., the one-hop nodal capacity, since traffic is

uniform and isotropic.
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e By inserting the appropriate values from Theorem 2.1 and Lemma 2.3 the general

formula for 3",,'. is found to be

6{mk + 1)
lok(k + 1) + 1][4km® + 3(k + 1)m - k + 3]

and the first portion of the theorem is proved.
o By substituting 1 for ¥ the second portion of the theorem is proved.

e The third portion of the theorem follows from the fact that for n >> 1

2 n
h, =2 32 \/ = (see Lemma 2.3).

e The fourth portion of the theorem follows by substituting 1 for ¥ and 3, 2, and
1.5 for a,, a,, and a, in the preceding.
e The last portion of the theorem follows if the network nodal capacities are

multiplied by the appropriate densities of nodes found in Lemma 2.2. O

Theorem 2.3.
There exists a fair channel access protocol, obeying the weak law, whose one-hop
and network nodal capacities (instantaneous and average) equal the bounds
established in Theorem 2.1 and Theorem 2.2 for large regular networks.

Proof

e The protocol whose capacities equal the bounds is called weak spatial TDMA

(WSTDMA) and can be envisioned as a TDMA protocol in which the location of
a node in the network determines the the slot in a TbMA frame in which the
node can transmit. Each TDMA frame in WSTDMA is divided into n,(1) + 1
slots, i.e., seven slots for triangular networks, five slots for square networks, and
four slots for hexagonal networks. Associated with each slot is a set of nodes or a

clique whose members are allowed to transmit to nodes k-distant when the slot
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appears in the TDMA frame. The routing algorithm used in WSTDMA is a most
forward progress algorithm.

Figures 2.4, 2.5, and 2.6 depict cliques when % is 1 for triangular, square, and
hexagonal networks. In these figures, nodes bearing the number i belong to the

same clique and may transmit in the 7th slot of the TDMA frame.

Nodes are divided into
seven subsets.

Figure 2.4

Weak spatial TDMA -- triangular networks

Nodes are divided into
five subsets.

Figure 2.5

Weak spatial TDMA -- square networks
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Nodes are divided into four
subsets.

Figure 2.6

Weak spatial TDMA -- hexagonal networks

e WSTDMA is fair since each node in a network has equal access to each frame.
Hence if a network is homogeneous and the traffic pattern is isotropic, then the
average packet delays at all nodes in the network must be equal.

e WSTDMA obeys the weak law since no two nodes which are transmitting are
within one or two hops of one another.

® The capacities of WSTDMA equal the respective bounds for triangular, square,
and hexagonal networks because if one assumes that each node in a network
always has a packet to transmit, then each node transmits once every seven time
slots, five time slots, and four time slots for the respective networks. Since
collisions cannot occur in WSTDMA, the instantaneous nodal capacities are
always 1/7, 1/ 3, and 1/ 4, respectively, and since the nodal capacities are equal in
each time slot for a chosen tessellating polygon, the average nodal capacities are

equal to their corresponding instantaneous values. Network nodal capacities can



35

be obtained by dividing the appropriate one-hop nodal capacity by the mean
number of times that a packet is transmitted -- this is equal to the expected

number of hops calculated in Lemma 2.3 since a most forward routing algorithm

is used in WSTDMA. QO

The results of the preceding theorems are summarized in Table 2.1. It is clear
from the table that hexagonal networks have the largest capacities of the three regular
networks unless capacities are normalized to the unit area, whence square networks
have the largest one-hop capacities and triangular networks have the largest network

capacities.

Nodal Triangular Square Hexagonal
Capacity Networks Networks | Networks
One-Hop 0.1429 0.2000 0.2500
Network 0.3712 0.4243 0.4593

Vn vn vn
One-Hop 0.1650 0.2000 0.1925
Per Unit Area .2 r2 2
Network 0.4286 0.4243 0.3536
Per Unit Area 2 n 20
Table 2.1

Weak law -- WSTDMA capacities for large regular networks



36

2.5. Strong law -- capacity

In this section, we place bounds on nodal and network capacities (instantaneous
and average) that can be achieved by protocols obeying the strong law for triangular,
square, and hexagonal networks. While we are unable find upper bounds to the
capacities as we did in the preceding section, other than the obvious bound on the one-
hop nodal capacities of 1/2, we do place lower bounds on the capacities that can be
obtained by protocols obeying the strong law for regular networks. The bounds
demonstrate that there exist protocols obeying the strong law whose capacities exceed

those that can be achieved by any protocol obeying the weak law.

Theorem 2.4.
Assuming that the transmission range of each node is fixed such that a
transmission just reaches nodes that are k-distant, £ ¢ Z™*, then there exists a fair
channel access protocol, obeying the strong law, whose one-hop nodal capacities
(instantaneous and average) for triangular, square, and hexagonal networks are
¢re=1/(8.k +1) for 8, =2, 3, =1, and §, = 1. These capacities are greatest
when & equals 1 and assume values of 1/3, 1/2, and 1/ 2, respectively.

Proof

e The protocol is called strong spatial TDMA (SSTDMA) and is an extension of the

WSTDMA protocol oresented in Theorem 2.3. In SSTDMA each frame is divided

into ¢,(k) = o8,k + 1) slots where v, =6, v, =4, and v, =3 if £ =1 and
74 = 6 otherwise. {Note that ~, indicates the number of neighbors that are k-
distant to which a specific node can transmit directly.) Associated with each slot

is a set of nodes or a clique whose members are allowed to transmit to one k-
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distant node when the slot appears in the TDMA frame. Figure 2.7 depicts
successive states of nine nodes of a square network when & equals 1 during each
of the eight slots in the frame. The states of the remaining nodes in the network
can be inferred from those depicted. The state of each node is specified by a pair
of letters in which the first member “T” (“R”) indicates that a node is
transmitting (receiving) and the second member “L” (“R”) indicates that the
operation is to or from the left (right). Of course, the actual operation is assumed
to omnidirectional; however, due to placement of transmitters, but one node can
actually receive the transmission another node without interference. The routing

algorithm used in SSTDMA is a most forward progress algorithm.

Slot 1 Slot 2 Slot 3 Slot 4
TL T,R RL I T TU TU|/RR TL TR |RD R)D R,
TL TR RL/ TD TD TD|RR TL TR |TU TU TU
T,L T,R RL f RU RU RU|RR TL TR |TD TD TD
Slot 5 Slot 6 Slot 7 Slot 8
R,L RR T,.L ! RU RU RU/!/TR RL RR TD TD TD
RL RR TL | RD RD RD | TR RL RR RU RU R/U
RL RR TL | TU TU TU|TR RL RR |RD RD RD

Figure 2.7

Strong spatial TDMA -- states (square networks, £ = 1)

SSTDMA is fair since each node in a network has equal access to each frame.
Hence if a network is homogeneous and the traffic pattern is isotropie, then the

average packet delays at all nodes in the network must be equal.
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e SSTDMA obeys the strong law since no node which is receiving is within one hop
of one another node which is transmitting, excluding the node directing its
transmission to the receiver.

e The one-hop capacities of SSTDMA are as presented because if one assumes that
each node in a network always has a packet to transmit, then each node
transmits in one third, one half, and one half of all time slots for triangular,
square, and hexagonal networks, respectively. Since collisions cannot occur at a
node which is the intended recipient of a transmission, the nodal capacities are
always 1/3, 1/2, and 1/2, and since the nodal capacities are equal in each time
slot for a chosen tessellating polygon, the average nodal capacities are equal to

their corresponding instantaneous values. O

There is an interesting feature of SSTDMA which is not present in WSTDMA and
which influences its network nodal capacities. Namely, the node which is the ultimate
destination of data must at a distance from the source which is an integral multiple of
k or the data will never reach the destination. Indeed for some networks, only a subset
of nodes that are k-distant, & > 1, from a chosen source can be the ultimate
destination for data. Thus if the ultimate destination of any data is equally likely to
be one of the n nodes within m hops and a single value of ¥ must be chosen, then the

only reasonable choice of £ is 1.

The following theorem relates the network nodal capacities of SSTDMA based on

the preceding observations.
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Theorem 2.5.
Assuming that the transmission range of each node is fixed such that a
transmission just reaches nodes that are 1-distant and that any of the n nodes
within m hops of the source of data is equally likely to be its destination, then
the network nodal capacities (instantaneous and average) of the SSTDMA
protocol for triangular, square, and hexagonal networks are

_ Eie 3

Sie ke (B + 1)(2m + 1)

where ¢, , and h, are defined in Theorem 2.4 and Lemma 2.3, respectively.
For large networks, i.e., n >> 1, then

da, 7 0.8660  1.0607 0.9186
S0 T o or d

2@+ 1)V @ Vel el

for triangular, square, and hexagonal networks, respectively. If these values are
normalized to the unit area, we find the corresponding bounds per unit area

based on v, to be

1.0000 1.0607 and 0.7071
YN RN

Proof
e The network nodal capacity is the one-hop nodal capacity divided by the
expected number of hops encounted by data. (see Theorem 2.2). By inserting the

appropriate values from Theorem 2.4 and Lemma 2.3 the general formula for §,,

is found to be

6(mk + 1)
Bk + 1akm® ~ 3(k + 1)m - k + 3]

and by substituting 1 for £ the first portion of the theorem is proved.
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e The second portion of the theorem follows from the fact that for n >> 1

2 n
h, == T / o (see Lemma 2.3)

and by substituting 1 for k¥ and 3, 2, and 1.5 for a4, «,, and a, in the preceding.
e The last portion of the theorem follows if the network nodal capacities are

multiplied by the appropriate densities of nodes found in Lemma 2.2. O

The results of the preceding theorems are summarized in the following table. It is
clear from the table that square networks have the largest capacities (of all types) of
the three regular networks. Note too, that the lower bounds on the capacities of
protocols for regular networks established for the SSTDMA protocol exceed the upper

bounds (achieved by WSTDMA) of their counterparts under the weak law (see Table

2.1).

Nodal Triangular Square Hexagonal
Capacity Networks Networks | Networks
One-Hop 0.3333 0.5000 0.5000
Network 0.8660 1.0807 0.9188

v vn vn
One-Hop 0.3849 0.5000 0.3849
Per Unit Area #2 2 2
| Network 11,0000 1.0607 0.7071
, Per Unit Area 2n 2n 2n
Table 2.2

Strong law -- SSTDMA capacities for large regular networks
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As noted before, if SSTDMA is used in its pure form, i.e., nodes can only transmit
at a fixed power level, and if destinations are randomly chosen from nodes m-distant or
less, then the only realistic choice for £ is 1. If, however, nodes can transmit at more
than one power level, then there is an interesting variant of SSTDMA whose nodal
capacities exceed those obtained by pure SSTDMA. These results are summarized in

the following theorems.

Theorem 2.8.
Assuming that the transmission range of each node is variable and can be selected
so that a transmission reaches nodes that are k-distant, k¥ = 1,...,m, and that any
of the n nodes m-distant from the source of data is equally likely to be the
destination of the data, then there exists a variant of SSTDMA, SSTDMA’, which
is fair, obeys the strong law, and has one-hop nodal capacities (instantaneous and

average) of

8m
28,m* + (38, + 8)m + 4,

$i o =

for triangular, square, and hexagonal networks, respectively (h, is defined in
Lemma 2.3).

For large networks, i.e., n >> 1,

c — 3a, n or 2.5981 4.2428 and 3.6742
/. n g, oy NCE NCE Vn

for triangular, square, and hexagonal networks, respectively. If these values are

normalized to the unit area, we find the corresponding bounds per unit area

based on v, to be
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Proof
e The protocol is a variant SSTDMA presented in Theorem 2.4. In SSTDMA’ each
node is allowed to transmit to every node within a range of a transmission
reaching m-distant nodes via a path with the fewest number of hops. For
example there twelve l-distant transmissions and four 2-distant transmissions
required to reach all the nodes within the range of 2-distant nodes from a specific
node in a square network. Since this must be true for each node in the network
and the strong law must not be violated, this requires twenty-four slots for the

l-distant transmissions and twelve slots for the 2-distant transmission if

SSTDMA is used. In general 4,(k,m) = (2m - 2k + 1)¢,(k) slots are required for
all k-distant transmissions.

e SSTDMA’ is fair since each node in a network has equal access to each frame.
Hence if a network is homogeneous and the traffic pattern is isotropic, then the
average packet delays at all nodes in the network must be equal.

e SSTDMA’ obeys the strong law since no node which is receiving is within one hop
of one another node which is transmitting, excluding the node directing its
transmission to the receiver.

e If one assumes that each node in a network always has a packet to transmit to
the destination associated with the next available slot, then the expected one-hop

nodal capacities of SSTDMA’ are

L o A.(k,m) 8m
St 0= A
4 =t kB, +1 28.m* + (38, + 6)m + 3.
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seforn >> I, m= -z (see Lemma 2.3); hence,
O,
a, y
§d K e n3, 'a_.

and by substituting appropriate values of o, and 3, the one-hop nodal capacities
can be found for triangular, square, and hexagonal networks. B

e The last portion of the theorem follows if the one-hop nodal capacities are

multiplied by the appropriate densities of nodes found in Lemma 2.2. O

Theorem 2.7.
Assuming that the transmission range of each node is variable and can be selected
so that a transmission reaches nodes that are k-distant, k¥ = 1,...,m, and that any
of the n nodes within m hops of the source of data is equally likely to be the
destination of the data, then the network nodal capacities (instantaneous and

average) of SSTDMA’ for triangular, square, and hexagonal networks are

£/ e
hl

Sy o=

where ¢, , is defined in Theorem 2.5 and

_ 48.m® - (38, + 12)m - 3, -6
- 28,m?* + (38, + 8)m + 3,

hl

For large networks, i.e., n >> 1, ¥ , = 2 and

g — 3a, 2 or 1.2991 2.1213 and 1.8371
e 9ns, a, vn ' Vn NEY

for triangular, square. and hexagonal networks, respectively. If these values are

normalized to the unit area, we find the corresponding bounds per unit area

based on v, to be
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1.5000 2.1213 and 1.4142
VY i Ve

Proof
e The network nodal capacity is the one-hop nodal capacity divided by the
expected number of hops encounted by data. (see Theorem 2.2). The expected
number of hops for SSTDMA’ is not 4, bixt

ki (Bulk) + 2(AL(k,m) - S.(k))
o= 22

. m

ZA.(lc,m)

k=1

_4f.m? + (38, + 12)m - B, - 6
- 28,m? + (38, + 8)m + 4, '

e The second portion of the theorem follows from the fact that for n >> 1,
h, == 2.0.
e The last portion of the theorem follows if the network nodal capacities are

multiplied by the appropriate densities of nodes found in Lemma 2.2. QO

The results of the preceding theorems are summarized in the following table. Note
that the lower bounds on the capacities of protocols for regular networks established for
SSTDMA’ exceed those achieved by SSTDMA (see Table 2.2); hence, they also exceed
the upper bounds (achieved by WSTDMA) of their counterparts under the weak law

(see Table 2.1).
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Nodal Triangular Square Hexagonal
Capacity Networks = Networks | Networks
One-Hop 2.5981 4.2426 3.6742

v Vn Vn

Network 1.2991 2.1213 1.8371
Vn Vn vV

One-Hop 3.0000 4.2426 2.8284
Per Unit Area N SN NSy
Network 1.5000 2.1213 1.4142
Per Unit Area Ny N NG

Table 2.3

Strong law -- SSTDMA'’ capacities for large regular networks



CHAPTER 3

TREE/TDMA CHANNEL ACCESS PROTOCOLS

3.1. Introduction

In this chapter a new class of channel access protocols, the TREE/TDMA
protocols, is introduced and analytical models describing the operating characteristics of
the class are presented. The TREE/TDMA protocols are natural extensions of the
spatial TDMA protocols described in the previous chapter. While WSTDMA and
SSTDMA are limited in application to regular planar networks, the TREE/TDMA
protocols can be used in irregular or random planar networks, e.q., networks

containing mobile terminals.

In the TREE/TDMA protocols a regular network of repeaters is superimposed on
an irregular network of terminals and two levels of control are used on a shared
broadcast channel. Any of the regular networks described in the preceding chapter can
be used as the backbone of repeaters and the protocols can be structured so that they

obey either the weak law or the strong law.

We first describe the TREE/TDMA protocols and illustrate their application
under the weak law to random planar networks on which are superimposed triangular

networks. We find necessary and sufficient conditions for the stable operation of the

16
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protocols, nodal capacities (of all types) of the protocols, and mean packet delays of the
protocols. We also compare the network capacities of the protocols using the weak law

for triangular, square, and hexagonal backbones.

3.2. Description

The TREE/TDMA protocols are based on a regular backbone of repeaters which
is superimposed on a network of terminals. The backbone is the conduit for inter
terminal communication. Any of the regular networks described in the preceding
chapter can be used as the backbone of repeaters. It is assumed that the inter repeater
distances are r, or r, if normalized so that the respecti\)e densities v, are equal, i.e,

1
rP=—-,and rl=
v

4
v Vv’ 3Vav’
[t is also assumed that repeaters service collections of terminals within radii R, of the
repeater. If R, are chosen to be the smallest values such that all of the terminals are
serviced by at least one repeater, then R, are r/V3, r/Vv2, and r for the respective

backbone networks with r optionally replaced by r,. A typical network with a

triangular backbone of repeaters is depicted in Figure 3.1.

'M'A\

’ /—- terminal

repeater

Figure 3.1

Network with a triangular backbone
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In the TREE/TDMA protocols a packet is transmitted from its source to a nearby
repeater; then from repeater to repeater until it reaches the vicinity of its destination;
whence, it is transmitted to its destination. A most forward routing algorithm is used.
Two different channel access protocols are used for terminal to repeater communication,
for repeater to repeater communication, and for repeater to terminal communication. A
tree multiple access (TMA or TREE) protocol, similar to a centralized version of
Capetanakis’ tree protocol, is used for terminal to repeater communication and a
TDMA protocol is used for all other communications. The two access protocols share a
common broadcast channel -- TMA is embedded in TDMA. The TDMA protocol may
be structured so that either the weak law or the strong law is obeyed. The actual form
assumed by a specific TREE/TDMA protocol depends on the type of backbone, the law

of conflict-free operation, and the transmission range of repeaters.

The framework for a TREE/TDMA protocol is provided by a spatial TDMA
protocol. If the weak law is the basis of operation and the transmission range of

repeaters is chosen to maximize the capacity of the backbone, then each frame contains

5= 2a, + B. + 3 slots. Each of these slots is sufficiently long to allow a packet to be
transmitted without interference from adjacent slots. One of these slots is allocated for
terminal to repeater communication via TMA. ‘“2a, + 1" slots are allocated for
repeater to repeater communication using WSTDMA with k equal to 1 (to maximize
capacity). ‘4, + 1" slots are allocated for repeater to terminal communication -- a
single slot will not sutfice for repeater to terminal communication since repeater
transmission ranges overiap and if adjacent repeaters transmit to local terminals at the

same time, a subset ol rhe terminals will receive transmissions from more than one
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repeater. Note that there exists a variant of this slot allocation for triangular

backbones (see the section describing repeater to terminal transmissions).

Thus, TREE/TDMA protocols involve three types of communication embedded in
a TDMA frame: terminal to repeater communication, repeater to repeater
communication, and repeater to terminal communication. Each of these is described

subsequently.

3.2.1. Terminal to repeater communication

TMA is used by terminals to communicate with repeaters in one of the TDMA
slots in each frame. WLG we assume that slot T, is used. Each terminal is paired with
the closest repeater and transmits with only enough power to reach that repeater.
Each repeater and its surrounding terminals form a unit which operate there own local
version of TMA during slot T, independent of all other units. TMA is describe for a

single unit.

While all transmissions within T, are from terminals to repeaters, control or
feedback information is transmitted from repeaters to terminals during the slots
allocated for repeater to terminal communication. No more than two bits of feedback

data must be transmitted on the reverse link and collisions cannot occur on the reverse

link.

TMA may be considered to be either a centralized version of Capetanakis’
adaptive tree protocol or an adaptive “probe-poll” protocol. The operation of TMA
can be envisioned as the searching of an imaginary i-ary tree which is superimposed on
all terminals. Each vertex of the tree corresponds to a subset of terminals that may

transmit during the next T, if that vertex is scanned -- the root corresponds to the set



of all nodes. The ; children of any vertex (; <i) are disjoint sets, each containing
approximately 1/; of the terminals associated with the parent, which are scanned if
and only if a collision occurs when their parent is 'scanned. The structure of the tree,
the level at which the search begins, and the searching pattern (typically depth-first or
breadth-first) may be varied to optimize the search for terminals having packets to

transmit.

In TMA it is assumed that all vertices in the tree are binary except for the root
which may have more than two children and that adaptive, pseudo, depth-first search
pattern is used starting at a level which minimizes the number of slots needed to search
the tree. It is assumed that whenever a terminal has a packet to transmit, it waits
until the current tree has been expanded and a new tree expansion begins, whence it
transmits the first packet in its queue whenever a vertex of which it is a member is
scanned, and deletes that packet from its queue only if no collision occurs. These
assumptions are similar to those made by Capetanakis and allow us to use his results
pertaining to delay [Cap79b]. They also show imply that TMA becomes TDMA with a

capacity of 1.0 under heavy load.

3.2.2. Repeater to repeater communication

Repeaters use spatial TDMA to communicate with one another. If the weak law
is the basis of operation and the transmission range of repeaters is chosen to maximize
the capacity of the backbone, then ‘““2a, + 1" slots in each frame of TREE/TDMA are
allocated for repeater to repeater communication using WSTDMA (k = 1). There
exists a variant of this slot allocation for triangular backbones (see the following

section).
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3.2.3. Repeater to terminal communication

If the weak law is the basis of operation for TREE/TDMA and the transmission
range of repeaters is chosen to maximize the capacity of the backbone, then each
repeater is assigned one of “g, + 1” slots which are reserved for repeater to terminal
communication in each TREE/TDMA frame. During its assigned slot, a repeater may
transmit to its surrounding terminals without interference from other repeaters. A
single slot will not suffice for all repeater to terminal transmissions since repeater
transmission ranges overlap and if adjacent repeaters transmit to local terminals at the
same time, a subset of the terminals will receive transmissions from more than one
repeater. Slot assignment for repeaters for the regular networks is depicted in Figures

3.2 through 3.4. In these figures it is assumed that slots Ty,...,Ty, . are reserved for

repeater to terminal communication and that the repeaters indicated by the following

symbols are assigned to the slots indicated: A =1, O =2, and O = 3.

~

Figure 3.2

Slot allocation -- triangular backbone
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Figure 3.3

Slot allocation -- square backbone

Figure 3.4

Slot allocation -- hexagonal backbone

There exists a variant of TREE/TDMA which may be used with .a. triangular
backbone. This variant is of interest because of its performance characteristics. In this
variant a single slot is allocated for terminal to repeater communication and nine slots
are used for both repeater to repeater communication and for repeater to terminal
communication. Figure 3.5 illustrates the assignment of repeaters to these nine slots --
repeaters with primary index : may transmit to adjacent repeaters in slot : and
repeaters with secondary index j may transmit to local terminals in slot ; and one

additional slot.



R Rx /R15 Ros Ru/Ru

Ry, R R&  Rvu Rn

R67 R# R» Re R# Rw»

Ris R2 Rxu Ris R

/R7z R&  Rol /R7z R Rsi

Figure 3.5

Slot allocation (variant) -- triangular backbone

Note that this assignment reduces the total number of slots required for
TREE/TDMA using triangular backbones and the weak law from eleven to ten by
allowing repeaters to “steal” slots for communicating with surrounding terminals from

the slots reserved for repeater to repeater communication.

An example of concurrent repeater to repeater and repeater to terminal
transmissions is depicted in Figure 3.6. In this example set C, contains repeaters with
primary index 1, set C, contains repeaters with primary index 2, etc. It shows that if
repeaters in C; allowed to transmit to adjacent repeaters, then repeaters in C; and C,

can, at the same time, transmit to local terminals without causing interference.
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Cycle stealing with a triangular backbone

3.3. Analytical model

The analysis of the operating characteristics of networks using TREE/TDMA in
subsequent sections is based on the model of a repeater depicted in Figure 3.7. The
model is composed of a network of three queues. The internal queue (IQ) and its
associated server represent the pool of local terminals awaiting to transmit packets to
the repeater over their TREE link and the service provided by the TREE link. The
sink queue (SQ) and its associated server represent the queue of packets that have
arrived at the repeater and are awaiting transmission to a local terminal in one of the
TDMA slots. The propagation queue (PQ) and its associated server represent the queue
of packets that have arrived at the repeater and are awaiting to be forwarded to

another repeater via the TDMA link.
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from to
adjacent repeaters sink queue local
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from . . 0.
internal queue propagation queue adjacent
local repeaters
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Figure 3.7

Queuing model of a repeater

The analysis is also premised on the following assumptions.

e Packets which arrive at a repeater from local terminals are independent of
arrivals at other repeaters and the number of terminals wishing to transmit to a
repeater has a Poisson distribution with parameter NP where N is the average
number of terminals associated with any repeater and P is the probability that a
terminal wishes to transmit to a repeater during a frame, i.e., the probability

that 1 terminals wish to transmit to their repeater during a frame is

(NPY eNP /i1, If p, £ P/ 6., then the mean arrival rate of packets to repeaters is
Np,. packets per slot.

® Packets are of constant length and can be transmitted in a single slot.



e The transmission range of each repeater is fixed so that it just reaches adjacent
repeaters (1-distant), the distance between adjacent repeaters is r or r,, any of the
n repeaters within m hops of the repeater associated with the source are equally
likely to be the destination of data, and a most forward progress routing
algorithm is used by each repeater. These assumptions and those that precede
these imply that all repeaters have the same average internal arrival rate of
packets and the traffic pattern is isotropic and urlliforrn throughout the network.

e Each frame contains a random permutation of the slots 1, - - - ,2a, + 8, + 3. ‘Note
that this assumption only influences delay calculations: it ensures that paths of

the same lengths have the same mean delay.

3.4. Performance -- stability

In this section, we analyze the conditions under which the TREE/TDMA protocols
are stable. The network of queues forming our analytical model is stable if each of the
queues is stable. A necessary and sufficient condition for a G/G/1 queue to be stable is
that the traffic intensity p must be less than one. (Traffic intensity is defined to be the
ratio of the mean rate at which packets join the queue to the mean rate at which they

are removed.)

Since the TREE protocol is adaptive, it becomes a TDMA link under heavy load;
hence, the maximum mean service rate of the internal queue is one packet per frame
[Cap79a, Cap79b] or 1/4, packets per slot. The mean service rates of the sink and
propagation queues are also equal to one packet per frame or 1/, packets per slot since

they are effectively TDMA links.



The mean arrival rate for the internal queue is NP by assumption. To find the
mean arrival rates for the sink and propagation queues we define random variables X,
Y, V, and W as follows: X denotes the number of packets which arrive at a repeater
from other repeaters during a frame, Y denotes the number of packets which arrive at
a repeater from local terminals and join the internal queue during a frame, V denotes
the number of packets which join the sink queue during a frame, and W denotes the
number of packets which join the propagation queue during a frame. Then
E(X})=E(W) = h E(Y) = h E(V) where h, is as defined in Chapter 2, i.e,, the mean
number of repeater to repeater hops for a packet. This follows from the fact that there
is conservation of flow through repeaters and that the traffic pattern is isotropic and

uniform in the network.

Thus p;q = ps¢ = NP and ppg = h, NP and the system of queues is stable if and

only if max(NP, A, NP) < 1.

3.5. Performance -- capacity

For networks in which A, exceeds one, the nodal capacities of the TREE/TDMA
protocols are limited by the capacity of the WSTDMA backbone. The nodal capacities
(of all types) for the latter, S, ., were analyzed in Chapter 2 and the network nodal

capacities were found to be

0.3712  0.4243 . 0.4593
Vol Ve v

for large triangular, square, and hexagonal networks, respectively. When normalized to

the unit area, these values become
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0.4286  0.4243 0.3538 .
d —Z—, respectively.

an
m e Ve

These may be interpreted in units of packets per slot for the TREE/TDMA protocols if
adjusted to account for the extra slots that appear in TREE/TDMA which do not

appear in WSTDMA:

5. = (2a, + 1)5,,,..
, 5.
Thus the network nodal capacities for large TREE/TDMA, triangular, square, and

hexagonal backbones are in units of packets per slot

0.2362 0.2652 . 0.2626
Vil Ve Vn '

and when normalized to the unit area

0.2727  0.2852 and 0.2021
An A A

The variant of TREE/TDMA for triangular backbones has a network nodal

capacity and a network nodal capacity per unit area of

0.2598 and 0.3000
Vn N

These results are summarized in the following table. The results pertaining to the
standard form of TDMA frame slotting and the alternate form of TDMA slotting for

triangular networks are indicated by *“I”” and “II”’, respectively.
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Nodal Triangular (I) | Triangular (II) Square Hexagonal
Capacity Networks Networks Networks | Networks
Network 0.2362 0.2598 0.2652 0.2628
) Vn Vn Vn Vn
Network 0.2727 0.3000 0.2852 0.2021
Per Unit Area o n 2/n n
Table 3.1

TREE/WSTDMA capacities for large regular networks

3.8. Performance -- mean packet delay

According to our analytical model, the delay encountered by a packet between the
time at which it first arrives at a terminal and the time at which it is eventually
received at its destination, having passed through one or more repeaters, is composed of
three terms: the delay in the internal queue of the repeater associated with the source,
the delay in one or more propagation queues of repeaters on the path followed by the
packet, and the delay in the sink queue of the repeater associated with the destination.
In subsequent sections the expected values of these terms are calculated and are
In these calculations it is assumed that the

combined to obtain the total delay.

network is heavily loaded.

3.8.1. Packet delay -- internal queue J/

The delay in an internal queue is, by assumption, equivalent to the delay
encounted by a packet transmitted over a TREE link. Capetanakis analyzed the delay

in single-hop networks using an adaptive tree protocol as a function of NP via
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computer simulation [Cap79b]. He also noted that since the adaptive TREE protocol
becomes a TDMA protocol when heavily loaded, the expected delay of the former never
exceeds that of the latter. Thus an upper bound on the delay on the TREE link is the

expected delay of a TDMA link. This delay in units of frames is

N NP?
< — [
E(D[Q) S35 + 1+ 2(1 - NP)

[Cap79b].
For networks in which NP < 0.6 (note that this must be the case if A, > 5/3 and
the network is stable) and N < 128, a better bound on the expected delay in units of

frames is E(Dyg) < 160NP + 4.

3.8.2. Packet delay -- propagation queue

The delay encountered by a packet in the propagation queue is the sum of its
service time, i.e., the time needed to transmit the packet once it reaches the head of the
queue, and the time that it spends waiting in the queue before it reaches the head of
the queue. The queuing time can be found by evaluating two generating functions A4 (z)
and A4 (z) associated with the discrete semi-Markov process of the propagation queue,

and the random variables described subsequently.

The n}@ time frame

e N
i N R
tn ¢ * tn+1 ¢ * tn+2
n n+l
Figure 3.8

Time in the semi-Markov process
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ty 2 beginning of the n-th frame

ty £ beginning of enabled slot in PQ in n-th frame

X, £ number of packets in PQ at ¢,

X, £ number of packets in PQ at ¢

Y, £ number of packets arriving to PQ in (¢t,_, , t,]

U, 2 number of packets arriving to PQ in (¢,_,, tn_y)
a

A, (k) = Prob[X, = k]

e

A(k) Prob[X, = k|

A
A, = [Aa(1) 4.(2) 4.(3) |
. A N . .
A, = [4,4(1) A.(2) A.(3) ]
A 2 lim4,
A’ = lim 4,

A(z) =t generating function of lim X,

n—o0

A'(z2) 2 generating function of lim X,

Now A(z) can be found by embedding Markov chain X, in the discrete semi-
Markov process. The Markov property of X, is expressed as follows:
X,nu=X,+Y, -1 ifX, 0, and
Xooq =Y, - Iy 5o otherwise,

where Iy 5o =1if U, > 0 and Iy, > oy = 0 otherwise. The embedded Markov chain
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has the one step transition matrix

do 91 92 .
fo f1 fa -

0 fo f1 .
o o0 f,.

where f, = Prob[Y, = k] and

gi = Prob(Y, = k|Prob[U, = 0] + Prob[Y, = k + 1|Prob[Y, 5 0].
(Both f, and g, are described in appendix B.) Noting that A = AP and taking the Z-
transform we find that (see Appendix C)

1-my 2G(z) - F(z)

A(z)=l+m,-—m, z - F(z2)

where A(z)-i- YA, G(2) =, Sazt,  F(z) 2 Y, omy £ Y kfy, and
k=0 k=0 K=o E=0
A oG
m, == Z/Cg],.
k=0
A’(z) can be derived from A(z). As defined above, A“(z) is the generating

n—o0 n ~+00

function of lim X, and A(z) is the generating function of lim X,. The random variable

X, is the sum of the random variables X, , and U,. Since the generating function of
two independent random variables is the product of the two generating functions,

A’(z) = A(z) U(z) where U(z) is the generating function of lim U, (see appendix B).

A0

Since the service rate of the propagation queue is one packet per frame, the
expected delay in the propagation queue equals the expected number of packets which
are in the propagation queue when a randomly chosen packet arrives [Kle75b]. This

turns out to be difficult to evaluate; hence, we find an equivalent value, the expected
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number of packets in the propagation queue after a randomly chosen packet is sent
[Kle75b]. If =(k) is the probability that & packets are in the propagation queue after a

randomly chosen packet is sent, then

_ i X — m X _ ATk +1)
x(k) = Prob]| “l_‘n;X,,——/c 1| ,;I.P:QX" > 0] ———————I_A,(o) .
and the generating function of (k) is
L) = A E) -4 Q) (4(:)U() - A©0)U():
) 1-4°(0) 1- A(0)U(0)

for A(z) and U(z) as derived before.

The mean number of packets in the propagation queue after a packet is sent is

. dIL(z)
lim .

71 ¥4

For the reasons mentioned above, this value is the expected delay in the
propagation queue. Thus we find that the total delay in the propagation queue is

E(Dpo) = 1 + lim 1+ ()
(PQ)“‘ +‘§11 4z

which can be evaluated using numerical techniques.

3.8.3. Packet delay -- sink queue

The total delay in the sink queue can be found by the same method we used in
- the last section. The only major difference is that the mean arrival rate is equal to NP

packets per frame rather than A,NP packets per frame.

3.6.4. Packet delay -- total

When a TREE/TDMA network is heavily loaded, a packet is never forwarded
more than once in any frame; hence, the total expected packet delay is the sum of the
expected delay in the internal queue; plus h, times the expected delay in the

propagation queue; plus the expected delay in the sink queue. When A,>>1 then the
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total expected packet delay is effectively the delay encounted by a packet in being

forwarded from repeater to repeater.

The total expected packet delay for TREE/TDMA in which a triangular backbone
is used and the framing employs cycle stealing is plotted against N and the packet
arrival rate P in Figures 3.9 and 3.10 respectively. The values were obtained by

numerical techniques.
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TREE/TDMA -- mean delay versus N
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CHAPTER 4

CS/CAMA CHANNEL ACCESS PROTOCOLS

4.1. Introduction

In this chapter a new channel access protocol is introduced and analytical models
describing the operating characteristics of the protocol are presented. The protocol is a
carrier sense, collision avoidance multiple access (CS/CAMA) protocol and operates
under the strong law of conflict-free operation described in Chapter 2. Like the
TREE/TDMA protocols, CS/CAMA can be used in irregular or random planar
networks. Unlike many existing random access protocols for packet radio networks,
CS/CAMA creates a conflict-[ree environment without sacrificing potential spatial

reuse of the communication channel.

We first describe the CS/CAMA protocol and illustrate its operation. We then
show that CS/CAMA is essentially conflict-free, i.e, that the transmissions of two nodes
will never interfere with one another in such a way that the transmissions will not
reach their intended destinations. Using Petri nets we next show that the protocol
operates correctly, e.g., is free of deadlocks. We then present an analytical model of the
protocol and investigate its operating characteristics. Finally we present a simulation

model of the protocol and compare the operating characteristics of the protocol found

66
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using the simulation model to those obtained with the analytical model.

4.2. Description

In CS/CAMA a packet is transmitted from its source (station) to a nearby
station; then from station to station until it reaches its destination. A most forward
routing algorithm is used by each station and each station operates independently of all

other stations.

The communication channel is shared by all nodes and is not slotted as in the
TREE/TDMA protocols. The channel is split into two separate channels. On one
channel, the main channel, packets and request signals (REQs) are transmitted. On the
other channel, the subchannel, acknowledge and release signals (ACKs and RELs) are
transmitted. While both packets and REQs are addressed to a specific station, ACKs
and RELs are not addressed to a specific station and bear no additional information
other than their existence. (The bandwidth required on the subchannel is very small
when compared to that required on the main channel: only the existence of ACKs and
RELs need be established.) A station can transmit on either channel and listen to the
other channel simultaneously, but cannot both transmit and receive a packet on the

same channel.

Before using the channel, a station must check two status indicators which it
maintains: the channel status (CS) indicator and the station status (SS) indicator. CS
provides information about the main channel in the vicinity of a station. CS is “busy”’
if the main channel is busy, otherwise, it is “free’’. (If CS is “free’’, then a station can
receive a transmission.) SS provides information about the possible effect of the

transmission of a station on other stations in its transmission range. SS depends on a
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counter, the SS counter (SSC), maintained at each station. The value of SSC indicates
the number of stations that would experience interference if the station were to

transmit. SS is defined to be “permit” if SSC is 0 and “prohibit” otherwise.

The two status indicators together provide sufficient information about the state
of the network in the area surrounding a station to schedule transmissions without
conflict according to the strong law described in Chapter 2. Table 4.1 illustrates what

stations can do as a function of CS and SS.

CHANNEL STATION CANDIDATE CANDIDATE
STATUS STATUS FOR RECEIVER | FOR TRANSMITTER
Busy Prohibit No No
Busy Permit No Yes
Free Prohibit Yes No
Free Permit Yes Yes
Table 4.1

CS/CAMA station status indicators

In CS/CAMA each station obeys the following rules.

(Rule 1) Execute the following when a station wishes to transmit a packet.

(1.1) Repeat (1.1) until its SS is “permit” and then proceed to (1.2).

(1.2) Send REQ on the main channel (REQ identifies the receiver to which the
packet is to be sent). If REQ is acknowledged within 27+ ¢, to 4r + ¢,
seconds and if SS is still “permit’ at that time, then transmit the packet
immediately and set SSC to SSC + 1; otherwise, revert to (1.1). Note that r

is the maximum propagation delay between a station and another station
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within its transmitting range and ¢, is the duration of a REQ plus the

response time of the station.

(Rule 2) Execute the following when REQ arrives at a station and is addressed to that
station.

If CS is “free” from 2r seconds before receiving REQ to 2r + ¢, seconds

after receiving REQ), then send ACK on the subchannel and await a packet.

Send REL on the subchannel if a packet is received.

(Rule 3) Execute the following when ACK appears at a station on the subchannel.

Set SSC to SSC + 1.

(Rule 4) Execute the following when REL appears at a station on the subchannel or if
SSC is not 0 and has not been decremented for T, seconds after it was last
incremented (T,, is the time needed to transmit a packet of maximum length

including propagation delays), then

Set SSC to SSC - 1.

The following two examples illustrate the operation of the protocol. The first
example is depicted in Figure 4.1. Station C is assumed to be transmitting to D and A
desires to transmit to B. Since SS of A is “permit’’, REQ is transmitted by A on the
main channel. Since CS of B is “busy’’, B will not ACK and A will wait. This decision
is correct since B may not receive a transmission of A correctly even if A were to

transmit.



™
A
| Channel status | Station status
Station A Free Permit
Station B Busy Permit,

Figure 4.1

Example 1 -- operation of CS/CAMA

The second example is depicted in Figure 4.2. Station A is assumed to be
transmitting to B and C desires to transmit to D. According to the rules, C will

transmit and no collision will occur. This decision is also correct.

L ' Channel Status { Station Status |

 Station C | Busy Permit |

LStation D | Free Prohibit |
Figure 4.2

Example 2 -- operation of CS/CAMA



The actions taken by a station using CS/CAMA for various states are
summarized in the following figure and table. In this figure and table we have
partitioned the region surrounding stations A and B into four disjoint regions, region I
through IV. It is assumed that A is transmitting to B and C desires to transmit to D.
C can be in any one of the four regions as can D. The table shows the decisions made
by C based on its location and the location of D. It indicates that whenever C
transmits to D, the transmission is successful and does not interfere with the
transmission from A to B. Whenever C defers, it does so for one of two reasons: to
avoid interference (the transmission would interfere with the ongoing transmission); to

improve efficiency (an ongoing transmission may interfere with the transmission).

v

A is transmitting to B.

Figure 4.3

Environment of a transmission
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CS/CAMA states and decisions

4.3. Analysis of conflicts

Transmitter [ I {11 v
Receiver (Busy, Permit) | (Busy, Prohibit) = (Free, Prohibit) | (Free, Permit)
[ Wait Wait Wait Wait
(Busy, Permit) inefficiency interference interference inefficiency
I Wait Wait Wait Wait
(Busy, Prohibit) inefficiency interference interference inefficiency
[I Transmit Wait Wait Transmit
(Free, Prohibit) interference interference
v Transmit Wait Wait Transmit
(Free, Permit) interference interference
Table 4.2

In this section we show that the protocol is essentially free of conflict. In the

subsequent proof it is assumed that both station T, and T, in Figure 4.4 are in the

“permit” state and that stations T, and T, desire to transmit to stations R, and R,

respectively. In this case, only one of the two stations can be given permission to

transmit if a collision is to be avoided and, furthermore, exactly one of the two stations

must be given permission unless we are to sacrifice spatial reuse of the channel.

We first show that collisions are impossible on the main channel if collisions do

not occur on the subchannel. Then, we show that even if collisions occur on the

subchannel, it is unlikely that collisions will occur on the main channel.
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Notation:
Types of signals
req; -- REQ from transmitter T,
ack; -- ACK from receiver R,
pac; -- packet from transmitter T
Time
t;; -- propagation time between T; and R;

treq, = time at which req; signal is transmitted

¢ -- time when receiver R; receives reg;

jt"’.‘

t; sk, -- time when transmitter T, receives ack;
tj pac, == time when receiver T, receives pac;
tm -- duration of the REQ plus station response time

7 -- maximum propagation delay within transmission range

(We reset time to O when req, is transmitted.)
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Cases illustrated for discussion
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CASE 1: t,y, tys, tyy, ty; are less than r.
I[ t"'z < tl? - 2r - t‘22! then t?,f!qz = t"?z + t22
If ack, is not transmitted (station T; is transmitting), then no collision

occurs.

If ack, is transmitted, then tacky = toreq, T 2T + ty < tip + ln
tl,ackz = tackz + t12 < 2t12 +, tm < 27 + tm
Since ¢y g, < 27+ tn, SS of T, will be set to “prohibit” before

27 + t,, seconds, according to rule 1.2, transmitter T, will refrain from
transmission. No collisions occur.
If t,, is in [ t1g - 27 - tgg, tyg + 27 - tyy + t, |, then toreqy = treq, + t2z aNd tg g 18
in the interval [¢,; ~ 27, ¢t} + 27 + ¢,]
Since tareq, = tizy We have -27 <ty —ty,, < 27+ t,
Two REQs are received by station R,. Hence, station R, will not issue an
ACK according to rule 2. T, will refrain from transmission and no
collisions occur.
If treg, > tiz + 27—ty + tn
If ack, is not transrnitt;ed (T, is transmitting), then no collisions occur.

If ack, is transmitted, then tack, = tireq, T 27 + tm =ty + 27 + tn,
Elack, = tak, Tt = 2ty + 27 + ¢,
tpae, < tuack, T tm = 2ty + 27 + 2t,
( We assume the response time to send a packet is shorter than ¢,. )
topac, = tpae, T tiz < 28y + 27 + by + 2,

t2,reqz = C,qu - t22 > t12 + 27 + tm



topac, = toreq, < 2ty Ftn =27+ ¢,

t2pac, - Loreg, < 2T + tm

The packet transmitted from station T, arrives at station R, within
27 + t,, seconds after req, signal was received. According to rule 2,
ACK is not issued by R,. Thus station T, will transmit and T, will

wait. No collisions occur.

CASE 2: t,, is undefined.

This case occurs when station R, is outside the transmission range of T,. Since we

did not use t,, in the proof of case one; hence, the same proof applies.

CASE 3: t,, is undefined.

The same argument as in CASE 2 applies.

CASE 4: Both t,, and ¢,, are undefined.

Since both R, and R, are outside the transmission range of T, and T,. There will
be no collision even if both transmitters are active.

We have proved that packets will not collide if signals on the subchannel are

received correctly. We now examine cases in which signals overlap on the subchannel.



Figure 4.6

Signals overlapping on the subchannel

CASE 5: Suppose ACKSs from stations B and D in Figure 4.6 overlap. Stations in the
shaded area may detect one ACK rather than two.
(a) If the stations which have detected but one ACK have nothing to
transmit the error will be detected and corrected after these stations receive
two RELs.
(b) If the stations which have detected but one ACK attempt to transmit

after receiving one REL, a collision may occur on the main channel.

CASE 6: Suppose RELs from stations B and D overlap. Station F may detect one
REL rather than two. Thus SSC is decremented by one. Rule 4 contains an

auto-reduction rule which corrects the problem.
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CASE 7: Suppose REQs from stations B and D overlap. Since REQs are not primitive
signals on the subchannel but are sent on the main channel as packets, it is

assumed that they interfere and will be ignored.

4.4. Petri net model of correctness

In the following section, we use a Petri net to model the CS/CAMA protocol and
show that the protocol is correct and free of deadlock. In Figure 4.7 the flow chart of
the CS/CAMA protocol is depicted. The associated Petri net along with its time table
and predicate table are shown in Figure 4.8. In Figure 4.9 we link two of the Petri nets

by a channel which is also represented as a Petri net.
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recetve receive

ACK REL
§SC SSC
=SSC+1 =SSC-]
A
No __meSsag send
arTives a packet
Subchannel Yes
receive
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A Main
send Channel
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Figure 4.7

Flow chart of the CS/CAMA protocol
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Station A Station B

Figure 4.9

Two stations linked CS/CAMA

We now show that the system depicted in Figure 4.8 is “bounded” and “live”;
hence, that the CS/CAMA protocol can be implemented and is free of deadlock. A

Petri net is bounded if and only if every place of the net is bounded. Thirteen places of
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the Petri net in Figure 4.8 are bounded as follows.

o M(p3) = M(p7) = M(ps) = M(p1s) = 1

® M(ps)+M(pi)+M(p)+M(pis)+M(pis) = 1

e M(pg) < 1 since the maximum transition time of ¢,, (in Figure 4.8) is less
than the sum of minimum transition times of ¢{; and ¢g or tg ¢, and ¢,;

e M(p;) <1 since the maximum transition time of ¢, (in Figure 4.9) is less
than the sum of minimum transition times of ¢, t,,, and ¢, or ¢,, t,,, and
tiy

® M(pyy <1 since M(p,) is bounded and M(p,) < M(p,) because the
predicate of t,, is M(p,,) =0

e M(p,) <1 since the maximum transition time of ¢,, is less than the sum of

the minimum transition time of ¢,, ¢,5, and ¢,

The remaining places are places whose tokens represent either an ACK, a REL, a
REQ, a message, or the content of the SS counter. These places are also bounded since
only a finite number of signals can be heard by a station and the content of the SS

counter is finite. We conclude that the CS/CAMA protocl can be implemented.

A Petri net is live if and only if the transitions of the Petri net are live for all
markings that can be reached from M,. We show that the Petri net of the CS/CAMA
protocol is live in two steps. First we show that there exists a marking called M that
can be reached from any marking that can be reached from M, Second we show that

all transitions are live for the marking M .
The marking M is defined as follows: M (pg) =1, M (p,) =0, M (p;s) =0,

M (p1s) =0, and M {p,) = 0. The fact that it exists can be proved by the place

invariant M (ps) + M (pyy + M (p) + M (pys) + M (ps) = 1. This invariant implies
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that only one of these five places has a token at any time. In addition, none of these
places can hold a token forever. For example, a token can not stay at place p for
more than 4r + ¢, seconds since the transition ¢tz will always fire if the token remains

that long. Thus, marking M exists.

All transitions of the Petri net are live for M' since for each transition we can find
a feasible firing sequence which allows this transition to fire. For example, the
transition t, will fire if the predicate of ¢; is true, i.e., the station is attempting to send
message and this condition will occur; the transition ¢; will fire if M(p,5) =1 and
M(py) = 1. From Figure 4.9, we know that M(p,) = 1 and M(py;) = 1 can be reached
from M because ty, of tg is set to be greater than the sum of tn,,’'s of t., ty, ti and

t,,. All the remaining transitions can be proved to be live by the same methed.

Since M can be reached from every reachable marking of M, and all transitions
are live for M' , we conclude that the Petri net is live and the CS/CAMA protocol is

free of deadlock.

4.5. Performance -- analytical models

To facilitate the evaluation of the CS/CAMA protocol, the following assumptions
are made.
e The nodal packet arrival process is Poisson with rate N which consists of the
internal packet arrival rate and the external packet arrival rate.
e The time required to transmit a packet is exponentially distributed with mean 1.

s The propagation time delay is short and can be neglected.
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e If a packet can not be transmitted at a some point of time, a random amount of
time is waited before attempting to transmit the packet again. The waiting time
is assumed to be exponentially distributed with mean 1.

e The network traffic is two dimensional isotropic.

e A MFP routing algorithm is used.

4.5.1. Queuing Models

Two M/M/2//1 queues are used to represent the operation of the CS/CAMA
protocol. Each one of these M/M/2//1 queues can be translated to an equivalent but
simpler M/G/1 queue. By analyzing these two M/G/1 queues, we can obtain the

performance of the CS/CAMA protocol.

Model I

Model I, shown in Figure 4.10, is an M/M/2//1 queue, i.e, has a Poisson arrival
process, a Poisson service process, two servers of which only one server can work at
each time, a FIFO discipline, and infinite buffers. This queuing model will be used to
find an upper bound on the mean time delay, a lower bound on the expected
throughput, and a lower bound on the capacity of the protocol. This M/M/2//1

queuing model consists of two parts.
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1/2
172 - transmitting
queue wamning I-p process
process
J— — 5 .< >________>
Figure 4.10

Model I of the CS/CAMA protocol

The first part of the M/M/2//1 queue is a feedback queue which represents the
waiting process of the CS/CAMA protocol. As operated in the CS/CAMA protocol, an
idle station which receives a packet can transmit only if SS of the station is “permit”
and CS of the receiver is “free”. If p is the probability of such an event, then with
probability 1-p a station can not transmit on the first try and will wait. Since the
waiting time is exponentially distributed with mean 1, we know that with probability
1/2 that no transmission that keeps a station waiting, will finish before a randomly
chosen delay which is also exponentially distributed with mean 1. Hence, the waiting
process will remain in the feedback queue until at least one such transmissions finishes.
When one such transmission finishes before the waiting time, the packet can be
transmitted on the next try with probability greater than p. In model I, this
probability is taken to be p since this model is used to find the worst performance of
the protocol. Therefore, the feedback link of the queuing model hvas the entrance point

indicated in Figure 4.10.
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The second part of the M/M/2//1 queue shown in Figure 4.10 represents the
transmission process of a station. Since the propagation time delay is much shorter

than the packet transmission time, we neglect the propagation time delay in this model.

Combining these two parts, the first M/M/2//1 queuing model is formed. Since
its direct analysis is complicated, we transform this M/M/2//1 queuing model to an
equivalent but simpler M/G/1 queuing model, whose performance is known [Kle75¢c|.
This M/G/1 queue has a mean arrival rate A and a service time generating function

B(s) = p +2ps 1

P P {see Appendix D).

Model II

Model I, shown in Figure 4.11, is also an M/M/2//1 queue. The waiting process
of this model is the same as that of Model I. Model II will be used to find a lower
bound on the mean time delay, an upper bound on the expected throughput, and an

upper bound on the capacity of the CS/CAMA protocol.
By using the same method in Model I, the M/M/2//1 queue can be transformed to

an equivalent M/G/1 queue with B(s) = ((1 - i))z + p(s + 1) (see Appendix D).
8§ + $
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Figure 4.11

Model II of the CS/CAMA protocol

4.5.2. The probability of transmission

As defined before, p is the probability that a station is permitted to send a
waiting packet at time ¢t. According to the CS/CAMA protoc6l, a station with packet
is allowed to transmit the packet to a selected receiver if SS of the station is “permit”’
and CS of the receiver is “free’’. In the following theorem, we find bounds on the
probability of the aforementioned condition and use the result to find an upper bound
and a lower bound on the value of p.

Theorem 4.1

Let A(t) be the event that CS of a station is “free” and B(t) be the event that SS

of a station is “permit’”’. Then,

(1 =AN) < ProblA(t)] < e ¥, and (1 - AN) < Prob[B(¢)] < e *V.

Proof
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e The random process X(¢) is the number of transmitters within the transmission
range of a station. Since the packet arrival process and the packet service process
are both Poisson, X(t) is a regenerative process with regenerative points ¢ which
are the starting points of the i-th busy cycle. From the renewal reward theorem

[Ros85], we find

E{length idle period]
E[length busy cycle]

Prob[A (t)] = Prob{X(t) = 0] =

T,
e Let T, be the total length of n busy cycles. Then, E{length busy cycle] = lim
n—o0 N
TH
and E[length idle period] = lim-l- fl{x(,)=o}dt where [ is an indicator random
n—oo N 0

variable which is 1 if X(t)=0 and is O otherwise. Thus
T

L1
Prob[A (t)] = lim ITI{XU):-O}‘“'

n -+ 00 0
e The counting process M(t) is the number of packets that have been sent out from

those stations within the transmission range of the station and

T T

n n

J Lix=aydt = Ta - [Ixpy>opdt
[¥] Q

> T, - [X(t)dt

0
= T, - E[sum of packets service time up to time T,]

= T, - E[E[total service time of M(t) packets | M(t)]]

= T, - N\T,.

Hence, Prob{A ()] ~ 1-VX.
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e The random process N(t) is the number of stations which are within the
transmission range of the station. For each one of the N(t) stations, a random

process X;(t) is defined to be 1 if the i-th station is transmitting at time ¢ and is

N(t)
defined to be 0 otherwise. Then, X(¢)= iXi(t) and the X;(t)’s are not

i=1

mutually independent.
e Under the operation of the CS/CAMA protocol, more than two concurrent
transmissions within an interference area are unlikely. Therefore from Figure
4.12 we can see that if the X;(¢)’s are mutually independent, then the event A(¢t)

is more likely to occur than in the dependent case.

independent case

dependent case

Figure 4.12

Independent versus dependent cases

e Upper bounds on ProbiA (t)] are

Prob{A (¢)] = Ell(x(1)=0)

=EE[ . N(t) = m]] if X;(t)’s dependent;
{(Zx0)
1}
< EEI . N(t)=m]] if X;(t)’s mutually independent.



In the latter case we find

ProblA (¢)] < El(1 - M) = 32 N0 v (g _ym = o

i 48

,m!

e Using the same method we can show that
(1-AN) < Prob[B(t)] < e . O

The probability p is related to the events A(t), B(t), and {N(¢)} as

p = Prob[ A(t) N {N(t)>0} N {selected receiver not busy} N B(t) |.

It is difficult to calculate the value of p since events A (¢) and B(t) are dependent;
hence, we assume that A(¢) and B(t) are mutually independent. (The simulation
results in the next section indicate that this is an appropriate simplification.) Upper
and lower bounds can now be found on p: p, <p < py where
pr = (1-2N)(1-e¥)1-2AN)? and py = (1 = A\)(1 - ¢ ¥)e"®¥. These bounds are plotted

with respect to \ in Figure 4.13.
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Figure 4.13

Graph of py and p;
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Since the larger p, the better the performance of the CS/CAMA protocol, we use
p, with Model | to find the worst performance and use p; with Model II to find the

best performance of the CS/CAMA protocol.

4.5.3. Mean time delay

The mean time delay to transmit a packet from source to ultimate destination is
the mean number of hops multiplied by the mean time delay of one hop transmission.

The mean number of hops for the MFP routing algorithm is given as follows [Kle78].

1

Ho
(= )2+ eV - fe ™  atj!
1

h =
N

wita

where ¢(t) = cos™(¢) - tV1 - ¢, n is the total number of stations in space, and N is the

number of stations within the transmission range of a station.

The mean time delay of one hop transmission equals the mean system time
(waiting time + service time) of the M/G/1 queuing. The system time of an M/G/1
queue is represented by the Pollaczek-Khinchin formula [Kle75b].

1+ CF
2{1 -»)

Mean system time t; = m,(1 + p

where my; = mean service time of the M/G/1 queue, p = traffic intensity of the M/G/1

standard deviation of the service time
queue, and C, == .
my

Model I

An upper bound on the mean delay is found by replacing p by p, and is
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. [1 1+ C,,Z]
myfl + p—-—
i 2(1 - p)
1 1 Y
where my = 1 + 2(1 - p,)—, p = Am,, and C, = \/4—3pL .
pL pLmy

Model II

A lower bound on the mean delay is found by replacing p by py and is

1+ G2
hrmy 1+P—?(T“ - p)

2 1
where my = (1 - py)= + py(=), p = Amy, and C; = —— /2 - py° .
K my i

1
M

The above calculations lead us to find the upper bound and the lower bound on
the mean time delay which are plotted in Figure 4.14 with respect to different loading
conditions and in Figure 4.15 with respect to different transmission ranges. In Figure
4.14, we can see that the mean time delay of a packet is monotonically increasing with
respect to the traffic intensity of the protocol. In Figure 4.15, we can see that the mean

time delay of a packet is a V-curve with respect to parameter N.
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Mean delay versus \
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Mean delay versus N

4.5.4. Throughput of CS/CAMA

The expected throughput is the expected rate at which packets arrive at their
ultimate destinations. If the traffic intensity is less than one, the expected global
throughput of the CS/CAMA protocol is equal to the global packet arrival rate, which
equals n ), divided by the mean number of hops. If the traffic intensity is greater than
one, the the network is congested and the expected throughput is the maximum rate
that packets can reach their ultimate destination. According to these two relations, the

bounds of the expected throughput of the CS/CAMA protocol is calculated as follows.



96

Model I
A lower bound on the global throughput is found by replacing p by p, and is

max

**) subject to the condition Ay, + 2(1 - p;) ; <1
L

min(n-=

h

;s N

where p; = (1 = Apu)(1 = e™V)(1 = Apu Vo

Model II

An upper bound on the global throughput is found by replacing p by py and is

A
22} subject to the condition 2Xgudl - py) + Pr(Pow) < 1

min{n—, n

h

where py = (1 = Xpgg)(l - ¢V )e =2,

The relationships between 5 and N and between S and \ are shown in Figures

4.16 and 4.17, respectively.
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Figure 4.16

Mean throughput versus N
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Mean throughput versus A

4.5.5. Capacity of the CS/CAMA protocol

In the previous section, the expected throughput of the CS/CAMA protocol is
found to be a function of the mean packet arrival rate X and N. The value of NV at
which the expected throughput of the protocol is maximum is called the

number’” of the protocol and is the value used when we compute the capacity of

CS/CAMA in this section.

Model I

A lower bound on the global network capacity is found by replacing p by p, and

is

.@-
.O-
;-
.0-
ke
O

X

Model |, N=5

Model I, N=5
Model 1, N=10
Model Il, N=10
Model |, N=15
Maodel II, Na15
Model |, N=20
Model II, N=20

“magic
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max(n%) subject to the condition X + 2(1 - pL)—x—- <1
PL

where p;, = (1 - \)(L - e™¥)(1 - AN)?

Model II

An upper bound on the global network capacity is found by replacing p by Py
and is

max(n%) subject to the condition 2\(1 - py) + pyX < 1

where py = (L - \)(1 - ¢ ¥)e™2.
These bounds are calculated by computer. Figure 4.18 indicates that the lower
bound on the global network capacity is 0.1597v/n with corresponding magic number

10. Figure 4.19 indicates that there does not exist an upper bound on the global

network capacity.
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Figure 4.18

The magic number of Model I
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Capacity of Model 11

4.8. Performance -- simulation model

By simulating four protocols, the CS/CAMA protocol, the multi-hop ALOHA
protocol, the multi-hop CSMA protocol, and the multi-hop BTMA protocol, on a
computer, we show that the analytical models used in the previous section are valid,
and that the capacity of the CS/CAMA protocol is higher than that of a multi-hop
ALOHA protocol, a muiti-hop CSMA protocol, and a multi-hop BTMA protocol. In
the simulation model, t0 stations are randomly placed on a square region with side
length 3.5 and each station transmits packets with transmission radius 1. Therefore,

the mean number of -r.tions within the transmission range of a station is 10.
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Furthermore, we let the opposite sides of the square be coincident and let a packet
which leaves the square region from one side enter the region from the opposite side.

Thus, this is effectively an infinite network.

The simulation environments are the same as described in Section 4.4 with three
exceptions.

e The mean waiting time to retest the channel if busy is one in the simulation
model of CS/CAMA. In the simulation models of the other protocols, the mean
waiting times are the optimal values, i.e, the values which maximize the capacities
of the protocols.

e The CS/CAMA protocol is analyzed with zero and with nonzero propagation
delay. All the other protocols are analyzed with nonzero propagation time delay.

e Each station has 100 buffers to store packets. If a buffer is not available when a

packet arrives, the packet disappears.

We first simulate the operation of different protocols to estimate ¢;, the mean time

delay for one hop transmission. After obtaining the estimated value t;, we then
estimate the capacity of the network, which is the maximal value of —’% with the
constraint 2,, < oo.

Let n' be the number of obtained regeneration cycles, N(i) be the number of
packets arrived in the i-th cycle and T(i) be the sum of N(i) packets’ time delay spent
in the i-th cycle. Whenever the simulation output data of a new regeneration cycle are
obtained, we use the regenerative simulation method [Cra77| to estimate the mean time

delay of a packet t; and the half length of 100(1-a)% confidence interval /, as follows:
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“ TN
= 1 & g
where T(n' ) = - Z T(¢) and N(n' ) = - Z N(i);
L. VW)
B R
R - n _
where b0 = by(n' ) + t42522(n' ) = 2t465(n ), by(n' ) = ;1,‘ - 1_21[’[(]) - T(n ),
1 u N oo 1 2 N T e
ban ) = — - IE[T(J) = T(nNIN(G) = N(n' )]y 6w’ ) = — - LY [N(j) - N(2' )P, and

z o =100(1 - —g)% percentile of the standard normal distribution.

New data are generated and the above procedure is performed repeatedly until the

relative half length, EZ—I—“— is less than 0.1. The estimated one hop mean time delay we
d

obtain here is thus within 90% confidence interval.

With the procedure stated above, the CS/CAMA protocol is simulated with zero
propagation time, the same as that we used in the analysis models. The simulation
results are compared with the analytical results in Figure 4.20, which show that the
analytical models are valid for N = 10. The same procedure is carried out to verify the

analysis models for N = 2, N = 5, and N = 15.
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Second, we simulate the operation of different protocols with propagation time
delay 0.1. In Figure 4.21, we compare the performance of multi-hop ALOHA protocol,
the multi-hop CSMA protocol, the multi-hop BTMA protocol, and the CS/CAMA
protocol. It is shown that the performance of the CS/CAMA protocol is worse than
others when the traffic is light. This is mainly because the window control technique we
introduced wastes channel capacity while its advantage is nill when the traffic load is
light. When the traffic load is heavy, the performance of the CS/CAMA protocol is
much better than others because collisions do not occur. (Note that even though the
window control technique takes four units of propagation time, the capacity of the

CS/CAMA protocol is still much higher than that of others.)
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CHAPTER 5

CONCLUSION

In this dissertation we have explored topics related to multihop, paci(et radio,
communication networks. We have introduced two ‘laws,” the weak law and the
strong law, which if obeyed will ensure that such networks will operate without
interference due to coincident transmissions, and have investigated the effects of these
laws when then are applied to the regular planar networks. In the course of this
investigation we have described two new forms of TDMA for the regular planar
networks and have derived the capacities of these protocols when applied to each of the
regular networks. One of these, weak spatial TDMA (WSTDMA) obeys the weak law
and the other, strong spatial TDMA (SSTDMA) obeys the strong law. Our analysis
shows that SSTDMA and a variant of SSTDMA have the highest capacities, especially

when applied to square networks.

Since the spatial TDMA protocols, in their pure forms, can only be used in regular
two-dimensional networks, we describe a method of modifying these protocols so that
they can be used in irregular planar networks, e.g., networks containing mobile nodes.
The resulting protocols, i.e., the TREE/TDMA protocols discussed in Chapter 2,
possess the best features of both the tree protocols and the spatial TDMA protocols.

In these protocols, two levels of control are used on a shared broadcast channel: tree

165
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networks are used smooth the flow of traffic to a backbone of repeaters using a spatial
TDMA protocol. This allows the TDMA backbone to operate more efficiently. To
complete our description of the TREE/TDMA protocols we derive necessary and
sufficient conditions for the stable operation of networks using the protocols, calculate

capacities for these networks, and evaluate mean packet delay times.

We also introduce a second protocol, the CS/CAMA protocol, which does not
make use of a regular backbone but does obey the strong law. Like the TREE/TDMA
protocols, CS/CAMA can be used in irregular or random planar networks. Since this
protocol involves a complicated ‘“‘handshaking”’ between nodes to exchange information
about local states, we have demonstrated that the protocol is logically correct, e.g., that
it will not deadlock and is essentially conflict-free. We have also presented both
analytical and simulation models of the protocol and compare the operating

characteristics of the protocol predicted by each model.

The TREE/TDMA and CS/CAMA protocols exhibit characteristics which make
them attractive alternatives for use in a multihop packet radio environment. Both
protocols are reliable since they are distributed, the latter more so than the former: the
nodes function independently of one another and require only local state information;
hence, there does not exist a single node whose failure can render the entire network
inoperative as in a centralized network. Both protocols are flexible and can
accommodate mobile users. No elaborate mechanism is needed for adding or deleting
nodes from a network as in certain ‘‘token-passing’’ and reservation protocols. Both
protocols allow terminals to maintain a low EM profile; hence, limit detection:
terminals need only transmit when conversing and any transmission can be confined to

the neighborhood of the transmitter. Neither protocol requires expensive or complex
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hardware at a node.

Most importantly, the protocols are efficient. Many media access protocols are
rendered inefficient in the multihop packet radio environment because either the
“hidden area’ is ignored by the protocols or in accommodating the hidden area, the
potential for spatial reuse of the channel is sacrificed. Both the TREE/TDMA and
CS/CAMA protocols eliminat;e the effect of the hidden area without sacrificing the

potential for spatial reuse of the channel.

There are several areas that might be explored were one to continue the work
described in this thesis. First, while we were able to show that WSTDMA is optimal,
optimal in the sense that there do not exist other protocols for the regular planar
networks obeying the weak law which have higher capacities, we were unable to make a
similar claim for SSTDMA or its variant SSTDMA’. Note that the one-hop capacities
of SSTDMA are optimal but these do not imply that the network capacities of
SSTDMA are optimal (in fact they are not as demonstrated by SSTDMA’). The key
difference between WSTDMA and SSTDMA is that it is more “‘efficient” to use short
transmission distances for the former and long distances for the latter when attempting
to increase network capacities. Unfortunately, an idiosyncrasy of SSTDMA prevents
the use of a single long transmission distance and in~ fact prevents the direct (one-hop)

comrnunication of certain pairs of stations.

Second, there are direct extensions of this work to space of other dimensions.
Extensions of the work relevant to the planar networks discussed in chapters 2 and 3 of
this thesis to three dimensional networks would be interesting. The CS/CAMA

protocol presented in Chapter 4 can be used in n-space without alteration.
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Third, improvements could be made to the analytical models of the CS/CAMA
protocol presented in Chapter 4. Recall that we presented models which enabled us to
calculate upper and lower bounds on capacity, packet delay, etc., but which did not
capture the true operating characteristics of the protocol. A better analytical model of

the CS/CAMA protocol would be welcomed.

Finally, there are extensions which could be made to the work presented in this

thesis to networks in which traffic patterns are not uniform and isotropic.
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APPENDIX A

INFINITE SOURCE MODEL

An infinite source model is frequently used in the analysis on contention protocols
and, in particular, to find a lower bound on the capacity of a protocol. In this
approximation, packets are usually assumed to be of fixed size and one unit of time is
needed to transmit a packet on the channel. It is assumed that the random processes
Vi(t), t=1,2,...,N, denoting the number of packets generated at NIUs in slot t are

mutually independent and identically distributed with average rates X\, = E[V,(¢)].

N
(The aggregate network packet arrival rate is thus X = Y );.) Now we allow N — co

so=1|
and \; — 0 such that \ remains fixed. As N — oo, Prob(X;(t)>1) — 0 for i=1,..,N
where X;(t) is a random process denoting the number of packets queued at NIU i at
time t. (Note that if, as is frequently done, it is assumed that an NIU wishes to
transmit a packet with probability X\; in each slot and \; = X; for all i and j, then the
total number of NIUs wishing to transmit in any slot has a binomial distribution for a

finite source model and a Poisson distribution for an infinite source model.)

If Z(t) is a random process denoting the delay encountered in serving all packets
in the network at time ¢, then the protocol is stable in the sense that all packets are

transmitted with finite average delay if limE{Z(¢)] is finite. In this case the network
¢

00
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throughput X\ is ‘“‘achievable” (albeit the delay may be very large). If X\ can be achieved

by a protocol, then X\ is a lower bound on the capacity of the protocol.



112

APPENDIX B

DERIVATION OF THE PROBABILITY MASS FUNCTIONS

In this appendix we find the probability mass functions f,, g, and the generating
function U(z), which are defined in Chapter 3. Since function g, will be represented as
a function of f, and U(z), we will derive ¢, last. The variables involved in the

deviation are defined as follows.
Py £ probability that a packet leaves the IQ in a frame
P2 2 probability that a packet leaves the PQ in a frame

P3 £ probability that a packet move to the SQ

A, £ number of internal arrivals in the n-th frame
B, = number of external arrivals in the n-th frame
c, =4,+8,

Since the probability of finding a stable queue busy equals the traffic intensity of

the queue [Kle75al, the values of p, and p, are NP and 4, NP, where N and P are

defined in Chapter 3. The value of p; = , since the packet arrival rate of the

1
L+ A,

sink queue is NP, the same as the internal queue, and that of the propagatio queue is
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h.NP. The probability mass functions of A, and B, can be represented as

P, jif A, =1
falag) = 1-p, ;ifA, =0
8 P2 s P2 6-%
2y (1-2 )
[bn}( 8 ) 8 ) ; if B, =0,1,2,..6
fﬂ,‘(bn) =l =0 ; otherwise

Since C, = A, +B,, the generating function of C,, denoted as G (z), can be
represented as G¢ (z) = {1+p1(z«1)][1+-%2- (z-1))°

From the definition given in Chapter 3, function f, is the probability mass
C'l

function of Y,, which equals Y} I, where the indicator random variable I; equals 1 if
=0

and only if packet i goes to the PQ. Accordingly, the generating function of Y,,

denoted as F(z), can be obtained as follows.

v % L ,CE"’.‘
F(z) =E[z "] =E[z™ | =EE(Z™ | C,))
= Ellps + (1= p2)2)] = [1 + palps + (1 - p2)2)[L + 22 (s + (1 - po)e]

After obtaining the generating function F(z), the probability mass function f, can

be obtained from F(z) by taking the inverse Z-transform.

In order to derive the generating function U(z), the random variables A, and B,
are respectively represented as the sum of two random variables, A, = A7, + A’, and
B, = B?, + B*',. The random variables A®, and B*, represent the number of
internal and external arrivals which enter the propagation queue in the n-th time

frame, respectively.
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The random variable U,, defined in Chapter 3, can be represented as
B?

U, = A ,+ Y, I, where [, is 1 if the i-th external arrival reaches the propagation queue
5 =0

before the queue is enabled in the n-th frame. From this, the generating function U,(z)

is found to be

where G,, (z) = [1-

. 1+;z. pi{l-z)], and GBP,‘(Z) =[1 -

U{z) = lim U,(z) and U,(z) is independent of n, U(z) = U,(z).

n -0
In Chapter 3, the probability mass function ¢, is defined as

f«Prob[U, = 0] + f,,,Prob[U, 5 0]. Hence, the generating function of g¢,, denoted as

1-U(0) F(z)- F(0)

=F0) . By taking the

G(z), can be represented as G{(z) = U(0)F(z) +

inverse Z-transform, we can obtain the probability mass function ¢, from G{(z).



APPENDIX C

STEADY STATE PERFORMANCE

In this appendix, the generating function of the row matrix A will be obtained
from the equilibrium equation 4 = AP where
A =[A00)A(1) A(2) ....]

90 91 92 - -]
fo fo fa o
Ofofl"
0 0 f,.

Since A = AP, we have

1 Pl
z z
22 22
A 23 z*
Alz)= 4 [ (|=4P |,
25 25
which gives us
Gl(2)
F(z)
2F (z)
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From the above equation, we then have

Afz) = A(0)C(z) + A(2)F ()27 - A(0)F (z)e™ = A(o)fc_(z)-—;{—)(f—)
z - F4
. 1 - my
The value of A4(0) can be found from limA(z) =1 to be A(0) =
z—1 L+ m, - my
where m, = lirnlLi—F-lz—2 and m, = limd—G——(-z-). Thus, the generating function of the row
53— ¥4 ERadt Zz

1-my 2G(z) - F{z)
+ my ~ my z-F(z)

matrix A is
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APPENDIX D

EQUIVALENT M/G/1 QUEUE

The generating function of the service time distribution of both equivalent M/G/1

queues of models I and II will be obtained in this appendix. The Lemmas we used here

follow.

Lemma D.1
Let a server serves a customer for time Y or time Z with probability p and 1-p,
respectively. Then the generating function of the server’s service time Gy(s) is
pGz(s) + (1 - p)Gy(s) where G;(s) and Gy(s) are the generating function of

random variables Z and Y, respectively. [Kle75b]

Lemma D.2
Consider a server which serves customers in two stages with times Y and Z,

respectively. Then, the service time distribution of the server has the generating

function Gy(s) = Gys)Gz(s). [Kle75b]

Lemma D.3
Let a customer’s service time be X;(X; = (k +1)Z + k¥Y) with probability

px(px = p(1-p)*) where k is a positive integer. Then, the generating function

pGy(s) .
Gy(s) = L= 791G 51Gr o) where Gy(s) and Gj;(s) are the generating
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functions of Y and Z, respectively. [Kle75b]

Using these three Lemmas we can obtain the service time distribution of the

equivalent M/G/1 queues of the two queuing models in Chapter 3.

Model I

In order to find the generating function of the service time of Model I, we translate

Model I in Figure 4.15 to its corresponding block diagram in Figure D.1.

12 l

1

<_
I, s+1

— J | p
o IJ-P s+1

X, (s

X, (s)

Figure D.1

Block diagram of Model I

Then, by applying the three relations we derived earlier, the generating functions of X,

X,, and X, can be obtained.

Gy (s) = 2511 {Lemma D.3)

Gy,(s) = —p—l'p— (Lemma D.3)
{25 = 1)
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. p(2s +1)
Gx,(s) = @ s )+ 1) (Lemma D.1)

Thus the generating function of the service time distribution is

(28pi2:)2; 1_3_ ) (Lemma D.1)

Model II
The block diagram of Model II in Figure 4.16 is shown in Figure D.2

1
s+1
p
Ip
> 1
~— I s+1
X (s
(9
—
X (s
(9
Figure D.2
Block diagram of Model II
We find
Gy (s)=1»p ~ ,,.tpl (Lemma D.3)
7 1l
Gy,(s) = 0 T (Lemma D.1)

Thus the generating funcrion of the service time distribution is
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p l-p
— T (Lemma D.1)
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